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Abstract 
 
Background 
The connectivity among signatures upon perturbations curated in the CMap 
library provides a valuable resource for understanding therapeutic pathways 
and biological processes associated with the drugs and diseases.  
 
Motivation 
However, due to the nature of bulk-level expression profiling by the L1000 
assay, intraclonal heterogeneity and subpopulation compositional change that 
could contribute to the responses to perturbations are largely neglected, 
hampering the interpretability and reproducibility of the connections. 
 
Results 
In this work, we proposed a computational framework, Premnas, to estimate 
the abundance of undetermined subpopulations from L1000 profiles in CMap 
directly according to an ad hoc subpopulation representation learned from a 
well-normalized batch of single-cell RNA-seq datasets by the archetypal 
analysis. By recovering the information of subpopulation changes upon 
perturbation, the potentials of searching for drug cocktails and drug-
resistant/susceptible subpopulations with CMap L1000 were further explored 
and examined. 
 
Conclusions 
The proposed framework enables a new perspective to understand the 
connectivity among cellular signatures and expands the scope of the CMAP 
and other similar perturbation datasets limited by the bulk profiling 
technology. The executable and source code of Premnas is freely available at 
https://github.com/jhhung/Premnas. 
 
Keywords: CMAP, L1000, bulk gene expression profiling, single cell RNA 
sequencing, digital cytometry, archetypal analysis, intraclonal heterogeneity, 
subpopulation changes. 
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Highlights 
 

1. A computational framework (i.e., Premnas) for learning subpopulation 
characteristics by the archetypal analysis and deconvoluting bulk 
expression profiles using the digital cytometry into subpopulation 
composition was proposed and validated. 

2. Intraclonal heterogeneity and subpopulation changes upon different 
perturbagen treatments in LINCS CMap L1000 datasets were estimated 
by Premnas. 

3. With Premnas, we introduced a new strategy of finding effective drug 
cocktails and further linked the drug-resistant subpopulation found in 
CMap L1000 to a known drug-resistant clone (i.e., the pre-adapted [PA] 
cell). 

4. To our best knowledge, this work is the first attempt to provide a new 
subpopulation perspective to CMap database.  

5. We believe Premnas can be applied to all the perturbation datasets, of 
which intraclonal/intratumoral heterogeneity was concealed by the 
bulk profiling and hereafter provides a new dimension of interpreting 
the connectivity. 
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Introduction 
Connectivity Map (CMap1) is a large-scale and comprehensive 

perturbation database that curates differentially expressed (DE) genes upon 
diverse perturbagen (i.e., chemical or genetic reagent) treatments in human cell 
lines. The DE genes induced by each perturbagen represent the perturbed 
biological pathways that are collectively regarded as a signature. One typical 
application of CMap is to compare the similarity between a signature and a 
disease-defining gene list to suggest a positive or negative connection between 
the perturbagen and disease. Recently, the Library of Integrated Network-
based Cellular Signatures (LINCS) project leveraged the L1000 profiling 
platform, a low-cost and high-throughput profiling technology, to significantly 
populate the CMap database and offer immense opportunities to new 
therapeutics2-4.  

One founding premise of making sense of the signature from the bulk 
expression profiling like L1000 is that the clonal cells used for experiments are 
genetically homogenous so that the signature can reflect the consistent 
response across cells treated by the same perturbagen. However, in fact, the 
genetic heterogeneity within human cell lines (e.g., MCF-7 and HeLa) has been 
confirmed and widely recognized5-7. Those undetermined subclonal cells 
bearing distinct genetic variants (i.e., subpopulations) may behave differently 
upon a perturbation, thereby jeopardizing the interpretability8 and 
reproducibility6,9 of the signatures by bulk profiling.  

The single-cell RNA sequencing (scRNA-seq) technology that combines 
single-cell isolation and RNA sequencing technologies to study the 
transcriptome of a single cell enables us to understand the effect of 
intraclonal/intratumoral heterogeneity ignored in the bulk expression 
profiling10,11. For instance, Ben-David12 used scRNA-seq to show that the 
intraclonal heterogeneity in MCF-7 cells may influence the drug response to a 
great extent. The presence of drug-resistant subpopulations was revealed in 
MCF-7 cells13 at single-cell resolution. These findings bolster the notion that the 
signature by bulk profiling cannot be explained solely by pathway 
perturbation; however, conducting single-cell level assays on the same scale to 
remedy CMap L1000 datasets in this regard is clearly not realistic.  

