
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2022 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A Mobile Robot Path Planning Algorithm Based
on Improved A* Algorithm and Dynamic
Window Approach

YONGGANG LI1, RENCAI JIN 3, XIANGRONG XU1, (Member, IEEE), YUANDI QIAN2,3，

HAIYAN WANG4, SHANSHAN XU4, AND ZHIXIONG WANG5
1 School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China
2 School of Electrical and Information Engineering, Anhui University of Technology, Maanshan 243032, China
3 China MCC17 Group Co., LTD., Maanshan 243000, China
4 School of Osaka Medical Engineering, Maanshan University, Maanshan 243032, China
5 School of Medicine, Osaka University, Osaka 565-0871, Japan

Corresponding authors: Rencai Jin (1195154491@qq.com) and Xiangrong Xu (xuxr@ahut.edu.cn)

This work was supported by the Anhui Provincial Natural Science Foundation under Grant 2108085MF225, the Open Project of China International Science

and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment under Grant ISTC2021KF07, and the China

National Key Research and Development Project (2017YFE0113200).

ABSTRACT The traditional A* algorithm has several problems in practical applications, such as many path

turning points, redundant nodes, and long running time. it is sometimes impossible to plan the theoretical

optimal route. To solve the above problem, this paper presents an optimized A* algorithm, the adaptive

adjustment step algorithm and the three-time Bezier curve are used to solve the problems of many turning

points, large turning angles, and long running time in the search path. Moreover, aiming at the path planning

problem of mobile robots facing dynamic obstacle interference in complex environments, an algorithm that

integrates the improved A* algorithm with the dynamic window method is proposed, which not only solves

the shortcomings of the A* algorithm in which the dynamic obstacles cannot be avoided, but also prevents

the mobile robot from falling into local optimization. The results show that the fusion algorithm of the

improved A* algorithm and the dynamic window method with the traditional A* algorithm reduces the

number of turns by 50% and the path length by 3.62% compared with the original algorithm. In the same

environment, compared with the traditional algorithm, the hybrid algorithm in this paper reduces the average

time consumption by 10.27%, the number of path inflection points by 57.14%, and the accuracy is higher

than 33.33%, which is more effective in complex dynamic environments.

INDEX TERMS Path planning, hybrid algorithms, improved A* algorithm, improved DWA

I. INTRODUCTION

In recent years, mobile robots have received widespread

attention from all over the world, and because of their

autonomous and flexible characteristics, they are widely

used in many important fields such as national defense

science and technology, industrial manufacturing, life

services, medical and health. With the continuous

popularization of mobile robots, path planning problems

have become the primary problems that need to be solved

urgently, and the driving efficiency of robots and whether

the travel route is optimal will seriously affect the walking

of robots [1-3].

According to the different working environments where

path planning is applicable, there are global static path

planning and local dynamic path planning, of which global

static path planning is only suitable for solving the path

planning problem of moving robots in the static environment

known for the obstacles in the surrounding environment, and

the common methods are the Dijkstra algorithm, fast random

tree search algorithm, A* algorithm [4-5], etc.; local

dynamic path planning solves the path planning problem of

mobile robots known in the environment within a range. The

dynamic window approach, the ant colony algorithm, and

other methods are common. Among them, Dijkstra is a

breadth-first search algorithm. The search mode is relatively

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

simple, although it can achieve global path planning; in the

case of a more complex environment, the algorithm

calculates more nodes, occupies more memory, the search is

slow and inefficient, and it is difficult to plan a smooth and

safe optimal path in a short period of time [6]. The fast

random tree search algorithm is a sample-based search

algorithm that has fast search speed and strong ability and

occupies an important position in high-dimensional

environments, but the search accuracy of the algorithm is

low, the path smoothness is poor, and it is difficult to plan

the optimal path [7]. The standard A* algorithm is based on

the Dijkstra algorithm to introduce heuristic functions.

Through the evaluation of the node generation value, the

optimal path is finally planned. Because of its fast

calculation speed, path optimization and other advantages, it

is widely used in global path planning.

A vast number of experts have researched the classic A*

algorithm because of its flaws, such as too many inflection

points and node redundancy [8-10]. The heuristic function of

the standard A* algorithm is improved by using the

Manhattan distance-Euclidean distance hybrid method,

which improves the search efficiency and saves search time

[11]. The two-way algorithm is used to search in both

positive and negative directions at the same time to improve

the search efficiency [12]. The dynamic window method is a

local dynamic path planning algorithm. The path is relatively

smooth, but it is easy to fall into the local optimal, and it is

impossible to reach the target position according to the

global optimal path [13-15]. The ant colony algorithm is

robust and easy to combine with other algorithms, but

converges slowly and takes longer search times [16-18].

In the face of complex and dynamic environments, relying

only on the A* algorithm is not enough. The task cannot be

completed with a single global or local path planning.

Considering the advantages and disadvantages of these

algorithms, global path planning and local path planning are

combined. The literature [19-22] proposes that a hybrid

algorithm combining the A* algorithm and the artificial

potential field method realizes the path planning problem in

the dynamic environment, but the artificial potential field

method cannot better plan the local optimal path, which

reduces the overall efficiency [23-24]. Farhad Bayat deals

with the mobile robot path planning problem in the presence

of scattered obstacles in a visually known environment. So

it is practical and can be applied to static and dynamic

environments [25].

