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Abstract—Image restoration techniques process degraded
images to highlight obscure details or enhance the scene with
good contrast and vivid color for the best possible visibility.
Poor illumination condition causes issues, such as high-level
noise, unlikely color or texture distortions, nonuniform expo-
sure, halo artifacts, and lack of sharpness in the images. This
article presents a novel end-to-end trainable deep convolutional
neural network called the deep perceptual image enhancement
network (DPIENet) to address these challenges. The novel contri-
butions of the proposed work are: 1) a framework to synthesize
multiple exposures from a single image and utilizing the exposure
variation to restore the image and 2) a loss function based on
the approximation of the logarithmic response of the human eye.
Extensive computer simulations on the benchmark MIT-Adobe
FiveK and user studies performed using Google high dynamic
range, DIV2K, and low light image datasets show that DPIENet
has clear advantages over state-of-the-art techniques. It has the
potential to be useful for many everyday applications such as
modernizing traditional camera technologies that currently cap-
ture images/videos with under/overexposed regions due to their
sensors limitations, to be used in consumer photography to help
the users capture appealing images, or for a variety of intelli-
gent systems, including automated driving and video surveillance
applications.

Index Terms—Channel attention network, deep convolutional
neural networks, dilated residual network, human vision system,
image enhancement, logarithmic exposure transformation (LXT),
multiscale human color vision (MHCV) loss.

I. INTRODUCTION

IMAGES and videos capture a vast amount of rich and
detailed information about the scene. Intelligent systems

use these captured images for various computer vision tasks,
such as image enhancement, object detection, classification
and recognition, segmentation, 3-D scene understanding, and
modeling [1]. These tasks form the building block for real-world
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applications, such as autonomous driving, security surveillance
systems, search and rescue operations, and virtual and aug-
mented reality environments. The quality of images becomes
extremely important for these applications, and the systems’
performance might be affected negatively by low-quality inputs.

Acquiring a high or optimum quality image is ideal but
sometimes impractical. Specifically, smartphone cameras have
considerably small apertures, limiting the amount of light cap-
tured, leading to noisy images in a low-lit environment [5].
The imaging sensor’s linear characteristic fails to replicate
the complex and nonlinear mapping achieved by human
vision. Another issue that commonly restricts the performance
of computer vision algorithms is nonuniform illumination.
When the lighting source is not perfectly aligned and nor-
mal to the viewing surface, or if the surface is not planar,
then the resulting image may have nonuniform illumination
artifacts [6]. Another critical requirement for efficient image
processing is global uniformity [6]. Similar objects or struc-
tures should appear the same within an image or in a series
of images. This implies that the color content and the illu-
mination must be stable for images acquired under varying
conditions. Illuminations that cast strong shadows also cause
problems. The edges and boundaries in an image need to be
well defined and accurately located, implying that the image’s
high-frequency content needs to be preserved to have high
local sensitivity. Vignetting is another common pitfall in many
photos [7]. While it might be a desirable effect in some cases
such as portrait mode photography, it is not ideal for vari-
ous other use cases that require high accuracy and details.
Furthermore, the compression algorithms used to store the
images may cause some artifacts [8]. These factors affect the
pleasantness of viewing the image and affect the usability of
the images for computer vision algorithms and their ability to
analyze them.

Traditionally, automatic image quality enhancement meth-
ods can be broadly classified into global enhancements and
local enhancements. Global enhancement algorithms perform
the same operation on every single image pixel, such as lin-
ear contrast amplification. Such a simple technique will lead
to saturated pixels in high exposure regions. To avoid this
effect, nonlinear monotonic functions, such as mu-law, power-
law, logarithmic processing [9], [10], gamma functions, and
piecewise-linear transformation functions, are used to perform
enhancements [11].

One extensively used method to avoid saturation while
improving the contrast is histogram equalization (HE) [12].
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Fig. 1. Demonstration of the proposed DPIENet for a given ill exposed
input. This system sets a new SOTA benchmark in terms of measures, such
as PSNR, SSIM [2], GSSIM [3], and UQI [4].

Another local image enhancement technique is based on the
Retinex theory [13], which assumes that the amount of light
reaching the observer can be decomposed into two parts:
1) scene reflectance and 2) illumination components. These
algorithms achieve better results than global methods by mak-
ing use of the local spatial information directly and have
become the forerunners for image enhancement. While meth-
ods based on Retinex such as MSR-CR [14] can effectively
improve the sharpness of the image and increase the local con-
trast, they introduce the halation phenomenon at high contrast
and amplified noise regions [15].

More recently, deep learning-based image enhancement
methods have been used to mitigate these problems [16], [17].
These techniques allow for automatic parameter selection and
training and have highly scalable architectures. They have been
shown to outperform state-of-the-art (SOTA) methods in com-
puter vision tasks, such as object detection, object recognition,
segmentation, super-resolution, and enhancement. However,
most of the deep learning networks are trained explicitly for
either standard exposure images or low exposure images. Thus,
they fail to achieve global uniformity for varying exposure
inputs of the same scene.

