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ABSTRACT For surface defect images that captured from a practical steel production line, different shape, 
size, location and texture of defect object may cause inter-class similarity and intra-class difference of 
defect images. Despite attractive results have been achieved in some surface methods for defect 
classification and segmentation, it is still far from meeting the needs of real-world applications due to lack 
of adaptiveness of these methods. Considering the surface defect image can be decomposed into defect 
foreground image and defect-free background image, the paper develops a novel joint classification and 
segmentation (JCS) approach to perform surface defects detection for steel sheet. It comprises of the 
classification method based on a class-specific and shared discriminative dictionary learning (CASDDL) 
and the segmentation method based on a double low-rank based matrix decomposition (DLMD), 
respectively. For the proposed CASDDL method, we learn a shared sub-dictionary as well as several 
class-specific sub-dictionaries to explicitly capture common information shared by all classes and 
class-specific information belonging to corresponding class. We adopt a mutual incoherence constrain for 
each sub-dictionary, a Fisher-like discriminative criterion and low-rank constrain on coding vector to 
improve the discriminative ability of learned dictionary. For the proposed DLMD method, we formulate the 
segmentation task as a double low-rank based matrix factorization problem, and the Laplacian and sparse 
regularization terms are introduced into the matrix decomposition framework. Experimental results 
demonstrate that our proposed JCS method achieve a comparable or better performance than the state-of- 
the-art methods in classifying and segmenting surface defects of steel sheet. 

INDEX TERMS Joint classification and segmentation for image; class-specific and shared dictionary 

learning; double low-rank matrix decomposition; surface defects of steel sheet 

I. INTRODUCTION 

Automated surface defect classification and segmentation 
based on machine vision are two most essential and related 

tasks in quality management of industrial products. For the 
real-time surface defect detection system based on machine 
vision, the classification task is used to classify normal 
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images and abnormal images, which is highly beneficial for 
improving the efficiency and accuracy of defect 
segmentation, whereas the segmentation task is used to 

detect the locations and boundaries of defects, which 
highlighting the critical defect regions for high-level image 
understanding [1]. 

 

FIGURE 1. Examples of surface images of steel sheet: (a)-(b) Patch; (c)-(d) Scratch; (e)-(f) Non-defective.

As shown in Fig. 1, both classification and segmentation 
tasks are challenging due to the following reasons: 
heterogeneous and scattered defect: the number and type of 
defect are generally unknown in advance, and different 
surface images often have different imaging qualities, i.e., 
low contrast between each defect and its surrounding surface 
tissue results in fuzzy defect boundaries; cluttered and 
complicated background: non-defective background may 
also have great differences in different images; different 
types of defect might be contained in a single defect image, 
and they often exhibit substantial stochastic variability in 
terms of shape, size, gray, texture and location; the inter-type 
surface defects may share visual similarities, and the 
intra-type defects may have visual differences. In the past 
two decades, many efforts have been devoted for more 
efficient and accurate defect classification and segmentation 
methods [2-3]. These approaches focused on two aspects of 
feature extraction and classifier design, which are basically 
customized for a predefined or specific type of defect. 
Besides, the low computational speed of these methods is a 
limitation for real-time detection. These factors motivate 
researchers to develop some new methods for surface defect 
classification and segmentation. 
Most recently, convolutional neural networks (CNN) and 
generative adversarial networks (GAN)-based deep learning 
methods have been achieving remarkable performance in 
image classification and segmentation. Therefore, some 
studies have attempted to adopt deep learning methods for 
defect detection [4-5]. As mentioned in [6-7], these deep 
learning models are complex with many parameters, and 
training them require a huge number of expert-labelled 
training samples, complex optimization algorithm, consume 
a significant amount of computing resources to keep running 
as its complex network structure, which are the significant 
challenging problem in industrial environments. Moreover, 
defective samples are difficult to obtain because of the 
probability of defect occurrence is very low in industrial 
manufacturing. In particular, these deep learning models lack 
of sufficient theoretical support and mostly rely on the 
human experiences, which limit the practical use. 
Lately, dictionary learning has been successfully applied to 
many machine vision problems [8-9], such as surface defect 
classification of industrial products [10]. Sparse 
representation-based classification (SRC) [11] used original 
training data as a dictionary directly, and Aharon et al. [12] 

proposed K-SVD method to learn an over-complete 
dictionary from original training data. Ramirez et al. [13] 
developed a structured incoherence regularization term for 
dictionary learning (DLSI) to promote the independence 
between different sub-dictionaries. Ling et al. [14] developed 
a class-oriented discriminative dictionary learning (CODDL) 
method to emphasis class discrimination of dictionary atoms 
and representation coefficients. Fan et al. [15] exploited 
discriminative Fisher embedding dictionary transfer learning 
(DFEDTL) to preserve the interclass differences and 
intraclass similarities of training samples. As shown in Fig. 1, 
defect object in the surface image can be regarded as local 
anomaly against relatively homogeneous background. The 
background texture is useful for reconstruction rather than 
discrimination. For the aforementioned dictionary learning 
methods, most of atoms are used to represent non-defective 
background, causing only small part of atoms represent 
class-specific defect. Therefore, the discrimination of 
class-specific sub-dictionaries between different defect 
object will diminish, greatly degrading the classification 
performance. An intuitive way to capture and separate those 
shared components from training samples. Recent researches 
have yielded more promising results by using the idea of 
shared dictionary, which different classes not only have 
class-particular parts but also share commonality [16-17]. 
Gao et al. [18] constructed a joint dictionary learning 
algorithm to learned some category-specific sub-dictionaries 
and a shared sub-dictionary by imposing cross-incoherence 
constraint between different sub-dictionaries and 
self-incoherence constraint in each sub-dictionary. Wang et 
al. [19] established a category-specific and shared dictionary 
learning (COPAR) by exploiting the information of 
particularity and commonality across all classes. Lin et al. 
[20] constructed a class-shared, class-specific and 
disturbance dictionary by introducing a robust, 
discriminative and comprehensive dictionary learning 
(RDCDL). However, these methods overlook the low-rank 
ability of sub-dictionaries or coding vector over the shared 
sub-dictionary. Therefore, Jiang et al. [21], Rong et al. [22], 
Wen et al. [23] introduced a low-rank constraint on 
dictionary decomposition. Furthermore, Vu et al. [24] 
proposed a low-rank constraint on the shared dictionary 
(LRSDL) to encourage its subspace to be of 
low-dimensionality and its corresponding representations to 
be similar. Du et al. [25] presented a low-rank graph 
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preserving discriminative dictionary learning (LRGPDDL) 
by introducing a low-rank constraint on each sub-dictionary. 
Chen et al. [26] introduced an adaptive dictionary learning 
strategy combined with an adaptive low-rank representation 
(ALRR) method for classification. These methods show that 
incorporating low-rank regularization term into dictionary 
learning framework can enhance robustness of the learned 
dictionary and achieved impressive classification results. 
Inspired by the idea of shared sub-dictionary and low-rank 
constrain, we develop a class-specific and shared 
discriminative dictionary learning (CASDDL) model for 
surface defect classification of steel sheet. Based on different 
classes of defect image share similar background, 
CASDDL-based classification method constructs c 
class-specific sub-dictionaries associated with corresponding 
classes and one shared sub-dictionary for all the classes, 
respectively. With these sub-dictionaries, exclusive features 
and shared features of surface defect image can be explicitly 
separated. CASDDL specially introduces incoherence 
promoting constraints on all the sub-dictionaries and 
low-rank constraints on coding vector over shared 
sub-dictionary, to make the learned dictionary more compact, 
discriminative and robust. Also, a Fisher-like regularization 
term on coding vectors over class-specific sub-dictionaries 
ensures more coherence for within-class coding vectors and 
more disparity for between-class coding vectors. 
When the surface image is classified as the defect image, the 
defect object in defect image should be located and 
segmented. Some studies based on robust principal 
component analysis (RPCA) [27] have shown that matrix 
decomposition techniques are excellent unsupervised method 
for separating and segmenting the region of interest (ROI) 
from the image. RPCA assumes that an image can be 
represented as a combination of a highly redundant part (i.e., 
background regions) and a sparse part (i.e., foreground 
object). Mathematically, the feature matrix of input image 
can be decomposed into a low-rank matrix corresponding to 
background and a sparse matrix corresponding to foreground 
object. Some prior knowledge and regularization are 
incorporate into original RPCA model, which can improve 
segmentation results in terms of speed and accuracy [28-29]. 
Cen et al. [30], Li et al. [31] designed a model of low-rank 
matrix reconstruction for defect inspection. Yan et al. [32] 
performed a smooth-sparse decomposition (SSD) with 
regularized high-dimensional regression to decompose a 
defect image and separate anomalous regions. Cao et al. [33] 
presented prior knowledge guided least squares regression 
(PG-LSR) based on low-rank representation to detect diverse 
defects. Huang et al. [34] applied a texture prior to construct 
a novel weighted low-rank reconstruction (W-LRR), which 
is only suitable for the defect images with regular or 
near-regular texture. Wang et al. [35] studied the entity 
sparsity pursuit (ESP) to identify surface defects. These 
methods don’t consider the low-rank characteristic for the 
defect foreground and defect-free background 

