
Received April 24, 2022, accepted May 15, 2022, date of publication May 18, 2022, date of current version May 25, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176106

A Survey of State-of-the-art on Edge Computing:
Theoretical Models, Technologies, Directions,
and Development Paths
BIN LIU 1, ZHONGQIANG LUO 1,2, (Member, IEEE), HONGBO CHEN3, AND CHENGJIE LI4
1School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, China
3Sichuan Shuneng Electric Power Company Ltd., Chengdu 610000, China
4School of Computer Science and Technology, Southwest Minzu University, Chengdu 610041, China

Corresponding authors: Zhongqiang Luo (zhongqiangluo@gmail.com) and Hongbo Chen (chb740921@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61801319, in part by the Sichuan
Science and Technology Program under Grant 2020JDJQ0061 and Grant 2021YFG0099, in part by the Sichuan University of Science and
Engineering Talent Introduction Project under Grant 2020RC33, in part by the Innovation Fund of Chinese Universities under Grant
2020HYA04001, in part by the Artificial Intelligence Key Laboratory of Sichuan Province Project under Grant 2021RZJ03 and Grant
2021RZJ04, and in part by the 2021 Graduate Innovation Fund of Sichuan University of Science and Engineering under Grant y2021071.

ABSTRACT In order to describe the roadmap of current edge computing research activities, we first address
a brief overview of the most advanced edge computing surveys published in the last six years. It is true that
edge computing has been adaptively integrated into growing number of applications. Edge computing theory
and technology will bring substantial innovation and incentive, as well as a large number of application
scenarios in different fields, such as edge computing assisted smart city, Internet of Vehicles(IoV), Industrial
Internet, and many other different fields. In the field of edge computing, however, it is actually lack of a
comprehensive investigation of using the most advanced theoretical models, technologies, directions and
development paths. To fill this gap, by identifying and classifying, we carry out an in-depth survey of the
latest high-quality literatures related to the theoretical discoveries in edge computing(EC) and the fusion
of EC and the frontiers of Information and Communication Technology (ICT). Finally, it is summarized
several promising open issues, and also pointed forwards the directions of future research. We hope that this
survey report will attract much more attention, stimulate fruitful discussions, and provide ideas and useful
guidance for further research on the theoretical models, technologies, directions and development paths of
edge computing.

INDEX TERMS Blockchain, computation migration, edge computing, edge intelligence, resource
scheduling.

I. INTRODUCTION
In recent years, as the continuous increase of data volume and
the diversified requirements of data processing, cloud-based
big data processing has faced many challenges. The Internet
of Things(IoT) era has brought higher requirements for trans-
mission bandwidth, latency, energy consumption, application
performance and reliability. In this context, it is difficult to
meet the high-performance requirements of users due to the
limited bandwidth, high latency and high energy consump-
tion of the centralized processing model of cloud computing.
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Fortunately, Information Technology (IT) resources can be
migrated from the traditional cloud data center to the user
side, shortening the physical distance between users and
information technology resources, achieving lower data inter-
action latency and saving network traffic, so as to provide
users with low latency and high stability IT solutions. With
the edge features, edge computing has penetrated into multi-
ple applications that are closely related to all aspects of our
daily life, such as autonomous drive, smart cities, industrial
areas, and commercial applications. In the following, before
discussing the motivation of this survey, we first provide a
brief description of the latest edge computing survey articles
published in recent years.
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FIGURE 1. The latest categories and numbers of edge computing-related
surveys published in recent years.

A. TAXONOMY OF STATE-OF-THE-ART EDGE COMPUTING
SURVEYS
To clarify our survey objectives, we collect 46 represen-
tative survey articles related to edge computing. Fig. 1
shows the number of surveys in each of these categories.
We learn that the most popular topics are computation
offloading, machine learning(ML) and deep learning(DL),
and blockchain. We also classify it in Fig 2. From the fig-
ure, we find that the number of published surveys increases
over time, and the diversity of topics is growing. Specifi-
cally, we summarize the groups, categories, years and cor-
responding topics of these surveys in Table 1 and Table 2.
For this, we divide these surveys into the following seven
groups. The general principles of collection are based on
the dissimilar aspects of edge computing covered in the sur-
vey. In group 1, we focus on the basic properties of edge
computing. In group 2, by analyzing the resource scheduling
work in edge computing, which is divided into resource man-
agement, computation offloading and resource provisioning.
In group 3, the deployment of edge computing often faces
the characteristics of complex environment and scattered
sites. Different decision-making technologies can be adopted
to make reasonable and efficient choices. Group 4 is the
integration of edge computing and the latest cutting-edge
communication technologies. In groups 5 and 6, we review
the application scenarios of edge computing and related
open-source tools and simulation platforms. Group 7 is the
overall overview of the work.

1) THE PROPERTIES OF EDGE COMPUTING
The first group is related to edge computing properties.
About network slicing, scalability, security and privacy,

FIGURE 2. The latest categories and numbers of edge computing-related
surveys organized in a chronological order.

and architecture are reviewed and summarized in [1]–[7].
For example, End-to-End (E2E) network slicing facilitates
resource allocation for a wide variety of applications, and
Rajkumar et al. [1] extended this to fog and cloud computing
by examining state-of-the-art slicing approaches in network
technologies such as SDN and NFV. Shah et al. [2] provided
MEC and network slicing use cases for 5G services compared
to [1], detailing the latest advances, implementation tech-
niques, solutions and standardization efforts to achieve E2E
network slicing. Pan et al. [3] envisioned a secure and scal-
able Fog-IoT architecture, such as the development of new
automation tools with appropriate abstractions to allow the
deployment of IoT applications on decentralized Fog nodes.
Kumar et al. [4] discussed multiple algorithms, objectives,
approaches and their benefits used in edge/fog computing
due to limitations such as bandwidth limitations, inactivity,
lack of resources and various security issues, laying the
foundation for system scalability and security improvement.
Alwarafy et al. [5] summarized the security and privacy of
edge computing in IoT, which includes the key classifica-
tion, types and countermeasures for attacks. Abbas et al. [6]
highlighted the definition, advantages, architecture and devel-
opment of related technologies of MEC. Hamm et al. [7]
characterized current edge computing initiatives, giving a
roadmap for sustainable edge computing.

2) RESOURCE SCHEDULING
In MEC systems, resource scheduling has been a impor-
tant issues in academia as they relate to saving energy
and reducing latency of the entire edge computing sys-
tem. The existing survey studies are shown as follows.
Luong et al. [8] provided an overview of resource manage-
ment in cloud networks applying economic and pricing mod-
els and shared resources in edge computing using pricing
strategies. Recently, Hong et al. [9] have conducted a com-
prehensive survey and discussed some future research direc-
tions for improving resource management aspects to address
the remaining challenges. Ghobaei et al. [10] presented a
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systematic literature review of resource management meth-
ods in fog computing in the form of a classical taxonomy
divided into six main categories. Mach et al. [11] divided the
computation offloading domain in edge computing into three
parts: decision making, resource allocation, and mobility
management. Wang et al. [12] employed a new feature model
to investigate the key problem of offloading in the edge-
cloud framework, and listed the related methods and efforts.
Dziyauddin et al. [13] conducted a comprehensive survey of
computation offloading and data caching and delivery meth-
ods, as well as a detailed review, discovery and comparison
of their existing optimization techniques. Wang et al. [14]
conducted a detailed survey of 71 published studies related
to task offloading in edge-cloud computing, classifying their
tasks in the field of type, offloading scheme, target, portability
and respectively. Algarni et al. [15] compared different com-
putation offloading models in order to optimize the unloading
parameters and techniques. Furthermore, several commonly
used unloading algorithms were compared in terms of cost,
time, and energy. Islam et al. [16] divided different task
offloading models into three main categories and reviewed
the recent research on MEC task offloading. Duc et al. [17]
summarized the approach to ML techniques for solving the
problem of reliable resource provisioning in edge-cloud envi-
ronments. Spinelli et al. [18] discussed the flexibility of MEC
deployments, migration capabilities and several use cases in
industrial verticals.

3) DECISION-MAKING TECHNOLOGIES
Edge computing can bring many advantages in combina-
tion with other domains, such as edge computing com-
bined with machine learning and deep learning [19]–[25],
auction methods [26], and game theory [27]. For exam-
ple, to address the bottleneck problem of edge learning,
Wen et al. [19] focused on a new class of data-importance
aware RRM techniques and its recent advances in the field
of edge intelligence(EI). Murshed et al. [20] concluded a
review of edge-based techniques for training and deploy-
ment of ML. Shakarami et al. [21] classified various princi-
ples of ML-based offloading mechanisms for reinforcement
learning, supervised learning and unsupervised learning.
Shuja et al. [22] comprehensively studied ML-based edge
caching techniques on the basis of [21]. Voghoei et al. [23]
mapped DL to an edge computing paradigm with some
related discussions. Wang et al. [24] focused on the scenarios
and basic enabling techniques for DL and MEC applica-
bility. Sun et al. [25] provided a comprehensive survey of
DDL in terms of decentralization techniques, communica-
tion efficiency and trustworthiness, providing knowledge of
privacy protection in multiple massive amounts of various
types of edge computing data. Qiu et al. [26] identified
an overview of auction methods in edge computing and a
detailed review, analysis and comparison of their differences.
Moura et al. [27] mainly reviewed the challenges and usage
scenarios of applying game theory to MEC services.

4) NEW COMMUNICATIONS NETWORKING
As the commercialization of 5G continues to accelerate,
MEC, a key part of the 5G architecture, has received a lot of
attention. Taleb et al. [28] focused on the basic key technolo-
gies to implement MEC, summarizing the 5G standards sup-
porting MEC and IoT applications. Pham et al. [29] covered
the basic principles ofMEC and the latest research on its inte-
gration with 5G and other technologies. Al-Ansi et al. [30]
thoroughly investigated the characteristics, advantages, chal-
lenges and potential use cases and market drivers of Intelli-
gent Edge Computing (IEC). Its integration into 5G and 6G
technologies can provide adequate and large-scale support for
different services. Yang et al. [31] introduced an integrated
system for blockchain and edge computing in terms of their
framework, network security, data integrity and computa-
tional validation. Nguyen et al. [32] focused mainly on a
broad discussion of the potential of blockchain to enable key
technologies such as 5G, edge computing, SDN, NFV and
network slicing, etc. Queiroz et al. [33] applied blockchain
and edge computing to current IoV solutions and classified
different scenarios, designs, algorithms and technologies.
Gadekallu et al. [34] explored the developments and security
challenges of blockchain and edge of things (BEoT) technol-
ogy and analyzed its application in industrial applications.