This article proposes a deep learning-based perceptual
image enhancement network (DPIENet) to address these
issues. This network has a U-shaped structure similar to the
U-Net architecture [18]. It consists of two stages: 1) a fea-
ture condense network (FeCN) that aims to acquire compact
feature representation of the spatial context of the image and
2) a feature enhance network (FeEN) that performs nonlin-
ear upsampling of the input feature maps to reconstruct an
enhanced image. The architecture is equipped with skip con-
nections between these two networks to use high-resolution
image details during the reconstruction. An example of the
result obtained using the network is illustrated in Fig. 1.

Some of the notable contributions of DPIENet include the
following.

1) A unified network that can ensure global uniformity
by generating perceptually similar enhanced images for
input images of both standard and low exposure set-
ting by utilizing dilated convolutions to preserve spatial
resolution in convolutional networks and improve spa-
tial image understanding. Furthermore, it incorporates
a channel attention mechanism that aims to adaptively
rescaling channelwise features by extracting the channel
statistics to enhance the network’s discriminative ability.

2) A combination of a classical log-based synthetic
multiexposure image generation technique—logarithmic

exposure transformation (LXT) that employs trainable
parameters to improve the performance of the network.

3) A novel loss function—“multiscale human color vision
(MHCV) loss.” This loss aims at improving the quality
of the reconstruction by considering human percep-
tion. This loss function promotes the model to learn
complicated mappings and effectively reduces the unde-
sired artifacts, such as noise, unrealistic color or texture
distortions, and halo effects.

The remainder of this article is organized as follows. In
Section II, related recent literature is reviewed. A detailed
description of the DPIENet architecture and its analysis is pro-
vided in Section III. In Section IV, a brief description of the
proposed MHCV loss is provided. Section V presents the train-
ing details and an ablation study with quantitative and visual
experimental results. Section VI discusses the user study per-
formed to measure human perceptual preferences. This section
is followed by the computation complexity, application, and
conclusion in Sections VII–IX, respectively.

II. RELATED WORK

Various methods have been adopted in the literature for
enhancing the quality of the images. Some of the early
techniques include gray level slicing, contrast expansion, lin-
ear and nonlinear contrast stretching, and various histogram
processing [19]. Many extensions to HE-based methods, such
as adaptive HE [20], contrast-limited AHE [21], and dynamic
HE [22], impose additional constraints while redistributing
the luminous intensity of histogram. However, such global
enhancement methods may suffer from loss of details in some
local areas because of the inherently nonuniformity present in
the image.

Most Retinex-based methods, including MSR-CR [14],
SSR [23], and HECUP [24], recover the reflectance and illu-
mination component and typically employ varying amounts
of the illumination component for enhancing images while
preserving naturalness. There exists multiple variations
and extensions of the Retinex-based approach, such as
AMSR [25], which uses an adaptive weighting strategy,
LIME [26], which only estimates the illumination compo-
nent for low light image enhancement, and NPE [27], which
balances the enhancement by utilizing the bio-inspired multi-
image fusion framework for image enhancement. Other fusion-
based frameworks [28], [29] have also been proposed.

Recently, deep learning-based methods have introduced
powerful tools, such as end-to-end trainable networks,
generative adversarial networks (GANs) [30], and deep
autoencoders [31], to perform image enhancement tasks.
In [32], an end-to-end deep learning-based method for photo
adjustment was proposed. Ignatov et al. [33] created a dataset
of images captured by smartphone cameras and a DSLR cam-
era and used the GAN model to learn the mapping between
the two images. In [34] and [35], deep learning was used
to approximate existing filters using a fully convolutional
network (FCNs). While the methods mentioned above are
all supervised learning, meaning they need paired images to
learn the mapping, in [36], an unpaired deep learning model
for image enhancement was proposed. This model uses an
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TABLE I
LITERATURE REVIEW OF THE STATE-OF-THE-ART TECHNIQUES FOR IMAGE ENHANCEMENT

adaptive weighting scheme extension of Wasserstein GAN for
faster convergence, a global U-net model for the generator, and
individual batch normalization (BN) for high-quality sharp-
ened image enhancements. Other CNN-based methods, such
as LLNet [31], utilize autoencoders, to extract features from
low-light images. They adaptively adjust the image bright-
ness without overamplification or saturation artifacts, thus
achieving both image enhancement and denoising.

Furthermore, a few inverse tone mapping techniques uti-
lize deep learning to improve the image’s perceptual quality.
Eilertsen et al. [47] used the U-Net structure operating in the
logarithmic domain to generate a high dynamic range (HDR)
output. Endo et al. [48] utilized UNet-based autoencoders to
synthesize a set of LDR images with varying exposures to mimic
exposure bracketing. These LDR images are then fused using
a classical method to generate the HDR output. Table I pro-
vides a chronological list of various other image enhancement
methods, along with a brief explanation for each method.