None of the above algorithms can solve the problems of

traditional A* algorithm and dynamic window method

programming path inflection, low smoothness, and easy fall

into local optimization. Therefore, this paper proposes an

improved A* and dynamic window approach method fusion

algorithm, using the improved A* algorithm to plan the

global path, and then combining it with the improved

dynamic window method to complete the local path planning,

to achieve real-time dynamic obstacle avoidance, and finally

plan the safe trajectory with optimal path and high

smoothness.

II. ENVIRONMENT MODEL DESCRIPTION

A. RASTER MODELING

Create an environment model in route planning using a grid

method that divides the environment space into equal,

continuous, disjoint grids of a defined granularity. According

to the actual environmental information in the route planning,

the grids are set as free and occupied, where the free grid is

represented by white and the occupied grid is represented by

black. The coordinate origin is chosen in the lower left corner

of the two-dimensional plane Cartesian coordinate system; the

horizontal axis of the grid is represented by the x-axis, and the

values are incremented sequentially from left to right; the

vertical axis is represented by the y-axis, the values are

incremented sequentially from bottom to top, and the specific

location of each raster in the raster map is represented by

(,),(, 1,2,3, ,)i ip x y i j n=  .

FIGURE 1. Environment model raster.

B. THE RASTER GRAIN SIZE IS DETERMINED

The basic element of the grid method is that the grid

granularity is the smallest. If the grid particles are too small,

the path search process will be more difficult, consume a lot

of computing resources and time, and will not achieve the

expected goal; if the grid particles are too large, the

environment model will be different from the real

environment. The path search algorithm will be unable to

avoid obstacles or even finish the desired path planning if it is

too vast. Therefore, grid granularity is extremely important for

environmental model establishment and path planning.

III. A* ALGORITHM IMPROVEMENTS

A. TRADITIONAL A* ALGORITHM

The A* algorithm is a heuristic path exploration algorithm that

enables global path planning, inherits the principles of the

classic Dijkstra algorithm and the BFS algorithm, and

improves the shortcomings of slower search speeds. The A*

algorithm sets the evaluation function, searches around from

the starting point, selects the node with the smallest total

generation value as the next extension node, and stops the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

search until the end point, completing the search for the

optimal path. The cost function is

 () () ()f n g n h n= + (1)

Where: n represents the current node; ()f n is the cost

function of the current node; ()g n is the actual generation

value of the mobile robot from the current node to the target

node n ; ()h n is the estimated generation value that will be

consumed from the current node to the target node. Common

methods of calculating generation value are Manhattan

distance, Euclidean distance, and Chebyshev distance. This

article selects Euclidean distance as the ()h n cost function,

and its calculation formula is expressed as

1

2 2 2() [() ()]n m n mh n x x y y= − + − (2)

Where: (,)n nx y

 represents the current path node coordinates,

(,)m mx y represents the target node coordinates.

The following is a simple proof of the convergence optimal

point of the A* algorithm.

Assumption: The secondary advantage
2G is a node

generated in the open table, n is a node (it is the node with

the closest distance to the optimal point G).

Proof:
2 2() ()f G g G= because

2() 0h G = ;

2() ()g G g G because
2G is the

secondary advantage;

() ()f G g G= because () 0h G = ;

2() ()f G f G from the above;

() ()h n h n


 basic requirement;

() () () ()g n h n g n h n


+  +

() ()f n f G

Remark: If there is an optimal point, then the A* algorithm

will always find the optimal point first.

The traditional A* algorithm mainly searches for four

domains, as shown in Figure 2a, and Eight Neighborhood

Search as shown in Figure 2b, and the search neighborhood

indicates the direction in which the robot can move. In Figure

2, the gray dot represents the current node position of the robot,

and the solid arrow represents the robot's search direction. Use

four neighborhoods to search for / 2 corners per turn and

eight neighborhoods to search for / 4 corners per turn.

When there are more search neighborhoods, the direction of

the search becomes more important, and the overall length of

the planned path is smaller, but the search is less efficient.

a) Four-neighborhood search b) Eight neighborhood searches

FIGURE 2. Environment model raster.

The flow chart of the A* algorithm in the actual path search

process is shown in Figure 3. Traditional A* algorithms are

confined to finding a single optimal path from beginning to

end by first splitting the surrounding search space into

measurable nodes. The A* algorithm creates two lists when

executed; the open list and the closed list. Unexpanded nodes

are placed in the open list, and expanded nodes are stored in

the closed list. When adding a node to the Open list, it is added

directly to the end, regardless of the value. On each expansion,

the sizes of all the nodes in the Open list are compared; the

node with the smallest value is obtained; the node with the

smallest value is removed from it and added to the Close list.

If these nodes are not in the Open list, add them all to the Open

list and choose the smallest node as the current node, in which

case continue searching for the remaining nodes. If these

extended nodes are in the Open list, use the current node as

the parent node, use the cost function to evaluate, recalculate

the value, loop the above steps until the target is found, and

finally arrange the nodes in the Open list in reverse order to

get the optimal path.

n is the end point G?

Yes

No

Yes

No

Create Open list, add node S, create

Closed list, leave empty

Open list is empty?

Select the node n with

smallest ƒ(n) in the Open list

Obtain subs of all

subsequent nodes of n

Add to the Closed List

Add to the Closed List

Reverse search for

the preceding node

Generate the optimal path

Subs is empty?
Yes

No

Extract a node sub from subs

Solve for the length of the

path from n to sub

Sub is in the Open

list or Closed list?

Yes

G(sub) < g(sub)?