5) EDGE COMPUTING APPLICATIONS
Edge computing has spawned a large number of appli-
cations in various fields. The existing surveys on edge
computing-based applications cover research areas such as
smart cities [35], smart grids [36], Industrial Internet [37],
Corona Virus Disease 2019 (COVID-19) [38], Unmanned
Aerial Vehicles (UAV) [40], Internet of Vehicles [41], video
surveillance [43], etc. The existing surveys are as follows.
Khan et al. [35] provided a comprehensive study of edge
computing in smart cities. Boccadoro et al. [36] investigated
the application of fog computing in smart grids in terms of
features, solutions, and challenges, providing a powerful tool
for designing optimized smart grid systems. The key tech-
nologies of MEC for the Industrial Internet have been out-
lined by Li et al. [37], whose feasibility and importance were
demonstrated by typical industrial applications that have been
deployed. Sufian et al. [38] explored the significant impact
of COVID-19 on global health, economy and education, and
recalled that the use of technologies such as deep migration
learning and edge computing to automate infrastructure is
helpful to deal with the epidemic. Bianco et al. [39] investi-
gated the close combination of RFID system and EI paradigm
to address the outbreak of future pandemics. Zhou et al. [40]
provided a comprehensive survey of recent advances in the
field of MEC networks for UAV. Zhang et al. [41] reviewed
the recent developments in the design, methodology, and
hardware platforms of environmental information systems
for intelligent IoV. Liu et al. [42] provided a comprehensive
overview of the introduction, architecture, challenges, appli-
cation scenarios and other aspects of VEC. Patrikar et al. [43]
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studied various methods and designs of anomaly detection in
intelligent video surveillance. Besides, there are few studies
on anomaly detection using edge computing, which needs
attention.

6) OPEN-SOURCE TOOLS AND SIMULATION PLATFORMS
Edge computing is a new paradigm that migrates networking,
computing, and storage capabilities from remote clouds to the
user side. In the context of IoT and 5G, open-source tools
can generally reduce the data processing and transmission
overhead and improve the efficiency and effectiveness of
mobile data analysis. Liu et al. [44] classified the design
requirements and innovations of open-source projects for
edge computing systems as well as compared their goals,
architectures, features, and limitations. In addition, energy
efficiency improvement mechanisms and technological inno-
vations for edge computing are investigated. On the other
hand, the use of simulation platforms to implement for the
study of systems is not only flexible but also economi-
cal, Van et al. [45] provided a comprehensive overview of
edge computing simulation platforms and compared their
characteristics.

7) GENERAL OVERVIEW& OUTLOOK
Ahmed et al [46] detailed the classification in the field of
MEC and the real-time application scenarios suitable for it,
as well as identified the latest results and research challenges
for successful MEC deployment.

In summary: Through a brief review of the latest survey,
edge computing has gradually become a new direction of
computing system, a new form of business in the information
field and a new platform of industrial transformation by
nearby providing key capabilities such as computing, network
and intelligence. Based on the analysis of these survey arti-
cles, edge computing is in a high-speed development stage
as a whole and is accelerating from concept popularization to
pragmatic deployment, and it has attracted extensive attention
by academia and industry.

B. MOTIVATION OF THIS SURVEY
With the overview of existing edge computing-related sur-
veys shown in Table 1, Table 2, Fig 1 and Fig 2, we have found
that a survey of state-of-the-art on edge computing in terms
of architectures and models, technology categories, research
directions, and development paths and trends is still missing.
To help better understand edge computing, we summarize
multiple perspectives on architectures and models, technol-
ogy categories, research directions, and development paths
and trends. In particular, we attempt to include the latest high-
quality research results that are not included in other existing
survey articles, and we believe that this survey can provide
new clues for further development of edge computing and
provide researchers with a comprehensive, information rich
and up-to-date view.

TABLE 1. Taxonomy of existing edge computing-related surveys (Part 1).
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TABLE 2. Taxonomy of existing edge computing-related surveys (Part 2).

C. CONTRIBUTION OF OUR SURVEY
The survey introduced in this paper includes the following
contributions: We briefly classify the existing edge comput-
ing surveys to emphasize the significance of the literature
review shown in this survey, and then we make a compre-
hensive investigation of the latest architectures and models,
key technologies, research directions and development paths
of edge computing. Finally, several promising directions and
problems to be solved in the future research are prospected.

FIGURE 3. The structure of this article.

To help readers fully understand the structure of this sur-
vey, the structure of the study is shown in Fig 3 and organized
as follows. Section 2 introduces the preliminaries of edge
computing. Section 3 generalizes various architectures and
models of edge computing. In Section 4, the latest technolo-
gies and research directions for improving the performance
of edge computing are summarized. Section 5 describes the
development paths and trends of edge computing. We look
at the unresolved issues in Section 6. Finally, this article is
summarized in Section 7.

II. PRELIMINARIES OF EDGE COMPUTING
Edge computing is a new computing paradigm that provides
applications with converged computing, storage and network-
ing resources by being on the edge side of the network close
to the source of things or data. In this section, we present
the basic concepts, definitions and terminologies of edge
computing appeared in this article. Due to the frequent use
of acronyms in this paper, we will include an acronym table,
i.e., Table 3, in this section.

A. FOG COMPUTING AND EDGE COMPUTING
In the context of the Internet of Everything(IoE), data at the
edge has seen explosive growth. To address the problems
of computational load and bandwidth during data-oriented
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TABLE 3. Acronym table.

transmission, computation and storage, researchers have
started to explore the addition of data processing at the edge
close to the data producer, i.e., the uplink of the IoE service
function. In 2012, Cisco proposed fog computing, defined as
the migration of cloud computing centric tasks to network
a highly virtualized computing platform executed by edge
devices. The cloud computing architecture centralizes com-
puting from the user side to the data center, keeping comput-
ing away from the data source, which can also bring problems
such as computing latency, congestion, low reliability and
security attacks. Fog computing(FC) is localized cloud com-
puting, which is a complement to cloud computing. Cloud
computing emphasizesmore on theway of computing and fog
computing emphasizes more on the location of computing.
Provided that cloud computing is WAN computing, then fog
computing is LAN computing.

Edge computing is not a new concept either. It first
emerged in 2013, stemming from IBM and Nokia Siemens
Networks then jointly launching a computing platform that
could run applications inside wireless base stations to deliver
services to mobile users. The European Telecommunications
Standards Institute (ETSI) established theMobile Edge Com-
puting Specification Working Group in 2014 to officially
announce a push for standardization of MEC. The basic idea
is to migrate cloud computing platforms from inside the
mobile core network to the edge of the mobile access net-
work to achieve elastic utilization of computing and storage

TABLE 4. Acronym table.

resources. Since MEC is located inside the wireless access
network and close to mobile users, it can achieve ultra-low
latency and high bandwidth to improve service quality and
user experience. With in-depth research, ETSI has further
extended the definition of ‘‘M’’ in MEC to cover not only
mobile access but also other non-3GPP access methods such
as WI-FI access and fixed access, extending MEC from
telecom cellular networks to other wireless access networks.
ETSI redefined the ‘‘M’’ in MEC as ‘‘Multi-Access,’’ and
the concept of ‘‘Mobile Edge Computing’’ was changed to
‘‘Multi-Access Edge Computing.’’ Edge computing and fog
computing emerged to complement remote clouds to meet the
service needs of a large number of geographically distributed
IoT devices. Themain difference between the two is that edge
computing typically occurs directly on the device towhich the
sensor is attached or on a gateway device that is physically
close to the sensor. Fog computing, on the other hand, shifts
edge computing activities to processors connected to the LAN
or to the LAN hardware itself, so they may be physically
remote from sensors and actuators. Finally, Table 4 presents
a comparison between their characteristics.

B. EDGE COMPUTING DEVELOPMENT ENVIRONMENT
The statistical results of the literature ratio of the key-
words ‘‘edge computing’’ and ‘‘cloud computing’’ through
the search engine are shown in Fig 4. From the analysis of
the development trend in recent years, cloud computing, as a
mature and stable technical means, has been in a high-speed
development stage since its emergence, but the proportion of
literature tends to be flat and has basically reached saturation
in recent years. In contrast, the proportion of edge computing
is in progressive growth year by year since 2015, and the
literature published in 2019 in one year accounts for more
than half of the total number of the last seven years. It can be
seen that edge computing is exactly the current focal technical
issue.
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FIGURE 4. The comparison of the proportion of cloud computing and
edge computing literature in recent years.

From 2015-2019, edge computing began to be vigorously
promoted by the industry and entered a rapid growth phase,
and 2019 was considered the first year of edge comput-
ing. With the rise of edge computing and the advent of the
new digital era of IoE, the convergence and development of
edge technology with cloud computing and other network
technologies have become an important force in driving the
implementation of edge computing technology, which have
enabled the application of edge computing technology to
steadily develop and enter industrial landing. Driven by the
development of 5G, IoT and Industrial Internet, the global
edge computing industry is booming. With the proliferation
of applications and data volume, network bandwidth and
computing throughput have become performance bottlenecks
for computing. At the same time, the demand for real-time
processing of massive amounts of ‘‘small data’’ generated by
terminal equipment is growing at a high speed, driving edge
computing to become an important computing platform for
technology implementation in the data era, becoming a key
support for agile connectivity, real-time services, and privacy
protection in the digital transformation of the industry. It has
become a key support for agile connectivity, real-time busi-
ness and privacy protection in the digital transformation of the
industry. According to CCID data, in 2020, the market size of
edge computing reached 19.94 billion yuan, up 62.2% year-
on-year; in 2021, the market size of China’s edge computing
reached 32.53 billion yuan, up 63.1% year-on-year.

