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Abstract

Unlike traditional time series, the action sequences of human decision making
usually involve many cognitive processes such as beliefs, desires, intentions and
theory of mind, i.e. what others are thinking. This makes predicting human
decision making challenging to be treated agnostically to the underlying
psychological mechanisms. We propose to use a recurrent neural network
architecture based on long short-term memory networks (LSTM) to predict the
time series of the actions taken by the human subjects at each step of their
decision making, the first application of such methods in this research domain. In
this study, we collate the human data from 8 published literature of the Iterated
Prisoner’s Dilemma comprising 168,386 individual decisions and postprocess them
into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we
collate 617 trajectories of 95 actions from 10 different published studies of Iowa
Gambling Task experiments with healthy human subjects. We train our prediction
networks on the behavioral data from these published psychological experiments of
human decision making, and demonstrate a clear advantage over the
state-of-the-art methods in predicting human decision making trajectories in both
single-agent scenarios such as the Iowa Gambling Task and multi-agent scenarios
such as the Iterated Prisoner’s Dilemma. In the prediction, we observe that the
weights of the top performers tends to have a wider distribution, and a bigger bias
in the LSTM networks, which suggests possible interpretations for the distribution
of strategies adopted by each group.

Author summary

The challenge of predicting human decision is important for many application domains
like economy, marketing and artificial intelligence. But the domain where the human
behavior modeling is especially crucial is psychology, where the goal is to describe,
explain and predict these behaviors. Within this domain, creating agents that
effectively mimic human decision making is particularly important. However, despite
the many behavioral tasks and analytical methods developed to simulate the process of
human decision making in real situations, there have not been a predictive model that
can well predict the human decision making trajectories in these psychological tasks. In
this predictive modeling problem, we propose to use the long short-term memory
networks (LSTM), a popular recurrent neural network architecture and effectively
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predict the time series of the actions taken by the human subjects at each step of their
decision making in both the Iowa Gambling Task, a single-agent game with monetary
reward, and the Iterated Prisoner’s Dilemma, a complex multi-agent social game with
non-monetary capital at stake. To the best of our knowledge, this is the first application
of such methods in this research domain.

1 Introduction 1

Predictive modeling involves the use of statistics to predict outcomes of “unseen” data, 2

i.e. not used in model parameterization, in real world phenomena, with wide 3

applications in economics, finance, healthcare, and science. In statistics, the model that 4

closely approximates the data generating process might not necessarily be the most 5

successful method to predict real world outcomes [1, 2]. Yarkoni & Westfall [3] argue 6

that the near-total focus of the field of psychology on explaining the causes of behavior 7

have little or unknown capability to predict future human behaviors with any 8

appreciable accuracy, despite the intricate theories of psychological mechanism these 9

research have endowed. Methods like regression and other mechanistic models, even 10

with high complexity, can still be outperformed by biased and psychologically 11

implausible models, due to overfitting. In this work, we aim to bridge this gap, by 12

providing machine learning methods to accurately predict game-based human behavior. 13

While useful for the researchers to breakdown neuropsychologically interpretable 14

variables, these analyses only provide very constrained predictive guidelines, and fall 15

short to modeling more complicated real-world decision making scenarios such as social 16

dilemmas. As a popular framework to expose tensions between cooperation and 17

defection in a game-like manner, the Iterated Prisoner’s Dilemma [4] has been studied 18

by computer scientists, economists, and psychologists with different approaches. Beyond 19

cognitive modeling of the effects of game settings and past experiences on the overall 20

tendency to cooperate (or invest in the monetary games) [5, 6], [7] proposed a logistic 21

regression model to directly predict individual actions during the Iterated Prisoner’s 22

Dilemma. This logistic regression model is also the state-of-the-art in predicting action 23

sequences in this task. 24

As another commonly used game-based task, albeit non-social, the Iowa Gambling 25