simultaneously, and ignore the spatial and pattern relations of 
these regions, which may influence the final segmentation 
performance. 
Motivated by the above analysis, a double low-rank 
decomposition (DLMD) model for surface defect 
segmentation of steel sheet is exploited in the paper. Based 
on the unified low-rank assumption to characterize defect 
foreground and defect-free background, DLMD-based 
segmentation approach can be divided into two steps: firstly, 
the defect foreground image and defect-free background 
image are separated from surface defect image; secondly, the 
optimization strategy is further applied to improve the 
accuracy of the defect foreground image, leading to a higher 
segmentation performance. 
To sum up, we propose a joint classification and 
segmentation (JCS)-based defect detection approach to 
provide explainable classification and segmentation results 
for steel sheet. As illustrated in Fig. 2, the proposed JCS 
approach first identifies the surface defect by a classification 
branch via CASDDL model. It’s then feasible to discover the 
locations and areas of surface defect by a segmentation 
branch via DLMD model. With the explainable classification 
results and corresponding defect segmentation, JCS largely 
simplifies and accelerates the detection process for quality 
experts. This paper is an extension of our previous works of 
[36-37] with significant new proposals and more 
experiments. Our main contributions are summarized as 
follows: 
• We propose a CASDDL approach to train discriminative 
dictionary for surface defect classification of steel sheet. It 
not only encourages intra-class samples to deliver the similar 
feature representation, but also minimizes the inter-class 
samples correlations. 
• We develop a DLMD approach to segment various types of 
defects from surface defect images of steel sheet. It doesn’t 
need training process by directly decomposing the surface 
defect image into the defect foreground image and 
defect-free background image. 
• The feasibility and advantages of the proposed JCS method 
combined CASDDL and DLMD is evaluated by extensive 
experiments and comparisons with the other state-of-the-art 
methods, which show that it clearly improves both subjective 
and objective quality of surface defect detection for steel 
sheet. 
The remainder of the paper is organized as follows. In 
Section 2, we briefly introduce some related works about 
surface defects classification and segmentation, dictionary 
learning, and RPCA, respectively. Section 3 presents our 
proposed JCS detection approach, including CASDDL-based 
defect classification model, and DLMD-based defect 
segmentation model. In Section 4, we validate proposed JCS 
approach in extensive experiments and compare it with the 
other state-of-the-art methods. Some conclusions and future 
works are finally provided in Section 5. 
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FIGURE 2. Diagram of the proposed JCS approach for surface defect detection of steel sheet. 

II.  RELATED WORK 

A. SURFACE DEFECT CLASSIFICATION AND 

SEGMENTATION 
For classifying surface defects, different customized feature 
extraction methods for a variety of problems have been 
developed. The representative feature extraction methods 
mainly include grayscale, shape, texture, morphological 
operator, Fourier, Gabor and wavelet transform. Then, these 
features are combined with powerful classifiers, such as 
artificial neural networks, support vector machines. 
Borwankar et al. [38] used the discrete wavelet transform 
and rotated wavelet transform for feature extraction, while 
a KNN classifier for classification. Luo et al. [39] exploited 
a generalized completed local binary patterns framework 
and simple nearest-neighbor classifier for steel surface 
defect classification. Ashour et al. [40] developed a method 
combining the use of discrete shearlet transform and 
gray-level co-occurrence matrix to classify surface defects 
of hot-rolled steel strips. 
Traditional segmentation methods of surface defect can be 
mainly divided into three categories: statistical-based 
methods, filter-based methods and model-based methods. 
For the statistical-based methods, such as statistical 
moments, mathematical morphology, maximum entropy, 
are used to evaluate the spatial distribution characteristic of 
pixel intensities. These methods are sensitive to lighting, 

noise or outliers. In contrast, the filter-based methods, such 
as discrete Fourier transform, discrete Gabor transform and 
discrete wavelet transform, the energies of the filters 
response are utilized as features to segment the defects. 
These methods require the periodicity of texture structures, 
which may not suitable to random texture. Furthermore, it’s 
not suitable for localizing the defect regions in the spatial 
domain. The model-based methods, such as level set, 
Markov random field, fractal model, and partial differential 
equation, construct the specific models with image feature 
distributions, which have a high computational complexity. 

B. DICTIONARY LEARNING 

Mathematically, dictionary learning can be formulated as 
follows: 

min
,𝒙
‖𝒚 𝐷𝒙‖ 𝜆𝜃 𝐷,𝒙       (1) 

where, ‖∙‖  denotes l2 norm, 𝒚 ∈ ℝ  denotes a given 
d-dimensional feature vector of training sample, 𝒙 ∈ ℝ  
denotes coding vector of 𝒚  over dictionary 𝐷
𝒅 ,𝒅 , … ,𝒅 , … ,𝒅 ∈ ℝ , 𝒅 ∈ ℝ  denotes the k-th 

atom of D, 𝜃 𝐷,𝒙  denotes a regularization term to 
constrain D or x, λ is a positive parameter that balances the 
tradeoff between reconstructive error ‖𝒚 𝐷𝒙‖  and 
𝜃 𝐷,𝒙 . 
For the classification task, discriminative dictionary 
learning has demonstrated that a well-learned dictionary 𝐷 
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will greatly boost classification performance. The 
discrimination could be developed from the dictionary, 
coding vectors, or both. Several regularization terms, such 
as sparsity, low-rank, neighborhood preservation of graph, 
entropy, incoherence constraint on sub-dictionaries, have 
been introduced into the learning process to promote the 
discriminative power of learned dictionary. 
Optimizing Eq. (1) can be carried out by an iterative 
method composing two steps: (a) fixing D to update x; (b) 
fixing x to update D, which can be solved efficiently by lots 
of algorithms [41]. According to the learned dictionary D, 
test sample 𝒚 is classified as class 𝑘∗ if it satisfies: 𝑘∗

arg min‖𝒚 𝐷𝑙 𝒙 ‖ , where, 𝒙 is coding vector, 𝑙 𝒙  
denotes a vector only keeping the entries of 𝒙 associated 
with the k-th class and changing others into zeros. As a 
result, 𝒚 is assigned to the class 𝑘∗ corresponding to the 
minimum reconstruction error ‖𝒚 𝐷𝑙 ∗ 𝒙 ‖ . 

C. ROBUST PRINCIPAL COMPONENT ANALYSIS 

RPCA shows the low-rank representation has a better 
performance in discovering global structures of data, which 
can reveal the relationships of the samples: the within-class 
affinities are dense while the between-class affinities are all 
zeros [42]. RPCA can be formulated as follows: 

min
,

rank 𝐿 𝜆‖𝑆‖

s. t.  𝐹 𝐿 𝑆
      (2) 

where, 𝐹 ∈ ℝ  is the input matrix, 𝐿 ∈ ℝ  and 
𝑆 ∈ ℝ  are two decomposed matrices; rank ∙  denotes 
the rank of matrix; ‖∙‖  denotes 𝑙  norm of matrix, 
which equals the number of non-zero element of matrix; 
𝜆 0 is a trades-off parameter between 𝐿 and 𝑆. 
As Eq. (2) is NP-hard problem, rank 𝐿  can be replaced 
by nuclear norm ‖𝐿‖∗, and ‖𝑆‖  can be replaced by 𝑙  
norm ‖𝑆‖  or 𝑙 ,  norm ‖𝑆‖ , , where, ‖∙‖∗ equals the 
sum of singular values of a matrix; ‖∙‖  equals the sum of 
the absolute values of all entries in a matrix, ‖∙‖ ,  equals 
the sum of 𝑙  norms of the columns of a matrix, ‖𝑆‖ ,

∑ 𝒔  with 𝑆 𝒔 , 𝒔 , … , 𝒔  with 𝒔 ∈ ℝ . 

Several optimization algorithms have been proposed to 

solve RPCA [43], such as alternating direction method of 

multipliers, inexact augmented Lagrangian multipliers 

(inexact ALM) method. Supposing that 𝐿 ∈ ℝ  is a 

matrix with rank 𝑟, its singular value decomposition (SVD) 

operation is denoted as svd 𝐿 𝑈𝛴𝑉 , where, 𝛴

diag 𝜎  is the diagonal matrix with 𝜎 , 𝜎 ,…, 𝜎  

on the diagonal and zeros elsewhere, 𝜎  is the 𝑖 -th 

singular value of 𝐿, 𝑈 ∈ ℝ  and 𝑉 ∈ ℝ  are left, 

right singular matrices, respectively. For the traditional 

soft-thresholding shrinkage operator 𝛹 𝛴

𝛴 𝜆     𝛴 𝜆
0                𝛴 𝜆 , where, 𝛴  stands for the 𝑖, 𝑗 -th 

element of 𝛴 . Each singular value equally shrinks by 

subtracting the same constant 𝜆 , which means that all 

singular values have equal contributions. Given the weights 

vector 𝒘 ∈ ℝ , the non-uniform singular value 

thresholding operator  can be defined as follows [44]: 

𝛹 𝒘 𝛴
𝛴 𝜆𝑤      𝛴 𝜆
0                    𝛴 𝜆 , where, 𝑤

∑
. For 

the larger singular values which quantify the principal 

information of image, they should be reduced a little as 

much as possible, i.e., the larger the singular value is, the 

more contribution it makes to the major information. 