III. PROPOSED METHOD

A brief description of the proposed deep perceptual image
enhancement network (DPIENet) is provided in this section.
A basic flow diagram of the proposed system is outlined in

Fig. 2. The goal of this article is to construct a function
f developed specifically to obtain an enhanced image f (I),
where I is an input image of any arbitrary size (m, n). This
network addresses the image-to-image translation problem,
which transforms an input image with color rendition, ill expo-
sure, and unrealistic color issues to an enhanced output image
with desired characteristics. In accordance with this, DPIENet
comprises of three main components: 1) logarithmic-based
exposure transformation; 2) joint local and multiblock global
feature extraction; and 3) dynamic channel attention (DCA)
blocks. These components are tightly coupled and trained in
an end-to-end fashion. For training, a novel loss is designed
to obtain f (I). This loss aims at enhancing the desired char-
acteristics by using reflectance and illumination components.
Additional details of these components are provided in further
sections.

A. Logarithmic Exposure Transformation

To represent the wide range of luminance present in a
natural scene, such as bright and direct sunlight to dark
and faint shadows, the exposure range of the image needs
to be adjusted. An ideal enhanced image would preserve
high-quality details in the shadows while retaining a good
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Fig. 2. Network architecture of the proposed deep perceptual image enhancement (DPIENet): (a) provides an overall structure of DPIENet with the FeCN
that aims at acquiring information of the spatial context of the image and FeEN that focuses on reconstructing a perceptually enhanced image; (b) visualizes
the standard residual network proposed by He et al. [49]; and (c) visualizes the residual network with a DCA mechanism to emphasize more on significant
features.

contrast in the bright regions. On the contrary, an image with
nonuniform scene luminance will have a tradeoff between the
bright and dark regions due to the limited exposure and results
in the loss of data in those regions. Various SOTA systems
have been developed such as HDR imaging, which aim at com-
bining multiple exposures to create an image with a greater
dynamic range of light. The main constraint with such system
is the requirement of multiple images across time with vary-
ing exposures. Inspired by the multiexposure mechanism from
the HDR imaging systems, a synthetic simulation of changes
in exposures to generate a perceptually enhanced image from
a single image is explored. Specifically, the synthetic images
need to have under and overexposed images. The underex-
posed images have bright regions, which are well defined with
proper contrast and overexposed images where the finer details
in the dark and shadow areas are highlighted

I′ =
log
{

1 + αx ∗ Îxmax ∗
(

Îx/Îxmax

)γx
}

log{1 + α}
∣∣∣∣x = {O, U}

Ix =
{

I′, x = O
1 − I′, x = U

(1)

where Îxmax is the maximum intensity; α is initialized to 2;
γU = 1.75; γO = 0.75; ÎU = ÎUmax − Î; ÎO = Î.

Consider an input image Î of any arbitrary size (m, n),
then the LXT of that image is generated by employing (1).
This transform is derived using companding functions, such
as μ-law and the power law, and it produces underexposed
(U) and overexposed images (O). In (1), α is a learnable
parameter and γx value is empirically set to 1.75 and 0.75 for
underexposed and overexposed, respectively, based on the
tradeoff between the expansion of underexposed regions and
the amount of details in the overexposed areas. To simulate
the overexposed image I′

O, LXT maps the low-intensity values

Fig. 3. Example of the LXT operation applied on an image: Row 1 is a
visualization of the complete image, and rows 2 and 3 are the zoomed section
of the image. Column (a) is the original image; (b) is the simulation of an
over-exposed image wherein the darker regions are enhanced appropriately;
and (c) is a simulation of an under-exposed image wherein the brighter regions
are well defined.

to a broader range of values while compressing the range of
higher intensity values

Conversely, to obtain the underexposed images I′
U , the LXT

function expands the higher intensity regions and compresses
the range of lower intensities. Fig. 3 shows the result of
the operation for various values of α. Fig. 3(b) visualizes
an overexposed image with αO = 2 and γO = 0.75, and
Fig. 3(c) demonstrates an underexposed image with αU = 0.5
and γU = 1.75. As seen in Fig. 3(b), the details of the image
in darker regions are much clearer, while in Fig. 3(c), the
details in highlights are more pronounced. Fig. 4 shows the
result of the companding operation for various values of α and
γ . As seen in the figure, increasing α decreases the limit of
higher intensity values and vice versa. Similarly, increasing γ

decreases the expansion of lower intensity values.
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Fig. 4. LXT curves for various values of alpha and gamma. (a) Resulting
LXT values for the variations in alpha. (b) Resulting LXT curve for changes
in gamma.

B. Joint Fusion of Multiblock Global and Local Features

A novel approach to extract and fuse global and local fea-
tures is provided in this section. Local features define a portion
of information about the image in a specific region or single
point [41]. In distinction, global features describe the entire
image by considering all pixels in the image [42]. The global
features provide information regarding the context of the entire
image that can be integrated with local features to obtain
visually pleasing results with lower artifacts [50]. For image
enhancement, the global features could determine the type of
scene, subjects in the scene, and lighting conditions to aid local
adjustments in the image. In contrast, local features represent
the local texture or object at a given location.