In the future, as edge computing gradually enters a period
of robust development, the development paths of 5G MEC,
cloud-native edge computing, and vertical industry edge com-
puting will develop in competition. This will present two
prominent development features: 1) the value of building
applications with single technologies of edge is difficult to
realize, and it is necessary to combine edge computing with
other technologies such as cloud computing, 5G, AI and
blockchain to play synergistic effects and form integrated
solutions; 2) standardization work, such as unified service
definition, resource packaging, and interface protocols, will
be continuously improved to promote efficient cooperation

between different participants and cross-vendor product inter-
operability, so that the technology will gradually develop in
the direction of open integration.

III. VARIOUS ARCHITECTURES AND MODELS FOR
BETTER UNDERSTANDING OF EDGE COMPUTING
A. ARCHITECTURES
The architecture of edge computing is receiving increasing
attention. Although several surveys [6], [7] have investigated
edge computing architecture models as well as references
to other architectural models, the current surveys have all
focused on designing the architecture of edge computing
platforms for specific computing scenarios. As edge com-
puting is integrated into an increasing number of application
domains, the appropriate model to describe the reference
for this paradigm still seems to be undefined. In contrast,
the architecture of edge computing in various scenarios is
elaborated in our survey, which also summarizes the common
architectures in edge computing. Whether it is a traditional
computing scenario such as high-performance computing
or an emerging computing scenario such as edge comput-
ing, the future architecture should be a model in which
general-purpose processors and heterogeneous computing
hardware coexist. Heterogeneous hardware sacrifices some
of the general-purpose computing power and uses dedicated
acceleration units to reduce the execution time of one or more
types of loads and significantly improve the performance to
power ratio. However, edge computing platforms are usually
designed for a specific class of computing scenarios and
handle a fixed type of load, so there is a lot of cutting-edge
work to design edge computing platform architectures for
specific computing scenarios.

1) GENERAL ARCHITECTURE
This section describes the current general architecture of edge
computing as shown in Fig 5. We outline the components of
the architecture and introduce a three-tier heterogeneous edge
computing network, in which the first layer is the thing layer,
the second layer is the edge layer, and the third layer is the
cloud layer, the components of which are described in detail
below.

a: THING LAYER
Also known as user layer, it consists of various terminal
equipment, such as IOVs, augmented reality devices, surveil-
lance cameras, smart health sensors, etc.

b: EDGE LAYER
The edge layer is the middle part of this three-layer architec-
ture, located at the edge of the network, and consists of a large
number of edge nodes. Therefore, its hardware components
usually include routers, gateways, switches, access points,
base stations, specific edge servers, etc. From the aspect of
software composition, the following functions are mainly
realized: 1) routing subsystem can realize data forwarding
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FIGURE 5. Edge computing architecture.

and network connection, and support network virtualization;
2) capability open subsystem provides API interface and plat-
form middleware to realize network capability invocation;
3) platform management subsystem mainly realizes control,
infrastructure planning and scheduling, billing information
statistical report, and other functions.

c: CLOUD LAYER
The cloud layer has powerful data processing and storage
capabilities. The current development trend of cloud layer
is based on the core of cloud computing technology and the
ability of edge computing, forming a comprehensive elastic
cloud platform of computing, network, storage, security and
other capabilities at the edge. The central cloud can form an
E2E technology architecture with IoT endpoints for thing-
edge-cloud collaboration, which has a placement of network
forwarding, storage, computing, and intelligent data analysis
in the edge, and a support of network-wide scheduling, arith-
metic distributions and other cloud services.

The three-tier heterogeneous edge computing network
architecture is accepted by many works of [47]–[49], etc.
Ren et al. [47] then proposed a three-tier architecture

FIGURE 6. Resource scheduling architecture in edge computing.

and mechanism for edge computing to intelligently dis-
tribute computationally intensive tasks in AR applications to
edge servers and cloud servers. In addition, typical image
retrieval techniques are discussed, enabling further reduction
in latency and energy consumption for mobile AR devices.
Simulation results show that their schemes improve in perfor-
mance metrics compared to existing schemes. To fill this gap
in the edge computing paradigm for industrial applications,
Willner et al. [48] introduced the RAMEC in the manufac-
turing domain. In addition, 210 views of this paradigm in the
domain were identified, which provide the basis for future
related research, standardization, and development activities.
Rahimi et al. [49] proposed a hybrid design architecture for
edge computing considering the needs of ultra-low latency
applications and standardized deployments. The architecture
makes use of state-of-the-art technologies enabling key fea-
tures such as scalability, reliability, and ultra-low latency
support. It is evaluated with agent-based simulations and the
results show that it can achieve low latency response to high-
capacity requirements.

2) RESOURCE SCHEDULING ARCHITECTURE
This section describes the edge computing architecture for
resource scheduling. Based on the three-tier architecture,
we propose different collaboration methods for resource
scheduling of edge computing, as shown in Fig 6.

Things-Edge Collaboration: This collaborative processing
of data generated by end devices can be processed locally
or transmitted to an edge server, the choice being based on
QoE and QoS requirements. For instance, Wang et al. [50]
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optimized user rewards under network latency conditions
based on a DEBO algorithm that handles task allocation
involving many coexisting users in a dynamic and uncer-
tain environment to meet the stringent user requirements for
latency. Ale et al. [51] implemented computation offloading
for multiple IoT devices and multiple ESs in a dynamic envi-
ronment by developing D3PG based on the DDPG algorithm
to describe the problem as aMarkovian decision process with
a constrained mixed action space. This increases the number
of processing tasks and minimizes energy cost and service
latency. Simulation results show that theD3PG algorithm out-
performs existing schemes. Liang et al. [52] considered the
sequential offloading ofmultiple users to one ES and theoreti-
cally proved the feasibility of the scheme. The comprehensive
simulation results show that the sequence-optimized TDMA
scheme has better throughput performance than the NOMA
scheme.

Edge-Cloud Collaboration: Assuming that most of the
computational tasks are executed in the cloud center, this
will increase the load on the core network and the latency of
task offloading, which will not meet the scenarios with high
real-time requirements and QoE for users. Sinking compu-
tational tasks to ESs through edge-cloud collaboration will
be a good approach. Su et al. [53] used two-tier Stackelberg
game theory to MEC’s application in the IoT market and
proved its equilibrium existence. Then the game problem and
negative utility among IoT MDs were solved using IPOA
algorithm and ISPA algorithm. Experimental results show
that these algorithms outperform traditional task offloading
schemes. Li et al. [54] proposed a computational offload-
based collaborative mechanism for migrating computational
tasks to the edge and cloud, which handles the different
computing tasks of the terminal by establishing a collabo-
rative computation offloading model between cloud servers
and edge servers. Experimental results show that the method
provides significant improvements in reducing computational
task execution time, improving server resource utilization,
and reducing energy consumption of terminals compared to
conventional optimization algorithms. In order to migrate
tasks in dynamic environments from IoT devices to portable
edge cloud servers, Qu et al. [55] proposed the DMRO algo-
rithm, which can obtain the optimal offloading policy for
complex tasks. Simulation results show that the algorithm has
a significant improvement in offloading efficiency compared
to the traditional DRL algorithm.

Things-Edge-Cloud Collaboration: While edge-cloud col-
laboration for IoT can solve most of the problems, with the
increase of computationally intensive task programs, power-
ful cloud computing centers are needed to provide comple-
mentary computing resources. Therefore, a better realization
of resource scheduling can be achieved through the things-
edge-cloud collaboration approach. Ke et al. [56] considered
a more general MEC scenario where UEs are distributed
over a large area and multiple APs collaborate with each
other to provide larger coverage. Tuli et al. [57] proposed
a scheduling method called MCDS for efficient scheduling

FIGURE 7. Architecture modes of distributed training. (a) Centralized; (b)
Decentralized; (c) Hybrid.

of workflow applications in mobile edge cloud computing
systems. Comprehensive experiments show that the method
promotes system improvements in terms of energy consump-
tion, response time, and cost.

Edge-Edge Collaboration: Thing-edge collaboration or
thing-edge-cloud collaboration usually involves an edge-edge
collaboration manner. He et al. [58] considered vehicles as
edge computing nodes and proposed an online task offload-
ing and resource allocation strategy based on the computing
power of mobile vehicles that can handle the offloading task
in vehicle-to-vehicle mode in a timely and efficient manner.
To reduce the delay and allocation problems, the OPFTO
offloading system and the improved HGSA algorithm are
designed, respectively. Vehicle simulation experiments show
that the strategy has the advantages of low latency and high
accuracy. Based on the MEC architecture, Miao et al. [59]
added an intelligent computation offloading strategy. To fur-
ther reduce the total task latency, a predictive offloading strat-
egy for computational tasks modelled on LSTM algorithm
is also proposed. This strategy implements task scheduling
between MD, ES and cloud and collaboration between ES.

3) EDGE INTELLIGENCE ARCHITECTURE
With the breakthrough of DL, Artificial Intelligence (AI)
applications and services have boomed in recent years.
Billions of mobile and IoT devices are connected to the
Internet, generating trillions of bytes of data at the edge of
the network. Driven by this trend, there is an urgent need to
push the frontier of AI to the edge of the network to fully
release the potential of edge big data. To meet this demand,
edge computing, as a new model that pushes computing tasks
and services from the network core to the network edge, has
beenwidely recognized as a promising solution. The resulting
interdisciplinary EI is starting to receive a lot of attention.
In this section, we will focus on its architecture, which can
be divided into three models: centralized, distributed, and
hybrid, as shown in Fig 7.

a: CENTRALIZED
Fig. 7(a) depicts centralized training, where the model is
trained in a cloud data center. The data used for training is
generated and collected from distributed terminal equipment.
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Once the data arrives, the cloud data center uses this data to
perform the training. There are three inference models for
training models in the cloud: 1) cloud–edge co-training and
inference, which means that data is partially loaded into the
cloud; 2) all in-edge, which means that model inference is
per-formedwithin the edge of the network, which can be done
by loading all or some of the data to the edge nodes; and 3) all
on-device, which means that no data is loaded on the device.

b: DISTRIBUTED
In the distributed mode, as shown in (b) of Fig 7, each
computing node trains its own model locally with local data,
which keeps private information locally. In order to obtain
the global model by sharing local training improvements,
the nodes in the network will communicate with each other
to exchange local model updates. In this mode, the global
model can be trained without the intervention of the cloud
data center to train and reason about the model in an edge-like
manner.

c: HYBRID
Hybrid mode is a combination of centralized and distributed
mode. As shown in Fig 7 (c), as the center of the architecture,
the edge servers can train models by decentralizing updates to
each other or by centralizing training through the cloud data
center.