Recently, digital cytometry approaches14-17, which use machine learning 
methods to decompose the bulk gene expression profiles (GEPs) of a 
heterogeneous cellular mixture (e.g., peripheral blood mononuclear cells 
(PBMCs), whole brain tissues, or tumors, etc.) into several well-characterized 
cell types have been proved to be capable of estimating the cellular composition 
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computationally in high accuracy, thereby mitigating the need of conducting 
single-cell level assays. Despite these powerful digital cytometry approaches, 
applying them to decomposing bulk GEPs into undetermined subpopulations 
remains challenging due to the lack of known characteristics of subpopulations 
of a human cell line. The gaps toward a practical digital cytometry that can 
recover the intraclonal heterogeneity beneath the bulk GEPs by L1000 remain 
to be filled.  
 We therefore developed Premnas, a computational framework that first 
learns the ad hoc subpopulation characteristics from a well-normalized batch 
of single-cell GEPs via the archetypal analysis (i.e., ACTIONet18) and then by 
which estimates the composition of subpopulations from L1000 profiles in 
CMap using digital cytometry. After recovering the subpopulation 
composition from each bulk GEP, the change of subpopulation composition 
upon perturbation can be inferred. The potentials of searching for drug 
cocktails and drug-resistant subpopulations with LINCS L1000 CMap were 
further explored and examined. To our best knowledge, this work is the first 
attempt to provide a new subpopulation perspective to CMap database. We 
believe Premnas can be applied to all the perturbation datasets, of which 
intraclonal/intratumoral heterogeneity was concealed by the bulk profiling 
and hereafter provides a new dimension of interpreting the connectivity. 
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Results 
 
Framework overview 
Rationale. One of the key premises to make use of CMap is that a gene 
signature, an aggregate of DE genes induced by a perturbagen or disease, can 
be regarded as the surrogate for the affected functions or pathways. However, 
since there are subpopulations in a clone, and each subpopulation bears 
distinct genetic background and GEPs, fluctuation of the distribution of 
subpopulations can also account for the gene signature (Fig. 1). For instance, if 
some major subpopulation excessively expressing pathway 1 is highly 
susceptive of and massively killed by a drug, the genes involved in pathway 1 
are easily identified as the negative DE genes upon treatment using bulk GEPs 
and then regarded as the signature of the drug response. In other words, a gene 
signature can be a mixed consequence of function and subpopulation changes, 
especially for the perturbagens that are meant to kill cancer cells.  
 

     
Due to the nature of bulk profiling, the subpopulation information is 

unavailable in CMap. The conventional drug screening strategies that interpret 

Figure 1 Changes of GEPs upon a perturbagen could be a mixed consequence of function and 

subpopulation changes. (Top) The conventional perspective regards gene signatures as the 

perturbed pathways of a homogenous cell clone. (Bottom) In a heterogenous clone, each 

subpopulation bearing distinct genetic variations drives various pathways and has different 

susceptibility to the perturbagen. The gene signature therefore reflects the change of intraclonal 

heterogeneity. 
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gene signatures and connections without considering possible compositional 
change could jeopardize the conclusions drawn. For instance, cancer drugs 
suggested by CMap may be deemed ineffective and necessitate further 
investigation to increase the reproducibility6 due to the underlying 
composition bias in samples. The goal of our framework, Premnas, is meant to 
enable the CMap to interpret gene signatures at both the functional and 
subpopulation levels. The workflow of Premnas is illustrated in Fig. 2 and 
explained below. 

 
 

    To begin with, the first difficulty to tackle was the unknown 
characteristics of each subpopulation. We approached this issue by making the 
following assumptions: 

Assumption 1. There is a bounded number of subpopulations universally 
within a cell line. That is, most of the representative subpopulations 
of a human cancer cell line should be present in a large enough pool 
of scRNA-seq datasets collected from different sources. 

Assumption 2. Cells of the same subpopulation should collectively share 
a GEP pattern (i.e., subpopulation characteristics) and each 
subpopulation can be distinguished by its unique subpopulation 
characteristics. 

Learning ad hoc subpopulation characteristics. With the above assumptions, 
intuitively, subpopulation characteristics can be learned from a pooled scRNA-

 
Figure 2 The scheme of Premnas. First, single cell GEPs is used as input of archetypal analysis. 

The subpopulation characteristics could be learned and all the cells would be labeled with its 

belonging subpopulation. Then a digital cytometry is performed with bulk expression profiles 

(bulk with and without perturbagens are both used) and enable us to estimate cell 

subpopulation abundances. Finally, the subpopulation change upon a perturbation would be 

calculated and the effect of the perturbagens on each subpopulation could be further 

examined. 
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seq data by dimension reduction approaches, such as non-negative matrix 
factorization (NMF19), t-distributed stochastic neighbor embedding (t-SNE) 
(van der Maaten, Laurens and Hinton) and UMAP20, accompanied by some 
clustering methods21,22 to identify subpopulations. Yet, nonlinear approaches 
like t-SNE and UMAP obscure the biological interpretation of subpopulation 
characteristics whereas the traditional NMF algorithm tend to omit weakly-
expressed but highly specific cell states.  