Different singular values are treated differently by 

assigning different weights and can adaptively shrink 

according to the specific information of image. For the 

surface defect image, matrix singular values have clear 

physical meanings, larger singular values corresponding to 

major projection directions are supposed to be less shrunk 

to preserve the major components, which can improve the 

accuracy of low-rank reconstruction and enhance the 

adaptivity of defect segmentation. 

III.  OUR SURFACE DEFECT DETECTION APPROACH 
Our JCS detection approach consists of an explainable 
classification branch to identify the defect and a 
segmentation branch to discover the defect areas. The 
proposed CASDDL classification model identifies whether 
the surface image is defect or not, along with convincing 
visual explanations. To provide complementary pixel-level 
prediction, the proposed DLMD segmentation model 
recognizes fine-grained defect areas in the surface defect 
image. By combining these two models together for better 
performance, JCS provides informative detection results for 
surface defect of steel sheet. 

A. EXPLAINABLE CLASSIFICATION 

The proposed CASDDL-based classification method 
mainly comprises of two stages, including discriminative 
dictionary learning, and defect classification. 

1) DISCRIMINATIVE DICTIONARY LEARNING 

a: FORMULATION OF CASDDL 

Supposing 𝑌 𝑌 ,𝑌 , … ,𝑌 , … ,𝑌 ∈ ℝ  denotes 
whole training samples of c classes, each column denotes 
one sample, where, 𝑌 ∈ ℝ  denotes the i-th class 
training samples, d is dimension of one sample, ni denotes 
number of sample from class i, ∑ 𝑛 𝑁, where, 𝑁 is 
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total number of training samples. Let 𝐷
𝐷 ,𝐷 , … ,𝐷 , … ,𝐷 ,𝐷 𝐷 ,𝐷 ∈ ℝ  

denotes learned dictionary of K atoms, 𝐷
, ,…,

∈
ℝ  denotes the j-th class-specific sub-dictionary that 
trained from a corresponding training samples 𝑌 , 𝐷 ∈
ℝ  denotes a shared sub-dictionary that trained from 
the whole training samples Y, where, 𝐾 ∑ 𝑘 , 𝑘  
denotes number of atoms from the j-th sub-dictionary. Let 
𝑋 𝑋 ,𝑋 , … ,𝑋 , … ,𝑋 ∈ ℝ  denotes coding matrix 
of Y over D, where, 𝑋 ∈ ℝ  denotes coding matrix of 
𝑌  over D. Furthermore, 𝑋  can be written as 𝑋
𝑋 ;𝑋 ; … ;𝑋 ; … ;𝑋 ;𝑋 𝑋 ;𝑋 , where, 
𝑋 ∈ ℝ  denotes coding matrix of Yi over 
sub-dictionary Dj, 𝑋 ∈ ℝ  denotes coding 
matrix of Yi over all class-specific sub-dictionaries, 𝑋 ∈
ℝ  denotes coding matrix of Yi over the shared 
sub-dictionary Dc+1. To enhance the discriminative 
capability of dictionary, it’s ideally desired that for each 
class, its samples have non-zero coding vectors intensively 

locating at the corresponding atoms, whereas the coding 
vectors at other atoms are zero. As shown in Fig. 3, a 
sample is supposed to be represented only by the 
corresponding class-specific sub-dictionary, while can’t be 
represented by other class-specific sub-dictionaries at the 
same time. It can enhance the discriminative capability of 
learned dictionary by forcing that all other discriminative 
sub-dictionaries have poor representative capability of 
non-corresponding samples. Besides, different 
sub-dictionaries should be low coherence, which can guide 
the learned dictionary to be discriminative. What’s more, in 
terms of intra-class compactness and inter-class separability, 
the coding vectors of same samples class should be similar, 
while the coding vectors of different samples class should 
be dissimilar. What’s more, the coding vectors 
corresponding to the shared dictionary should be similar, 
the corresponding coding matrix should be low-rank, which 
well addresses the redundant information in the shared 
sub-dictionary and promotes coding vectors compact.

 
FIGURE 3. Ideal structure of dictionary D and coding matrix X in the proposed CASDDL method.  

The block-diagonal constraints increase the discriminative capability of D and X. 
Based on above discussion, the proposed CASDDL can be 
modelled as the following optimization problem: 

min
,
𝑍 𝑌,𝐷,𝑋 𝑍 𝐷 ,𝐷  

𝑍 𝑋 𝑍 𝑋   (3) 
where, 𝑍 𝑍 𝑌,𝐷,𝑋  denotes the 
reconstruction error term; 𝑍 𝑍 𝐷 ,𝐷  
denotes the sub-dictionary incoherence term; 𝑍
𝑍 𝑋  denotes the discriminative 
promotion term for coding vectors over all the 
class-specific sub-dictionaries; 𝑍 𝑍 𝑋  
denotes the low-rank preserving term for coding vectors 
over the shared sub-dictionary. 
(1) RECONSTRUCTION ERROR TERM 𝑍  

To learn a representative and discriminative structured 
dictionary D, each class-specific sub-dictionary should be 
supposed to well represent samples from the i-th class, but 
not other classes. The most important property of the 
shared dictionary is to represent samples from all the 
classes. According to 𝑌 𝐷𝑋 𝐷 𝑋 𝐷 𝑋 ⋯
𝐷 𝑋 ⋯ 𝐷 𝑋 𝐷 𝑋 𝐷 𝑋 𝐷 𝑋 , 

small value of 𝑌 𝐷 𝑋  ensures that the 

dictionary D can represent Yi well, where, ‖∙‖  denotes 

Frobenius-norm. Besides, small value of 𝑌 𝐷 𝑋

𝑌 𝐷 𝑉 𝑉 𝑋   (𝑗  1, 2, . . ., c) makes sure 

that each class Yi has a good representation over 
corresponding class-specific sub-dictionary Dj, where, 𝑉 ∈
ℝ  is the selection operator that selects the j-th 
class-specific sub-dictionary Dj from D, each column of 𝑉  
has only one nonzero element 1, which the location is 
column index of corresponding class-specific 
sub-dictionary atom in D, 𝑉

𝑉 ,𝑉 , … ,𝑉 ,𝑉 , … ,𝑉 ∈ ℝ . Meanwhile, 
the small value of ‖𝑌 𝐷 𝑋 ‖  ensures that the 
shared sub-dictionary Dc+1 make contribution to represent 
Yi. Hence, the reconstruction error term 𝑍  can be defined 
as follows: 

𝑍 𝑌,𝐷,𝑋 ∑ 𝑌 𝐷 𝑋   

𝑌 𝐷 𝑉 𝑉 𝑋 ‖𝑌 𝐷 𝑋 ‖  (4) 

(2) SUB-DICTIONARY INCOHERENCE TERM 𝑍  

To exploit desirable discriminative capability of learned 
dictionary D, different sub-dictionaries should be as 
orthogonal as possible, which ensures that each 
class-specific sub-dictionary is exclusive to represent 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3117736, IEEE
Access

     S. Y. Zhou et al.: JCS: An Explainable Surface Defects Detection Approach for Steel Sheet by Joint Classification and Segmentation 

VOLUME XX, 2021    

 

corresponding samples well. Therefore, the value of 

structural incoherence constraint 𝐷 𝐷 , 𝐷 𝐷

𝐼  are supposed to be small, where, 𝐷 ∈ ℝ  

is the sub-matrix by removing Dj from D, 𝐼  is an identity 

matrix. By adding these two terms, the redundancy among 
sub-dictionaries would be reduced effectively, which has a 
direct impact on the speed of computation. Hence, the 
sub-dictionary incoherence term 𝑍  can be defined as 
follows: 

𝑍 𝛼 ∑ 𝐷 𝐷    

𝐷 𝐷 𝐼          (5) 

where, 𝑛 𝑁,  and  can alleviate the effect 

of imbalance between the number of samples and atoms of 
sub-dictionaries. 
(3) DISCRIMINATIVE PROMOTION TERM 𝑍  

By directly constraining coding vectors, the separability 
and discriminability of coding vectors from different 
classes is increased and further enhanced. Based on 
Fisher’s linear discriminant, which maximizes the ratio of 
between-class scatter matrix to within-class scatter matrix, 
we can minimize the within-class scatter matrix 𝑆 𝑋  
and maximum the between-class scatter matrix 𝑆 𝑋 . 

