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Abstract: This paper is devoted to exploring the finite-time projective synchronization (FTPS) of
fractional-order complex dynamical networks (FOCDNs) with unknown parameters and external
disturbances. Based on the stability theory of fractional-order differential systems, synchronization
criteria between drive-response networks were obtained and both the uncertain parameters and
external disturbances were identified or conquered simultaneously. Moreover, the upper limit of the
settling-time function was obtained. Finally, a numerical example was given to verify the effectiveness
of the results.
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1. Introduction

A. Previous Works
In recent years, many efforts have been devoted to the synchronization and stability of

complex networks, and the relevant research has yielded beneficial results [1–15]. Various
types of integer-order system synchronizations have been proposed, such as drive-response
synchronization, exponential synchronization, lag synchronization, projective synchro-
nization, cluster synchronization, double compound combination synchronization, hybrid
synchronization, and so on.

Although there are many results about the synchronization of complex networks, most
efforts have been devoted to integer-order networks. In contrast to integer-order networks,
synchronization of FOCDNs has recently become a hot research area, owing to the fact
that fractional-order systems can more correctly capture actual behavior characteristics due
to their memory and genetic properties. Hence, some remarkable results with respect to
the synchronization of FOCDNs have been addressed recently, see [16–21]. In particular,
Li et al. [22] focused on the global exponential synchronization problem for fractional-order
complex dynamical networks with derivative couplings and impulse effects. Li et al. [23]
committed to exploring the finite-time synchronization problem of FOCDNs with time-
varying delay and external interference by means of a discontinuous feedback controller.
In [24], A. Pratap et al. researched finite-time synchronization of FOCDNs with time-
varying delays by using some inequalities. In [25], Zheng et al. studied synchronization
of fractional-order complex-valued coupled neural networks with time varying coupling
strengths. Li et al. [26] researched the problem with respect to finite-time synchronization
for FOCDNs via a hybrid feedback control. Modified projective function synchronization
of non-linear distributive FOCDNs has been investigated in [27]. Yang et al. [28] focused
on the global exponential cluster synchronization of switched FOCDNs with switching
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topology and impulses. The impulsive synchronization of a fractional-order complex-
variable network was investigated in [29].

On the other hand, there are many uncertain factors that affect or destroy the synchro-
nization process of real complex networks, such as delay, unknown system parameters,
uncertain network structures, uncertain external disturbances, and so on. Therefore, the
consideration of unknown system parameters and uncertain external disturbances effects
in the synchronization issues of FOCDNs is more significant [30–32]. Pei et al. [33] studied
both local and global synchronizations of fractional-order nonlinearly coupled complex
networks with time delays and unknown external disturbances. Chen et al. investigated the
parameter identification problem for FOCDNs utilizing the adaptive control technique and
the stability theorem of fractional-order systems in [34]. Li et al. [35] considered finite-time
synchronization and the parameter identification problem of uncertain FOCDNs. In [36]
P. Selvaraj discussed the combined problems of cluster synchronization and disturbance
rejection for a family of FOCDNs subject to coupling delays, unknown uncertainty, and
disturbances. Du [37] used the stability theory of fractional-order differential systems
to investigate the problem of modified function projective synchronization between two
FOCDNd with unknown parameters and unknown bounded external disturbances. Al-
though many synchronizations of FOCDNs with unknown external disturbances and
unknown parameters have been proposed in previous papers, unfortunately, the FTPS
problem of two uncertain FOCDNs with coupling delays has not been mentioned in the
existing literature. Hence, we will address this problem, in this paper.

B. Main Contributions
The significant contributions of this research are outlined below in comparison to

current results:

(1) The problem about FTPS and parameter identification of FOCDNs with coupling
delays and unknown external disturbances was studied in this work. By using the
analysis techniques of fractional calculation, some more practical controllers were
obtained to ensure FTPS between the considered FOCDNs.

(2) The controllers could not only estimate unknown parameters in the networks, but
also overcome unknown bounded disturbances. Simultaneously, the setting time for
synchronization could also be accurately estimated.

This paper is organized as follows. Section 2 introduces the network model and
provides the necessary definitions, lemmas, and hypotheses. Section 3 discusses the FTPS
of FOCDNs. In Section 4, you will find examples and simulations. Finally, in Section 5,
conclusions are formed.