We decided to use ACTIONet18, a tool designed specifically for sub-typing 
cells with scRNA-seq, to ensure biological interpretability during dimension 
reduction. The concept of ACTIONet is similar to NMF; however, it directly 
distills the most representative cell states (termed "archetypes") from the single-
cell GEPs of multiple samples and groups cells into subpopulation in the 
archetypal-based metric cell space. In addition, to make sure that ACTIONet 
does not recognize technical and biological noises (e.g., batch effects and cell 
cycle-related functions, respectively) as archetypes, such differences are 
removed by the embedding-based normalization (i.e., Harmony23) before 
performing the archetypal analysis. Besides, ACTIONet does not need prior 
knowledge of the number of underlying archetypes as required in traditional 
NMF; instead, it conducts different decomposition levels to ensure the 
robustness of finding archetypes. After cell subpopulations were identified by 
ACTIONet, we pruned the nonrepresentative cells and derived the 
subpopulation characteristics for each subpopulation (see Methods). 
Performing digital cytometry. Once identifying the underlying 
subpopulations, the most straightforward way to estimate their abundance in 
bulk samples is by conducting a simple linear regression on the subpopulation 
GEPs to approximate the bulk GEPs. However, integrating subpopulation 
information into the CMap database was nontrivial due to the considerable 
technical variation between the different profiling technologies (e.g., scRNA-
seq and L1000). CIBERSORTx15 is capable of adjusting the matrix of 
subpopulation signature derived from the scRNA-seq GEPs while 
decomposing the query bulk GEPs into the distribution of cell subpopulations 
with support vector regression. Thus, after preprocessing and normalizing 
GEPs from scRNA-seq and CMap, we performed the digital cytometry by 
CIBERSORTx to assess the subpopulation distribution in each experimented 
sample from the CMap database (see Methods).  
Validation. Due to the lack of known gene markers of subpopulations in cancer 
cell lines, we were unable to find data from studies that performed flow 
cytometry to label the identity of each cell accompanied by matched GEP 
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profiles for validation. We then relaxed our criteria and collected data on 
PBMCs to serve our purpose. We used the same scRNA-seq and bulk RNA-seq 
datasets of PBMCs as in the original paper of CIBERSORTx15 to test the 
validness of the proposed workflow (see PBMC verification in Supplementary 
Materials). Through Premnas, we found 9 subpopulations among PBMCs (See 
Fig. S1a), annotated their cell type by known marker genes, and estimated their 
abundance in the bulk samples. The Pearson correlation coefficient between the 
composition estimations via the digital cytometry based on the ad hoc 
subpopulation characteristics and the ground truth composition directly 
assessed by flow cytometry was high (r=0.835) (see Fig. S1c and d), suggesting 
that Premnas can discover the unspecified subpopulation from scRNA-seq 
data and estimate the distribution of cell subpopulations in bulk samples 
correctly. 
Analyzing subpopulation changes. After getting the abundance distribution 
of subpopulations in bulk GEPs, the intraclonal heterogeneity can be estimated 
(e.g. by Shannon’s entropy) and the changes between distributions under 
different conditions (e.g., between control and perturbed samples) can further 
reveal the effects of a treatment to a specific subpopulation. For instance, 
subpopulations that are either more resistant or susceptible to a specific drug 
at a particular concentration can be identified. Moreover, the biological 
functions of these subpopulations can be explained by their underlying 
archetypes. 
 
Applying Premnas to LINCS L1000 CMap library 
There were 1.3 million bulk GEPs (2,710 perturbagens, 3 time points, 26 cell 
lines, and 117 concentration) available in the LINCS L1000 CMap library. MCF-
7 based GEPs constituted the most comprehensive collection (39,711 GEPs for 
1,761 perturbagens) and recent research had discovered MCF-7 subpopulations 
through single-cell technologies13,24, which made MCF-7 a feasible cell line for 
the demonstration of Premnas. Of note, the biological noises in scRNA-seq data 
that could dampen clustering accuracy, including cell-cycle effects and clonal 
differences, were carefully examined and reduced by a series of preprocessing 
procedures (See Methods and Fig. S3-4). 
Identification and validation of MCF-7 subpopulations learnt from scRNA-
seq datasets. After the ad hoc subpopulation characteristics learning step in 
Premnas, 10 subpopulations (Fig. 3a), which consist of 17 archetypes, were 
identified (See Methods). Each of the 17 archetypes possessed unique highly 
expressed genes as assumed in Assumption 2 (Fig. 3b). We then performed the  
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Figure 3 MCF-7 subpopulation and PA cell identification. (a) UMAP visualization of GSE114459 
cells after pruning the cells with inexplicit archetype representation. Ten subpopulations were 
identified by ACTIONet. (b) The expression profile of the top five DEG in each archetype. The 
rows of the heatmap were normalize by z-score normalization. The unique expression of these 
genes across archetypes implies the distinct functions represented by 17 archetypes. (c) An 
illustration of the process of the PA cell comparison. We first merged two datasets (GSE114459 
and GSE122743), and clustered the cells by ACTIONet. PA cell IDs were then used to 
recognized those PA cells in each cluster. Finally, by mapping the new clusters to the old 
subpopulations, we could identify the subpopulation covering the most PA cells. (d) Changes 
in the distribution of GSE122743 cells with different treatment durations in the new clusters. 
(e) PA cells distribution among 12 clusters in the merged data. Cluster 2 had been found 
including the most PA cells among all of the clusters. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Cluster PA cell count Percentage 