Denote 𝑆 𝑋 ∑ ∑ 𝒙 𝒖 𝒙 𝒖  𝑆 𝑋
∑ 𝑛 𝒖 𝒖 𝒖 𝒖 , where, 𝒙  denotes the coding 
vector of the l-th training sample over the i-th class-specific 
sub-dictionary, 𝒖 ∑ 𝒙  and 𝒖 ∑ ∑ 𝒙  

are mean vector of Xi and X, respectively. Thus, tr 𝑆
∑ 𝑋 𝑈 , tr 𝑆 ∑ ‖𝑈 𝑈‖ , where, 

𝑈 ∈ ℝ , each column equals to 𝒖 , 𝑈 ∈ ℝ , each 
column equals 𝒖. Hence, the discriminative coding vector 
term 𝑍  can be defined as follows: 

𝑍 𝛽 ∑ 𝑋 𝑈   

‖𝑈 𝑈‖ 𝑋      (6) 

(4) LOW-RANK PRESERVING TERM 𝑍  

As nuclear norm ‖∙‖∗ is the convex relaxation of rank(∙), 
the low-rank preserving term 𝑍  can be defined as 
follows: 

 𝑍 𝛾 ∑ ‖𝑋 ‖∗       (7) 
Taking all mentioned above into consideration, we have the 
following CASDDL model: 

min
,
∑ 𝑌 𝐷 𝑋    

𝑌 𝐷 𝑉 𝑉 𝑋 ‖𝑌 𝐷 𝑋 ‖   

𝛼 ∑ 𝐷 𝐷 𝐷 𝐷 𝐼   

𝛽∑ 𝑋 𝑈 ‖𝑈 𝑈‖ 𝑋   
𝛾 ∑ ‖𝑋 ‖∗              (8) 

 

b: OPTIMIZATION OF CASDDL 

Eq. (8) can be divided into two sub-problems: updating X 
with fixed D; updating D with fixed X. In order to learn a 
discriminative dictionary better, K-means algorithm is 
chosen to initialize the dictionary at first: each 
class-specific sub-dictionary is initialized as cluster centers 
of corresponding training samples, a shared sub-dictionary 
is initialized as cluster center of whole training samples. As 
the dissimilarity between different cluster centers is high, 
the initial atoms in class-specific sub-dictionaries obtain 
approximately discriminative ability. We summarize 
CASDDL in Algorithm 1. 

Algorithm 1: Class-specific and Shared Discriminative 

Dictionary Learning 

Input: Training samples Y = {Yi}i = 1, 2, ..., c; number of atoms kj 

in class-specific dictionary {Di}i = 1, 2, ..., c; number of atoms kc+1 in 

shared sub-dictionary Dc+1; parameters α, β, and γ. 

Initialize: The class-specific sub-dictionary {Dj}j = 1, 2, ..., c is 

initialized by K-means in Yi, the shared sub-dictionary Dc+1 is 

initialized by K-means in Y. 

While not converged do 
step 1: Update 𝑋  by Eq. (13); 

step 2: Update 𝑋  by Algorithm 2; 

step 3: Update {Di}i = 1, 2, ..., c by Eq. (29); 

step 4: Update Dc+1 by Eq. (37); 

End While 

Output: The learned dictionary D = {Dj}j = 1, 2, ..., c, c+1. 

(1) UPDATE CODING MATRIX X 

When D is fixed, Eq. (8) becomes a coding problem of 
computing X = [X1, X2, ..., Xi, ..., Xc]. When computing Xi, 
all Xj (j≠i), are fixed, Eq. (8) can be simplified as follows: 

min∑ 𝑌 𝐷 𝑋   

𝑌 𝐷 𝑉 𝑉 𝑋 𝛽 𝑋 𝑈  

‖𝑈 𝑈‖ 𝑋 ∑ ‖𝑌 𝐷 𝑋 ‖   

𝛾 ∑ ‖𝑋 ‖∗        (9) 
① Update 𝑋  
With fixed D and 𝑋 , Eq. (9) can be rewritten as 
follows:  

min 𝑌 𝐷 𝑋  

𝑌 𝐷 𝑉 𝑉 𝑋 𝛽 𝑋 𝑈  

∑ ‖𝑈 𝑈‖ 𝛽 𝑋       (10) 

It can be rewritten as follows: 
min 𝑅 𝑋 2𝜔 𝑋      (11) 
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where, 𝑅 𝑋 𝑌 𝐷 𝑋 𝑌

𝐷 𝑉 𝑉 𝑋 𝛽 𝑋 𝑈 ∑ ‖𝑈

𝑈‖ , 𝜔 . 

According to [45], a two-step iterative shrinkage/ 
thresholding (TwIST) algorithm can be adopted to solve Eq. 
(11). After first derivative of 𝑅 𝑋  with respect to 
𝑋  is calculated (Appendix 1), we have 
∇ 𝑅 𝑋 2𝐷 𝐷 𝑋 𝑌  

2𝑉𝑉 𝐷 𝐷 𝑉𝑉 𝑋 𝑌  
2𝛽 𝑋 𝑂 𝑂 𝑋 𝑃 𝑃 𝑅𝑃  

∑ 𝑋 𝑄 𝑄 𝑇 𝑄    (12) 

where, 𝐸
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

, 𝑂 𝐼 , 𝑃

𝑄 , 𝑅 ∑ 𝑋 𝑄 , 𝑇 𝑋 ∑ 𝑋 𝑄 . 

Then, we have 

𝑋 1 𝜉 𝑋 𝜉 𝜈 𝑋
                     

 

𝜈𝛹 𝑋 ∇ 𝐹 𝑋    (13) 

where, 𝛹 𝛴  denotes soft-thresholding shrinkage 

operator, 𝛹 𝛴
𝛴      𝛴

0                𝛴
, 𝛴  stands for the 

𝑖, 𝑗 -th element of matrix 𝛴; 𝑋  is the previous 

value of 𝑋 , 𝑋  is the current value of 𝑋 , 

𝑋  is the next value of 𝑋 ; 𝜉 0, 𝜈 0, 
𝜎 0. 
② Update 𝑋  
With fixed D and 𝑋 , Eq. (9) is further reduced to: 

 min‖𝑌 𝐷 𝑋 ‖  𝛾‖𝑋 ‖∗
              

    (14) 

According to inexact ALM algorithm, introducing the 
auxiliary variable 𝐻 𝑋 , Eq. (14) can be defined as 
follows: 
 𝒪 𝑋 ,𝐻,𝑃, 𝜇 ‖𝑌 𝐷 𝐻‖ 𝛾‖𝑋 ‖∗

                                〈𝑃,𝐻 𝑋 〉 ‖𝐻 𝑋 ‖   (15) 

where,  〈∙,∙〉  means the inner product operator for two 
matrices; ‖∙‖  denotes the Frobenius norm, which equals 
the sum of squares of each element of matrix; 𝑃 is a 
Lagrange multiplier; 𝜇 0 is a penalty parameter. 
Furthermore, we have 

𝒪 𝑋 ,𝐻,𝑃, 𝜇
1
2

𝐻
𝑃
𝜇

𝑋  

‖𝑌 𝐷 𝐻‖  ‖𝑋 ‖∗    (16) 

The detailed procedure of solving Eq. (16) is presented in 
Algorithm 2. 

Algorithm 2: Solving Eq. (16) via inexact ALM 

Input: Training samples 𝑌 , shared sub-dictionary 𝐷 , 

parameter 𝛾 0 

Initialize: 𝐻 𝑋 0 , 𝑃 0 , 𝜇 0.1 , 

𝜇 10 , 𝜌 1.1, 𝑘 0, 𝑘 10 

While not converged do 

step 1: Update 𝐻  by Eq. (19); 

step 2: Update 𝑋  by Eq. (21); 

step 3: Update 𝑃  by Eq. (22); 

step 4: Update 𝜇  by Eq. (23); 

step 5: Check the convergence condition 𝑘 𝑘 ; 

step 6: Update 𝑘 by 𝑘 𝑘 1; 

End While 

Output: The optimal solution 𝑋 . 

① Update 𝐻 

 𝐻 𝑋 ‖𝑌 𝐷 𝐻‖
              

    (17) 

Differentiating it with respect to 𝐻, and let it to be zero:  

 𝐻 𝑋 𝐷 𝑌 𝐷 𝐻 0   (18) 

Then, we have 
𝐻  

𝐼 𝐷 𝐷 𝑋 𝐷 𝑌  

   (19) 
② Update 𝑋  

 𝐻 𝑋 ‖𝑋 ‖∗    (20) 

Then, we have 
 𝑋 𝑈𝛹 𝛴 𝑉      (21) 

where, 𝑈,𝛴,𝑉 svd 𝐻 , svd ∙  denotes 
SVD operation, 𝛴 diag 𝜎  is the diagonal 
matrix with 𝜎 , 𝜎 ,…, 𝜎  on the diagonal and zeros 
elsewhere, 𝜎  is the 𝑖-th singular value of 𝐻 , 
𝑈 ∈ ℝ  and 𝑉 ∈ ℝ  are left, right singular matrices, 
respectively. 
③ Update 𝑃 

 𝑃 𝑃 𝜇 𝐻 𝑋   (22) 
④ Update 𝜇 

 𝜇 min 𝜌𝜇 ,𝜇       (23) 
where, 𝜌 1.1, 𝜇 10 . 