2. Preliminaries

In this section, we review several fundamental definitions and introduce a few lemmas.

Definition 1 ([38]). The Caputo fractional derivative of order q for a function g(t) is defined by

C
t0

Dq
t g(t) =

1
Γ(n− q)

∫ t

t0

g(n)(s)

(t− s)q−n+1 ds,

where Γ(·) is the gamma function, t ≥ t0, n is a positive integer, n− 1 < q < n. Especially, when
0 < q < 1,

C
t0

Dq
t g(t) =

1
Γ(1− q)

∫ t

t0

g′(s)
(t− s)q ds,

also, the Riemann–Liouville (RL) definition of fractional operator is given as

C
t0

Dq
t g(t) =

1
Γ(n− q)

dn

dtn

∫ t

t0

g(s)

(t− s)q−n+1 ds.



Fractal Fract. 2022, 6, 298 3 of 13

Lemma 1. Ref ([39]). For any vectors x, y ∈ Rn there is a positive definite matrix Q ∈ Rn×n and
the following matrix inequality holds:

2xTy ≤ xTQx + yTQ−1y.

Lemma 2. Ref ([40]). If g(t) ∈ C1 ([t0, + ∞), R), then for 0 < ∀q < 1,

C
t0

Dq
t |g(t)| ≤ sign(g(t))C

t0
Dq

t g(t),

holds almost everywhere, where sign(·) denotes the sign function.

Lemma 3. Ref ([41]). Let x(t) ∈ Rn be a differentiable vector function. Then, for any time instant
t ≥ 0,

1
2

C
t0

Dq
t (xT(t)x(t)) ≤ xT(t)C

t0
Dq

t x(t),

where 0 < q < 1 is the fractional order.

Lemma 4. Ref ([23]). Suppose V : D → R is a continuous function, which satisfies the following
conditions:

(1) V(t) is positive definite;
(2) ∃µ ∈ R+such that

C
t0

Dq
t V(t) ≤ −µ, t ∈ [t0,∞),

then V(t) fulfils

V(t) ≤ V(t0)−
µ(t− t0)

q

Γ(1 + q)
, t0 ≤ t ≤ T(t0),

and V(t) ≡ 0 for t ≥ T(t0). Moreover, T(t0) is the settling-time function,

T(t0) = t0 + (
V(t0)Γ(1 + q)

µ
)

1
q
,

and T(t0) is continuous.

Consider the following nonlinear FOCDN consisting of N identical nodes

Dq
∗xi(t) = f (xi) + F(xi)θ + c

N

∑
j=1

bijHxj(t) + c
N

∑
j=1

bijHxj(t− τ), (1)

where xi(t) = (xi1(t), xi2(t), · · ·, xin(t))
T ∈ Rn denotes the state vector of the ith node,

f : Rn → Rn is a continuously differentiable vector function, F : Rn → Rn×m is a function
matrix, θ ∈ Rm is a parameter vector, c and c are the coupling strengths, τ > 0 is an
unknown coupling delay, 0 < q < 1 denotes fractional order. H = diag(ε1, ε2, · · · , εn) > 0
and H = diag(ε1, ε2, · · · , εn) > 0 are inner-coupling matrices. B = (bij)N×N ∈ RN×N

and B = (bij)N×N ∈ RN×N are the zero-row sum of the outer coupling matrices, which

represents the topological structure. bij 6= 0 and bij 6= 0 if there exists a direct link from
node i to node j, otherwise bij = bij = 0.

To realize the FTPS between two FOCDNs, we refer to model in (1) as the drive
network, and our response network is written as

Dq
∗yi = f (yi) + F(yi)θ̂ + c

N

∑
j=1

bijHyj(t) + c
N

∑
j=1

bijHyj(t− τ) + Θi(t) + ui(t), (2)
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where ui(t) is the control input applied to node i, θ̂ is the estimated parameter vector, Θi(t)
is the disturbance, and the other symbols are the same as above.

Definition 2. If there is a matrix Λ such that

lim
t→t1
‖ei(t)‖1 = lim

t→t1
‖yi(t)−Λxi(t)‖1 = lim

t→t1
‖θ̂(t)− θ‖1 = 0, (3)

and ‖yi(t)−Λxi(t)‖1 = ‖θ̂(t)− θ‖1 ≡ 0 if t > t1, t1 is called the setting time, where Λ =
diag(κ1, κ1, · · · , κ1) is an n-order diagonal matrix, κi ∈ R, then the network (1) and (2) are FTPS.