1 7 8.6% 

2 53 65.4% 

3 4 4.9% 

4 1 1.2% 

5 0 0.0% 

6 0 0.0% 

7 4 4.9% 
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10 0 0.0% 

11 0 0.0% 

12 2 2.5% 
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0% 

New cluster 
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enrichment analysis to understand the characteristics of each subpopulation in 
MCF-7. Gene ontology and gene-set enrichment analysis were then conducted 
with Metascape25. After pruning (see Methods), every cell had a major 
archetype and a subpopulation identifier. The composition of the main 
archetypes of each subpopulation and the top 3 significant pathways (ranked 
by the q-values calculated by Metascape) in each archetype can be found in Fig. 
S7. 

To assure the 10 subpopulations were comprehensive enough as stated in 
the Assumption 1, we used the scRNA-seq datasets13, in which an MCF-7 cell 
subpopulation (i.e., pre-adapted cells; PA cells) showing resistance against 
drugs after endocrine therapy was identified, to see whether any of the 10 
subpopulations resembles PA cells. We colored the MCF-7 cells used for the 
previous subpopulation identification based on the expression of the two 
reported marker genes of PA cells (i.e., CD44 and CLDN1) and discovered that 
most of the cells expressing a higher degree of these marker genes tended to 
aggregate in subpopulation 2, 4, and 9 in the UMAP plot (Fig. S8).  

Furthermore, we reran Premnas on the merged MCF-7 dataset, including 
the datasets used for subpopulation identification above (GSE11445912) and the 
ones treated with endocrine therapy (GSE12274313), and see whether any of our 
previous found subpopulations can be grouped with known PA cells. Likewise, 
biological and technical noises were eliminated in advance. Note that the cell 
pruning was skipped for a more comprehensive comparison. Premnas 
identified 12 clusters from the merged dataset and showed that 53 out of 81 PA 
cells (63.5%) were assigned to cluster 2. Moreover, only the number of cells in 
cluster 2 showed a constant increase in the datasets with the longer endocrine 
treatment (i.e., 4 and 7 days; see Fig. 3d). In addition, cells from GSE114459 in 
cluster 2 were originally annotated as subpopulation 2 (See Fig. S9). Based on 
the evidence, we believed that PA cells were mostly covered by the 
subpopulation 2. The enriched pathways linked to subpopulation 2 also help 
explain the drug-resistance of PA cells (see below). Although this was just one 
example, it is still an indication that the 10 subpopulations indeed cover cells 
that was not present in the training data, supporting the Assumption 1. Note 
that as more and more scRNA-seq datasets are getting available, the 
subpopulation characteristics can be retrained on the pooled datasets and 
further improve Premnas’ sensitivity in subpopulation identification. 
Drug-susceptible subpopulation inferred from bulk GEPs reflects drug-
induced pathway. With the subpopulation characteristics of MCF-7, we tested 
whether the perturbed subpopulation found by Premnas complied with 
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known facts before applying Premnas to measure the subpopulation changes 
in all the bulk GEPs in LINCS L1000. We used Premnas to decompose 12 bulk 
GEPs of MCF-7 treated with FDI-6 (GSE5862626 , in which the experiments were 
designed to assess the FDI-6 effects on MCF-7 by RNA-seq in triplicates at 
different time points (0h, 3h, 6h, and 9h). FDI-6 has been known for repressing 
the growth of MCF-7 cells. We compared the distributions of subpopulations 
from controls with those from treated samples to determine the affected 
subpopulations. FDI-6, which is known for displacing FOXM126, is an 
important mitotic player that involves in cancer progression and drug 
resistance in MCF-7 cells27 and induces coordinated transcription down-
regulation.  

The relative changes in cellular composition after FDI-6 treatment were 
estimated and shown in Fig. S10a and b. Both subpopulation 6 and 7 were 
completely inhibited after treatment; however, FDI-6 had the most significant 
impact on subpopulation 6 by reducing its abundance from 18% of all cells to 
0%. The characteristics of subpopulation 6 and 7 were explained by their main 
archetypes (i.e., archetype 16 and 14, respectively), which were associated with 
mitotic processes, cell cycle regulation and so on (Fig. S10c).  
    The major functional features of the perturbed subpopulations 
concurring with the known roles of FOXM1 as a key regulator of M phase 
progression and cell cycle regulation27 indicated that the subpopulation 
distinguished by the targeted pathways were more susceptible to the FDI-6. 
The result also demonstrated that Premnas can be used to study drug effects in 
the perspective of both the intraclonal heterogeneity change and biological 
functions. 
Identifying highly drug-susceptible subpopulations from LINCS L1000 bulk 
GEPs. We then set out to apply Premnas to LNCS L1000 CMap datasets. With 
39,710 (1760 perturbagens, 107 different concentrations ranged from 0.004 μM 
to 20 μM, and 3 time 3h, 6h, 24h) MCF-7 GEPs downloaded from the GEO 
website (GSE70138, version: 2017-03-16) as input, we found that there were 
many perturbagens that caused great reduction of intraclonal heterogeneity. 
To better delineate drug effects on inhibiting the growth of MCF-7 cells in the 
subpopulation perspective, we defined two metrics: drug susceptibility and 
treatment consistency. The drug susceptibility of a cell subpopulation, which 
ranged from -100% to 100%, was defined by its relative change in proportion 
after treatment. The consistency was calculated as the median drug 
susceptibility for experiments using the same drug but at a higher dose. This 
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study considered a cell subpopulation with a susceptibility less than -90% after 
treatment as highly drug-susceptible (or say, killed) by the drug.  
 