Task [8] is usually modeled as a synthesis of various psychological processes and 26

cognitive elements [9, 10]. In the Iowa Gambling Task, the participant needs to choose 27

one out of four card decks (named A, B, C, and D), and can win or lose money with 28

each card when choosing a deck to draw from [8]. The challenge of this kind of game in 29

computational modeling is that the reward payoffs of each action arms are not 30

necessarily Gaussian: all decks have a consistent wins and variable losses where one of 31

the popular schemes, the scheme 1 [11], has a more variable losses for deck C than 32

another one, the scheme 2 [12]. 33

In both settings, one active line of research is to clone and simulate behavioral 34

trajectories with reinforcement learning models that incorporate learning-related 35

parameters inspired by the neurobiological priors of the human brain [13–15]. While 36

offering discriminative and interpretable features in characterizing the human decision 37

making process, these reinforcement learning models exhibit limited capability to 38

predict the human action sequences in complicated decision making scenarios such as 39

the Iterated Prisoner’s Dilemma [16]. 40

To date, we can say that the existing approaches suggested to generally describe 41

human decision behavior are based on linear models. However, it is known that human 42

behavior can be highly nonlinear; thus, we propose in this paper to study human 43

behavior decision making based on the well-known long short-term memory networks 44

(LSTM) to forecast the human decision making in game-like psychological tasks like the 45
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Cooperate Defect
Cooperate (R, R) (S, T)
Defect (T, S) (P, P)

Table 1. Payoff codes of the Iterated Prisoner’s Dilemma. In this game, each
agent has two actions: Cooperate and Defect, and can receive one of the four possible
rewards: R (Reward), P (Penalty), S (Sucker), and T (Temptation), based on the
actions taken by its opponent (the first row) and itself (the first column). The reward
tuple would then reads (reward to the agent itself, reward to the agent’s opponent).

Decks win per card loss per card expected value scheme
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 1
B (bad) +100 Infrequent: -1250 (p=0.1) -25 1
C (good) +50 Frequent: -25 (p=0.1), -75 (p=0.1),-50 (p=0.3) +25 1
D (good) +50 Infrequent: -250 (p=0.1) +25 1
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 2
B (bad) +100 Infrequent: -1250 (p=0.1) -25 2
C (good) +50 Infrequent: -50 (p=0.5) +25 2
D (good) +50 Infrequent: -250 (p=0.1) +25 2

Table 2. Payoff schemes of the Iowa Gambling Task. In this game, the subject
needs to choose one out of four card decks (named A, B, C, and D), and can win or lose
money with each card when choosing a deck for over around 100 actions. In each round,
the subject receives feedback about the win (the money he/she wins), the loss (the
money he/she loses), and the combined gain (win minus lose). Decks A and B by
default is set to have an expected combined payout (-25) lower than the better decks, C
and D (+25). All decks have consistent wins (A and B to have +100, while C and D to
have +50) and variable losses, with different variabilities in the two schemes.

Iowa gambling task and the Iterated Prisoner’s Dilemma. To the best of our knowledge, 46

this is the first study that applies recurrent neural networks to directly predict 47

sequences of human decision making process. We believe this work can facilitate the 48

understanding of how human behave in online game setting. 49

1.1 Background 50

1.1.1 The Iterated Prisoner’s Dilemma (IPD) 51

The Iterated Prisoner’s Dilemma (IPD) can be defined as a matrix game 52

G = [N, {Ai}i∈N , {Ri}i∈N ], where N is the set of agents, Ai is the set of actions 53

available to agent i with A being the joint action space A1 × · · · ×An, and Ri is the 54

reward function for agent i. A special case of this generic multi-agent Iterated Prisoner’s 55

Dilemma is the classical two-agent case (Table 1). In this game, each agent has two 56

actions: cooperate (C) and defect (D), and can receive one of the four possible rewards: 57