We know from Definition 2

Dq
∗ei(t) = Dq

∗(yi(t)−Λxi(t)) = Dq
∗yi(t)− Dq

∗(Λxi(t))

= f (yi) + F(yi)θ̂ + c
N
∑

j=1
bijHyj(t) + c

N
∑

j=1
bijHyj(t− τ)

+Θi(t) + ui(t)− Dq
∗(Λxi(t))

= F(yi)[θ̂(t)− θ] + c
N
∑

j=1
bijHej(t) + c

N
∑

j=1
bijHej(t− τ) + Θi(t)

+c
N
∑

j=1
bijHΛxj(t) + c

N
∑

j=1
bijHΛxj(t− τ)

−Dq
∗(Λxi(t)) + F(yi)θ + f (yi) + ui(t).

(4)

Assumption 1. ∃v∗i ∈ R+ such that the time-varying disturbances Θi(t) = ϕ(t)sign(ei(t)) are
bounded, i.e., |ϕ(t)| ≤ v∗i < ∞.

3. Main Results

We investigated the FTPS of two complex networks in this part. To achieve synchro-
nization between the two networks, we designed the controllers as follows:

ui(t) = vi(t) + wi(t), (5)

where

vi(t) = −c
N
∑

j=1
bijHΛxj(t)− c

N
∑

j=1
bijHΛxj(t− τ)

+Dq
∗(Λxi(t))− F(yi)θ − f (yi),

wi(t) = −v̂i(t)sign(ei(t))− η̂i(t)ei(t)− ϑisign(ei(t))
− 1

2 sign(ei(t))eT
i (t− τ)ei(t− τ),

Dq
∗ θ̂(t) = −‖FT(yi)‖1eθ(t)− µsign(eθ(t)), (6)

Dq
∗v̂i(t) = qi[sign(ei(t))]

Tsign(ei(t)), (7)

Dq
∗η̂i(t) = ri[sign(ei(t))]

Tei(t). (8)

where eθ(t) = θ̂(t)− θ and qi > 0, ri > 0, ϑi > 0 are arbitrary positive constants.

Theorem 1. Assume that the above assumption, Assumption 1, is tenable. If the following
inequalities hold,

cε
N

∑
j=1

bij − η∗i ≤ 0, (9)

µ = ϑi −
1
2
−
c

2
λmax

(
PT P

)
. (10)
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where ε = max{εi, i = 1, 2, · · · n} then taking appropriate ηi
∗ and ϑi such that the drive networks

(1) and response networks (2) are said to achieve FTPS via the controllers ui(t), FTPS will be
realized in finite-time t1, and the settling time is

t1 = t0 + (
V(t0)Γ(1 + q)

µ
)

1
q
,

where V(t0) =
N
∑

i=1
‖ei(t0)‖1+‖eθ(t0)‖1 +

1
2

N
∑

i=1

1
qi

ṽ2
i (t0)+

1
2

N
∑

i=1

1
ri

η̃2
i (t0), ei(t0), eθ(t0), ṽi(t0),

η̃i(t0) are the initial values of ei(t), eθ(t), ṽi(t), η̃i(t) respectively.

Proof. We construct the Lyapunov function as follows

V(t) =
N

∑
i=1
‖ei(t)‖1+‖eθ(t)‖1 +

1
2

N

∑
i=1

1
qi

ṽ2
i (t)+

1
2

N

∑
i=1

1
ri

η̃2
i (t),

where ṽi(t) = v∗i − v̂i(t), η̃i(t) = η∗i − η̂i(t) �

It follows from Lemmas 2 and 3 that we have

Dq
∗V(t) = Dq

∗(
N
∑

i=1
‖ei(t)‖1+‖eθ(t)‖1 +

1
2

N
∑

i=1

1
qi

ṽ2
i (t)+

1
2

N
∑

i=1

1
ri

η̃2
i (t))

= Dq
∗(

N
∑

i=1

m
∑

k=1
|eik(t)|+

m
∑

h=1

∣∣θ̂h(t)− θh
∣∣) + N

∑
i=1

1
qi

ṽi(t)Dq
∗ṽi(t)