EI is mainly concerned with model compression and col-
laborative reasoning. With the popularity of cell phones and
other terminal equipment and the increase in computing
power, as well as advances in AI, many smart applications
have been developed to enrich people’s lives. Many smart
applications rely on DL models, such as CNNs. To improve
the performance of these methods, the trend is to use increas-
ingly deeper architectures and more parameters, which leads
to higher computational costs. Considering the limited com-
puting resources and energy consumption at the edge, how to
efficiently deploy DL models at the edge is a very interest-
ing problem to investigate. The current EI inference models
include as shown in Fig 8: 1) edge-based model, where the
model inference is performed on the edge server and the
predictions are returned to the device; 2) device-based model,
where the mobile device acquires the model from the edge
server and performs the model inference locally; 3) edge-
based device model, where the device executes the model
to the specified layer and then sends the intermediate data
to the edge server, the edge server executes the remaining
layers and sends the predictions to the device; 4) edge-cloud
mode, where the device is mainly responsible for input data
acquisition and the model is executed on the edge and cloud.

4) EDGE COMPUTING COMBINED WITH BLOCKCHAIN
ARCHITECTURE
Blockchain and edge computing are both based on having
the same distributed mechanisms in computing, data stor-
age and networking, as well as their different and comple-
mentary focus, predestining them to be combined. On the

FIGURE 8. EI inference models. (a) Edge-based mode; (b) Device-based
mode; (c) Edge-device mode; (d) Edge-cloud mode.

FIGURE 9. Blockchain and edge of things architecture.

one hand, the integration of blockchain into edge computing
enhances security, privacy and automated resource usage.
Using blockchain technology, it is possible to build dis-
tributed control on dozens of edge nodes and also to protect
the accuracy, consistency and validity of data and rules in
a transparent way. Thus, it is an effective solution for large
numbers of heterogeneous users moving at or between phys-
ical edges. On the other hand, the integration of edge com-
puting into blockchain brings a powerful distributed network
and abundant compute and storage resources at the edge of the
network. Using edge computing, computation can be moved
from end devices to edge servers, enabling end users with
limited resources to participate in the blockchain.

We propose a novel blockchain and edge of things (BEoT)
architecture that is implemented by using blockchain in
resource scheduling, as shown in Fig 9. The architecture
consists of four main entities: terminal equipment, edge com-
puting, blockchain, and cloud center.

B. COMPUTATION MIGRATION
Edge computing organically integrates computing, storage
and other resources on the edge of the network to build a
unified user service platform that responds to and effectively
handles task requests from network edge nodes in a timely
manner according to the proximity service principle. Due
to the limited capacity, resources, bandwidth, and energy of
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edge nodes, computational migration becomes exceptionally
important. In mobile edge computing, local edge servers
can host cloud-based services, which reduces network over-
head and latency, but service migration is required as users
migrate to new locations. Optimizing migration decisions is
challenging due to the uncertainty in dynamic cloud envi-
ronments. The rise of computational migration techniques
has introduced new approaches to address the resource con-
straints of mobile terminals. Chen et al. [60] proposed an
ECC network architecture and a dynamic service migration
mechanism to achieve low latency and user behavior pre-
diction. The results show that the architecture and mecha-
nism can better guide service migration in edge computing
environments. Chang et al. [61] proposed a REM scheme
for optimal process migration decisions when mobile sen-
sors migrate tasks to multiple heterogeneous FEC resources
and developed the EPIoT host framework. Experimental
results show that the scheme and framework can improve
the performance of heterogeneous process migration in FEC
environments. Yousafzai et al. [62] proposed a lightweight
PMCO framework for MEC with process migration support,
which enables seamless migration of native applications and
resource-intensive IoT application processing. The results
show that the framework can significantly improve time effi-
ciency and energy efficiency. Ngo et al. [63] proposed aMEC
architecture and a coordinated migration switching mech-
anism to address the joint problem of container migration
and base station switching as well as to reduce E2E latency.
The results of this mechanism are shown to help improve
the user experience. Wang et al. [64] proposed a learning-
drivenmethod namedDRACM that canmake effective online
migration decisions in highly dynamic environments and user
mobility. The approach provides improvements in terms of
scalability and latency. Numerous experimental results show
that the authors’ approach outperforms traditional algorithms.
Liang et al. [65] proposed an optimal migration/switching
strategy between BSs that used relaxation and rounding
efficient solution methods to solve complex combinatorial
problems. In addition, for over-loaded BSs, the load can be
migrated to a nearby idle BS. From the simulation results, this
migration strategy can reduce the migration cost and improve
the offloading efficiency. Xu et al. [66] developed a PDMA
approach to address the problems of latency and mobility
management in MEC environments. The results derived on
the iFogSim platform show that the method improves user
experience, improves performance by 8% - 20% and reduces
migration costs by more than 75% during urban peak traffic
hours compared to the baseline scheme. Goudarzi et al. [67]
proposed a new weighted cost model and a distributed migra-
tion management technique to minimize operational costs
and migration costs. The results show that their technique
is able to improve in terms of deployment time, migration
cost, total number of migrations, and total number of dis-
rupted tasks. To address the problems of large-scale scenarios
in edge computing that bring complexity in network topol-
ogy and rapid increase in migration request, He et al. [68]

proposed iterative MIS-based algorithms, which can effec-
tively schedule multiple dynamic container migrations in this
environment. Experiments show that it improves a lot in terms
of processing time and migration performance compared to
cloud migration planning algorithms.

C. QUARANTINE MODEL
In cloud computing scenarios, a crash of one application
can bring instability of the entire system with serious con-
sequences. And in edge computing, the situation becomes
even more complex. For example, in autonomous driving,
it is necessary to support in vehicle entertainment while also
satisfying user driving requirements. At this point, if the two
tasks interfere with each other, the safety of autonomous
driving will be seriously affected. Compared with the cloud
computing scenario where resource quarantine is guaranteed
by using VM and Docker technologies, edge computing can
learn from its experience and study quarantine techniques
suitable for edge computing scenarios.

Quarantine techniques are research tool to support the
robust development of edge computing, through which the
edge devices gain reliability of service and quality of service.
Quarantine techniques need to consider 2 aspects: 1) quaran-
tine of computational resources, i.e., applications should not
interfere with each other; 2) quarantine of data, i.e., different
applications should have different access rights. Ha et al. [69]
proposed a VM switching technique that enables VMsmigra-
tion for computational tasks, supports rapid placement of
services, and ensures encapsulation of VMs in applica-
tions with high security and manageability requirements.
In addition, this dynamic migration feature and quaran-
tine techniques allow optimization of the edge side and
increases the availability of the edge computing system.
Mahadevappa et al. [70] proposed a new concept of data
quarantine model that guarantees the integrity of data in edge
computing. Specifically, the model isolates the identified data
for a predefined period of time and does not cause data from
adjacent edge nodes.

In summary: The design of computing system architectures
for edge computing is still an emerging field and still has
many challenges that need to be addressed.

IV. KEY TECHNOLOGIES AND RESEARCH DIRECTIONS
FOR EDGE COMPUTING
Currently, academic research on edge computing focuses
on advanced scheduling strategies and technologies such as
resource scheduling, EI, and edge computing combined with
blockchain. From the analysis of these examples, whose fea-
tures are summarized in Table 5, Table 6, Table 7, and Table 8.

A. RESOURCE SCHEDULING
1) RESOURCE MANAGEMENT
The integrated management of wireless and computa-
tional resources is an important part of the MEC sys-
tem design. For different MEC system setups, we need to
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TABLE 5. Edge computing focuses on the comparison of the latest
resource management articles.

address different integrated resource management problems.
Dlamini et al. [71] considered a computation and communi-
cation energy model and proposed an online server manage-
ment algorithm calledARCES thatminimizes the total energy
consumption and cost. Numerical results show that ARCES
saves an average of 69% energy relative to the case without
energy management. Wan et al. [72] proposed a three-tier
online data processing network based on the MEC technique,
and developed a network scheduling algorithm and an online
path planning algorithm based on Lyapunov optimization.
Simulation tests show that the system improve data latency,
power consumption, and service coverage. Jošilo et al. [73]
studied a network slicing-based edge computing system that
solves the JSS-ERM problem with an approximation algo-
rithm with a bounded approximation ratio, which reduces the
computational complexity. Test results show that the system
is able to achieve an increase in performance compared to no-
slicing and equal-slicing. Chen et al. [74] proposed a cooling-

TABLE 6. Edge computing focuses on the comparison of the latest
computation offloading articles.

awareWPT-MEC system that minimizes the total energy con-
sumption without reducing the latency requirements of the
AP by the alternating optimization technique and Lagrange
duality method to co-design its resource location and load
management. Extensive numerical experiments show that
the scheme can save nearly double the energy consumption
compared to the baseline scheme. Zeng et al. [75] designed
a framework named C2RM and further designed a device
scheduling scheme and a greedy spectrum sharing scheme
based on it, which improves performance and energy effi-
ciency for joint management of computational communica-
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TABLE 7. Edge computing focuses on the comparison of the latest
resource provisioning articles.

tion resources. In addition, the authors conducted experi-
ments using real datasets to verify that the framework can
improve the energy efficiency of FEEL systems. Yu et al. [76]
proposed a framework called I-UDEC and a method called
2TS-DRL for jointly optimizing the computation offload-
ing, allocation location, and cache placement problems of
resources in UDEC networks to minimize the total offloading
delay and resource utilization. Simulation results validate
that the method can reduce the task execution time up to
31.87% under this framework. Moro et al. [77] designed an
allocation mechanism using convex programming that solves
the management problem of computing resources and radio
resources in a MEC system, guaranteeing efficiency and fair-
ness for the system. The simulation results confirm the theo-
retical nature of the market model. Zaw et al. [78] proposed
a MEC-enabled FL model and an energy-aware resource
management algorithm that addresses the balance between
performance and device energy consumption, as well as
reducing global polling and time consumption. Simulation

TABLE 8. Edge computing focuses on the comparison of the latest model
compression articles.
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FIGURE 10. Aspects to consider for offloading models for edge
computing.

results show that the model has a lower total time consump-
tion compared to the traditional FL method.