R (Reward), P (Penalty), S (Sucker), and T (Temptation). In the multi-agent setting, if 58

all agents Cooperates (C), they all receive Reward (R); if all agents defects (D), they all 59

receive Penalty (P); if some agents Cooperate (C) and some Defect (D), cooperators 60

receive Sucker (S) and defector receive Temptation (T). The four payoffs satisfy the 61

following inequalities: T > R > P > S and 2R > T + S. The Prisoner’s Dilemma is a 62

one round game, but is commonly studied in a manner where the prior outcomes matter 63

to understand the evolution of cooperative behaviour from complex dynamics [17]. 64

1.1.2 The Iowa Gambling Task (IGT) 65

The original Iowa Gambling Task (IGT) studies decision making where the participant 66

needs to choose one out of four card decks (named A, B, C, and D), and can win or lose 67

money with each card when choosing a deck to draw from [8], over around 100 actions. 68

In each round, the participants receives feedback about the win (the money he/she 69
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wins), the loss (the money he/she loses), and the combined gain (win minus lose). In 70

the Markov Decision Process setup, from initial state I, the player select one of the four 71

deck to go to state A, B, C, or D, and reveals positive reward r+ (the win), negative 72

reward r− (the loss) and combined reward r = r+ + r− simultaneously. Decks A and B 73

by default is set to have an expected payout (-25) lower than the better decks, C and D 74

(+25). For baselines, the combined reward r is used to update the agents. There are two 75

major payoff schemes in IGT. In the traditional payoff scheme, the net outcome of every 76

10 cards from the bad decks (i.e., decks A and B) is -250, and +250 in the case of the 77

good decks (i.e., decks C and D). There are two decks with frequent losses (decks A and 78

C), and two decks with infrequent losses (decks B and D). All decks have consistent wins 79

(A and B to have +100, while C and D to have +50) and variable losses (summarized in 80

Table 2, where scheme 1 [11] has a more variable losses for deck C than scheme 2 [12]). 81

2 Materials and methods 82

2.1 Recurrent Neural Networks and 83

Long-Short-Term-Memory Networks 84

Recurrent neural networks are a class of artificial neural networks that captures a 85

notion of time. It has both conventional edges that map from input nodes to the 86

recurrent nodes, and recurrent edges that map recurrent nodes across adjacent time 87

steps, including cycles of length one that are self-connections from a node to itself [18]. 88

It can be formulated as: 89

ht = σ(Whxxt +Whhht−1 + bh) (1)

where at time t, the recurrent layer receives input xt and computes the neurons’ 90

hidden states ht given the input xt, last hidden states ht−1 and the parameters 91

including a kernel Whx, a recurrent kernel Whh and a bias term bh. The activation σ 92

can be in different forms, with sigmoid function to be a conventional choice. The 93

dynamics of the recurrent network can be considered as a deep neural network by 94

unfolding the computing graph into layers with shared weights. Then we can train the 95

unfolded network across many time steps with backpropagation with algorithm slike 96

Backpropagation through time (BPTT) [19]. 97

Long Short Term Memory (LSTM) was later introduced to overcome the vanishing 98

gradient problem of recurrent networks [20]. The model resembles traditional recurrent 99

neural networks, but introduces a series of gating mechanisms to adaptively keep a 100

memory. It introduces four additional variables, the input gate g, the input state i, the 101

forget gate f, and the output gate o. The full formulations are as follows: 102

gt = φ(Wgxxt +Wghht−1 + bg) (2)

it = σ(Wixxt +Wihht−1 + bi) (3)

ft = σ(Wfxxt +Wfhht−1 + bf ) (4)

ot = σ(Woxxt +Wohht−1 + bo) (5)

st = gt � it + st−1 � ft (6)

ht = φ(st)� ot (7)
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Fig 1. Prediction Framework with a Recurrent Network: at each time step t,
the historical action from the last time step xt is fed into the recurrent neural networks
as input, and the network outputs a predicted action xt+1 for the following time step
and updates its hidden state ht.

where the activation functions are either sigmoid σ or tanh φ, and � is pointwise 103

mulitplication. A cell state st is computed based on the previous cell state st−1 the 104

input gate g, the input state i and the forget gate f. Then, the hidden state of the 105