 

Figure 4 An illustration of the greedy search for suggesting cocktails. (a) The workflow. The 

susceptibilities of each subpopulation are first evaluated for every PCT pair and the full 

susceptibility table is constructed. Then the most lethal PCT pairs, which could kill the most 

subpopulations, are chosen if their consistencies are deemed high. If there are more than one 

PCT pair, the PCT pair with the least dose is included in the cocktail therapy. The selection 

repeats until no more subpopulation could be killed. (b) A simple example of the greedy 

search. Perturbation C and perturbation D are eventually added to the cocktail therapy. 
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A greedy search strategy of suggesting cocktails for suppressing breast tumor 
growth using LINCS L1000 CMap 
Based on these two metrics, we came up with a greedy search strategy for 
suggesting a minimal therapeutics combination (i.e., a cocktail therapy) by 
aggregating perturbagens that kill specific subpopulations, thereby no 
subpopulation could survive after the treatment. 

The strategy (Fig. 4) begins with calculating the susceptibility of each 
subpopulation for every perturbagen-concentration-time pair (PCT pair) of 
LINCS L1000 MCF-7 datasets. Then iteratively select PCT pair that can kill the 
greatest number of subpopulations. The perturbagen of the pair should also 
presents with the high consistency (-80%) across higher doses, and the PCT pair 
with the lowest concentration is added to the cocktail. The killed 
subpopulations and all PCT pairs linked to the selected drugs are removed 
from the search. The iteration continues until no more subpopulation could be 
killed. See Methods for more details. 

After searching among all the PCT pairs with our greedy search strategy, 
four PCT pairs were chosen as a potential drug cocktail: 3.33 μM A-44365 for 
24 hours, 0.12 μM UNC-0638 for 24 hours, 0.041 μM Gemcitabine for 24 hours, 
and 0.123 μM Ixazomib-citrate for 24 hours. Nine out of ten MCF-7 cell 
subpopulations could be killed by the cocktail (Fig. 5a) and the susceptivity 
strengthened along with higher dosage (Fig. 5b). With the subpopulation 
change estimated by Premnas, our strategy can be used to suggest drug 
cocktails for potently suppressing breast tumor cells that share a similar genetic 
background with the MCF-7 cell line. 

There are many studies that have already proved the anti-tumor activities 
of each selected compound, supporting the feasibility of this treatment 
combination. For instance, UNC-0638, an inhibitor of G9a and GLP, was 
reported to exert inhibitory effects against MCF-7 cells28. G9a is known to 
participate in hypoxia response in MCF-7 cells29, while Subpopulation 10, the 
target subpopulation of UNC-0638 in the treatment selection process, is also 
associated with oxidative phosphorylation. Moreover, gemcitabine, another 
perturbation we chose, had also been demonstrated to be sensitive with mRNA 
expression levels of some genes30, consist with the result in our studies that the 
main pathway of the best-killed subpopulation of gemcitabine is the regulation 
of mRNA metabolic process. Based on these studies, we believed the 
therapeutic combination would exhibit potent anti-tumor activity with 
partially increased doses in MCF-7 cells. Issues such as drug interactions (e.g., 
synergy or antagonism) were clearly crucial but omitted in the search strategy, 
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more experiments have to be conducted in the future to improve the search  
strategy. 
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Figure 5 The effects of selected perturbagens in the cocktails. (a) The average relative changes in 

cell subpopulations after perturbations. MCF-7 was treated with 3.33 μM A-443654 for 24 hours, 

0.12 μM UNC-0638 for 24 hours, 0.041 μM Gemcitabine for 24 hours, and 0.123 μM Ixazomib-

citrate for 24 hours in replicates. The dotted line represents the -90% threshold of high 

susceptibility. (b) Selected perturbations showing dose-dependent effects. The duration of 

perturbations shown are 24 hours, and the doses is in micrometer. 
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Identification of the most drug-resistant cell subpopulation in MCF-7 
The greedy search strategy introduced above failed to kill subpopulation 2, so 
we first relaxed all search criteria to see whether there exists a PCT pair 
targetting subpopulation 2. Surprisingly, we did not find an effective treatment 
for subpopulation 2 among 1,760 unique perturbagens in the LINCS CMap 
database. Interestingly, subpopulation 2 is also what we found representing the 
drug-resistant PA cells from the endocrine therapy13 datasets (GSE122743; see 
Fig. 3). 