The extraction technique is inspired by the UNet archi-
tecture that is developed specifically for biomedical image
segmentation [18] and ColorNet architecture that was uti-
lized to colorize grayscale images automatically [51]. Both
these architectures encompass an end-to-end encoder–decoder
network. The UNet architecture focuses mainly on local
features, thereby degrading the performance of image enhance-
ment tasks that highly rely on global features [36]. On the
contrary, ColorNet utilizes both local and global features; how-
ever, the network requires explicit scene labels for training
purposes and requires an extra supervised network to compute
global features. Both these networks utilize FCN to perform
their respective tasks. Even though these networks perform
reasonably well, the model efficiency and performance can
be enhanced by incorporating a residual layer instead of the
FCN block.

The proposed DPIENet comprises of a novel FeCN and
a novel FeEN. FeCN aims at producing local and global fea-
tures. The local features are obtained through a series of layers,
while the global features are extracted from every layer of the
condense network rather than just the final layer. FeEN aims
at reconstructing the enhanced image by exploiting skip con-
nections from FeCN. A flow diagram of DPIENet with FeCN
and FeEN can be visualized in Fig. 2.

1) Feature Condense Network: The condense network com-
prises of feature group, which can be denoted as Cg

l where
group g = 1, 2, . . . , 8, and l indicates the number of
the residual layer in that particular group and ranges from
1, 2, . . . , n. For simplicity, the first feature extraction section is
denoted by C0 and it consists of a convolutional (CONV) layer
followed by BN [52] and SELU activation layer [53]. This
layer extracts features from the image domain. The CONV
layer employs a 3 × 3 kernel and produces 16 feature maps.

The basic structure of the residual layer used in C1−8 in the
FeCN can be seen in Fig. 2(b) and is formulated in

�l+1 = S(I(�l) + �(ωl∗�l + bl)
∣∣

{
ωl = [

�l,k : k = 1 ≤ k ≤ K
]}

(2)

where �l is the input feature map for the lth residual layer,
ωl and bl are the associated set of weights and biases,
respectively, � denotes the combination of layers such as
CONV→BN→SELU→CONV→BN, S denotes the SELU
activation function, and I is the identity map. In groups C2−7,
the first layer performs downsampling by striding instead of
max pooling since max pool layers lead to high amplitude,
high-frequency activations in the subsequent layers, which
might increase gridding artifacts [54]. For image enhance-
ment techniques, downsampling may cause loss of spatial
information; however, it is required to understand the scenes
and reconstruct the image with finer details. Eliminating down-
sampling may increase resolution; however, it affects the
receptive field in subsequent layers, thereby increasing con-
text loss. To overcome this, dilated convolution is employed
to adjust receptive fields of feature points without decreasing
the resolution of feature maps [55]. It is used in all the lay-
ers in the group C5−7 instead of traditional convolution, as
suggested by Yu et al. [54].

Furthermore, to increase the representative power of the
global features in the network, the output of the last layer
(κ) of each condense group from C0−8 is connected to a
global average pooling (GAP) layer. The GAP layer com-
presses the information of the residual layers making it more
robust to the spatial translation. The outputs from each layer
are concatenated, as shown in

yfuse =
[
C0

n; C1
n; C2

n; · · · ; C8
n

]
. (3)

These features generate a total of [
∑8

i=0 ς(Ci
κ) × 1 × 1]

where ς is the number of channels/feature maps. The stacked
feature maps are then fed into a dense layer D0, which pro-
duces [{2 × ς(C8

κ)} × 1 × 1] output, followed by a SELU
activation layer and another dense layer D1 that produces
[{ς(C8

κ)} × 1 × 1] global features. These are replicated to
match the dimensions of C5

κ . Thus, the dimensions of the repli-
cated features are [128 × 32 × 32] (see Table II). The joint
fusion comprises stacking the global features from D1 and
the local features from C5

κ . This aids in incorporating global
features into local features. Due to this way of concatena-
tion, the network is independent of any input image resolution
restrictions.

2) Feature Enhance Network: Once the local and global
feature maps are concatenated, they are fed to the enhance
network. The enhance network comprises of feature group,
which can be denoted as Eg

l , where group g = 0, 1, . . . , 4 and
l indicates the number of the residual layer in that particu-
lar group and ranges from 1, 2, . . . , n. The feature layers of
the condense and enhance network are symmetric across the
fusion block, as shown in Fig. 2(a). If the condense group
C2 contains two residual layers, then E2 also consists of
two residual layers.