LSTM layer is computed by pointwise multiplying the activated cell state with the 106

output gate. 107

2.2 Prediction with Recurrent Networks 108

The prediction framework of the recurrent neural networks is illustrated in Figure 1: at 109

each time step, the historical action from the last time step is fed into the recurrent 110

neural networks as input, and the network outputs a predicted action for the following 111

time step. In the single-agent setting (i.e. the human subject makes his or her decision 112

without interactions with other players), the input and output of the recurrent neural 113

networks both consist of the player’s actions. In the multi-agent setting (i.e. the human 114

subject makes his or her decision based on not only his or her own prior actions and 115

rewards, but also the actions performed by other participants in the game), the input 116

features consist of the actions performed by all parcipants in the game in the last time 117

step. In both scenarios, we code the actions into a multi-dimensional one-hot 118

representation before serving to the prediction network. 119

2.3 Neural Network Architecture and Training Procedures 120

We construct a neural network model that consist of multiple layers of LSTM networks 121

with bias terms, followed by a ReLU activation function and a fully connected layer to 122

map from the LSTM network output to a Softmax activation function, from which a 123

prediction label is collected with an argmax operation. We implement the model in the 124

standard library of PyTorch framework. We train the models for 200 and 400 epochs, 125

respectively, for the Iterated Prisoner’s Dilemma and the Iowa Gambling Task. We use 126

the Adam [21] as the optimizer for the model and set the learning rate to be 1e-3 and a 127

L2 regularization weight to be 1e-5. The data and codes to reproduce the empirical 128

results can be accessed and reproduced at https://github.com/doerlbh/HumanLSTM. 129
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2.4 Evaluation of the Iterated Prisoner’s Dilemma 130

We collate the human data comprising 168,386 individual decisions from many human 131

subjects experiments [5, 6, 22–27] that use real financial incentives and transparently 132

convey the rules of the game to the subjects. As a a standard procedure in experimental 133

economics, subjects anonymously interact with each other and their decisions to 134

cooperate or defect at each time period of each interaction are recorded. They receive 135

payoffs proportional to the outcomes in the same or similar payoff as the one we used in 136

Table 1. Following the similar preprocessing steps as [7], we are able to construct the 137

comprehensive collection of game structures and individual decisions from the 138

description of the experiments in the published papers and the publicly available data 139

sets. This comprehensive dataset consists of behavioral trajectories of different time 140

horizons, ranging from 2 to 30 rounds, but most of these experimental data only host 141

full historical information of at most past 9 actions. We further select only those 142

trajectories with these full historical information, which comprised 8,257 behavioral 143

trajectories of 9 actions each for both players. 144

We compare with two baselines. The first baseline is a logistic regression taking into 145

account a group of handcrafted features such as the game settings and historical 146

actions [7]. It is reported as the state-of-the-art in the task of predicting human decision 147

making in the task of Iterated Prisoner’s Dilemma. Similar to the Iowa Gambling Task 148

prediction, we include the standard vector autoregression model [28] as our second 149

baseline. The order of the autoregression model is selected based on Akaike information 150

criterion (AIC) [29]. Similar to the empirical evaluation in Iowa Gambling Task, here we 151

still chose our prediction network to be a two-layer LSTM network with 5 neurons at 152

each layers for the Iterated Prisoner’s Dilemma prediction. We randomly split the 153

dataset by 80/20 as the training set and the test set, and evaluated it with randomized 154

cross-validation. 155

2.5 Evaluation of the Iowa Gambling Task 156

The raw data and descriptions of Iowa Gambling Task can be downloaded at [30]. It 157

consists of the behavioral trajectories of 617 healthy human subjects performing the 158

Iowa Gambling Task. The data set consists of original experimental results from 10 159

different studies, administrated with different lengths of trials (95, 100 and 150 actions). 160

We pool all the subjects together and truncated all the actions to be 617 trajectories of 161

95 actions. 162

We compare our LSTM model with the standard vector autoregression model [28]. 163

The order of the autoregression model is selected based on Akaike information criterion 164