Delete history sub
Solve sub nodes

ƒ(sub)=G(sub)+h(sub)

Yes

No

Start

Failure

Success

FIGURE 3. A* algorithm flowchart.

B. ADAPTIVE ADJUSTMENT STEP SIZE ALGORITHM

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

In the A* algorithm, the step length is one of the important

parameters affecting the mobile robot, and the fixed step size

makes the mobile robot have defects such as low safety

performance, poor obstacle avoidance effect and insufficient

flexibility. Therefore, this paper proposes an adaptive

adjustment step algorithm, when there are more obstacles in

the surrounding environment, reducing the step size increases

the number of nodes per search, and the search path is safer

and more detailed; when there are fewer obstacles in the

surrounding environment, increasing the step size speeds up

and improves the efficiency of search. According to the

distribution of obstacles, the step size is automatically

adjusted to enhance the flexibility of the robot.
The distribution of obstacles in the surrounding

environment is split into two groups when considering the

elements impacting step size: whether they are dynamic

barriers or not, and the quantity and position distribution of

obstacles within a specific range.

FIGURE 4. Robot movement direction and obstacle threat weight
diagram.

In Figure 4, the robot uses eight-neighborhood search, and

the trolley model replaces the mobile robot, which has eight

directions of motion. The number of static obstacles in the

dark red area in the figure is
1x , the number of static obstacles

in the light red area is
2x , the number of dynamic obstacles in

the direction of motion is d , and the closer to the trolley

model, the greater the threat of obstacles in the area to the

mobile robot, so the threat function
1 2(,)f x x is defined as:

 1 1 2 21 2

1
0

(,)

1 0

d
k x k x cf x x

d


=

+ += 
 

 (3)

Where:
1 2,k k represents the threat factor of a static obstacle,

c represents a self-adjusting constant,
1 (1,2)k  ,

2 (0.5,1)k  ,

(0,1)c . Then the adaptive adjustment step is

 1 2 max

1 2 min

(,) 0

(,) 0

f x x l d
l

f x x l d

 =
= 

 
 (4)

Where:
min max min max, 0.1 , 0.2l l l l m l m  = = .

Figures 5 and 6 show the path planning results using the

traditional A* algorithm and the adaptive adjustment step

algorithm respectively. Table Ⅰ shows the differences in

elapsed time, number of nodes, elapsed time reduction rate,

and node reduction rate before and after the method was

improved.

We can see from these two graphs that the enhanced A*

algorithm significantly decreases the number of search nodes.

The path before and after the algorithm improvement is

studied using the running time, number of nodes, and running

time reduction rate as performance indicators to further

validate the effect of the adaptive adjustment step length

method.

-2 0 2 4 6 8 10
x/m

0

2

4

6

8

10

y/
m

Obstacles

Start

Target

Path

FIGURE 5. Path planning results of the traditional A* algorithm.

-2 0 2 4 6 8 10
0

2

4

6

8

10

x/m

y/
m

Obstacles

Start

Target

Path

FIGURE 6. Path planning results of adaptive adjustment step algorithm.

TABLE I

COMPARISON OF PERFORMANCE INDICATORS BEFORE AND AFTER

ALGORITHM OPTIMIZATION

Parameter
names

The

elapsed
time

Number of
nodes

Elapsed

time
reduction

rate

Node

reduction
rate

Traditional A*
algorithm

0.729s 18 － －

Adaptive

regulation step
algorithm

0.632s 14 13.31% 33.3%

The performance indices of the traditional A* algorithm

and the adaptive step-size adjustment technique are compared

in Table I. The improved algorithm decreases the number of

nodes by 33.3% and the running time by 13.31%, resulting in

better operational efficiency.

C. ARC OPTIMIZATION

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

The traditional A* algorithm has many path inflection points,

which makes it difficult for the robot to walk, and also poses

a huge challenge to the load of the motor. In order to satisfy

the nonholonomic constraints of mobile robots, it is necessary

to smooth the motion trajectory. The trajectory smoothing

process can reduce the frequency and amplitude of motor start

and stop, and thus increase the service life and safety of the

robot. Therefore, this paper uses the cubic Bezier curve to

optimize the trajectory and compare it with the original

trajectory curve.

P1 P2

P3P0

FIGURE 7. Cubic Bezier curves.

The Bezier curve is mainly applied to the smooth

processing of two-dimensional plane line segments, as shown

in Figure 7. The figure is composed of (0,1,2,3)iP i = four

nodes and connecting line segments between them, and
0P is

the starting point,
3P is the end point, and

iP is the control

point. Taking ()B t to represent the coordinates at time

[0,1]t , the cubic Bezier curve formula is:

 3 2 2 3

0 1 2 3() (1) 3 (1) 3 (1)B t t P t t P t t P t P= − + − + − + (5)

—— Original path —— Bessel curve

0 5 10 15 20
0

5

10

15

20

FIGURE 8. Bezier curve path optimization path diagram.

Figure 8 shows the Bezier curve smoothing the entire path,

and the peaks at the corners are optimized to ensure the robot

travels smoothly during the operation. The total steering angle

and path length are significantly lower than the traditional

curve, reducing the loss of the motor and avoiding the

unbalance of the robot itself. and satisfy the motion constraints

of the mobile robot.

IV. Improved Dynamic Window Approach Method

At present, most robots perceive the surrounding environment

based on multi-sensor fusion technology, such as depth

camera and laser radar, and then use local path planning

algorithms to complete tasks such as avoiding obstacles and

chasing dynamic targets according to the obtained information.