In the case of the condense layer C0, E0consists of just
one residual layer. Each enhance group in Eg mainly consists
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TABLE II
ARCHITECTURE DETAILS OF THE FECN

of upsampling layers, compression layers, and residual layers.
The input to each enhance group is the fusion of feature maps
from the previous enhance group and the output of the corre-
sponding condense group. This helps in propagating context
information to higher resolution layers. The upsampling layer
consists of transposed convolutions with the kernel size 2 × 2
and stride 2 × 2. This aids in increasing the resolution of the
feature maps by a factor of 2. The compressing layer consists
of CONV→BN→SELU, wherein the kernel size of CONV is
1 × 1. This is used to compress the feature dimensions by a
factor of 2. The compressed feature maps are then fed to the
residual layers for further processing. Finally, the output of
the group E0 is connected to a CONV layer with kernel size
3 × 3, and residual learning is adopted by adding the input
image to this layer.

3) Dynamic Channel Attention Mechanism: Most of the
deep learning-based image enhancement techniques consider
all the feature maps equally, which may not be correct in many
real-world cases. Among the residual layers’ generated fea-
ture maps, few of the features might contribute more when
compared to the rest. Moreover, the learned filters in the resid-
ual layers have a local receptive field, and each filter output
exploits the contextual information outside of the subregion
very poorly. Thus, a mechanism is required to recalibrate fea-
tures such that more emphasis is provided for the feature maps
with better mapping compared to the less essential feature
maps. Researchers have offered tentative work to apply atten-
tion in deep neural networks [56]–[58], which ranges from
localization and understanding in images [59] to sequence-
based networks [60]. However, these attention mechanisms
are not yet mature for low-level vision tasks such as image
enhancement.

This mechanism’s main objective is to assign different val-
ues to various channels according to their interdependencies
in each convolution layer. Thus, to increase each channel’s
sensitivity, an intuitive way is to access the global spatial
information by using average pooling over the entire feature
map. The channel attention mechanism can be formulated, as
shown in

� = σ

(
W↑

(
S

(
W↓

(
1/(H × W)

H−1∑
m=0

W−1∑
n=0

(�)

))
+ b↓

)
+ b↑

)

(4)

where � = [�1,�2, . . . , �ς ] is the input feature map with
ς number of channels/feature maps and H × W dimensions,
W↓[b↓] denotes weight [bias] of the compression convolution,
which reduces the dimension by a factor of r, W↑[b↑] denotes
weight [bias] of the expansion convolution, which increases
the dimension by a factor of r, S denotes the SELU activation

function, and σ is the sigmoid activation function. The GAP
output can be realized as the fusion of local descriptors whose
statistics express the entire feature map [56].

The channel attention mechanism comprises of the convolu-
tions with kernel size 1×1 along with the sigmoid activation.
This aids in learning the nonlinear interaction between the
channels and ensures multiple channels with informative maps
are emphasized more [56]. As the number of channels/feature
maps ς in the condense and enhance network keeps varying,
the gating mechanism needs to be adjusted to accommo-
date these changes. The factor r is a hyperparameter, which
varies the capacity of the gating mechanism. The ratio r was
formulated as r = ς i/4 where ς i denotes the number of
channels/feature maps at the input of the GAP layer.

IV. MULTISCALE HUMAN COLOR VISION LOSS

Several loss functions, such as L1, L2, cosine similar-
ity measures [61], and perceptual and adversarial losses [36],
have been investigated for various computer vision tasks.
These perform reasonably well, but losses based on dense pix-
elwise image differences lead to poor perceptual quality [33].
In [47], an HDR cost function that treats illumination and
reflectance separately was proposed. However, the method
utilized only the information around the predicted image’s
saturated areas to compute the loss. This pixelwise blending-
based cost function will be ineffective for image enhancement
tasks that require global and local adjustments. Thus, in this
article, a multiscale loss function that works on the princi-
ple of the Retinex theory is proposed. According to this, the
low-frequency information of the image represents the global
naturalness, and the high-frequency information represents the
local details. By decomposing the image into a low-frequency
luminance component and a high-frequency detail compo-
nent, the loss function incorporates both the local and global
information. This loss is driven by the close to the logarithmic
response of the human visual system (HVS) in large luminance
range areas, which follows Weber-Fechner’s law [62].

The loss is constructed under the assumption that the image
can be decomposed into illuminance and reflectance com-
ponents. The illumination component L defines the global
deviations in an image, while the reflectance R represents the
details and colors. In combination, these components mod-
ulate the reconstruction of a perceptually enhanced image
Pe = L × R. For the simplicity of exposition, consider the
case in which the loss function consists of a single scale:
the extension to multiple scales is straightforward. Consider
a predicted image I and ground-truth image T of any arbi-
trary size (m, n). The log-based illumination component is
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TABLE III
PERFORMANCE COMPARISON BETWEEN PROPOSED ARCHITECTURES ON THE MIT-ADOBE 5K DATASET. THESE ARE AN