+
N
∑

i=1

1
ri

η̃i(t)Dq
∗η̃i(t)

≤
N
∑

i=1

n
∑

k=1
[sign(eik(t))]

T Dq
∗eik(t) +

m
∑

h=1
[sign(θ̂h(t)− θh)]

T Dq
∗(θ̂h(t)− θh)

+
N
∑

i=1

1
qi

ṽi(t)Dq
∗ṽi(t)+

N
∑

i=1

1
ri

η̃i(t)Dq
∗η̃i(t)

=
N
∑

i=1
[sign(ei(t))]

T Dq
∗ei(t) + [sign(ei(t))]

T Dq
∗(eθ(t))

+
N
∑

i=1

1
qi

ṽi(t)Dq
∗ṽi(t)+

N
∑

i=1

1
ri

η̃i(t)Dq
∗η̃i(t)

=
N
∑

i=1
[sign(ei(t))]

T [F(yi)eθi (t) + c
N
∑

j=1
bijHej(t)

+c
N
∑

j=1
bijHej(t− τ) + Θi(t)− v̂i(t)sign(ei(t))− η̂i(t)ei(t)

− 1
2 sign(ei(t))eT

i (t− τ)ei(t− τ)− ϑisign(ei(t))]
+[(sign(ei(t))]

T [−‖FT(yi)‖1(eθ(t))− µsign(eθ(t))]

−
N
∑

i=1

1
qi
(v∗i − v̂i(t))Dq

∗v̂i(t)−
N
∑

i=1

1
ri
(η∗i − η̂i(t))Dq

∗η̂i(t)



Fractal Fract. 2022, 6, 298 6 of 13

≤
N
∑

i=1
[sign(ei(t))]

T F
(
yi
)
(eθ(t)) + c

N
∑

i=1
[sign(ei(t))]

TbijHej(t)

+c
N
∑

i=1

N
∑

j=1
[sign(ei(t))]

TbijHej(t− τ) +
N
∑

i=1
[sign(ei(t))]

TΘi(t)

−
N
∑

i=1
[sign(ei(t))]

Tv̂i(t)sign(ei(t))−
N
∑

i=1
[sign(ei(t))]

T η̂i(t)ei(t)

−
N
∑

i=1
[sign(ei(t))]

T 1
2 sign(ei(t))e

T
i (t− τ)ei(t− τ)

−
N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))− [sign(ei(t))]
T‖FT(yi

)
‖1(eθ(t))

−µ[sign(ei(t))]
Tsign(eθ(t))−

N
∑

i=1

1
qi
(v∗i − v̂i(t))Dq

∗v̂i(t)

−
N
∑

i=1

1
ri
(η∗i − η̂i(t))Dq

∗η̂i(t)

≤ ‖F(yi)‖1‖eθ(t)‖1 + c
N
∑

i=1

N
∑

j=1
[sign(ei(t))]

TbijHej(t)

+c
N
∑

i=1

N
∑

j=1
[sign(ei(t))]

TbijHej(t− τ) +
N
∑

i=1
[sign(ei(t))]

TΘi(t)

−
N
∑

i=1
[sign(ei(t))]

Tv̂i(t)sign(ei(t))−
N
∑

i=1
[sign(ei(t))]

T η̂i(t)ei(t)

− 1
2

N
∑

i=1
eT

i (t− τ)ei(t− τ)−
N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))

−[sign(ei(t))]
T‖FT(yi)‖1(eθ(t))− µ[sign(ei(t))]

Tsign(eθ(t))

−
N
∑

i=1

1
qi
(v∗i − v̂i(t))Dq

∗v̂i(t)−
N
∑

i=1

1
ri
(η∗i − η̂i(t))Dq

∗η̂i(t)

= c
N
∑

i=1

N
∑

j=1
bij[sign(ei(t))]

T Hej(t) + c
N
∑

i=1

N
∑

j=1
bij[sign(ei(t))]

T Hej(t− τ)

+
N
∑

i=1
[sign(ei(t))]

T ϕ(t)sign(ei(t))− 1
2

N
∑

i=1
eT

i (t− τ)ei(t− τ)

−
N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))− µ[sign(ei(t))]
Tsign(eθ(t))

−
N
∑

i=1
[sign(ei(t))]

Tv∗i sign(ei(t))−
N
∑

i=1
η∗i [sign(ei(t))]

Tei(t)

≤ c
N
∑

i=1

N
∑

j=1
bij[sign(ei(t))]

T Hej(t) + c
N
∑

i=1

N
∑

j=1
bij[sign(ei(t))]

T Hej(t− τ)

− 1
2

N
∑

i=1
eT

i (t− τ)ei(t− τ)−
N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))

−µ[sign(ei(t))]
Tsign(eθ(t))− η∗i

N
∑

i=1
[sign(ei(t))]

Tei(t).