To further understand the causes of the drug resistance, we looked into the 
characteristics of archetype 5, the primary archetype of subpopulation 2. 
Enriched functions of archetype 5 were involved in transforming growth factor 
beta receptor signaling pathway and extracellular matrix organization (Fig. S7). 
This result coincided with the previous studies that stated an essential role of 
TGF-beta in drug resistance in cancer31. Many of the top differentially 
expressed genes of archetype 5 (see MCF-7 DEGs in Supplementary), 
including GPRC5A, ITGAV, SEMA3C, and ITGB6, have been proven to 
associate with breast cancer susceptibility to apoptosis or treatment and poor 
prognosis32-35.  

The facts that no drug used in CMap can effectively kill cells of 
subpopulation 2 and that the known, drug-resistant PA cells are enriched in 
subpopulation 2, suggest that PA cells might be a valuable research targets for 
understanding the drug resistance of breast cancer cells, and more efforts 
should be focused on designing drug targeting PA cells. 
 
Discussions 
In the development of Premnas, we found that careful preprocessing to remove 
technical and biological biases and noises among all single cell GEPs before 
performing the learning step of the subpopulation characteristics was of great 
importance. Normalization steps (e.g., quantile normalization, Harmony, etc.) 
were helpful, but our experience suggests that some datasets should be 
carefully examined, adjusted, or even removed from the training data if they 
lead to some obvious isolated, distant subpopulations when projecting to the 
embedding space. The enriched pathways of the major architypes associated 
with the subpopulations should also be scrutinized to make sure those 
subpopulations are meaningful.  
 The precise recognition of subpopulations also relies on the 
comprehensiveness of the collected scRNA-seq profiles of the cell line. Since 
the MCF-7 clones used in this study were single-cell-derived from the same 
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parental clone, it increased the probability of failing to capture all the possible 
genetic evolution of MCF-7 cells. For instance, when we included the scRNA-
seq datasets for the cells from the endocrine therapy13 datasets (GSE122743), 
two new subpopulations were reported. Including as many single-cell 
transcriptomic data of the cell line of interest for a more comprehensive 
analysis should be taken for all further research applying Premnas. 

The differences between profiling technologies place a difficulty in 
estimating subpopulation distribution in bulk samples. CIBERSORTx (S-mode) 
reduced the technical variation in gene expression by using an artificial mixture 
to help tune the signature matrix (see Methods). Furthermore, the bulk GEPs 
we encountered were largely conducted by the L1000 and RNA-seq, and they 
were designed to quantify different gene sets. That is, it is possible that some 
genes involved in the learning of subpopulation characteristics do not present 
in bulk GEPs. Since CIBERSORTx is a marker gene-based decomposition 
approach, the calculation could depend on some of those missing genes, 
thereby compromises accuracy.  

We think Premnas can be applied to all kind of perturbation-based bulk 
GEP datasets to understand the effect of the perturbagens to the distribution of 
uncharacterized subpopulation within a cell line or tumor tissue sample. In 
addition, it might be worth trying to use Premnas for checking the introclonal 
heterogeneity of the controlled samples. If a controlled sample shows a biased 
subpopulation composition, extra cautions should be taken to assure the 
genetic background of the cells used before further analysis or comparison, 
which may be helpful to the reproducibility of the experiments. 

Since the gene signatures are the mixed consequences of the subpopulation 
and function changes, it is possible that the subpopulation changes reported by 
Premnas can be due to cells changing their behaviors and acting like some other 
subpopulations upon a treatment. Unfortunately, it is pretty unlikely such 
difference can be distinguished from the information given in the bulk GEPs in 
the current setting. However, one can always refer to the DE genes or enriched 
functions associated with the major architypes of the affected subpopulations 
and thereby interprets the results in the function perspective. It is important to 
keep open to the alternative explanations of the results. 
 
Conclusions 

Large-scale perturbation databases, such as LINCS CMap, that use cost-
effective bulk profiling assays to reveal signatures upon perturbation, and 
thereby construct the connectivity between the drugs and diseases that share 
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positive or negative correlation of signatures, are the valuable resource of drug 
discovery. However, the possibility that the signature is driven by the 
subpopulation changes is largely unexplored due to the lack of the companion 
single-cell assays. This study is the first attempt to expand the scope of 
interpretation and application of the LINCS CMap database in regard of 
intraclonal cellular composition.  