AVERAGE OF 500 IMAGES* FROM THE TEST DATASET WITH DIFFERENT EXPOSURE SETTINGS.
AS SEEN IN THE MHCV LOSS WITH LXT AND DCA SHOWS THE BEST PERFORMANCE

constructed by employing a center/surround algorithm, par-
ticularly, a Gaussian filter Gσ , which can be formulated, as
shown in

L�
σ = log

(
Gσ ⊗ �2

)
σε{0.5, 1, 2, 4, 8}

where Gσ = 1

2πσ 2
e
− x2+y2

2σ2 (5)

where ⊗ denotes convolution and for the illumination compo-
nent of predicted image, � takes the value of I and � = T
for ground-truth image. The value of σ cannot be theoretically
modeled and determined [63]. The choice of right scale σ for
the surround filter is crucial for single scale retinex. These can
be overcome by utilizing the multiscale retinex, which seems
to afford an acceptable tradeoff between a good local dynamic
range and a good color rendition. Thus, empirically, σ val-
ues were set to 0.5, 1, 2, 4, and 8. The log-based reflectance
component is constructed by taking the difference between the
image and illumination component. This can be formulated, as
shown in (6). The resulting MHCV loss function using these
two components can be defined, as shown in (7), as follows:

R�
σ = log

(
�2
)

− Lσ (6)

MHCV = 1

N

N∑
i=1

⎡
⎣α

n

n∑
j=1

(
LT

σi,j − LI
σi,j

)2

+ 1 − α

n

n∑
j=1

(
RT

σi,j − RI
σi,j

)2

⎤
⎦

N = dim(σ ); α = 0.5. (7)

Equal weight is provided to both illumination and
reflectance components as both global variations of illumi-
nance and local colors, and details are very important for the
successful reconstruction of enhanced images.

V. EXPERIMENTAL RESULTS

This section provides the performance evaluation of the
DPIENet. After outlining the experimental settings, chosen
datasets, and training details, the performance comparisons
with SOTA methods are provided to demonstrate the effec-
tiveness and generality of the DPIENet.

A. Dataset

For training, validation, and testing purposes, the MIT-
Adobe FiveK dataset [64] is employed. This dataset contains
5000 photographs taken with SLR cameras by various photog-
raphers. These photographs covered a broad range of scenes,
objects, subjects, and lighting conditions. Each image was
retouched by five well-trained photographers using global
and local adjustments. Among these retouchers, the result of
photographer C was selected as ground truth because the pho-
tographs received a high rank in the user study [64]. The
untouched images were considered as input images. This
consisted of images with standard exposure (�S), which com-
prises of images captured with default camera settings and
low exposure (�L) involves simulated low exposure settings.
The dataset was split into three partitions: 4000 images for
training, and 500 images (250 low + 250 std exposure) for
validation and testing. All the images from this dataset were
downsized to 512 along the long side for training, validation,
and testing purposes.

B. Training Details

For training, RGB input patches of size 256×256 along with
the corresponding ground truth were considered. The training
data were augmented using random horizontal, vertical, and
90◦ rotations along the center of the image. According to [53],
the ideal initialization for SELU is mean 0 and standard devi-
ation

√
1/n. However, this unequivocally causes the gradients

to explode. To stabilize the network, the standard deviation
was set to

√
0.1/n. For training the model, the AdaBound

optimizer [65] with β1 = 0.9, β2 = 0.999, ε = 1 × 10−8, and
γ = 1 × 10−3 was employed. The batch size was set to 20.
The learning rate was initialized as 1e−3 and the final learn-
ing rate was initialized as 0.1. The network was trained for a
total of 2.85 × 106 updates and multistep learning rate sched-
uler was used to decrease the learning rate by 0.1 at 9.5×105,
1.9×106, and 2.375×106 iterations. For training, the proposed
multiscale human vision loss was employed instead of L1 and
L2 loss. Minimizing L2 is generally preferred as it maximizes
the PSNR. However, based on a series of experiments con-
ducted, MHCV loss provides better convergence than L1 or
L2 loss. The evaluation of this comparison is provided in the
next section.
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TABLE IV
QUANTITATIVE EVALUATION OF DPIENET WITH SOTA ON MIT-ADOBE FIVEK DATASET FOR STANDARD (�S) AND LOW EXPOSURE (�L) INPUTS.

THESE ARE AN AVERAGE OF 250 IMAGES FROM THE TEST DATASET. Red TEXT INDICATES THE BEST AND Blue TEXT INDICATES THE

SECOND-BEST PERFORMANCE FOR RESPECTIVE INPUT SETTINGS. THIS DEMONSTRATES THAT THE PROPOSED

DPIENET PERFORMS SIGNIFICANTLY BETTER THAN SOTA TECHNIQUES

Fig. 5. Visual comparisons with respect to the ground truth. Zoom-in regions are used to illustrate the visual difference. DPIENet not only restores the
details but also avoids discoloration. The SOTA techniques tend to exhibit few artifacts, such as variation in color (for example, DPE-UL tends to shift the
color toward orange from red, DPED-Blackberry introduced green color), over enhancement (for example, FLLF and FIP over enhance the detail which look
dark), and blurriness (for instance, DPED-Sony image look smoothened). Note: UL stands for unsupervised learning, and SL stands for supervised learning.