(AIC) [29]. The autocorrelation is trained on all available sequences in the training set. 165

Same as our LSTM network, autoregression model takes a multi-dimensional 166

one-hot-based feature tensor (of the previous time steps) as its observation window, and 167

then outputs the next predicted action. For empirical evaluation, we chose our 168

prediction network to be a two-layer LSTM network with 5 neurons at each layers. This 169

is to showcase the effectiveness of our recurrent neural networks even if the parameter 170

set is very small. We randomly split the dataset by 80/20 as the training set and the 171

test set, and evaluated it with randomized crossvalidation. 172

3 Results 173

3.1 Modeling the Iterated Prisoner’s Dilemma 174

The tendency to cooperation is an important subject of interest in Iterated Prisoner’s 175

Dilemma, because it characterizes the core trade-off between self-interest and social 176
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Fig 2. Results for predicting the Iterated Prisoner’s Dilemma: Shown here
are the statistics computed from the prediction by a two-layer LSTM networks of five
neurons at each layer. The first time step is given as the prior, and we record the
prediction of the next 8 time steps in a 9-step Iterated Prisoner’s Dilemma game. (A)
Cooperation Rate: The LSTM model characterizes human cooperation much better than
the baselines in the Iterated Prisoner’s Dilemma. (B) Individual Trajectories: The mean
squared error of predicting indivdiual trajectories in the Iterated Prisoner’s Dilemma

benefit. The cooperation rate is also the metric used by the state-of-the-art paper in 177

predicting Iterated Prisoner’s Dilemma sequences [7]. We record the cooperation rate to 178

evaluate how close the behavioral trajectory predicted by a model captures the ground 179

truth of the human decision making sequence. As shown in Figure 2A, the 180

autoregression model overestimates the cooperation rate of human decision making by a 181

significant amount. The state-of-the-art model in this task, the logistic regression 182

model [7] performs a better job than the autoregression model, but still falls short at 183

capturing the subtle dynamics of human cooperation over time. Unlike the baselines, 184

our LSTM model perfectly predicts the cooperation rate, although it is only trained to 185

predict the individual actions instead of the cooperation rate. 186

Given the same intuition from the Iowa Gambling Task, a model that predicts the 187

cooperation rate well doesn’t guarantee it captures the correct action strategies used by 188

each individual trajectories. As shown in Figure 2B, LSTM has a lower average MSE of 189

0.12 across all prediction time steps, beating the two baselines, autoregression (0.18) 190

and logistic regression (0.75), by a significant amount. In addition, the prediction error 191

by the three models offers several surprising observations: (1) Although the logistic 192

regression model (the state-of-the-art) predicts the population-wise cooperation rate, it 193

fails heavily at predicting individual actions; (2) Despite the significant overestimation 194

of population cooperation rate, the autoregression model maintained a relatively low 195

prediction error with a similar trend as the best model, our LSTM model; (3) During 196

the intermediate phase (the 4th or the 5th round) of the Iterated Prisoner’s Dilemma 197

game, the prediction error appears to be the largest for the logistic regression model, 198

but the smallest for the autoregression and LSTM models. 199

We believe that predicting the Iterated Prisoner’s Dilemma is a much more difficult 200

task than predicting the Iowa Gambling Task due to its additional complications from 201

the multi-agent and social dilemma settings. The clear advantage of the LSTM model 202

over the baseline in this task, demonstrated the merit that the recurrent neural network 203

better captures realistic human decision making and offers reliable prediction of 204

individualized human behaviors. 205
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Fig 3. Results for predicting the Iowa Gambling Task: Shown here are the
statistics computed from the prediction by a two-layer LSTM networks of five neurons
at each layer. The first time step is given as the prior, and we record the prediction of
the next 94 time steps in a 95-step Iowa Gambling Task game. (A) Learning Curve:
Both the LSTM and autoregression model capture the learning dynamics of the human
subjects in the Iowa Gambling Task as measure by the evolution of the rate of selection
of the better actions. (B) IGT Prediction of LSTM and autoregression. (C) Individual
Trajectories: The mean squared error of predicting individual actions in the Iowa
Gambling Task.