(2) UPDATE DICTIONARY D 

When X is fixed, {Dj}j = 1, 2, ..., c, c+1 can be updated one by 
one. Eq. (8) can be simplified as follows: 

min 𝑌 𝐷 𝑋  

𝑌 𝐷 𝑉 𝑉 𝑋 ‖𝑌 𝐷 𝑋 ‖  

𝛼 ∑ 𝐷 𝐷 𝐷 𝐷 𝐼   (24) 
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① Update {Di}i = 1, 2, ..., c 
With fixed X and other sub-dictionaries, Eq. (24) can be 
rewritten as follows: 

min 𝑌 𝐷 𝑋  

𝑌 𝐷 𝑉 𝑉 𝑋  

𝛼 ‖𝐷 𝐷 ‖ 𝛼 𝐷 𝐷 𝐼  (25) 

We optimize {Di}i = 1, 2, ..., c class-by-class and meanwhile, 
make all other Dj (j≠i) fixed. Then, we have 

min 𝑌 𝐷 𝑋 ,⋯ ,𝑋  

𝑌 𝐷 𝑉 𝑉 𝑋 ,⋯ ,𝑉𝑉 𝑋  

𝛼 ‖𝐷 𝐷 ‖ 𝛼 𝐷 𝐷 𝐼  (26) 

Denote 𝐴 𝑌,𝑌 ∈ ℝ , 𝐶
𝑋 ,⋯ ,𝑋 ,𝑉 𝑉 𝑋 ,⋯ ,𝑉𝑉 𝑋 ∈
ℝ , we have 

 min‖𝐴 𝐷 𝐶‖  

𝛼 ‖𝐷 𝐷 ‖ 𝛼 𝐷 𝐷 𝐼  (27) 

Therefore 

 min 𝐴 ∑ 𝐷 𝐶 𝐷 𝐶   

𝛼 ‖𝐷 𝐷 ‖ 𝛼 𝐷 𝐷 𝐼  (28) 

Denote 𝐴 𝐴 ∑ 𝐷 𝐶 ∈ ℝ , we have 

 min 𝐴 𝐷 𝐶  

𝛼 ‖𝐷 𝐷 ‖ 𝛼 𝐷 𝐷 𝐼  (29) 

where, 𝐵 ∈ ℝ . 
Eq. (29) can be solved by a coherence regularized (CORE) 

algorithm [46]. 
② Update Dc+1 
With fixed X and all the class-specific sub-dictionaries, Eq. 
(24) can be rewritten as follows: 

           min ‖𝑌 𝐷 𝑋 ‖  

𝛼
𝑛

𝑘 𝐾 𝑘
𝐷 𝐷  

              𝛼 𝐷 𝐷 𝐼          (30) 

Denote 𝑋 𝑋 ,𝑋 , … ,𝑋 ∈ ℝ  is the 
coding matrix of Y over shared sub-dictionary Dc+1, then we 
have 

 

 min‖𝑌 𝐷 𝑋 ‖ 𝛼 ‖𝐷 𝐷 ‖  

𝛼 𝐷 𝐷 𝐼     (31) 

Similar to Eq. (29), Eq. (31) can be solved by CORE 
algorithm. 
 

2) DEFECT CLASSIFICATION 

The proposed CASDDL especially emphasizes class 
discrimination of both dictionary atoms and coding vector, 
which not only contributes for learning class-oriented 
discriminative dictionary, but also results in discriminative 
coding vector. Different from traditional classification 
method that treat the coding vector just as input to 
sophisticated classifiers, we can directly make full use of 
the discriminative capability of coding vector for a simple 
and efficient classification scheme, without adding any 
parameters to be learned. 
For a test sample 𝒚, we use the obtained dictionary D to 
compute its coding vector 𝒙 𝒙 ;𝒙 ; …𝒙 ; … ;𝒙 , where, 
xi is the coding sub-vector associated with class-specific 
sub-dictionary {Di}i = 1, 2, ..., c. Considering the 
discrimination of 𝒙, if 𝒚 is from class i, 𝒙  will be large 
than other part. Therefore, the class of 𝒚 is determined by 
arg max‖𝒙 ‖ . 

B. ACCURATE SEGMENTATION 

The proposed DLMD-based segmentation method mainly 
comprises of four stages, including superpixel 
over-segmentation, feature extraction, feature matrix 
decomposition, and defect segmentation. 

1) SUPERPIXEL OVER-SEGMENTATION 

In order to capture structural information of defect, we 
adopt the superpixel-algorithm of adaptive simple linear 
iterative clustering (ASLIC) [47] to partition the surface 
defect image into several non-overlap sub-regions. It can 
generate regular shaped superpixels in both textured and 
non-textured regions alike. Only the number of superpixel 
sub-regions K should be specified. The bigger K should be 
chosen if the potential defect object is small and 
morphological complex, which can produce more 
deformable shape to enclose the region containing potential 
defect object, vice versa. As the number of superpixel 
sub-regions is far less than the pixel of image, which can 
ease the computational burden and improve the 
computation efficiency. 

2) FEATURE EXTRACTION 

The feature of gray-scale, Gabor filters with eight 
directions on two different scales, steerable pyramid filters 
with four directions on two different scales are computed 
and then stacked vertically to construct a 25-dimensional 
feature vector for each pixel. For each superpixel 
sub-region, its feature vector is calculated by taking mean 
of all the feature vectors of pixels contained in it, which is 
robust to noise. All the feature vectors of sub-regions are 
normalized into unit column vectors, and are stacked 
together to construct a feature matrix 𝐷 ∈ ℝ , where, 𝑑 
is the dimension of feature vector, 𝐾 is the number of 
superpixels sub-regions. 
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3) FEATURE MATRIX DECOMPOSITION 

a: Formulation of DLMD 

(a) (b) (c)
I B F

 
FIGURE 4. Illustration of surface defect image decomposition with 

double low-rank assumption: (a) original surface defect image I by 

superpixel over-segmentation; (b) defect-free background image B by 

superpixel over-segmentation; (c) defect foreground image E by 

superpixel over-segmentation. 

As shown in Fig. 4, we try to decompose surface defect 
image I into defect-free background image B and defect 
foreground image E. According to the ASLIC algorithm 
and stack all feature vector of superpixel sub-regions 
together to form feature matrix F constructed from the 
original defect image I, feature matrix L represents a 
background image B, and a feature matrix S represents a 
defect foreground image E in a certain feature space, 
respectively. Therefore, 𝐹 𝐿 𝑆, where, each column of 
these matrices stand for the feature vector of individual 
superpixel sub-regions. Both the background image B and 
the defect foreground image E contain multiple 
homogeneous and highly similar sub-regions. These two 
feature matrices L and S have redundant information and 
can be assumed to have low-rank due to the similarity 
among different sub-regions, which form a 
low-dimensional feature subspace. What’s more, in order to 
reduce the influence of noises and improve the robustness 
to uneven illumination simultaneously, we assume that the 
background has the sparse property and lies in a sparse 
feature subspace. 
Based on above analysis, the proposed DLMD can be 
modelled as the following optimization problem: 

 
min

,
rank 𝐿 rank 𝑆 𝜂𝛩 𝐿, 𝑆 𝜏‖𝐿‖

s. t.  𝐹 𝐿 𝑆
  (32) 

where, 𝛩 𝐿, 𝑆  denotes the regularization term to enlarge 
the margin and reduce the coherence between the feature 
subspaces induced by L and S; 𝜂 0 , 𝜏 0  are 
regularization parameters. 
The local invariance assumption based Laplacian 
regularization term 𝛩 𝐿, 𝑆  can be defined as follows: 

 𝛩 𝐿, 𝑆 ∑ 𝒔 𝒔 𝑤, tr 𝑆𝑀𝑆   (33) 

where, 𝑀 ∈ ℝ  is a Laplacian matrix; tr ∙  denotes 
the trace of a matrix; 𝒔 , 𝒔 denotes the i-th and j-th column 
of 𝑆 ; 𝑤  of affinity matrix 𝑊 ∈ ℝ  denotes the 
weight that represents the feature similarity between 

sub-regions 𝑅  and 𝑅 . 
Supposing that each sub-region of surface defect image is 
represented by a node, the Laplacian matrix 𝑀 is defined: 