2) COMPUTATION OFFLOADING
To cope with the problems of insufficient processing power
and limited resources of end devices, the industry has intro-
duced the concept of computation offloading in MEC. Edge
computing offloading, that is, the unified equipment (UE)
offloads the computing task to the MEC network, which
mainly solves the shortcomings of the equipment in resource
storage, computing performance and energy efficiency.

a: UNLOAD MODE
Binary offloading has only a difference between 0 and 1,
which means that the offloaded tasks are packed and cannot
be split. In contrast, partial offloads allow to partition the task
and execute a task by first dividing it into different compo-
nents and then making the corresponding offload decisions
for those components. In practical problems, binary offload-
ing is more common because we usually consider simple
non-separable tasks, while partial offloading is applicable to
complex tasks with multiple segments of tasks in parallel.

b: CHANNEL MODEL
For the interference-free channel model, either time division
multiple access (TDMA) or orthogonal frequency division
multiple access (OFDA) techniques can be adopted, and the
transmission rate can be calculated as

rk = B log2(1+
pkh2k
N0

) (1)

This is the Shannon formula, where B is the channel
bandwidth (Hz); N0 is the Gaussian noise power inside the
channel; pk is the transmitted power of the end devices, and
hk represents the channel gain.
For the channel model with interference, the code division

multiple access technique can be used, while the calculation

of the transmission rate is expressed as

rk = B log2(1+
pkh2k

N0 +
∑
i6=k

pih2i
) (2)

where
∑
i6=k

pih2i is a reflection of the mutual interference

between different devices. If both are considered, it is called
a hybrid channel model.

c: COMPUTATION MODEL
Computational tasks have different definitions, the first one
is (ωk , sk ), where ωk denotes the number of CPU cycles
required to complete the computational task and sk denotes
the size of the computational input data. The computational
latency and energy consumption for local execution are
defined as

tLk =
ωk

fk
, eLk = ρωk (3)

where tLk and eLk represent the latency and energy consump-
tion due to local computation, respectively. Then fk is the
modeling of the computing power of the end devices and it is
the number of CPU cycles per second executed by the device.
The energy consumed in this process is proportional to the
number of CPU cycles with a scale factor of ρ. In addition,
the transmission of data also causes latency and energy con-
sumption, denoted bytJk and eJk , respectively.

tJk =
sk
rk
, eJk = pk · tJk (4)

where rk is the communication transmission rate focused on
in Equation 1, and pk represents the data transmission power
of the terminal device.

Another way of defining the computational task is (sk , τk ),
where τk portrays the tolerance, i.e., the latency requirement.
The computational latency and energy consumption of the
local execution are as

tLk =
αsk
fk
, eLk = αskβf

2
k (5)

In contrast to the previous one, instead of directly intro-
ducing the number of CPU cycles, using the proportionality
between the number of CPU cycles and the data size sk , where
the scale factor is α. The energy consumed per CPU cycle is
proportional to f 2k , and the scale factor is β.

In addition, we can introduce the knowledge of queuing
theory, using the queuing model, the queue in the terminal
device modeled as M/M/1, the task arrival interval is taken
as a negative exponential distribution, the service time is a
negative exponential distribution, the average task generation
rate is λ, the service rate is u, so the resulting delay calculation
and energy consumption are as

tLk =
1
uk

1− λk
uk

, eLk = γ λkτ sk (6)
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where γ is the energy consumed per bit, and λkτ is the total
number of tasks arrived in each time period. In addition, the
delay and the energy consumption in the transmission process
are as

tJk =
λkτ sk
rk

, eJk = pk tJk (7)

Energy Harvesting Model: Energy supply equipment is
very stable and the amount of energy that can be supplied
per unit of time is known and predictable, which is the deter-
ministic model. However, this is often unrealistic in real life.
Therefore, most studies on energy harvesting models have
focused on random models. In addition, some researchers
have proposed bimodal models of energy states and environ-
mental states. The energy H (t) arriving in each period can be
derived from the environmental state e(t). H (t) is modeled as
a random variable given the state e(t), obeying a conditional
distribution, denoted as

PH (H (t)|e(t)) (8)

The relevant literatures on computation offloading are as
follows. Yan et al. [79] investigated amixed-integer optimiza-
tion problem and a bi-section search method to minimize the
energy consumption and task execution time of WDs under a
task-dependent model. In addition, the Gibbs sampling algo-
rithm was proposed to obtain the optimal unloading decision
based on the one-climb strategy. Simulation results show that
the method has higher performance than the benchmark algo-
rithm. Liu et al. [80] studied a task offloading and resource
allocation framework with URLLC and a user-server associ-
ation method. In addition, Lyapunov is used to optimize the
stochasticity of situations such as task arrival as well as to cor-
relate UE with MEC servers on long time scales using match-
ing theory. The simulation results show that the authors’
proposed partial offloading scheme has more reliable task
execution compared to the no-MEC-server and full offload-
ing schemes. Sun et al. [81] designed an adaptive learning
based ALTO algorithm to address task offloading in VEC
systems. Simulation results show that this algorithm reduces
the average latency by 30% compared to the traditional upper
confidence bound algorithm. Du et al. [82] proposed an
online algorithm based on Lyapunov optimization, OJTORA,
to solve multi-server joint task offloading and resource allo-
cation, and then to transform them into a deterministic opti-
mization problem within each time slot. Experiments show
that the authors’ method outperforms the baseline method in
terms of service capacity and service cost, but the algorithm
does not investigate the dynamic allocation of bandwidth.
Wang et al. [83] investigated a single-user wireless pow-
ered MEC system using convex optimization techniques to
enable energy minimization. Next, heuristic algorithms were
designed for WPT and task assignment on users. Compared
the scheme of author with the benchmark scheme, it is shown
that the energy consumption of the proposed scheme is much
lower, and the performance of the proposed algorithm is close
to the offline optimal solution. Bate-wela et al. [84] proposed

a distributed no-regret learning algorithm based on a risk-
sensitive task grasping and offloading scheme to solve the
ultra-reliable low-latency communication problem in VEC
networks. Simulation results show that compared to other
baseline schemes, the authors’ scheme has a reduction in
latency. Lucic et al. [85] proposed ELiD as an alternative to
local LIDAR sensors for AVs and achieved minimization of
the average delay by constructing a mixed-integer program-
ming problem. The results show that the scheme improves
the utilization of the network and the robustness of the sys-
tem. Tang et al. [86] proposed a DRL-based task offloading
algorithm for the task offloading problem of an indivisible
and delay-sensitive MEC system. Simulation results show
that the authors’ proposed algorithm has reduced task drop
rate and average delay than other online offloading schemes.
Huang et al. [87] proposed a joint offloading and resource
allocation algorithm for JORA-MADDPG, which solves the
problem of task type and vehicle speed constraints on task
delay. Simulation results show that the algorithm has good
results in terms of delay, energy consumption and efficiency.
Sun et al. [88] proposed a method, GTRATOP, in order to
optimize the VEC network, which solves the resource alloca-
tion and task offloading problem of this network. Simulation
results show that the method has better performance and
efficiency in the case of system reloading. Li et al. [89] pro-
posed a multi-stage Stackelberg game under a contract-based
incentive mechanism to deal with the idle resource problem
of vehicles. Simulation results show the effectiveness of the
scheme.

3) RESOURCE PROVISIONING
Workloads in MEC environments often experience frequent
fluctuations in load uncertainty due to very frequent request
events occurring on the thing side. These uncertainties can
lead to resource provisioning issues. Abouaomar et al. [90]
proposed a resource representation model and a Lyapunov
optimization-based resource allocation scheme. The former
is able to represent various resources of EDs and the latter
minimizes the latency. Simulation results show that the pro-
posed scheme by the author is superior to other benchmark
schemes in terms of latency and energy consumption met-
rics. Tilahun et al. [91] proposed a JCCRA problem and a
MADDPG algorithm, which solves the task to minimize the
user’s energy consumption while satisfying tight delay con-
straints. Simulation results show that the authors’ proposed
scheme significantly outperforms the heuristic baseline in
terms of energy consumption. Ascigil et al. [92] proposed
a heuristic algorithm in resource allocation and configura-
tion considering edge computing for FaaSaaS. Simulation
results show that the policy can achieve almost the same per-
formance without coordination or communication overhead
compared to a fully centralized policy. Nasimi et al. [93]
proposed a congestion control mechanism that works within
the MEC framework and an edge-assisted congestion con-
trol scheme. The former can effectively alleviate network
congestion under different network conditions and QoS and
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can selectively offload traffic based on real-time decisions.
Simulation results validate the performance improvement of
the proposed scheme. Gao et al. [94] established a hierar-
chical satellite edge and cloud computing framework and
proposed an algorithm called D-VNFP. The results show
that the algorithm has better performance in terms of satel-
lite network bandwidth consumption and service E2E delay
compared to algorithms Greedy and Viterbi. Ly et al. [95]
envisioned a mobile edge offloading scenario and proposed a
computation offloading framework and a method to jointly
optimize task assignment decisions and data compression
ratios. The authors transformed this approach into a convex
optimization problem and achieved the goal of minimizing
energy consumption and latency. Simulation results show that
the scheme compares favorably with the benchmark scheme
at low data rates. Yan et al. [96] proposed a game theory-
based approach to reduce the energy consumption and delay
of multi-user collaborative offloading decisions and resource
allocation in MEC systems. Simulation results also show that
this algorithm can help the performance of multi-user MEC
systems. Zhong et al. [97] proposed a method called ADMM
to express the joint optimization problem of delay and energy
consumption metrics in MEC systems as a nonlinear 0-1
integer programming problem. A series of algorithms (yoke
gradient, logarithmic smoothing, etc.) were used to solve
this optimization problem. The simulation results show that
the mechanism achieves the joint optimization purpose and
effectively reduces the delay and energy consumption of this
system. Zhang et al. [98] investigated a game theory-based
G-PATA framework to solve the privacy-aware computational
task allocation problem in SSEC systems. The results show
that G-PATA reduces latency nearly to half over the baseline
solution on applications with various privacy settings. It also
improves the gain of the end devices by a factor of 0.15.