The traditional dynamic window algorithm lacks the guidance

of global path planning, and can only plan the paths of

obstacles in the environment in real time. However, in a multi-

obstacle environment, the robot will fall into narrow channel

oscillation due to the lack of guidance from global planning,

resulting in a larger global path and being unable to quickly

plan the optimal path.

Dynamic Window Approach (DWA) is a velocity-based

local planner that transforms the path planning problem into a

constrained optimization problem in velocity vector space.

The purpose of the dynamic window method is to sample

multiple sets of data in a two-dimensional space and simulate

the trajectory of the robot at this speed. To finish the local

route planning, the ideal trajectory speed is chosen using the

designed evaluation function.

FIGURE 9. Schematic diagram of DWA method.

DWA is shown in Figure 9, model robot, obstacles in grey

rectangle represent environment, each curve is forecast to get

multiple sets of line trajectory, dotted line means the robot's

trajectory and obstacle collision will occur, so the path is not

the optimal trajectory, selection of the optimal trajectory only

requires evaluating the rest of the track, and finally, the

evaluation function's optimal safety trajectory is selected.

A. KINEMATIC MODEL

In order to avoid obstacles in real time, the velocity of the

robot must be sampled in space to simulate its trajectory.

Generally speaking, the motion state of the robot is measured

by the linear velocity and angular velocity. Suppose the

velocity of the robot per unit time is (,)t tv  , and then select

the optimal trajectory from all the trajectory through the

evaluation function. Within a unit time t interval, the arc-

shaped trajectory can be regarded as a linear motion, and the

kinematic model is:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

cos sin

sin cos

x t y t

x t y t

t t t

x x v t v t

y y v t v t

t

 

 

  

= +  − 


= +  − 
 = + 

 (6)

Define the pose [, , ,]
T

x y  =q of the robot in the

environment, input its own linear velocity and angular

velocity [,]
T

v w=u . The schematic diagram and parameters of

the model are shown in Figure 10 and Table Ⅱ.

FIGURE 10. Mobile robot kinematics model.

TABLE Ⅱ
PARAMETERS AND MEANINGS

Parameter Meaning

v Line speed
 Front wheel angular velocity

u Input (including ,v )

q Pose

 Angle between the longitudinal and x axis

 Front wheel steering angle

 L Body length

According to the geometric relationship, the angular

velocity can be obtained  :

tan

v
L


 = (7)

so

cos() 0

sin() 0

tan
0

0 1

L







 
 
 

=  
 
 
  

q u (8)

In more detail:

cos() 0

sin() 0

tan
0

0 1

x

y v

L






 



 
   
       =        
   
    

 (9)

B. SPEED SAMPLING

There are infinite groups (,)v  of robots in the velocity space,

and the range of sampling velocity is constrained according to

the actual situation.

The speed constraint of the robot under the influence of

motor performance is:

min max min max{(,) | [,], [,]}lv v v v v   =   (10)

The speed range that can be achieved under the acceleration

of the robot under the limitation of the motor driving force is:

{(,) | [,],

[,]}

d c d c d

c d c d

v v v v a t v a t

t t



    

=  −  + 

 −  + 
 (11)

Where: ,c cv  indicates the current linear velocity and angular

velocity of the robot; ,a da a indicates the upper and lower

limits of linear acceleration of the robot; ,a d  indicates the

upper and lower limits of angular acceleration of the robot.

When performing local path planning, the robot must

maintain a safe distance to protect its own safety. As a result,

the robot must come to a halt before colliding with the

obstruction; when the speed is decreased to zero, the speed

space is:

 1/2 1/2

0 {(,) | [2 (,)] [2 (,)] }d dV v v dist v a dist v    =  ， (12)

Where: (,)dist v  indicates the nearest distance between the

robot and the obstacle.

C. EVALUATION FUNCTION

In the local path planning of the robot, there are several

sampling velocities available in the velocity space, so it is

necessary to design an evaluation function to select the

optimal trajectory. The parameters considered are azimuth,

velocity and distance respectively. The designed evaluation

function is:

(, [(,) (,)

(,) (,)]

G v head v stob v

dyob v velo v

     

   

=  + 

+  + 

）
 (13)

Where, (,)head v  represents the azimuth evaluation function

of the robot, and represents the angular deviation between the

end direction of the current simulated trajectory and the global

path; (,)stob v  represents the vertical distance between the

current simulated trajectory and the static obstacle; (,)dyob v 

represents the vertical distance between the current simulated

trajectory and the dynamic obstacle; Evaluation function

(,)velo v  representing the current simulation speed;  is

smoothing coefficient, and , , ,    are four-term weighting

coefficients. Finally, the trajectory with the (,)G v  smallest

value is taken as the optimal trajectory.