𝑀
𝑤             𝑖 𝑗 

∑ 𝑤      otherwise
, where, 𝑊  is an affinity 

matrix, when 𝑅  and 𝑅  are directly adjacent, 𝑤

exp
𝒑 𝒑

𝒑
exp

𝒇 𝒇

𝒇
, otherwise, 𝑤 0; 𝒑 ∈

ℝ  and 𝒑 ∈ ℝ  denote the central coordinate of 𝑅  and 
𝑅 ; 𝒇 ∈ ℝ  and 𝒇 ∈ ℝ  denote the feature vector of 𝑅  

and 𝑅 ; exp
𝒑 𝒑

𝒑
 represents the spatial contiguity 

between 𝑅  and 𝑅 ; exp
𝒇 𝒇

𝒇
 gives the feature 

similarity between 𝑅  and 𝑅 ; 𝜎𝒑  and 𝜎𝒇  are two 
scalars. 
b: Optimization of DLMD 

Eq. (32) can be converted into the following optimization 
problem: 

 
min

,
‖𝐿‖∗ ‖𝑆‖∗ 𝜂tr 𝑆𝑀𝑆 𝜏‖𝐿‖ ,

s. t.  𝐹 𝐿 𝑆
   (34) 

where, 𝑙 ,  norm-based penalty term ‖𝐿‖ ,  aims to 
characterize the noise or illumination interference of 
surface defect image. 
According to inexact ALM algorithm, introducing the 
auxiliary variables 𝐻 𝐿, 𝐽 𝑆, Eq. (34) can be defined 
as follows: 
𝒪 𝐿, 𝑆,𝐻, 𝐽,𝑌 ,𝑌 ,𝑌 ,𝜇  

‖𝐿‖∗ ‖𝑆‖∗ 𝜂tr 𝐽𝑀𝐽 𝜏‖𝐻‖ , 〈𝑃 ,𝐹 𝐿 𝑆〉  

‖𝐷 𝐿 𝑆‖ 〈𝑃 ,𝐻 𝐿〉 ‖𝐻 𝐿‖   

                                    〈𝑃 , 𝐽 𝑆〉 ‖𝐽 𝑆‖      (35) 

where, 𝑃 , 𝑃  and 𝑃  are Lagrange multipliers; 𝜇 0 is 
a penalty parameter. 
The detailed procedure of solving Eq. (35) is presented in 
Algorithm 3. 
① Update 𝐻 
In order to solve 𝐻, we can further simplify Eq. (35) as 
follows: 

 min 𝐿 𝐻 ‖𝐻‖ ,    (36) 

The optimal solution can be obtained as follows: 
𝐻 : , 𝑗

:,

:,
𝑍 : , 𝑗       𝑍 : , 𝑗

0                                               otherwise

    (37) 

where 𝑍 𝐿 , 𝑍 : , 𝑗  denotes the 𝑗-th column 

of matrix 𝑍. 
② Update 𝐽 
In order to solve 𝐽, the optimal solution can be obtained as 
follows: 
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 min 𝐽 𝑆 tr 𝐽𝑀𝐽    (38) 

Differentiating it with respect to 𝐽, and let it to be zero:  

 𝐽 𝑆 𝐽𝑀 0       (39) 

The close-form solution can be obtained as follows: 

 𝐽 𝑆 𝐼 𝑀    (40) 

③ Update 𝐿 
To solve 𝐿, Eq. (12) can be transformed to Eq. (22): 

min
1
2

𝐹 𝑆
𝑃
𝜇

𝐿  

             𝐻 𝐿 ‖𝐿‖∗        (41) 

It can be rewritten as follows:  

 min 𝐹 𝑆 𝐻 𝐿 ‖𝐿‖∗  (42) 

The optimal solution can be obtained by Eq. (21):  
 𝐿 𝑈𝛹 𝒘 𝛴 𝑉        (43) 

where, 𝑈,𝛴,𝑉 svd 𝐹 𝑆 𝐻 ; 

𝛹𝒘 ∙  denotes non-uniform singular value thresholding 

operator, 𝜎 , ,…,  is the singular value of 𝐹

𝑆 𝐻 , 𝑤
∑

. 

④ Update 𝑆 
In order to solve 𝑆, Eq. (35) can be transformed as follows: 

min
1
2

𝐹 𝐿
𝑃
𝜇

𝑆  

                𝐽 𝑆 ‖𝑆‖∗        (44) 

It can be rewritten as follows: 

 min 𝐹 𝐿 𝐽 𝑆 ‖𝑆‖∗  (45) 

Its solution is 
 𝑆 𝑈𝛹𝒘 𝛴 𝑉       (46) 

where, 𝑈,𝛴,𝑉 svd 𝐹 𝐿 𝐽

; 𝜎 , ,…,  is the singular value of 𝐹

𝐿 𝐽 , 𝑤
∑

. 

⑤ Update 𝑃 , 𝑃  and 𝑃  

 

𝑃 𝑃 𝜇 𝐹 𝐿 𝑆

𝑃 𝑃 𝜇 𝐻 𝐿

𝑃 𝑃 𝜇 𝐽 𝑆

   (47) 

⑥ Update 𝜇 
 𝜇 min 𝜌𝜇 ,𝜇      (48) 

where, 𝜌 1.1, 𝜇 10 . 

4) DEFECT SEGMENTATION 

Each column of 𝐿 𝒍 , 𝒍 ,⋯ , 𝒍  and 𝑆
𝒔 , 𝒔 ,⋯ , 𝒔  are the feature vector of corresponding 

superpixel sub-region of decomposed background image B 
and defect foreground image E, respectively. Then, we 
transfer L and S from feature domain to spatial domain for 
visualizing. The gray-value of each superpixel sub-region is 
maximum value of corresponding feature vector, then 
allocating it to corresponding pixels to visualize 
background image B and defect foreground image E, as 
shown in Fig. 2. 
To enhance the completeness of defect objects and suppress 
the background noise in defect foreground image E, the 
regression optimization algorithm is adopted as follows: 

min ∑ 𝑤 𝑠 1 ∑ 𝑤 𝑠   

∑ 𝑤 𝑠 𝑠,      (49) 

where, 𝑤  and 𝑤  denotes gray-value of sub-region in 
defect foreground image E and background image B, 
respectively; 𝑠 ∈ 𝒔 𝑠 , 𝑠 ,⋯ , 𝑠  denotes the 
enhanced gray-value of i-th sub-region of defect foreground 
image E. 
Following 𝑊 diag 𝑤 ,𝑤 ,⋯ ,𝑤 ∈ ℝ , 𝑊

diag 𝑤 ,𝑤 ,⋯ ,𝑤 ∈ ℝ , Eq. (49) can be 

reformulated as follows: 
 min

𝒔
𝒔 𝑊 𝒔 𝒔 𝑊 𝒔 2𝑊 𝒔 𝑊 𝟏 2𝒔 𝑀𝒔  (50) 

where, 𝟏 ∈ ℝ  denotes the unit vector; 𝑀 ∈ ℝ  
denotes the same Laplacian matrix in Eq. (33). 
Differentiating Eq. (50) with respect to 𝒔, and let it to be 
zero, we have 

 2𝑊 𝒔 2𝑊 𝒔 2𝑊 𝟏 4𝑀𝒔 0   (51) 
Its solution is 

 𝒔 𝑊 𝑊 2𝑀 𝑊 𝟏     (52) 
Through Eq. (49), the gray-value of defect sub-region in 
defect foreground image E will become bigger, so the 
defect object can be highlighted further. Finally, the shape, 
location and size of surface defect can be easily localized 
and segmented through a simple thresholding operation. 

IV. EXPERIMENT 

In this section, various experiments, such as parameters 
analysis, convergence analysis, robustness to noise, 
comparisons between our method and some state-of-the-art 
methods, are conducted to verify the proposed JCS method. 

A. EXPERIMENTAL SETUP 

Two typical surface defects images (Patch, Scratch) and 
defect-free image are selected in the following experiments. 
There are 300 grayscale images (200×200 pixels) per class, 
and the pixel-level ground truth of defect image is manually 
marked by using white to denote defective pixels and black 
to denote defect-free pixels. We evaluated classification 
results using classification accuracy NR/N, where, NR is the 
number of test samples that are correctly classified, N is the 
total number of test samples. All the surface images are 
normalized and resized to 40×40 pixels, then randomly 
divide into training samples and test samples in 1:1 ratio. 
We repeated each experiment ten times, and the average 
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values and standard deviations of the classification results 
are given. We evaluated segmentation results using 
qualitative and quantitative metrics: the qualitative metrics 
refer to human subjective feeling for segmentation 
performance (i.e., boundary of defect object is clear, 
contrast between defect and background is obvious); the 
quantitative metrics refer to precision-recall (P-R) curve, 
receiver operating characteristic (ROC) curve, average 
F-Measure (Fβ) curve, area under ROC curve (AUC) and 
mean square error (MAE). Supposing that the pixel 
belonging to defect is defined as a positive example, and 
the pixel belonging to background is defined as a negative 
example. The symbols TP (True Positive), TN (True 
Negative), FP (False Positive), and FN (False Negative) 
correspond to the number of defect pixel correctly 
recognized as defect object, the number of background 
pixel correctly recognized as background, the number of 
background pixel mistakenly recognized as defect object, 
and the number of defect pixel mistakenly recognized as 
background, respectively. Then, Precision, Recall, TPR 
(True Positive Rate), FPR (False Positive Rate), F1, and 

MAE are computed as follows: Precision , 

Recall , TPR , FPR , 𝐹

∑ , MAE
∑ ∑ ， ，

, 

where, N, H and W denotes the number, height and width of 
surface defect image. 