C. Benchmark Results

DPIENet is compared with other SOTA algorithms using
measures, such as PSNR, SSIM [2], GSSIM [3], and UQI [4].
These measures are applied to all the RGB channels of the
image. All these measures access the image quality based
on the given reference benchmark image that is assumed to
have the desired quality [66]. Higher quality value depicts how
close the enhanced images are to the ground truth.

The ablation tests comprise of experiments exploring
different designs and exposure settings. The quantitative
performance of different models is provided in Table III. When
the LXT and DCA mechanism is removed from the network,
the performance is relatively low. For example, in terms of
PSNR, DPIENet without LXT and DCA reaches 21.84 dB;
when LXT is added, it increases to 23.31 dB. When both LXT
and DCA are combined, it reaches 24.21 dB. This indicates
that the proposed LXT+DCA mechanism, along with stacking,

is much more powerful than the residual block-stacking
method and gives a boost in performance roughly by a factor
of 2.3 dB.

Furthermore, to show the effectiveness of DPIENet with
MHCV loss, a comparison with existing losses, such as L1,
L2, SSIM, Cosine, and single scale HCV loss, is also pro-
vided in Table III. This was obtained by applying PSNR on
500 images (a combination of both low and standard expo-
sure) from the validation set. It can be inferred that MHCV loss
outperforms with a higher margin of improvements when com-
pared to L1 and L2 loss. The single scale HCV loss performs
fairly; however, PSNR fluctuates for each scale; for example,
when σ = 0.5, PSNR is 24.02 and when σ = 0.5, PSNR
is 24.12. To overcome this variation, multiple sigma levels in
MHCV are utilized and it performs slightly better than the
single scale HCV loss.

The proposed network is compared with SOTA methods
for standard and low exposure settings. For standard
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Fig. 6. Real-world visual comparisons of DPIENet with the SOTA models. Zoom-in regions are used to illustrate the visual difference. In the first example,
DPIENet successfully suppresses the noise, which is visible in CLHE, FIP, and FLLF. Furthermore, it does not have halo artifacts that are introduced by
DPE-UL and DPED. In the second example, the structural details of the building are preserved when compared to DPE-UL and CLHE. In the third example,
the color of the leaves is preserved when compared to the other techniques. DPE-UL has introduced blue sky, which is not present in the input, and the leaves
are yellow. In all the examples, DPED introduces blurring, FIP, and FLLF generate underexposed/darker images.

exposure input setting, several recent competing meth-
ods, such as CLHE [40], FLLF [37], DPE supervised and
unsupervised [36], DPED trained with Blackberry, iPhone,
and Sony images [33], and FIP [34], were considered.

Table IV demonstrates that DPIENet performs significantly
better when compared to the other methods. The visual com-
parison is provided in Figs. 5 and 6. Fig. 5 illustrates that
the enhanced colors of the DPIENet are very similar to the
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Fig. 7. Demonstration of low exposure image performance using various models. Zoom-in regions are used to illustrate the visual difference. DeepUPE
generates an image with a soft haze effect; MBLLEN produces dark images. EnlightenGan and GladNet introduce a foggy effect. However, DPIENet restores
details but also avoids various artifacts and provides results similar to the ground truth.

ground truth, while Fig. 6. provides results of a few real-
world examples. For real-world images, NASA dataset [67],
Google HDR [5], DIV2K dataset [68], and a database pro-
vided in [45] were utilized. The zoomed regions in both these
images demonstrate the color and edge-preserving property
of DPIENet when compared to the SOTA techniques, which
tend to oversaturate, introduce variations in color, and induce
blurriness.

The quantitative results for low exposure settings are pro-
vided in Table IV. This indicates that the images are restored
with superior quantitative performance. The visual compari-
son of this setting is illustrated in Fig. 7 (with ground truth)
and Fig. 8 (real world). The network reconstructed a visually
pleasing image close to the ground truth and mimic human
perception while retaining natural color rendition. In com-
parison, the SOTA techniques contain exposure artifacts, and
the colors are less perceptually similar when compared to the
ground truth.

Furthermore, the model is compared with the most recent
deep learning-based competing low light IE techniques,
such as MBLLEN [34], EnlightenGAN [35], DEEPUPE [36],
GLADNet [32], and RetinexNet [30]. The proposed network
reconstructs perceptually improved images with a higher cor-
relation with the ground truth when compared to the other
models.