In order to meet the requirements of trajectory smoothness,

(,)head v  , (,)stob v  , (,)dyob v  , (,)velo v  needs to be

normalized and then added. That is, each item is divided by

the sum of each item:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

1

()
_ ()

()
n

i

head i
normal head i

head i
=

=


 (14)

1

()
_ ()

()
n

i

stob i
normal stob i

stob i
=

=


 (15)

1

()
_ ()

()
n

i

dyob i
normal dyob i

dyob i
=

=


 (16)

1

()
_ ()

()
n

i

velo i
normal velo i

velo i
=

=


 (17)

Where, n is all the sampled trajectory points, i is the current

trajectory point to be evaluated. The four weights of the

objective function (,)G v  are all necessary and finally

normalized. By continuously adjusting the weight coefficient

and maximizing the objective function (,)G v  , the robot can

avoid obstacles at the fastest speed under the constraints, and

at the same time move towards the target position. Although

the obstacle avoidance performance of the DWA algorithm

depends on the weighting parameter , , ,    , the algorithm

is still stable even if the value of the weighting parameter

changes slightly. We found that , , ,    values of 0.7, 0.7,

0.1 and 0.1 worked well. A higher weight of the target heading

parameter makes the robot very close to the obstacle. Choose

appropriate parameters according to the environment. In

limited barrier situations, a greater target heading weight is

preferable, while in a large environment, a lower target

heading weight may be preferable.

D. DWA SIMULATION VERIFICATION

The robot will encounter different types of obstacles in the

path search, namely static obstacles and dynamic obstacles. In

order to verify the robot path planning in response to the

effectiveness of the dynamic obstacles, the simulation in

MATLAB R2020a validation, grids are built environment

setting, starting point and goal, respectively, in the presence of

dynamic obstacles in both cases the influence of simulation,

and compare the results, verify the algorithm on the merit of

trying to avoid dynamic obstacles.

Figure 11 shows the algorithm simulation diagram of DWA.

The starting point is (1,1) and the ending point is (9,9). The

robot avoids all static obstacles and reaches the goal location

to finish the simulation of the static environment when the

environment is packed with static obstacles. When a dynamic

obstacle appears in the environment and is located on the

originally planned path, the robot will change its original

trajectory. The robot successfully avoids the dynamic

impediment and reaches the target spot, as indicated by the

solid blue line in the picture.

0 2 4 6 8
0

2

4

6

8

10

x/ m
10

No dynamic obstacle path
Target point
Dynamic obstacle path
Static obstacle
Dynamic obstacle

y
/m

FIGURE 11. DWA algorithm simulation diagram

When carrying out local path planning, DWA can complete

the avoidance of dynamic and static barriers, but it is simple

to fall into local optimum and fail to reach the goal location.

As shown in Figure 12, when the starting point is set as (1,0)

and the end point is set as (10,10), it is easy to choose to go

around from the left when using the DWA algorithm. At this

time, it just falls into the local minimum point, resulting in

path planning failure and failure to reach the target point. This

is because when the robot is carrying out local path planning,

it only deals with the information of surrounding obstacles

each time and lacks the concept of global path planning. As a

result, it reaches a dead end of impediments, resulting in path

planning failure and failure to reach the target site.

-2 0 2 4 6 8 10
0

2

4

6

8

10

x/m

y/
m

Obstacles

Start

Target

Path

FIGURE 12. DWA algorithm falls into local optimum.

V. HYBRID ALGORITHM

According to the above analysis, robot path planning should

consider the interference of dynamic obstacles as well as static

obstacles. The global path planning of the A* algorithm only

considers static obstacles in the surrounding environment and

does not consider the influence of dynamic obstacles, which

may lead to collisions between robots and dynamic obstacles.

However, the local path planning of the DWA algorithm only

considers the obstacles in the surrounding environment

without the awareness of global path planning, which results

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

in the robot falling into the local optimal and failing to reach

the target point. To solve this problem, the proposed fusion

algorithm combining the improved A* algorithm and the

DWA algorithm can not only ensure the avoidance of

obstacles but also ensure the smoothness and optimality of

path planning.

Start and
target position

Global map

Global
optimal path

Local map

Improved A*
algorithm

DWA
algorithm

(v, w)

(x, y)
Coordinate
information

Mobile robot

Global motion
path planning

Local motion
path planning

FIGURE 13. Hybrid algorithm planning diagram.

As shown in Figure 13, the improved A * algorithm and

DWA algorithm combined with a mixture of path planning

system design, mainly includes global path planning and local

path planning of two parts, using the improved A * algorithm

for global path planning, and then according to the

surrounding environment sensors information to update the

local maps, combined with planning out the global path

generation of target. The DWA method is then utilized to

complete local motion path planning, allowing the robot to

avoid dynamic impediments, reach the local goal point, update

the route continuously, and eventually reach the target

location.

Globally
planned pathNext local

target point

Target

Start

Local path
planning

Last local
target point

FIGURE 14. Schematic diagram of local target point.

The temporary goal points of each stage of the optimized

dynamic window technique are retrieved from the key points

of the global path planned by the enhanced A* algorithm. The

combination of the improved A* algorithm and the DWA

algorithm can solve the defects of their respective algorithms

and avoid dynamic obstacles effectively in real time while

completing the global path planning. As shown in Figure 14,

the local path planning algorithm combined with the global

path generates the local target point, and the global target point

is finally reached after the continuous update of the last local

target point and the next local target point. The fusion

algorithm not only ensures the optimal global path, but also

ensures good obstacle avoidance and movement effects in

local planning.

In order to verify the feasibility and effectiveness of the path

planning of the above mixed algorithm, The local optimum

state of the DWA algorithm is straightforward to achieve. The

simulation conditions are the same, and related simulations are

performed. The starting point is still set to (1, 0), and the end

point is set (10, 10). The orange path in the figure is the global

path planning track by using the traditional A * algorithm. On

this basis, the DWA algorithm is integrated, the search results

of the mixing algorithm are the red path in the figure. The final

result is shown in Figure 15.