B. EDGE INTELLIGENCE
With technologies such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Generative
Adversarial Networks (GAN), and Deep Reinforcement
Learning (DRL) in the field of AI, edge computing can flour-
ish with richer data and application scenarios. As a result, the
combination of edge computing and AI has given rise to a
new research area called ‘‘edge intelligence.’’ EI leverages
a wide range of edge resources to support AI applications
without relying exclusively on the cloud. While edge AI
or EI is a completely new term, practice in this direction
began early, with Microsoft building an edge-based proto-
type to support mobile voice command recognition in 2009.
However, despite the beginning of early exploration, EI still
has no formal definition. Currently, most organizations and
media refer to EI as ‘‘a paradigm for running AI algorithms
locally on end devices where the data (sensor data or signals)
is created on the device.’’ EI promises to make it possible
to develop a variety of distributed, low-latency, and reliable
intelligent services. As we learned from the introduction
of the architecture of EI models in Chapter 3, the current

main research directions of EI are divided into four areas,
namely, model compression, collaborative reasoning, frame-
work design, and hardware acceleration.

1) MODEL COMPRESSION
The primary motivation for pushing learning to the edge is
to allow rapid access to the vast amount of real-time data
generated by edge devices for rapid AI model training and
inference, thus giving the device human-like intelligence to
respond to real-time events. Because many AI applications
require high computational power, this greatly exceeds the
capabilities of resource and energy-constrained edge devices.
Therefore, enabling models to run on more lightweight edge
computing devices generally allow for compression opera-
tions such as distillation, pruning, and quantization to reduce
memory and computation. Gamanayake et al. [99] proposed
a cluster pruning method that prunes the entire network
by collaborating the underlying hardware structure parame-
ters and a greedy algorithm to determine the optimal clus-
ter size. This method has advantages in terms of latency
and accuracy compared to traditional filter pruning algo-
rithms. Qian et al. [100] proposed a pruning strategy, IBnB,
which guarantees structurally near-optimal performance and
reduces the complexity. Simulation results show that the
method has good performance. Libri et al. [101] proposed a
method called pAElla to malware detection in real time. The
results show that in DCs / SCs environment, pAElla can cover
a wider range ofmalware and improve the accuracy compared
to the SoA method. Huang et al. [102] proposed a method
called RCT for the edge devices capacity problem. On the
one hand, this method preserves the quantization model by
during the training process. On the other hand, the bit width
per layer can be dynamically adjusted. It both reduces the
memory requirement of parameters and saves energy. Exper-
imental results show that the RCT method outperforms other
methods (e.g., GEMM and QAT). Subedi et al. [103] investi-
gated two techniques, parallel model execution and dynamic
model placement, to determine the benefits and limitations
of AI multi-tenant models such as image classification on
edge devices. The results of simulations on Jetson TX2 show
that this scheme improves DL inference throughput by a
factor of 3.3 to 3.8. Liu et al. [104] proposed a training
time model and an alternating optimization-based algorithm
to solve the training time minimization problem in the quan-
tized FEEL system. Experiments show that the optimization
algorithm proposed by the authors can approach the opti-
mal performance under different learning tasks and mod-
els. Chakraborty et al. [105] proposed a PCA-based one-shot
method. This method is used to design hybrid compressed
neural networks and identify the important layers of binary
networks, offering the possibility of using energy-efficient
hybrid networks in low-power edge devices. Simulation
results show that the accuracy of the scheme is close to that of
a full precision network. Gorsline et al. [106] explored geo-
metric models of the robustness of quantized neural networks
with different dimensions and different activation functions
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against gradient attacks. Simulation results show that for
simple gradient-based attacks, quantization can improve or
reduce the robustness of the countermeasures depending on
the attack strength. In addition, Liu et al. [107] proposed
an improved method for initializing the weights of asym-
metric activation function neural networks, which expands
the selection range of activation functions and improves the
performance of the network. Chen et al. [108] proposed a
neural network model and a quantification method for VecQ.
The model is able to reduce a large amount of memory
requirements as well as the method achieves state-of-the-
art accuracy at the same compression ratio. In addition, the
authors investigated an accelerator design named T-DLA for
DNNs. Chen et al. [109] proposed a DNN layer-based repa-
rameterization method to update compression model. Sim-
ulation results show the superiority of the authors’ method
over existing update compression techniques in terms of
update size and on inference accuracy. Andreev et al. [110]
conducted an experimental study of post-training quantiza-
tion and quantization-aware training techniques for three dif-
ferent GAN structures and achieved successful quantization
of 4/8- bits for these models.

2) COLLABORATIVE REASONING
Collaborative reasoning utilizes the cloud with higher rea-
soning performance as the reasoning backend to enhance
inference. For reasoning, it directly on the edge side can
have smaller latency and greater throughput, while directly
on the cloud side can bring better reasoning accuracy. How
to make the latency and throughput not significantly reduced
and improve the reasoning accuracy with limited resources
for edge-side reasoning has become an important research
direction. Shao et al. [111] proposed a three-step inference
framework and an incremental network pruning method. The
former is used for communication-computation tradeoffs due
to local computing load and communication overhead, while
the latter is used to reduce redundant weights and computa-
tional delays. Simulation results show that the authors’ pro-
posed framework and method achieve the above objectives.
Yang et al. [112] proposed a joint inference task selection and
downlink beamforming strategy and a method called GSBF
with the aim of minimizing the total power consumption and
improving energy efficiency. Simulation results verify that
the scheme improves the competitive performance of edge
AI inference systems. Wang et al. [113] proposed the use of
DRL to optimize edge caching and computation, and to fur-
ther better deploy resource management, a framework called
‘‘in - edge AI’’ was investigated. Simulation results show that
the scheme can improve the balance of performance and cost.
Yang et al. [114] proposed a communication-efficient edge
inference design and a low-latency data shuffling strategy.
In edge AI inference, the authors’ scheme excels in terms
of latency and energy efficiency. Li et al. [115] studied AI
service provisioning at the edge of a 6G network and pro-
posed a resource poolingmethod to achieve data management
and resource consumption for network slicing. In addition,

the method can determine the training location and training
method of AI models based on the data availability, resource
constraints, and business performance requirements in the
network. Yang et al. [116] proposed a decentralized model
learning framework called E-Tree and a KMA algorithm
based on this framework. The results show that E-Tree out-
performs other model learning methods (e.g., Joint Learning
and Gossip Learning). Wan et al. [117] investigated a chip
called RRAM that provides a high degree of generality for
different model architectures through collaborative optimiza-
tion at all design levels, from algorithms and architectures to
circuits and devices. This work provides lessons for building
efficient and reconfigurable edge AI hardware platforms.
Long et al. [118] proposed an architecture calledMEANet for
distributed training and inference between the edge and the
cloud. The simulation results show that the model proposed
by the authors outperforms the standard model in terms of
accuracy and energy consumption.

3) FRAME DESIGNS
The development of a hardware and software framework for
handling EI computing is a key problem to be addressed.
Du et al. [119] proposed a new hierarchical stochastic gra-
dient quantization framework and investigated its impact on
the learning performance, which reduces the communication
overhead. In addition, the framework’s bit allocation scheme
reduces quantization errors. By testing, the framework greatly
reduces the communication overhead with similar guaranteed
accuracy compared to the state-of-the-art signSGD scheme.
Khoram et al. [120] proposed a framework called TOCO to
address the limitations of different edge devices deployed in
large models. It uses an in-depth analysis of the model to
maintain accuracy, and the analysis results in tolerances that
can be used to perform compression in a fine-grained manner.
Li et al. [121] designed a framework, Edgent, which utilizes
edge computing for collaborative DNN inference through
things-edge collaboration. Since dividing and resizing the
DNNs, the inference accuracy is improved and the computa-
tional latency is reduced. The evaluation results validate the
effectiveness of the framework. Liu et al. [122] proposed a
framework, HierTrain, and a new hybrid parallel approach.
The former can efficiently deploy DNN training tasks into a
hierarchical MECC architecture, and the latter can adaptively
distribute DNN model layers and data samples across three
layers. Simulation results show that HierTrain can achieve
a speedup of 6.9x compared to the cloud-based hierarchical
training method.

Wang et al. [123] introduced KubeEdge, a kubernetes-
based edge computing framework. It provides resource
management, deployment, operation and synergy for edge
computing. Rexha et al. [124] proposed an edge/cloud-
based telemetry framework that can collect relevant data
and transmitting it to a cloud-based system for processing
and receiving feedback operations. The results show that the
framework is capable of efficiently executing edge AI appli-
cations. Gerlinghoff et al. [125] proposed an E2E framework,
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E3NE, that automatically generates efficient SNN inference
logic for FPGA and enhances scalability and generality. The
results show that the framework can reduce energy consump-
tion and latency on top of saving hardware resources.

4) HARDWARE ACCELERATION
AI is rapidly moving from data centers to edge comput-
ing, and developers typically use general-purpose CPU and
GPU cores to develop and train neural network models,
but these cores are far less efficient than dedicated accel-
erators for inference tasks. Liang et al. [126] compared
the advantages and limitations of a dedicated edge system
using edge accelerators with more traditional forms of edge
and cloud computing. The results show that the former can
provide better performance in terms of power and cost.
Hao et al. [127] provided an effective solution for three algo-
rithm/accelerator co-design methods. The effectiveness of
the co-design approaches is demonstrated through extensive
experiments on FPGAs andGPUs. Liang et al. [128] designed
an analytical model for DNN inference work on a shared edge
accelerator. The algorithm designed by using this model is
able to manage multiple applications on the edge accelerators
intelligently. Simulation results show that the scheme is able
to predict latency behavior and improve resource sharing
efficiency.