B. CLASSIFICATION RESULTS ANALYSIS 

1) PARAMETERS ANALYSIS 

Table 1. Classification accuracy of CASDDL with different parameters α, 

β, and γ, fix α = 0.1 to tune β and γ. 

  𝛽 

γ 
0 0.6 0.8 1  

0 0.8711 0.9105 0.9214 0.9105 0.9034 

0.5 0.8867 0.9134 0.9256 0.9096 0.9088 

0.7 0.8892 0.9141 0.9287 0.9136 0.9114 

0.9 0.8873 0.9125 0.9222 0.9151 0.9093 

 0.8836 0.9126 0.9245 0.9122  

The tuning three regularization parameters α, β, γ in Eq. (8) 
are chosen by 5-fold cross validation. α controls mutual 
incoherence between each sub-dictionary, β controls 
discrimination of coding vectors over all the class-specific 
sub-dictionaries, γ controls the low-rank ability of coding 
vector over the shared sub-dictionary. Following the work 
in [18], we set α = 0.1, then search for their best values in a 
small set {0, 0.6, 0.8, 1.0}, {0, 0.5, 0.7, 0.9}, respectively. 

Let kc, ks denotes number of atoms of class-specific 
sub-dictionary and shared sub-dictionary, respectively. We 
vary kc from 10 to 45 with five interval, ks from 2 to 30 
with four interval. For each parameter combination, we 
compute the classification accuracy of all the 
sub-dictionary combinations in terms of mean value, and 
illustrate the classification accuracy in Table 1. The bottom 
row of Table 1 denotes the mean value of classification 
accuracy with one β corresponding to different γ, the right 
column of Table 1 denotes the mean value of classification 
accuracy with one γ corresponding to different β. As shown 
in Table 1, classification accuracy rises as the increase of β 
at first, but a further increase of β over a proper value will 
decrease the classification performance. The classification 
accuracy will degrade with a small value of β, which shows 
that the discriminative coding vector term is useful in 
learning class-oriented dictionary. Comparably, a larger 
value of γ will capture the inter-class similarity, and the 
shared sub-dictionary is more readily to capture the 
commonality features. However, too large value of γ will 
decrease the representation ability of shared sub-dictionary, 
the classification performance will be degraded. For γ, we 
empirically observe that a value lying in the range [0.5, 0.9] 
can always achieve an acceptable result. Furthermore, the 
classification accuracy with γ = 0 are lower than that with γ 
= 0.7, which illustrates the importance of low-rank term. 
From Table 1, the highest classification accuracy is 
achieved when α = 0.1, β = 0.8, and γ = 0.7, and this 
parameter combination will be adopted in the following 
experiments. Besides, we observe that the classification 
accuracy is robust to different parameter combinations 
being greater than 89% in most cases. 

2) CONVERGENCE ANALYSIS 

Although Eq. (8) is non-convex, the optimization algorithm 
actually adopts an alternatively updating fashion, and the 
convergence of each sub-problem can be guaranteed. On 
the one hand, for updating X with D fixed, the optimal 
solution is gained by TwIST and ALM algorithms. On the 
other hand, in the process of updating D with X fixed, each 
atom is optimally renewed for the sub-problem, and the 
optimal solution is gained by CORE algorithm. As a 
consequence, the objective function is non-increasing 
during the whole process of alternatively updating X and D. 
In addition, we provide the empirical evidence to illustrate 
the good convergence behavior of CASDDL in Fig. 5. With 
the increase of iteration numbers, the curve of error 
gradually decreases and eventually becomes stable, and the 
curve of accuracy increases for different combination of 
sub-dictionaries. It shows the proposed CASDDL enjoys a 
good convergence performance. 
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FIGURE 5. Convergence ability of CASDDL.

3) COMPUTATIONAL COMPLEXITY 

The drawback of CASDDL is that it is computationally 
more complex. Although dictionary learning can be done in 
parallel and off-line, it is still important to see how long the 
dictionary learning process would take. A number of 
experimental parameters can affect the run time of 
CASDDL, including the number of classes, number of 
training samples, dictionary size and dimension of feature 
vectors. 

4) ROBUSTNESS TO NOISE 

We evaluate the robustness of the proposed CASDDL by 
corrupting original surface images with additive Gaussian 
noise in different signal to noise ratio (SNR), including 
24dB, 20dB, and 16dB. As shown in Table 2, the 
classification accuracy is decreased slower when the noise 
level is increased; CASDDL can achieve 80.81% 
classification accuracy even at 20 dB noise, which is 
considered as less sensitive to noise. 

Table 2. Classification accuracy of CASDDL with different noise level. 

SNR (dB) Classification Accuracy (%) 

24 85.70±0.68 

20 80.81±1.09 

16 72.22±1.34 

5) NUMBER OF ATOMS IN SUB-DICTIONARY 

Supposing kc, ks denotes number of atoms of class-specific 
sub-dictionary and shared sub-dictionary, respectively. As 
shown in Table 3, we can observe that increasing kc will 
lead to a higher classification performance. The possible 
reason is that more discriminative information can be 
captured by a larger class-specific sub-dictionary. When ks 
is fixed, the classification accuracy is dropped as the 
increase of kc. The possible reason is that smaller shared 

sub-dictionary is enough to capture the shared features of 
defect images, and larger shared sub-dictionary tends to 
absorb class-specific features into the shared sub-dictionary, 
causing some discriminative information lost. The proposed 
CASDDL always achieves higher classification accuracy 
despite different number of atoms, which indicates that it 
has a better ability to reconstruct defect images, even if 
learned dictionary has a small size. In fact, larger size of 
dictionary may have stronger representative ability and 
achieve better classification performance at the expense of 
increasing computational load. Therefore, we should make 
a tradeoff between classification performance and 
computational efficiency. When kc = 30, the classification 
accuracy gain is merely promoted very little (~1%) as the 
increase of kc. When ks = 2 and kc = 30, CASDDL can still 
have higher classification accuracy 94.89%, and this 
parameter combination will be used in the following 
experiments. 

6) VISUALIZATION OF CODING VECTORS 

The proposed CASDDL aims to get highly-discriminative 
coding vectors, through the learned discriminative 
dictionary, to achieve surface defect classification. Fig. 6 
illustrates the coding vectors of training and testing samples 
are approximately block-diagonal, which further shows the 
class-label discriminative information in coding vectors. 

Test SamplesTraining Samples  
FIGURE 6. Visualization of coding vectors of CASDDL in training and 

testing process. 
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Table 3. Classification accuracy of CASDDL with different number of atoms kc and ks 

   kc 
ks 

10 15 20 25 30 35 40 45 

2 0.8407 0.8993 0.9282 0.9438 0.9489 0.9516 0.9544 0.9560 

6 0.8256 0.8842 0.9144 0.9284 0.9404 0.9456 0.9458 0.9436 

10 0.8158 0.8813 0.9173 0.9324 0.9402 0.9349 0.9402 0.9447 

14 0.8298 0.8904 0.9158 0.9307 0.9296 0.9431 0.9404 0.9471 

18 0.8209 0.8762 0.9109 0.9273 09404 0.9411 0.9396 0.9460 

22 0.8222 0.8733 0.9067 0.9249 0.9364 0.9420 0.9444 0.9427 

26 0.8038 0.8667 0.9000 0.9238 0.9324 0.9458 0.9449 0.9458 

30 0.7949 0.8638 0.9073 0.9218 0.9349 0.9400 0.9413 0.9456 

7) CLASSIFICATION RESULTS COMPARISON 

We compare the proposed CASDDL with other well-known 
dictionary learning methods, including SRC [11], DLSI 
[13], CODDL [14], DFEDTL [15], COPAR [19], RDCDL 
[20], LRSDL [24], LRGPDDL [25], ALRR [26]. 

 
FIGURE 7. Visualization of classification accuracy between CASDDL 

and other approaches. 

As shown in Fig. 7 and Table 4, CASDDL achieves 94.07% 
classification accuracy, compared to 91.89% for COPAR, 
90.42% for DLSI, 89.90% for CODDL and 81.72 for 
DFEDTL. Compared to SRC, which is the baseline method 
in the experiment, CASDDL improves the classification 
accuracy with a margin of more than 24%. Among above 
approaches, ALRR performs the best, which is superior to 
ours by 0.11% for accuracy, and is inferior ours by stability. 
Besides, CASDDL outdoes LRGPDDL by a significant 
improvement of above 2.5%. 
 

 

 

Table 4.  Performance comparison between CASDDL and other 

approaches. 