-2 0 2 4 6 8 10
0

2

4

6

8

10

x/m

y/
m

Obstacles

Start Target

Tradit ional path

Improved path

FIGURE 15. Path simulation diagram of hybrid algorithm.

TABLE Ⅲ

PERFORMANCE COMPARISON OF EACH ALGORITHM

Algorithm type
Number of

turning points
Smooth

Avoid

dynamic

obstacles

Path
length /m

Traditional A*
algorithm

8 No No 14.07

Improved A*

algorithm
6 Yes No 11.92

DWA algorithm - Yes Yes
Not

arrived

Hybrid algorithm 4 Yes Yes 13.56

As shown in Figure 15, compared with the traditional A*

algorithm, the fusion algorithm in this paper avoids the

occurrence of long routes and excessive turning angles.

Furthermore, as shown in Table Ⅲ, the improved hybrid

method decreases the number of turns by 50% and the path

length by 3.62% to the traditional A* algorithm, improving

planning efficiency.

The hybrid algorithm's trajectory may be seen above. A

smooth curve, the combined advantage of the two, not only

solves the A* algorithm's inability to avoid dynamic obstacles,

but also compensates for the DWA algorithm's inability to fall

into the most optimal defects in local path planning, allowing

the track to meet the motor and angle to the smoothness of the

constraint conditions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the effectiveness of the fusion algorithm

proposed in this paper, the robot operating system (ROS) was

used for verification. The experimental environment was a 64-

bit Ubuntu 18.04 operating system with 4GB of memory, and

the experimental platform was ROS(Melodic). The starting

point of path planning was (1,0) and the target point position

was (17,15). In Figure 16, the green arrow represents the

position and direction of the starting point, and the red arrow

represents the position and direction of the target point.

FIGURE 16. Traditional A* path planning under ROS.

The traditional A* algorithm's path involves several turning

sections and large turning degrees, resulting in increased path

redundancy and a severe reduction in the motor's operating

efficiency and life, which is detrimental to the mobile robot

walking.

The realization results of the fusion algorithm in ROS in

this paper are shown in Figure 17. The red line represents

global path planning, the green line represents local path

planning, and the blue area represents the expansion layer of

the obstacle. The path planning process of a mobile robot in

the initial, intermediate and final stages is described in the

figure respectively. The robot avoids impediments in the

general direction of global route planning, as well as local path

planning, in order to complete the navigation assignment as

rapidly as feasible.

(a) start position

(b) middle position

(c) end position

FIGURE 17. Fusion algorithm path planning in ROS.

By using the fusion algorithm proposed in this paper, the

path smoothness is guaranteed, the redundant points and the

turning angle are reduced effectively, and the smoothness and

length of the path are optimized.

Considering that the mobile robot may encounter

interference from dynamic obstacles when walking, dynamic

obstacles are added to the path planned by the fusion

algorithm, and the path planned by the mobile robot is shown

in Figure 18. The figure describes the path planning process

of the mobile robot in the beginning, end and middle to avoid

obstacles. The blue circles and bar squares in the figure

replace dynamic obstacles. Due to the limited size of the

picture, the box selects the local details of the mobile robot

walking along the path, and the local zoom is displayed in the

lower right corner of the picture.

(a) start position

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

(b) position 1

(c) position 2

(d) end position

FIGURE 18. Path planning under dynamic obstacles.

As can be seen from Figure 18, the mobile robot will move

forward along the previous path before encountering dynamic

obstacles. When there are dynamic impediments in the way,

the mobile robot will use radar location to take emergency

obstacle avoidance to escape the dynamic obstacles, allowing

the mobile robot to complete its local path planning.

The experiment used the mobile robot which is shown in

Figure 19 as the test object. This mobile robot has multiple

sensors, such as an inertial measurement unit (IMU), lidar,

camera and coded geared motor. It also has four 45-degree

mecanum wheels with rollers. The experimental environment

is a rectangular area of 8 m  10 m. The obstacles in the area

are three rectangular blocks of 0.3 m  1 m that are randomly

placed in the field. The master and slave connection are

configured in the experiment, and the Raspberry Pi on the

mobile robot is used as the host, and the Cartographers

algorithm is used to build a raster map of the experimental

scene.

Lidar

Mecanum Wheel

Camera

FIGURE 19. Laboratory equipment and experimental site.

Table Ⅳ lists the selection of some main hardware

equipment and parameters in the design process of the mobile

robot. The selection of parameters determines the

performance of the algorithm to some extent.

TABLE Ⅳ

HARDWARE EQUIPMENT AND ITS MAIN PARAMETERS

Hardware
equipment

Main parameter or type

Lidar
Scan angle: 0-360°

Scan distance:0.15-12m

Camera

Resolution:320x240(16bits)

Fps: 30

Detection scope:0.8-6.0m
IMU MPU9250

Raspberry Pi Raspberry Pi 3b+

The scanning angle of the lidar is selected from 0-360°,

which is more conducive to quickly obtaining information

about the surrounding environment and obstacles; the

minimum scanning distance
min 0.15d m= , the maximum

scanning distance
max 12d m= , the selected scanning distance

range are more suitable for the experimental environment of

this paper.

The choice of camera will affect the mobile robot's ability

to perceive the environment. The better the resolution, frame

rate and detection range of the main parameters, the better.