The merged images from the Google HDR [5] dataset were
utilized to show the effectiveness of DPIENet on real-world
images. This dataset contains 153 sets of images—each set
comprises of a merged image and a final reconstructed image
along with a reference frame. As DPIENet aims at exposure
correction, the merged images were used as inputs to the
systems. To compute the quality, no reference-based quality
measure, such as CRME [70], Brisque [71], and Divine [72],
were utilized. Comparative results are provided in Table V.
Due to the supervised training of DPIENet, it has to be
noted that it tries to enhance the image so that it is close
to the reference image, and thus, it is not optimized for

TABLE V
PERFORMANCE COMPARISON BETWEEN PROPOSED ARCHITECTURES ON

THE GOOGLE HDR DATASET. THESE ARE AN AVERAGE OF 153 IMAGES.
Highlighted TEXT INDICATES THE TOP THREE PERFORMANCE

the no-reference-based measure. This is indicated by the
marginally better results obtained by DPIENet in comparison
to other methods.

VI. USER STUDY

The user study conducted follows the practice provided
in [72]. A paired comparison is adopted to assess the per-
ceptual quality using Qualtrics [73]. For each test, each user
was asked to select the preferred one from a pair of images.
Using this setup, relative scores and standard exposure input
images show minimal perceptual differences between the
proposed DPIENet and the SOTA methods, such as CLHE,
FLLF, DPED-iPhone, and DPE-unsupervised, for standard
exposure methods, and MBLLEN, GLADNet, RetinexNet,
EnlightenGAN, and DEEPUPE for low exposure methods are
obtained.

For this study, five images per comparison were picked ran-
domly from the Adobe FiveK dataset (testing and validation
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Fig. 8. Real-world visual comparison of DPIENet with SOTA low exposure methods. Zoom-in regions are used to illustrate the visual difference. The first
example, DPIENet, produces visually pleasing realistic colors. DeepUPE and MBLLEN do produce realistic colors; however, they introduce exposure artifacts.
The second example, DPIENet, produces images with better details (see zoomed shoe). The third example, DPIENet, provides better visible details and color,
as seen in the zoomed regions. Overall, EnlightenGAN and RetinexNet tend to produce unrealistic colors. GLADNet introduces a hazy effect, and DEEPUPE
and MBLLEN suffer from exposure-related artifacts.

images) [64], NASA dataset [67], Google HDR [5], DIV2K
dataset [68], and a database provided in [45]. Each partici-
pant was asked to compare 50 pairs of images. The users were

instructed to consider the following aspects: 1) visible noise;
2) over or underexposure artifacts; 3) overenhancement; and
4) unrealistic color or texture distortions. For detailed analysis,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

TABLE VI
BT SCORES FOR IMAGE ENHANCEMENT IN THE USER STUDY. THE

PROPOSED DPIENET PERFORMS FAVORABLY AGAINST

OTHER SOTA COMPARISONS

Fig. 9. Analysis of user study. The bar plot provides the percentage number
of times the users selected DPIENet versus the SOTA method. The DPIENet
was preferred by an average of 76% and 79% of users on the standard and low
exposure settings, respectively. Note: 76% and 79% are obtained by averaging
all the bars on the graph.

the results from 45 participants were considered. The per-
centage that users chose DPIENet over the SOTA methods
for both low and standard exposure images is provided in
Fig. 9. The bar plot provides the number of times the user
preferred DPIENet versus the SOTA method. For example,
DPIENet was chosen 64.44% of the time when compared
to CLHE under standard exposure methods. On average, the
proposed DPIENet is preferred by 76% and 79% of users for
standard and low exposure settings, respectively. These aver-
ages are obtained by taking the mean of the graph bars of
Fig. 9. The runner-up was CLHE for �S and EnlightenGAN
for �L methods. For further analysis, the global score was
obtained by fitting the results of paired comparisons to the
Bradley–Terry (BT) model [74]. The normalized zero mean
BT score for both exposures is quantized in Table VI. These
scores, along with the user study, shows that the results of the
proposed method have higher perceptual quality than existing
SOTA methods.

VII. CONCLUSION

In this work, a novel deep learning-based image enhance-
ment for exposure restoration is presented. The method is

built on multiexposure simulation using LXT. The proposed
DPIENet, which is an end-to-end mapping approach, com-
prises of a condense and enhance network, which leverages the
idea of residual learning to reach a larger depth. Furthermore,
the skip connection between these networks aids in recovering
spatial information while upsampling. In addition, to improve
the network’s ability to realize the context of the image,
global features are exploited from each group in the condense
network. A DCA mechanism to adaptively rescale channelwise
features is employed to boost the network’s channel interde-
pendencies further. To obtain realistic images that correlate
to human vision, a novel multiscale human vision loss is
presented—these aid in accounting for the global variation in
illumination, details, and colors. Extensive quantitative, quali-
tative, and user study evaluations conducted on the presented
technique demonstrate DPIENet’s performance surpasses the
existing methods and achieves SOTA results. Furthermore,
DPIENet overcomes artifacts, such as halo effects, noise
amplification in dark regions, and artificial color generation,
which occur in a few existing techniques. As a part of the
future work, the authors intend to test the accuracy of the
system for various low-level computer vision tasks, such as
super-resolution, image recoloring, and image denoising.
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