C. EDGE COMPUTING COMBINED WITH BLOCKCHAIN
Edge computing, closed to the data source side, is a com-
prehensive platform that provides the integrate of network,
computing, storage and application core functions. Mean-
while, blockchain is essentially a new application model
based on the combination of distributed data storage, peer-
to-peer transmission, consensus mechanisms, cryptographic
algorithms and other computer technologies, therefore a fea-
sibility study is conducted on edge computing combined with
blockchain technology.

1) THE PRINCIPLE OF BLOCKCHAIN
Blockchain first appeared in the concept of Bitcoin pro-
posed by Satoshi Nakamoto in 2008. Blockchain, as Bitcoin
bookkeeping technology, is not a separate technology, but a
new application model of multiple computer technologies.
Blockchain is commonly known as the storage of data, but it
has the following of threemain features compared to the usual
database: 1) the data is open and transparent; 2) the history of
the data is traceable; 3) the data cannot be tampered with.
Blockchain applications have now been extended to digital
asset management, IoT, smart manufacturing, supply chain
finance and many other fields. The chain storage structure
of blockchain consists of individual blocks, each of which
is connected to the previous block through a hash tag in
the block header, thus forming a one-way chain structure,
with the first block being called the founding block. Each
block contains two parts: block header and block body, where
the block header contains 80 B keyword identification, and
the block body mainly contains transaction information and

other data. Blockchain mainly contains the following key
technologies: 1) distributed ledger; 2) consensus mechanism;
3) cryptographic features; and 4) smart contracts.

2) INTEGRATION NEEDS
The distributed characteristics of edge computing in comput-
ing, storage, and networking coincide with the decentralized
model of blockchain, and the service focus is all geared
toward enterprise and vertical application industries. It has
the main integration needs, as following: 1) blockchain nodes
can be deployed on edge nodes which has the computing
ability to provide resources, communication and capacity for
edge computing services; 2) blockchain provides a secure
and trustworthy environment for edge computing, in order
to ensure the integrity and authenticity of data storage;
3) blockchain combined with edge computing can form an
efficient platform of information and value to promote shar-
ing resource and optimal allocation.

3) DEPLOYMENT MODES
Blockchain combined with edge computing will become
an important network infrastructure and innovation driver
for operators in the 5G era, and its deployment model is
studied and discussed below. Liao et al. [129] designed
a blockchain and smart contract-based scheme for secure
task offloading and a framework called QUOTA-UCB. The
authors verified the reliability, feasibility and effectiveness of
the proposed scheme through extensive theoretical analysis
and simulations. Li et al. [130] introduced techniques such
as UAV, blockchain and MEC, and proposed a joint opti-
mization framework, which was formulated asMDP. To solve
dynamic and complex optimization problems, dueling DQN
was used for optimization selection and decision making.
Simulation results show that the proposed framework can
effectively improve the system throughput and revenue.
Liu et al. [131] proposed a MECO-enabled transcoding
framework for blockchain-based video streams, and then
used the ADMM method to solve the video transcod-
ing and block size problems and used smart contracts
to achieve distributed optimization among untrustworthy
entities. Simulation results verify the effectiveness of the
framework. Feng et al. [132] proposed a joint optimization
framework for blockchain-enabled MEC systems. The equi-
librium requirement between energy consumption and DTF
is modeled as a MINLP problem, and then the optimiza-
tion variables are decoupled for this problem to achieve
efficient algorithm design. Simulation results show that
the scheme is able to achieve a balance between perfor-
mance. Chu et al. [133] proposed a scalable blockchain and
a neural network-based task offloading technique for MEC
scenarios. The approach has good scalability in mobile
scenarios. Guo et al. [134] proposed a framework called
B-MEC to address the throughput and user QoS of this
system. in addition, double-dueling DQN was utilized to
cope with its dynamic nature. Simulation results show the
effectiveness of the approach. Dai et al. [135] proposed a
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blockchain-empowered distributed content caching frame-
work to formulate the content caching problem in the form of
DRL and design a new DRL-based content caching scheme
to achieve maximum content caching and cope with vehi-
cle mobility. Numerical results demonstrate the effectiveness
of the scheme. Zhang et al. [136] proposed a blockchain-
based message transmission mechanism and a credit mecha-
nism. Simulation results show that the scheme can improve
the reliability of data transmission. Liu et al. [137] pro-
posed a blockchain authorized vehicle group authentication
scheme based on secret sharing and dynamic agent mecha-
nism to achieve collaborative authentication and decentral-
ized authentication. The results show that the scheme not
only minimizes the communication overhead and compu-
tation, but also achieves collaborative vehicle privacy pro-
tection. Guo et al. [138] constructed a network called CMN
to cope with the computational cost of mobile devices
in the blockchain mining process. On the one hand, the
BNE method is applied to solve the optimal auction price.
On the other hand, the Stackelberg game obtains the opti-
mal resource price and the demand for device resources.
The simulation results show that the mechanism maxi-
mizes the profit and the increase of utility in the min-
ing network. Gao et al. [139] designed a framework called
B-ReST, which defines the physical architecture, func-
tional architecture, and workflow. In addition, a DRL-based
approach was used to solve the RPM problem. Simulation
results show that the framework improves the capabilities
in terms of resource sharing and transaction processing.
Gupta et al. [140] proposed a blockchain-based EI system
that addresses the security, privacy, latency and efficiency
of CED data. Zhang et al. [141] proposed a secure mobility
management framework for ultra-dense edge computing
based on blockchain. In addition, the wireless switching
and service migration decisions between base stations were
transformed into a multi-objective dynamic optimization
problem using Lyapunov optimization, and then the opti-
mization problem was solved using the DRL method. The
results show that the scheme outperforms existing schemes
in terms of average delay, task failure rate, and switching
rate of computational tasks. Rivera et al. [142] proposed a
blockchain framework for providing a trusted collaboration
mechanism between edge servers in a MEC environment,
and experimentally evaluated the scheme using the Caliper
tool and Hyperledger Fabric benchmarks. Islam et al. [143]
proposed a decentralized blockchain-based architecture and
a secure IVEC federation model, which improves the trans-
parency and balances the load of IVEC resource man-
agement. Gumaei et al. [144] introduced a framework that
combines blockchainwith DRNN and edge computing for 5G
UAV identification and flight pattern detection. The scheme
is higher in detection accuracy than other existing DL mod-
els. Li et al. [145] proposed a three-layer network model
called BMEC. Firstly, the cloned blocks are identified by the
NCBI method. Secondly, the blockchain network is divided
using the Prim algorithm. The experimental results show

that the blockchain construction latency of this scheme is
smaller compared to the traditional edge computing methods.
Zhang et al. [146] proposed an architecture, LBC, and an
attribute-based cryptographic access control scheme, ABE-
ACS. simulation results show that the scheme improves
throughput and reduces energy consumption while ensuring
privacy security. Nguyen et al. [147] proposed an architec-
ture, BFL, and a series of solutions which include offloading
strategies, ML model aggregation and a new DRL approach.
Simulation results show that these measures outperformed
existing methods in terms of training efficiency, convergence
speed and latency.

In summary: Academic research on edge computing
focuses on two key technology directions: first, edge-native
technologies directly related to edge computing, currently
represented by resource scheduling and EI; second, the con-
vergence of edge computing with various ICT frontier tech-
nologies, such as the combination of edge computing and
blockchain.

V. THE DEVELOPMENT PATHS AND TRENDS OF EDGE
COMPUTING
The edge computing industry is an ecosystem consisting of
multiple communities of interest such as telecom operators,
telecom equipment vendors, IT vendors, third-party applica-
tion developers, content providers, and users.

A. 5G NATIVELY SUPPORTS EDGE COMPUTING
CAPABILITIES
Since the global 5G network construction in 2019 and the
announcement of 5G commercialization by dozens of main-
stream operators in 2020, it has been introduced to multiple
vertical industries such as Industrial Internet, autonomous
drive, smart cities, and smart factories. MEC enables oper-
ators to divert service at the edge of the network, and various
edge computing service/product providers choose different
entry points based on their own advantages and application
scenario characteristics. Currently, the three major domestic
operators are actively introducing MEC capabilities to verti-
cal industries to enhance network value.

The current 5G MEC route is as follows: 1) since 2014,
ETSI has extended the concept of edge computing to multi-
access edge computing, focusing on new services and needs
such as 5G,Wi-Fi, etc.; 2) since 2017, 3GPP has been leading
the development of relevant standards with the industry to
ensure the completeness of 5G standards, support MEC and
ensure subsequent enhancements; 3) also since 2017, CCSA
has carried out MEC standardization work and has developed
nearly 10 standards, mainly exploring the standardization of
MEC platform technical requirements, capability opening,
and security technical requirements [148].

1) 5G MEC DEVELOPMENT FACES BOTTLENECKS AND
FUTURE TRENDS
5G MEC has already started pilot applications in multiple
industries, but the overall development is still at an early
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stage, and there are some problems and challenges: 1) the
infrastructure construction model needs to be explored, and
currently the construction of MEC nodes is mainly under-
taken independently by telecom operators, which leads to
high costs of building them. This may be difficult to cope
with the future large-scale deployment of MEC construction;
2) the application ecology is not yet mature, although all
parties are currently exploring application models for vertical
industries, such as MEC networks to interconnect with the
enterprise intranet of vertical industries and integrate 5G
communication capabilities and MEC applications into busi-
ness systems, the relevant requirements have not been stan-
dardized and the application ecology is still not established.

Reference can be made to the strategies of foreign oper-
ators in this regard, for example, AT&T launched Akraino,
an open-source platform for edge computing, to estab-
lish a strategic foundation, and Deutsche Telekom set up
MobiledgeX, a subsidiary specializing in edge computing
services and products, to develop a cross operator mobile
edge computing platform. South Korea’s SKT has launched
an open platform for edge computing to create 5G and MEC
ecosystem connecting developers and enterprise users.