However, considering the experimental cost, the details of the

parameters selected in the table have fully met the

experimental requirements of this paper. IMU is a device that

measures the three-axis angular velocity and acceleration of

an object. Angular velocity and acceleration are important

parameters for kinematic modeling, and they are also the basic

parameters of the algorithm in this paper. The accuracy of the

data will greatly affect the performance of the algorithm. The

Raspberry Pi is a small single-board computer with the

Ubuntu 18.04 (ROS melodic) operating system installed.

Figure 20(b, c) shows the mobile robot in the face of a

complex obstacle, using its own sensor for state estimation, at

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

the same time using the AMCL localization algorithm and

mixing to complete the autonomous navigation of the mobile

robot path planning algorithm.

Considering that the mobile robot may encounter the

interference of dynamic obstacles when walking, dynamic

obstacles are added to the path planned by the fusion

algorithm. The mobile robot moves forward along the

previous path before encountering dynamic obstacles. When

there are dynamic obstacles in the path, the mobile robot will

rely on radar to locate emergency obstacles and bypass the

dynamic obstacles. The experimental results are shown in

Figure 20(d).

(a) lab environment (b) traditional A* path planning

Obstacle1

Obstacle2

Obstacle3Path

Robot

Goal

(c) fusion algorithm path planning (d) path planning under dynamic
obstacles.

FIGURE 20. Experimental environment and algorithm path planning.

The experimental results are shown in Table V. We can

infer that the suggested hybrid method can successfully

complete path planning based on the smoothness of the

experimental site. The initial marching and navigation will

undoubtedly influence the mobile robot, but this will have no

effect on the ultimate path planning and obstacle avoidance

procedure.

TABLE Ⅴ

COMPARISON OF TRADITIONAL AND HYBRID ALGORITHMS

Navigation results (10 times)
Traditional
algorithms

Hybrid
algorithms

Experimental site area 80m2 80m2

Average elapsed time 55.42s 49.73s
Path turning point 7 3

Average error at the end point 3 cm 2 cm

Table V shows that under the same environment, the hybrid

algorithm in this paper reduces the average time consumption

by 10.27%, the number of path inflection points by 57.14%,

and the accuracy is higher than 33.33% compared with the

traditional algorithm. The results further verify the superiority

of the fusion algorithm, which has good applicability and

security for real and complex dynamic environments, and can

timely and reliably avoid new dynamic obstacles in the path,

and has the function of dynamic obstacle avoidance.

VII. CONCLUSION

The traditional A* method is improved in this paper: we

employ an adaptive modifying step size algorithm and a cubic

Bezier curve to handle the concerns of too many turning points

and too big turning angles in the search route, reducing run

time and increasing robot motion efficiency.

The global path planning system based on the A* algorithm

and the Bezier curve in this article evaluates the effects of

weights, optimizes the corners of the produced task path, and

smooths the path using the Bezier curve.

Based on the improvement of A*, the hybrid path planning

algorithm is proposed in this paper. It integrates the DWA

algorithm for real-time obstacle avoidance, which

compensates for the poor timeliness of the A* algorithm. The

optimal path is planned by combining the global path-related

information to realize the optimization of route length,

smoothness and safety performance.

By comparing the simulation experiments, the real-time,

validity and security of the proposed fusion algorithm of

improved A* and DWA are verified. In the future, robot path

planning algorithms will be studied in multi-fields and multi-

scenes, and the path planning of mobile robots in multi-task

complex scenes will be further explored by combining deep

learning and machine vision.

ACKNOWLEDGMENT

The authors would like to thank the editors and the anonymous

reviewers whose insightful comments have helped to improve

the quality of this paper considerably.

REFERENCES
[1] HAN J, SEO Y. Mobile Robot Path Planning with Surrounding Point

Set and Path Improvement[J]. Applied Soft Computing, 2017, 57:35-
47.

[2] WANG Y L, LIANG X, LI B A, et al. Research and implementation

of global path planning for unmanned surface vehicle based on
electronic chart[C] // Proc. of the International Conference on

Mechatronics and Intelligent Robotics, 2018.

[3] ZHAO X, WANG Z, HUANG C K, et al. Path planning for mobile
robot based on improved A* algorithm[J]. Robot, 2018,40(06):903-

910.

[4] DUAN S Y, WANG Q F, Han Xu, et al. A* path optimization method
with ensuring safe distance[J]. Journal of Mechanical Engineering,

2020,56(18):205-215.

[5] LAI X, LI J H, CHAMBERS J. Enhanced center constraint weighted
A* algorithm for path planning of petrochemical inspection robot[J].

Journal of Intelligent & Robotic Systems, 2021,102(4).

[6] SHI X M, LIU H B, LI Y, et al. Location planning of field ammunition
depot for multi-stage supply based on Dijstra algorithm[J]. Journal of

Physics: Conference Series, 2021,2068(1).

[7] KUFFNER J J, LAVALLE S M. RRT-Connect: an efficient approach
to single-query path planning[C] // Proceedings of the 2000 IEEE

International Conference on Robotics and Automation. San Francisco,

2000: 995-1001.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

[8] ZHANG L, LI Y. Mobile robot path planning algorithm based on

improved A star[J]. Journal of Physics: Conference Series,

2021,1848(1).
[9] MIN H T, XIONG X Y, Wang P Y, et al. Autonomous driving path

planning algorithm based on improved A* algorithm in unstructured

environment[J]. Proceedings of the Institution of Mechanical
Engineers, 2021,235(2-3).

[10] Ma X L, MEI H. Global path planning for mobile robots based on

bidirectional hop search algorithm[J]. Mechanical Science and
Technology for Aerospace Engineering, 2020,39(10):1624-1631.