The three main steps of the proposed framework, Premnas, include (1) 
learning the ad hoc subpopulation characteristics of cells using single-cell 
transcriptome data, (2) using the subpopulation information to decompose the 
bulk GEPs by the digital cytometry approach and estimate the abundance of 
each subpopulation, and (3) comparing the subpopulation compositions under 
different conditions to understand the effects of drugs to specific 
subpopulations.  

We applied Premnas to MCF-7 cell line data and identified 10 cell 
subpopulations and found consistent experimental evidence to support the 
classification. After dissecting the effects of thousands of perturbations on 
MCF-7 cells using the bulk profiling assays curated in the LINCS CMap, we 
further proposed a strategy to suggest a potential cocktail therapy for breast 
cancer by selecting the treatments with subpopulation-specific drug 
susceptibility. Besides, we discovered the most resistant subpopulation among 
MCF-7 cells and associated its characteristics to the known PA cells. The result 
suggested that Premnas can be applied to all the perturbation datasets to reveal 
the intraclonal/intratumoral heterogeneity and provides a new dimension of 
interpreting the signatures and connectivity. 

 
Methods 
   
Materials 
scRNA-seq data: Three single-cell datasets were used in this study, including 
two MCF-7 datasets (GSE114459 and GSE122743) and one PBMC dataset 
(GSE127471). All of the cell count matrices were generated by the 10x Genomics 
Chromium platform and preprocessed by Cell Ranger36. Rows of the count 
matrices were gene names. The wild-type MCF-7 cells collected in the 
GSE114459 dataset were obtained from three clones (i.e., WT3, WT4, and WT5) 
and their parental clone and used for subpopulation identification in this work. 
MCF-7 cells in the GSE122743 dataset were treated with E2 depleted medium. 
We pooled 9 samples (GSM3484476 - GSM3484484) from the GEO website 
together for PA cell identification. Reads of MCF-7 cells were aligned to 
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GRCh38 with Cell Ranger v2.1. The PBMC dataset was originally generated to 
evaluate the decomposition performance of CIBERSORTx and we also used it 
to validate the Premnas. 
RNA-seq data: The RNA­seq dataset of MCF­7 with FDI-6 treatment was 
downloaded from the GEO website with accession number of GSE58626 and it 
contained the GEPs of MCF-7 cells treated with 40µM FDI-6 for 3, 6 or 9 h in 
triplicates. We applied Salmon37 v1.2.0 for alignment-free transcript 
quantification with GRCh38 index set and the default parameters. Ensembl IDs 
were converted to gene name according to GRCh38 reference. 
L1000 data: The 39,710 quantile-normalized L1000 profiles for MCF-7 in the 
LINCS CMap database were generated with the three files downloaded from 
the GEO website (“GSE70138_Broad_LINCS_inst_info_2017-03-06.txt”, 
“GSE70138_Broad_LINCS_Level3_INF_mlr12k_n345976x12328_2017-03-
06.gctx”, “GSE70138_Broad_LINCS_pert_info_2017-03-06.txt”, and 
“GSE70138_Broad_LINCS_gene_info_2017-03-06.txt”).  
 
Data preprocessing 

For scRNA-seq data of MCF-7, cells in GSE114459 and GSE122743 were 
labeled by their source clones (i.e., parental, WT3, WT4, and WT5) and their 
treatment duration (i.e., 0, 2, 4, and 7 days). We excluded cells with low quality 
by the criterion used in the original papers: MCF-7 cells with >15% or <1% 
mitochondrial content and potential multiplets cells with > 5000 and < 1000 
expressed genes were removed; as for PBMCs, cells with >10% or <1% 
mitochondrial content or > 3,500 and < 500 expressed genes were removed. 
1054 cells in PBMC data, 12730 cells in GSE114459, and 28389 cells in 
GSE122743 were kept for the downstream analysis. Of note, since the count 
matrix of GSE122743 did not contain mitochondrial genes, we also removed the 
genes begin with “MT-” from the GSE114459 dataset when merging these two 
datasets. 

For L1000 data, expression data was log2-transformed, which is not 
acceptable by CIBERSORTx, so we transformed the data back to the original 
space. Probe IDs were mapped to gene names with the information in the file 
“GSE70138_Broad_LINCS_gene_info_2017-03-06.txt”. To ensure the 
authenticity of computed effects, we only keep the experiment results of 
perturbations with three or more replicates for analysis in this study. 
 
Removal of biological or technical noise 
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Intra-type variation may impair the performance of clustering algorithms 
by grouping cells with similar status (such as cell cycle or technical bias) 
together rather than cells with the same cell types. We used the Harmony23 
algorithm for removing possible confounding status (or say, noise) among 
batches of samples, which was included in the ACTIONet package (version 2.0). 
Harmony takes a PCA embedding and batch assignments of cells as input. In 
this study, we combined the tags of the source clone and the cycle phase 
(including the dataset label when merging two MCF-7 datasets) as a batch 
assignment for individual cells (e.g., "WT3_S", "parental_G1", or 
"WT5_G2_GSE114459"). The first step in the Harmony algorithm is to compute 
a fuzzy clustering by using a batch-corrected embedding, while ensuring the 
diversity among batches within each cluster was maximized. Next, the 
algorithm corrects the batch effects within clusters. These procedures are 
iterated until the cluster assignment of cells becomes stable. After eliminating 
the noises from the transcriptome data with the Harmony algorithm, our 
clustering result was no longer affected by the cell cycle phase and the clone of 
origin (see Fig. S4a-b and Fig. S5a-b). 
 