3.2 Modeling the Iowa Gambling Task 206

As in the payoff schemes from Table 2, the Iowa Gambling Task has two actions that 207

are more preferable (giving more rewards) than the other two. In psychology and 208

neuroscience literature of Iowa Gambling Task, the percentage of choosing these two 209

“better” actions is usually reported as a function of time, and used to characterize the 210

learning progress of the human subjects. We record this metric to evaluate how well the 211

behavioral trajectory predicted by a model captures the ground truth of the human 212

decision making sequence. As shown in Figure 3A, both the LSTM and the 213

autoregression model capture the learning dynamics of the human subjects well. 214

Despite a comparable performance in predicting the overall trend of the learning 215

progress. The capability of a prediction model to capture the action strategy during 216

each individual game is a more challenging objective. For instance, it is possible for a 217

bad prediction model to forecast every individual trajectories incorrectly given their 218

corresponding heterogeneous prior history, while maintaining a perfect prediction for 219

the composition of actions in the population sense. Therefore, we report the mean 220

squared error (MSE) between the predicted sequences and the ground truth in order to 221

understand the performance of the models in the individual sense. 222

As shown in Figure 3C, the overall MSE drops as the observation window increases 223

(i.e. the model has seen more historical time series). The LSTM network predicts the 224

individual trajectories better, with the lowest average MSE of 0.011 across all prediction 225

time steps, beating the MSE by autoregression, 0.015, by a significant amount since the 226

first few prediction time steps. As shown in Figure 3B, the LSTM network learns to 227
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mimic the overall learning trend of the Iowa Gambling Task in each decks. 228

If we compare the Iowa Gambling Task with the Iterated Prisoner’s Dilemma, we 229

observe that the information asymmetry caused by the unknown human opponent 230

complicates the prediction task in the Iterated Prisoner’s Dilemma, such that the 231

prediction error doesn’t follow a monotonic decrease when the observation window 232

increases, as we observe in the Iowa Gambling Task. 233

3.3 Model complexity analysis 234

To investigate the effect of model complexity for the prediction tasks, we vary the 235

number of neurons from 5, 10, 50 to 100, and vary the number of the LSTM layers from 236

1, 2 to 3. We replicate the aforementioned experiments on the Iterated Prisoner’s 237

Dilemma and the Iowa Gambling Task. 238

In the Iterated Prisoner’s Dilemma, we observe that, the LSTM networks ranging 239

from 1 layer of 5 neurons to 3 layers of 100 layers all predict the human cooperation 240

rate very well, as shown in Figure 4. This might suggest that, despite a multi-agent 241

game, Iterated Prisoner’s Dilemma has a much simpler strategy to learn from. 242

Unlike the Iterated Prisoner’s Dilemma, as shown in Figure 5, the LSTM networks 243

ranging from 1 layer of 5 neurons to 3 layers of 100 layers vary in their similarity of the 244

learning curve in choosing the better actions to that of the human data. More 245

specifically, we observe that the human data usually have a dip in the early rounds 246

before catching up, while the wider and deeper networks tend to adopt a simpler 247

learning curve with a smaller dip. In a close look at the actual prediction of each action 248

dimension, we observe that across many models, there is a overall under-prediction of 249

deck A and over-prediction of deck B, the two bad decks, as in the Figure 6. The deck 250

A has a reward distribution of a five-modal distribution which is very wide, while the 251

deck B has a rare probability of assigning a single large value which is very narrow. We 252

suspect that the different distributions of the reward functions might be a reason behind 253

the misprediction in our neural networks. 254

This is further supported by the Figure 7, where the mean squared error (MSE) of 255

the predictions of individual actions are presented for all 12 model architectures. We 256

observe that smaller networks (narrower and shallower ones) predicts the action of 257

choosing decks C and D perfectly (the good decks), while having some mispredictions in 258

decks A and B (the bad decks) better. We note that the reward distributions of the 259

good decks are more Gaussian than the bad decks, whose reward distributions are more 260

extreme, with very large values at very rare probabilities. In our case, the smaller 261

networks can capture the Gaussian priors of the good decks very well, but don’t have 262

the expressive power to learn the more stochastic bad decks well as bigger networks do. 263