Denote

Dq
∗V1(t) = c

N

∑
i=1

N

∑
j=1

[sign(e(t))]TbijHej(t− τ).
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Using Lemma 1, we gain

Dq
∗V1(t) = c

N
∑

i=1

N
∑

j=1
[sign(ei(t))]

TbijHej(t− τ)

= [sign(ei(t))]
TcPe(t− τ)

≤ 1
2 c2[sign(ei(t))]

T PT Psign(e(t)) + 1
2 eT(t− τ)e(t− τ)

≤ 1
2 c2λmax

(
PT P

)
[sign(ei(t))]

Tsign(e(t)) + 1
2 eT(t− τ)e(t− τ)

= 1
2 c2λmax(PT P)

N
∑

i=1
[sign(ei(t))]

Tsign(ei(t))

+ 1
2

N
∑

i=1
eT

i (t− τ)ei(t− τ),

where P = (B⊗ H), and ⊗ represents the Kronecker product. We can derive that

Dq
∗V(t) ≤ c

N
∑

i=1

N
∑

j=1
bij[sign(ei(t))]

T Hej(t)−
N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))

+ 1
2 c2λmax(PT P)

N
∑

i=1
[sign(ei(t))]

Tsign(ei(t))

−µ[sign(ei(t))]
Tsign(eθ(t))

−η∗i
N
∑

i=1
[sign(ei(t))]

Tei(t)

≤ c
N
∑

i=1

N
∑

j=1
bijε
∣∣ej(t)

∣∣+ 1
2 c2λmax(PT P)

N
∑

i=1
[sign(ei(t))]

Tsign(ei(t))

−η∗i
N
∑

i=1
|ei(t)| −

N
∑

i=1
[sign(ei(t))]

Tϑisign(ei(t))

−µ[sign(ei(t))]
Tsign(eθ(t))

≤
N
∑

i=1
(cε

N
∑

j=1
bij − η∗i )|ei(t)|

+[ 1
2 c2λmax(PT P)− ϑi]

N
∑

i=1
[sign(ei(t))]

Tsign(ei(t))

−µ[sign(ei(t))]
Tsign(eθ(t))

≤ −µ
N
∑

i=1
[sign(ei(t))]

Tsign(ei(t))

−µ[sign(ei(t))]
Tsign(eθ(t))

= −µ(
N
∑

i=1
ξi +

m
∑

j=1
ζ j),

where ξi = sign(ei(t))
Tsign(ei(t)) and ζ j = (sign(θ̂j(t)− θj))

Tsign(θ̂j(t) − θj). We can
easily derive that ξi ≥ 1 or ζi ≥ 1 if there exists j such that eij(t) 6= 0 or θ̂j(t)− θj 6= 0 for
any t ≥ t0. Thus, we have

Dq
∗V(t) ≤ −µ.

Finally, by Lemma 4,

V(t) ≤ V(t0)−
µ(t− t0)

q

Γ(1 + q)
, t0 ≤ t ≤ t1,

and V(t) ≡ 0, for t ≥ t1. The upper bound of settling time function is

t1 = t0 + (
V(t0)Γ(1 + q)

µ
)

1
q
.
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We can conclude that V(t) = 0 for arbitrary t > t1 which means that ei(t) = 0 for
t > t1. According to Definition 2, the networks (1) and (2) can achieve FTPS in finite time
with controller (5). This theorem has been proved.

Remark 1. Ref. [37] investigated the problem of modified function projective Synchronization
between two FOCDNs with unknown parameters and unknown bounded external disturbances.
Unfortunately, the FTPS of two uncertain FOCDNs with coupling delay was not mentioned in [37].
So, compared with the problem in the literature [37], the study was well worth doing.