Selection of the depth parameter for ACTIONet construction 

With Harmony-corrected data, we conducted the archetypal analysis with 
the function run.ACTIONet() in the ACTIONet package. However, like in the 
original NMF, the degree of resolution determined by "k_max" parameter can 
directly affect the efficacy of capturing biological information under single cell 
transcriptome data. We tried 8 different values for the k_max parameter and 
recorded the resulting numbers of archetypes and subpopulations (Table S2). 
We found that when set k_max to the default value (i.e., 30), ACTIONet 
identified the most subpopulations (10 subpopulations) with the least number 
of archetypes (17 archetypes). 
 
Clustering 

The cell clustering was accomplished by the cluster.ACTIONet function 
with the clustering resolution parameter = 1 in the ACTIONet package. 
ACTIONet transformed the metric cell space into a graph to reduce 
computational time and used the Leiden algorithm38 to detect communities. To 
prevent the noise caused by ambiguous cells performing multiple cell states, 
we pruned the cells by considering their composition of archetypes (i.e., the 
archetypal explicit function), which would be calculated by ACTIONet and 
represented the convex combination of archetypes for each cell. Cells with their 
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archetypal explicit function below 0.6 were pruned before the downstream 
analysis. Results with different pruning threshold of PBMC are shown in Fig. 
S3 and the final pruning results of MCF-7 is in Fig. S5c-d. The characteristics 
of the 10 MCF-7 subpopulations identified by clustering can be elucidated by 
their most influential archetype afterward. 
 
Decomposition of bulk GEPs by CIBERSORTx 

CIBERSORTx took single-cell reference profiles with cell-type annotations 
and mixture profiles derived from bulk tissues as inputs. All the gene 
expression profiles should be normalized into the same scale beforehand for 
more accurate estimation. In this study, the summation of gene expression for 
each sample was normalized to one million. In addition to single-cell reference 
profiles and mixture profiles, the decomposition input also included a 
signature matrix generated by CIBERSORTx. To construct the signature 
matrices from the scRNA-seq profiles of MCF-7 cells (Fig. S6) and PBMCs (Fig. 
S2), the DE genes along cell subpopulation types were identified using a 
Wilcoxon Rank Sum test with p-value < 0.01. CIBERSORTx removed the genes 
with low expression (average 0.5 counts per cell in space) and generated the 
signature matrices as described previously15. The use of a signature matrix in 
CIBERSORTx helped facilitate faster computational running time during 
decomposition because of the reduction of the number of genes. After 
collecting all the input data, CIBERSORTx was able to decompose the bulk-
tissue profiles into proportions of cell types/subpopulation while correcting 
the variation caused by different sequencing techniques. 

To enhance the robustness of the CIBERSORTx output, the permutations 
for statistical analysis was set to 500 (which could be set as a parameter in 
CIBERSORTx). Moreover, in order to eliminate the technical variation between 
10X Chromium and bulk, we applied S-mode correction provided by 
CIBERSORTx to our deconvolution process. We briefly introduce the S-mode 
strategy here: Given a cell-type-annotated single-cell reference profile matrix 
(m genes X n single cells) from which the signature matrix (m genes X k cell 
types) was constructed, CIBERSORTx created an artificial mixture profile (m 
genes X p artificial samples) with a known fraction. After CIBERSORTx 
corrected the batch effects between and the real mixture profile, the adjusted 
signature matrix could be computed by the non-negative least squares 
algorithm (NNLS), given the adjusted artificial mixture profile and its 
corresponding fraction. Eventually, CIBERSORTx used the support vector 
regression algorithm (SVR) to estimate the composition of cell types under the 
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real mixture profile with the adjusted signature matrix. The CIBERSORTx team 
has shown that the deconvolution performance was significantly improved 
with the single-cell signature matrix adjusted by S-mode correction in their 
original paper. 
 
Susceptibility of a perturbagen treatment 

We evaluated the inhibitory effects of each perturbation based on 
susceptibility. The susceptibility of a cell subpopulation, which ranged from -
100% to 100%, was calculated as below.  

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦	 = 	
∑

𝑇𝐶! − 𝐶𝐶2222
𝑇𝐶! + 𝐶𝐶2222!∈#

|𝑃|  

𝑃: replicate indices 
𝑇𝐶!: a vector storing the cell subpopulation composition in the treated sample j 

measured by CIBERSORTx 
𝐶𝐶2222: a vector storing the average composition of cell subpopulations in the control 

samples from the same detection plates as the treated samples 
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