3.4 Interpreting good and bad performers 264

To further investigate the interpretability of the trained LSTM networks, we subset the 265

human subject data into two groups. The first group, which we call “top performers”, 266

are the players that yield the top 25 percent scores in the games. The second, group, 267

which we call “bottom performers”, are the players that yield the bottom 25 percent 268

scores in the games. As in the previous investigations, we choose our prediction network 269

to be a two-layer LSTM network with 5 neurons at each layers. We train the networks 270

for 100 epochs and 50 epochs, respectively, for the Iowa Gambling Task and the Iterated 271

Prisoner’s Dilemma. For each experiment, we trained a population of 100 randomly 272

initialized instances of the LSTM networks and record their network weights. 273

We perform the (one-sample or two-sample) Kolmogorov-Smirnov test for goodness 274

of fit [31] on the parameter weight distribution of the top and bottom performers. 275
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In predicting the Iterated Prisoner’s Dilemma, we present the distribution of the 276

weights in the trained LSTM networks. We don’t observe such a difference, as shown in 277

Figure 8. These observation is supported by the Kolmogorov-Smirnov test: W 1
ih (0.022, 278

p=0.041), W 1
hh (0.009, p=0.070), b1ih (0.023, p=0.217), b1ih (0.008, p=1.000) for layer 1; 279

and W 1
ih (0.011, p=0.013), W 1

hh (0.006, p=0.424), b1ih (0.024, p=0.188), b1hh (0.024, 280

p=0.188) for the layer 2. 281

In predicting the Iowa Gambling Task on the other hand, we observe that the 282

weights of the top performers tends to have a wider distribution, and a bigger bias in the 283

LSTM networks (Figure 9). These observation is supported by the Kolmogorov-Smirnov 284

test: W 1
ih (0.092, p=1.77e-59), W 1

hh (0.069, p=4.46e-82), b1ih (0.134, p=5.04e-32), b1ih 285

(0.131, p=1.63e-30) for layer 1; and W 1
ih (0.078, p=4.82e-107), W 1

hh (0.059, p=3.95e-60), 286

b1ih (0.082, p=4.24e-12), b1hh (0.074, p=4.69e-10) for the layer 2. 287

The wider distribution of weights, that is significant for the Iowa Gambling Task and 288

marginal but pointing in the same direction of the Iterated Prisoner’s Dilemma, is 289

suggestive of possible interpretations. One interesting possibility is that the better 290

performers represent a larger number of alternative solutions which may be encompassed 291

within the expressivity of the LSTM; this hypothesis is of course speculative for the 292

moment, but we believe it may be eventually tested with further experimentation. 293

4 Discussion 294

As far as we are aware, this is the first work to predict the behavioral trajectories of the 295

Iowa Gambling Task. In the Iterated Prisoner’s Dilemma prediction task, [7] is the 296

state-of-the-art with their logistic regression model. In our evaluations, our proposed 297

LSTM model and autoregresssion baseline both significantly outperforms [7]. 298

Moreover, our analysis of LSTM’s biases and weights points to possible ways for 299

describing alternative solution strategies leading to significantly different outcomes. 300

Beyond interpretative approaches however, good predictors of the human decision 301

making trajectories can help government develop better resource allocation programs, 302

help companies develop better recommendation systems, and help clinicians develop 303

intervention plans for mental health treatments. As a comparison, reinforcement 304

learning models are good at mechanistically capturing the psychological activities. Our 305

prior work [16] provides a negative result for using reinforcement learning models to 306

predict human decision making, which suggests the necessity of an additional behavioral 307

predictor model is in demand, and can serve useful purposes in many real-world 308

application that involves predictive modeling. We observe in this predictive modeling 309

investigation a possibility that these behavioral predictors might capture characteristics 310

of human decision making process that are missed in reward-driven models, partially 311

because in behavioral experimental settings, the reward representations, usually 312

monetary, can be an over-simplification of the complex underlying mechanisms of 313

human minds. 314

In summary, we introduce an LSTM network to predict the action sequences of 315

human decision making process in the Iowa Gambling Task and the Iterated Prisoner’s 316