4. Illustrative Examples

In this section, we present an example to demonstrate the veracity of our findings.
Consider a complex network with five nodes, where each node’s dynamical equation is
represented by the following fractional-order Lorenz system:

Dq
∗x1 = α(x2 − x1)

Dq
∗x2 = (β− x3)x1 − x2
Dq
∗x3 = x1x2 − γx3

=

 0
−x3x1 − x2

x1x2


︸ ︷︷ ︸

f (xi)

+

x2 − x1 0 0
0 x1 0
0 0 −x3


︸ ︷︷ ︸

F(xi)

α
β
γ


︸ ︷︷ ︸

θ

,

where x1, x2, x3 are state variables, and α = 10, β = 28, γ = 8
3 . Figure 1 depicts the chaotic

dynamical behavior of the fractional-order Lorenz system in which the initial states are
x(0) = [1, 1, 1] and q1 = q2 = q3 = 0.993.
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Figure 1. Chaotic attractor of fractional-order Lorenz system.

Remark 2. In this example, we take the FOCDN in (1) and (2) with five nodes consisting of the
fractional-order Lorenz system, respectively. Each node’s dynamical equation is represented by the
fractional-order Lorenz system, if there are not any non-differentiable or vanishing points in the
procedure of simulation, it satisfies Lemma 2.



Fractal Fract. 2022, 6, 298 9 of 13

The controllers ui(t) can be designed by Equation (5). ϕ(t) = 0.7 sin(t) cos(t), c = c =

2, τ = 0.1, H = H =

1 0 0
0 1 0
0 0 1

, the coupling configuration matrices B = B = (bij) are

chosen to be

B = B =


−1 0 0 0 1
0 −2 1 0 1
1 0 −3 1 1
0 1 1 −2 0
1 0 1 0 −2

,

All the initial conditions are chosen as follows: x1(0) = [−2.5, 2.5,−1.5],
x2(0) = [2.5, 2.5,−1.1], x3(0) = [2.7, 2.9, 2.1], x4(0) = [2.3, 2.3, 1.8],
x5(0) = [−1.5,−2.5,−1.7], y1(0) = [1.5, 2.7, 1.9], y2(0) = [2.6, 2.1, 1.2],
y3(0) = [−2.3,−2.3,−1], y4(0) = [−2.9,−2.3,−1.9], y5(0) = [1.9, 1.9, 1], θ1(0) = [2, 18, 0.5],
θ2(0) = [2, 18, 0.9], θ3(0) = [2, 18, 0.9], θ4(0) = [2, 18, 0.8], θ5(0) = [2, 18, 0.4], and
qi = 0.08, γi = 30. Λ = diag(2, 1, 2).

By performing simple calculations

t1 = t0 +
(

V(t0)Γ(1+q)
µ

) 1
q

= 0 +
(

48.2854×Γ(1+0.993)
31.9816

) 1
0.993

= 1.5097,

within a finite time interval, the networks in (2) can synchronize with the networks in (1).
In Figure 2, the temporal evolution of the synchronization error shows that synchronization
was attained at 0.53. Figures 3–5 show the unknown parameter vector’s identification
trajectory. We can see from Figures 3–5 αi(t), βi(t) that γi(t) can be correctly identified in a
finite time span, this further confirmed Theorem 1.
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Figure 5. Identification for unknown parameters, γi(t).

Remark 3. From Figures 2–5, we could see that the networks in (2) could synchronize with
the networks in (1) within a finite time interval. Not only were unknown parameters of the
networks estimated, but unknown bounded disturbances could also be simultaneously conquered
by the proposed sufficient conditions and controllers. This further verified the effectiveness of the
obtained results.

5. Conclusions

The FTPS problem of FOCDNs with uncertainties was addressed in this research.
First, for FTPS of two FOCDNs with coupling delays, new controllers were developed.
Second, the upper bound of the settling-time function was determined using the stability
theory of fractional-order differential systems, the unknown parameters of the networks
were estimated, and unknown bounded disturbances were defeated using the proposed
controllers. Finally, a numerical simulation example was used to test the usefulness of the
acquired conclusions. In future work, we hope to further investigate the cluster finite-time
projective synchronization problem of fractional-order complex dynamical networks with
different orders and disturbances.
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