[11] WANG W, FEI D, FENG Z. The shortest path planning for mobile

robots using improved A* algorithm[J]. Journal of Computer
Applications, 2018, 38(5):1523-1526.

[12] DU W R, WANG X Y, JIA F K, et al. Research on path planning

algorithm of un-known environment based on multi-layer
bidirectional A*[J]. Computer Applications and Software,

2019,36(12):261-267.

[13] HENKEL C, BUBECK A, XU W. Energy Efficient Dynamic Window
Approach for Local Path Planning in Mobile Service Robotics[J].

IFAC-Papers on Line, 2016, 49(15):32-37.

[14] ZHANG Y, Song J Z, ZHANG Q Q. Local path planning for outdoor
cleaning robot based on improved dynamic window method[J]. Robot,

2020,42(05):617-625.

[15] ZHANG J H, FENG Q, ZHAO A D, et al. Local path planning of
mobile robot based on self-adaptive dynamic window approach[J].

Journal of Physics: Conference Series, 2021,1905(1).
[16] CAO J. Robot global path planning based on an improved ant colony

algorithm[J]. Journal of Computer and Communications, 2016, 4(2):

11.
[17] WANG H B, Hao C, ZHANG P, et al. Path planning for mobile robot

based on A* algorithm and artificial potential field method[J]. China

Mechanical Engineering, 2019,30(20):2489-2496.
[18] Curto, B., Moreno, V., & Blanco, F. J. A general method for C-space

evaluation and its application to articulated robots. IEEE Transactions

on Robotics and Automation, 18(1), 24–31.
[19] Mac, T. T., Copot, C., Tran, D. T., & Keyser, R. D. A hierarchical

global path planning approach for mobile robots based on multi-

objective particle swarm optimization. Applied Soft Computing, 59,

68–76.

[20] Yu, L., Kong, D., Shao, X., & Yan, X. A Path Planning and Navigation

Control System Design for Driverless Electric Bus. IEEE Access, 1–
1.

[21] Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. An improved ant colony

algorithm for robot path planning. Soft Computing, 21(19), 5829–
5839.

[22] Seder, M., & Petrovic, I. Dynamic window based approach to mobile

robot motion control in the presence of moving obstacles. Proceedings
2007 IEEE International Conference on Robotics and Automation.

[23] Nieuwenhuisen, M., & Behnke, S. Layered Mission and Path Planning

for MAV Navigation with Partial Environment Knowledge. Advances
in Intelligent Systems and Computing, 307–319.

[24] Zhang, J. Hua, Feng, Q., Zhao, A. di, He, W., & Hao, X. Local path

planning of mobile robot based on self-adaptive dynamic window
approach. Journal of Physics: Conference Series, 1905(1), 012019.

[25] Bayat, F., Najafinia, S., & Aliyari, M. (2018). Mobile robots path

planning: Electrostatic potential field approach. Expert Systems with

Applications, 100, 68–78.

Yonggang Li received his bachelor's degree

from Anhui University of Technology in

China in 2020 and his postgraduate studies
at the School of Mechanical Engineering of

Anhui University of Technology. Research

interests include autonomous navigation,
path planning, and machine vision.

Rencai Jin is currently a senior engineer

and an off-campus tutor for full-time

professional degree graduate students in
Anhui University of Technology. Mainly

responsible for the company's technological

innovation, engineering quality, building
informatization, metallurgical national team

steelmaking engineering construction

research institute, national enterprise
technology center, national postdoctoral

workstation, construction industrialization,
intelligent construction, etc.

Xiangrong Xu currently is a professor in

the School of Mechanical Engineering at
the Anhui University of Technology,

Anhui, China. He completed his post-

doctor research at the Purdue University,
IN, USA in 2001. He worked as a

researcher associate at the Purdue

University, Indiana USA from 2001-2002.

Since 2002 he has worked as a researcher

at the Florida State University, Tallahassee,

FL USA. His research interests include
robotics, aerial robot, mechanical design

and biomechanics. He has over 100 papers

published in international journals and
conference proceedings.

Yuandi Qian is currently a doctoral
student, a senior engineer, and a national

first-class construction engineer. The

leader of the company's green building
materials and intelligent construction

technology, the innovation leader of the

"special support plan" in Anhui Province,
the member of the organizing committee

of the ICBTE International Academic

Conference, the member of the National

Technical Standard Innovation Base

(Construction Engineering) Prefabricated

Building Professional Committee, and the
international standard registration expert.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179397, IEEE Access

VOLUME XX, 2017 9

Haiyan Wang received her master's

degree in management science and

engineering from Anhui University of

Technology in 2012. She is now a

lecturer at Ma’anshan University. Her

research interests include supply chain

management and health services and

management. In 2020, she was the

Principal Investigator of the Top

Talent Project of Anhui Province,

China.

Shanshan Xu received the B.S. degree in

nursing from the Florida State University.

Tallahassee, USA in 2011. She currently is
a teacher in the School of Osaka Medical

Engineering at the Ma’anshan University.

Her research interests include

Rehabilitation Robot and Bio-medical

robot.

Zhixiong Wang is a professor in the

School of Medicine, Osaka

University, Japan. He is mainly

engaged in research in the field of

biomedical engineering. He presided

over and participated in 13 national

and provincial research projects, 4 of

which won provincial awards. He has

published 39 influential monographs

and papers in international and

national journals.