B. CLOUD-NATIVE EDGE COMPUTING DEVELOPMENT
PATHS
Cloud-native powering edge computing brings solutions to
the increasingly complex management of edge environ-
ments. Several frameworks for edge computing projects have
emerged in the industry and academia, such as OpenYurt,
a project open sourced by Aliyun, KubeEdge by Huawei, and
EdgeX Foundry operated by the Linux Foundation.

OpenYurt is a framework built on top of Kubernetes that
overcomes some of the limitations of edge scenarios, such
as how to minimize long-distance network traffic between
devices and workloads, how to address reliability in edge sce-
narios, how to perform secure authentication, how to reduce
transport latency, etc. OpenYurt provides full Kubernetes API
compatibility and supports all features of Kubernetes, which
also provides a tool to convert native Kubernetes to edge
state and also improves the stability of the cluster in edge
scenarios [149].

KubeEdge is based on the Kubernetes architecture and
provides functional support for many edge scenarios, unify-
ing development, deployment and management views, which
enhances offline operational capabilities, edge-cloud collab-
oration capabilities and edge collaboration capabilities. The
architecture uses cloud components and edge components,
which serve the following purposes: 1) in the cloud compo-
nent, users issue commands to the expected state of the target
object via the kubectl command line, which is received by
the Kubernetes API server and dispatched to the object using
the scheduler; 2) in the edge component, the design principle
is based on simplicity to reduce the resource footprint, the
probability of failure, and the difficulty of maintenance of the
edge component [150].

EdgeX Foundry is positioned as a generic framework for
general-purpose industrial IoT edge computing, deployed on
edge devices such as routers and switches to provide plug-
and-play functionality to various sensors, devices or other IoT
devices. In addition, it will collect and analyze this generated
data exporting it to edge computing applications or cloud
computing centers for further processing [151].

As an extension and supplement of cloud computing, edge
computing has formed a consensus in the field of cloud
computing. Therefore, IT companies hope to extend cloud
computing capabilities with cloud-native edge computing
to protect their core competitive advantages in the original
domain and form an integrated synergy of cloud, edge and
terminal.

1) THE DEVELOPMENT OF CLOUD-NATIVE EDGE
COMPUTING FACES BOTTLENECKS AND FUTURE TRENDS
Cloud-native edge computing is essentially a combination of
traditional cloud computing technologies lightened and then
combined with new edge-native technologies to achieve fast
response and scalability of computing, storage, network and
other resources. Although cloud-native has great potential to
drive the development of edge computing, and industry has
launched related solutions one after another, it is still in the
initial stage of research in this direction. Due to the essential
difference between edge computing environment and cloud
computing data center, there are still many challenges in
cloud-native edge computing: 1) as an emerging technology
concept, edge computing has not yet fully matured, and
there is confusion in the industry about the understanding
of cloud-native edge computing and MEC concepts, and the
business relationship between MEC platforms of operators
and edge-cloud platforms of IT enterprises is still unclear;
2) edge-cloud collaboration is an important architecture for
lT vendors to drive the development of central cloud to the
edge side. However, in the process of implement, there are
still problems such as lack of unified application manage-
ment northbound interface, difficulties in application as well
as service distribution, and lack of application distribution
mechanism across edge clouds.

Currently, IT vendors are actively promoting edge-cloud
collaboration practices, propelling cloud computing services
and cloud-native capabilities from multiple dimensions such
as resources, data and applications, and accelerating the con-
struction of cloud-native edge computing digital transforma-
tion solutions.

In summary: The edge computing industry is driven by dif-
ferent subjects, and two major development paths have been
formed: one is the vertical industry path of 5GMEC develop-
ment led by telecom operators; the other is the development
path of cloud-native edge computing led by IT enterprises.

VI. CHALLENGES AND KEY ISSUES
Although a lot of results have been accumulated from related
research in edge computing, there are still many key issues
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that have not been well explored. This section discusses
several open challenges and key questions for future research.

A. MODEL AND ARCHITECTURE
1) COMPUTATION AND COMMUNICATION MODEL
The two most important decision objectives of the computa-
tional model are time and energy, respectively. In other words,
minimizing the delay time and energy consumption is the goal
of the optimal solution in the optimization process. In order
to efficiently realize the task processing of edge resources,
a computing model needs to be established to reflect the
relationship between task data size and computing power.
Inmost existingworks, the computing power required for task
processing is directly proportional to the product of task data
size and processing density [14], [15], [79]. However, due to
the different types of tasks in the environment of edges, there
will be different processing density. Therefore, more flexible
calculation models need to be further studied. additionally,
because the channel conditions of the real edge environments
are often unstable, it is necessary to develop communica-
tion models suitable for different scenarios through field
tests.

2) COMPUTATION MIGRATION
Computation migration is extremely important due to the
capacity, resource, bandwidth, energy, and other constraints
of edge nodes. However, computation migration itself is
a complex process, and in most existing works consid-
ering computation migration, only the migration decision
step is considered, while other steps (task upload, MEC
server execution, result return, etc.) are ignored [60], [61],
[64]. In the current research, most migration strategies only
consider computation latency or terminal energy consump-
tion, and the global optimization of both has not been
achieved. Future research can pay more attention to the new
model of migration strategy and the reduction of computing
complexity.

3) HETEROGENEOUS ARCHITECTURE
From our survey, we know that the current architecture of
edge computing usually consists of a thing layer, an edge
layer and a cloud layer. However, air-ground cooperative
MEC will be the trend to provide high-quality intelligent
services for future 6G networks, but heterogeneous nodes
will make the management and scheduling of resources more
challenging [152]. Therefore, it is necessary to develop a
technology for effective resource scheduling and manage-
ment, such as network slicing that enables dynamic and
efficient network management of resources in heterogeneous
nodes.

B. EI’S KEY OPEN CHALLENGES
1) PROGRAMMING AND SOFTWARE PLATFORMS
The potential of EI services can be realized by program-
ming/software platforms to provide edge computing services.

However, most of these platforms are currently used to con-
nect powerful cloud data centers and do not fully exploit the
benefits of edge computing. With the emergence of compu-
tationally intensive IoT applications, the need for EI services
has become more urgent.

2) EI MODEL DEPLOYMENT
At present, model training optimization techniques for EI are
mainly divided into five types, including federal learning,
parameter aggregation optimization, gradient compression,
model partitioning and migration learning. With the further
integration of edge computing, cloud computing and high-
performance computing, EI and cloud intelligence will be
an important cornerstone to support AI applications. Look-
ing ahead, edge-cloud intelligence collaborative architecture,
arithmetic-aware interconnection, automatic model design,
and distributed sharing incentive mechanism will be impor-
tant research directions.

3) COMPUTATION-AWARE NETWORK TECHNOLOGIES
For EI, applications based on computing intensive AI usually
run-in distributed edge computing environment. Therefore,
Computation-intensive AI applications can be achieved by
integrating the functions of 5G, URLLC, SDN, and NFC
with edge computing to provide ultra-reliable, low-latency
services. Through these technologies, flexible control of net-
work resources will be realized to support on-demand inter-
connection across different edge nodes. On the other hand,
computing aware communication technology has also begun
to attract people’s attention, such as gradient coding to reduce
the spurious effect in distributed learning, and air computing
for distributed intelligent learning, which are useful for the
training acceleration of EI model.

C. BEOT’S KEY OPEN CHALLENGES
1) SECURITY AND PRIVACY
The integration of edge computing and blockchain can
improve the overall performance of IoT devices. Taking the
IoT devices group as an example, on the one hand, MEC can
act as the ‘‘local brain’’ of IoT devices, storing and processing
the data returned from different IoT devices in the same scene,
and optimizing and correcting the working state and path
of various devices to achieve the optimal overall application
of the scene. On the other hand, terminal equipment can
‘‘host’’ data to the edge computing server and ensure the
reliability and security of the data with the help of blockchain
technology, but, also, for the future IoT devices according
to service charges and other development methods provide
the possibility. Nevertheless, the edge outsourcing services of
integrated blockchain and edge computing systems present
new security and privacy challenges [31]. The most used
sidechain solutions in existing works may experience trans-
action losses in the extreme case of node channel crash. In the
future, with the breakthrough in the application of blockchain
technology, the security problems faced by edge devices will
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be solved and the decentralization of the IoE will be truly
realized.

2) FUNCTION INTEGRATION
BEoT integrates multiple platforms, network architectures
and servers. Therefore, it is difficult to unify the management
of storage servers running on different operating systems.
An alternative solution to the inefficiency and high cost of
blockchain storage is proposed, which is to use IPFS to store
file data and put permanently available unique IPFS addresses
into blockchain transactions without putting the data itself
into the blockchain. However, this requires consideration of
integration flexibility and stability.

3) RESOURCE MANAGEMENT
Under the edge computing based on blockchain, the coop-
eration between servers is more frequent and the scope of
resource sharing is more extensive. Such as the large-scale
optimization of edge server cooperation and the management
of dynamic resources, these problems are more serious in the
integration of blockchain and edge computing. How to design
a multi-criteria scheduler based on blockchain to achieve
multi-functional joint optimization is a challenge. In addition,
the resources consumed by blockchain can not be ignored, so
the edge computing resource management of proof of work
also needs to be actively explored.

VII. CONCLUSION
In this survey, we conduct a systematic and comprehensive
review of the development of edge computing. First, we pro-
vide a brief review of the latest edge computing literature.
Second, we find that there is a lack of research on the
overall overview of the latest developments in edge com-
puting. Third, to fill this gap, we then provide an in-depth
overview of the latest technologies in edge computing, espe-
cially from the perspective of architectures and models,
key technologies, and directions, which are the outstanding
results of this survey. Regarding the key research questions,
we first summarize various architectures and models of edge
computing, which include generic architectures and models
applied under relevant popular domains. In terms of key tech-
nologies, we investigate and clearly classify three research
aspects, namely, resource scheduling, EI, and edge comput-
ing combined with blockchain. In addition, the development
paths and trends of edge computing industry are summa-
rized. Finally, we clarify the current research challenges and
key issues, and expect to convey ideas and solutions that
can improve the development of edge computing and help
people better understand edge computing at a higher level.
We believe that our research provides timely guidance to
researchers, engineers, educators, and readers on the latest
developments in edge computing.
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