Method Classification Accuracy (%) 

SRC [11] 69.09±2.6 

DLSI [13] 90.42±1.2 

CODDL [14] 89.90±1.1 

DFEDTL [15] 81.72±1.6 

COPAR [19] 91.89±1.1 

RDCDL [20] 77.58±2.0 

LRSDL [24] 71.13±1.1 

LRGPDDL [25] 91.47±0.9 

ALRR [26] 94.18±1.6 

CASDDL 94.07±0.7 

C. SEGMENTATION RESULTS ANALYSIS 

1) PARAMETERS ANALYSIS 

The tuning two regularization parameters 𝜂, 𝜏 in Eq. (34) 
are chosen by 5-fold cross validation, and the experimental 
results measured by AUC metric are shown in Table 5. Its 
show that when the values of 𝜂 and 𝜏 are set properly, the 
proposed DLMD can achieve better segmentation 
performance. When 𝜂 is small, the performance is very 
sensitive to the changes of 𝜏 ; while 𝜂  is big, 𝜏  is 
insensitivity. Especially, it would be better to set the values 
of 𝜂 much larger than that of 𝜏 in order to penalize the 
feature matrix of defect-free background image to be sparse. 
The segmentation performance reaches a high level when 
𝜂 1.25 and 𝜏 0.25, and this parameter combination 
will be used in the following experiments.
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Table 5. Experimental results of DLMD with different parameters 𝜼 and 𝝉. 

      𝜏 

𝜂 
0.05 0.15 0.25 0.35 0.45 0.55 

0.25 0.809765 0.620011 0.617729 0.617857 0.617848 0.617807 

0.5 0.828737 0.787541 0.716342 0.688683 0.683770 0.681919 

0.75 0.820643 0.833686 0.804402 0.750935 0.713586 0.702458 

1 0.817401 0.834645 0.842852 0.818865 0.778656 0.740081 

1.25 0.813881 0.834150 0.845304 0.832574 0.821758 0.799830 

1.5 0.810798 0.833805 0.834686 0.835088 0.833225 0.826053 

 

FIGURE 9.  Qualitative comparison: (a) input image; (b) manual-labeled ground-truth image;  

(c) RPCA; (d) SSD; (e) PG-LSR; (f) W-LRR (g) ESP; (h) DLMD. 

 

FIGURE 10.  Quantitative comparison results with P-R curves, ROC curves and F-measure curves. 
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2) Convergence Analysis 
We evaluate the convergence of the proposed DLMD to 
empirically show the convergence through experiments in 
different iterations, which is calculated via the relative error 
‖𝐷 𝐿 𝑆‖ /‖𝐷‖ . As shown in Fig. 8, the error 
converges very fast, usually within 20 iterations. 

 
FIGURE 8. Convergence Curve of DLMD. 

3) ROBUSTNESS TO NOISE 

We evaluate the robustness of the proposed DLMD by 

corrupting original surface images with additive Gaussian 
noise in different SNR, including 24dB, 20dB, 16dB and 
12dB. As shown in Table 6, when SNR decreases gradually, 
the AUC and MAE can remain a relative high level, 
especially when SNR 16dB, AUC still remain around 
0.8. In general, the proposed DLMD method is considered 
as robust to noise. 

Table 6. Experimental results of DLMD with different noise level. 

SNR(dB) 
Index 

24 20 16 12 

AUC 0.8298 0.8123 0.7759 0.7183 

MAE 0.1610 0.1731 0.1939 0.2220 

4) SEGMENTATION RESULTS COMPARISON 

The proposed DLMD is compared with five representative 
segmentation methods quantitatively and qualitatively, 
including RPCA [27], SSD [32], PG-LSR [33], W-LRR 
[34], and ESP [35]. 

Table 7. Comparison of AUC and MAE of the proposed DLMD with other methods 

Method 

Index 
RPCA [27] SSD [32] PG-LSR [33] W-LRR [34] ESP [35] DLMD 

AUC 0.7636 0.7144 0.7133 0.6636 0.7500 0.8453 

MAE 0.1860 0.2500 0.2010 0.2598 0.1937 0.1593 

a: Qualitative Comparison 

The qualitative comparison results between the proposed 
DLMD and other methods are shown in Fig. 9. It’s shown 
that most of methods can handle simple defect images with 
relatively homogeneous background (i.e., column 5, and 
10). For some complex defect images that containing 
multiple objects (i.e., column 6, 11 and 12), or having 
visually indistinguishable background (i.e., column 3, and 
4), some parts of background being falsely classified as the 
defect. By contrast, the proposed DLMD separates the 
defect objects from the image background successfully and 
locates defects precisely, which has achieved the goal of 
"highlight the foreground and suppressing the background". 
b: Quantitative Comparison 

The six methods are evaluated by P-R curves, ROC 
curves, AUC values, F-measure curves and MAE values are 
illustrated in Fig. 10 and Table 7, respectively. They show 
that the proposed DLMD significantly outperforms the 
other five methods. Especially, Precision can remain above 
90% within a large threshold range, which reflects a better 
segmentation performance. Most of AUC is higher than 
70%, and DLMD achieves 84.53%, which is competitive 
with 9.53% improvement to 75.00% achieved by ESP. 
MAE of DLMD is typically the lowest among all the 
methods. Compared with ESP, it’s increased by 9.53% and 
3.44% in AUC and MAE, respectively. These experimental 
results illustrate the proposed DLMD is effective for 

segmenting a variety of defects from surface defect image, 
even if types and number of defects are unknown and 
exhibit diverse visual features of shapes, scales, directions 
and locations. Besides, double low-rank constrain of 
DLMD contributes to the good segmentation performance. 

V. CONCLUSION 

In this paper, we develop the JCS method including 
CASDDL and DLMD models to perform surface defects 
detection for steel sheet. Based on the anomaly 
characteristics of defect in the surface defect image of steel 
sheet, we propose a CASDDL method to learn a 
discriminative dictionary that consists of several 
class-specific sub-dictionaries associated with 
corresponding classes and a shared sub-dictionary shared 
by all the classes, in which class-specific sub-dictionaries 
are responsible for exploiting class-specific information, 
and the shared sub-dictionary is used for capturing and 
separating the common information. By introducing 
low-rank, mutual incoherence and Fisher-like 
discriminative constraints, it can effectively reduce 
redundancy in training samples. Moreover, we formulate a 
double low-rank decomposition model to obtain 
high-quality defect foreground image directly, which 
provides a robust way to segment the surface defect. 
Experimental results verify the effectiveness and robustness 
of JCS for detecting surface defects of steel sheet.
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APPENDIX 

Computing ∇ 𝑋 𝑈 ∑ ‖𝑈 𝑈‖  

in Eq. (12) 

Denoting 𝐸
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

,  𝐼

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

, 𝑂 𝐼 , then, we have 

𝑋 𝑈 𝑋
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

𝑋

⎝

⎜
⎛

1
𝑛

⋯
1
𝑛

⋮ ⋱ ⋮
1
𝑛

⋯
1
𝑛 ⎠

⎟
⎞

 

                             𝑋 𝐼 𝑋
𝐸
𝑛

 

                             𝑋 𝑂  

Denoting 𝑄 , 𝑃 𝑄 , 𝑅

∑ 𝑋 𝑄 , then, we have 

‖𝑈 𝑈‖ 𝑋
𝐸
𝑛

⎝

⎜
⎛
𝑋

𝐸
𝑁

𝑋
𝐸

𝑁

⎠

⎟
⎞

 

                            𝑋
𝐸
𝑛

𝑄 𝑋 𝑄  

                            𝑋 𝑃 𝑋 𝑄  

For the i-th class, we have 𝑋 𝑃 ∑ 𝑋 𝑄 , 

for the non i-th class, we have ∑ 𝑋 𝑃

∑ 𝑋 𝑄 . 

Choosing the j-th part of the i-th class, we have 

𝑋 𝑃 ∑ 𝑋 𝑄 𝑋 𝑋 𝑄

∑ 𝑋 𝑄  

Separating 𝑋 , we have 𝑋 𝑋 𝑄

∑ 𝑋 𝑄 𝑋 ∑ 𝑋 𝑄

𝑋 𝑄 𝑇 𝑋 𝑄  

Expanding the anyone non i-th class, ∑ 𝑇

𝑋 𝑄 , then, we have 

𝑋 𝑈 ‖𝑈 𝑈‖

𝑋 𝑂 𝑋 𝑃 𝑅

𝑇 𝑋 𝑄  

Calculating the first derivative of 𝑅 𝑋  with respect 
to 𝑋 , we have 

𝜕 𝑋 𝑂

𝜕𝑋
2𝑋 𝑂 𝑂  

𝜕 𝑋 𝑃 𝑅

𝜕𝑋
2 𝑋 𝑃 𝑃 𝑅𝑃  

𝜕 ∑ 𝑇 𝑋 𝑄

𝜕𝑋

 2 𝑋 𝑄 𝑄 𝑇 𝑄  
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