Dilemma. As the first attempt to utilize the recurrent neural networks to directly 317

predict human action sequences in these behavioral tasks, our approach matches 318

existing baselines in predicting both the population trends and the individual strategies, 319

in the Iowa Gambling task, and then significantly outperforms the state-of-the-art in 320

the Iterated Prisoner’s Dilemma task. We find the latter particularly noteworthy given 321

that Iterated Prisoner’s Dilemma is a cognitively more complex task, as it involves 322

multiple agents trying to predict each other’s behavior. Next steps include extending 323

our evaluations to human behavioral trajectories in other sequential decision making 324

environments with more complicated and mixed incentive structure, such as Diplomacy, 325
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Poker and chess playing, as well as efforts to implement alternative recurrent models 326

more readily amenable to interpretation from the neuroscientific and psychological 327

perspectives. 328

Supporting information 329

The data and codes to reproduce the empirical results can be accessed and reproduced 330

at https://github.com/doerlbh/HumanLSTM. 331
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Fig 4. Model complexity analysis in the Iterated Prisoner’s Dilemma:
Shown here are the cooperation rates computed from the prediction by the LSTM
networks versus the real human data. The first time step is given as the prior, and we
record the prediction of the next 8 time steps in a 9-step Iterated Prisoner’s Dilemma
game. The columns indicates the number of layers in the LSTM networks, ranging from
1, 2 and 3. The rows indicates the number of neurons in each layer of the LSTM
networks, ranging from 5, 10, 50 and 100.
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Fig 5. Model complexity analysis in the Iowa Gambling Task (learning):
Shown here are the percentage of choosing the better decks (i.e. the learning curves)
computed from the prediction by the LSTM networks versus the real human data. The
first time step is given as the prior, and we record the prediction of the next 94 time
steps in a 95-step Iowa Gambling Task game. The columns indicates the number of
layers in the LSTM networks, ranging from 1, 2 and 3. The rows indicates the number
of neurons in each layer of the LSTM networks, ranging from 5, 10, 50 and 100.
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Fig 6. Model complexity analysis in the Iowa Gambling Task (actions):
Shown here are the percentage of choosing individual action arms computed from the
prediction by the LSTM networks versus the real human data. The first time step is
given as the prior, and we record the prediction of the next 94 time steps in a 95-step
Iowa Gambling Task game. The columns indicates the number of layers in the LSTM
networks, ranging from 1, 2 and 3. The rows indicates the number of neurons in each
layer of the LSTM networks, ranging from 5, 10, 50 and 100.
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Fig 7. Model complexity analysis in the Iowa Gambling Task (prediction
error): Shown here are the mean squared error of indivual action arms between the
prediction by the LSTM networks and the real human data. The first time step is given
as the prior, and we record the prediction of the next 94 time steps in a 95-step Iowa
Gambling Task game. The columns indicates the number of layers in the LSTM
networks, ranging from 1, 2 and 3. The rows indicates the number of neurons in each
layer of the LSTM networks, ranging from 5, 10, 50 and 100.
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Fig 8. Learned representations and game performance in the Iterated
Prisoner’s Dilemma: Shown here are the distribution of weights learned from top
25% and bottom 25% performers selected based on the cumulative rewards in the
historical records of human subjects playing the Iterated Prisoner’s Dilemma
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Fig 9. Learned representations and game performance in the Iowa
Gambling Task: Shown here are the distribution of weights learned from top 25% and
bottom 25% performers selected based on the cumulative rewards in the historical
records of human subjects playing the Iowa Gambling Task.
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