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ABSTRACT The traditional A* algorithm has several problems in practical applications, such as many path 

turning points, redundant nodes, and long running time. it is sometimes impossible to plan the theoretical 

optimal route. To solve the above problem, this paper presents an optimized A* algorithm, the adaptive 

adjustment step algorithm and the three-time Bezier curve are used to solve the problems of many turning 

points, large turning angles, and long running time in the search path. Moreover, aiming at the path planning 

problem of mobile robots facing dynamic obstacle interference in complex environments, an algorithm that 

integrates the improved A* algorithm with the dynamic window method is proposed, which not only solves 

the shortcomings of the A* algorithm in which the dynamic obstacles cannot be avoided, but also prevents 

the mobile robot from falling into local optimization. The results show that the fusion algorithm of the 

improved A* algorithm and the dynamic window method with the traditional A* algorithm reduces the 

number of turns by 50% and the path length by 3.62% compared with the original algorithm. In the same 

environment, compared with the traditional algorithm, the hybrid algorithm in this paper reduces the average 

time consumption by 10.27%, the number of path inflection points by 57.14%, and the accuracy is higher 

than 33.33%, which is more effective in complex dynamic environments. 

INDEX TERMS Path planning, hybrid algorithms, improved A* algorithm, improved DWA 

I. INTRODUCTION 

In recent years, mobile robots have received widespread 

attention from all over the world, and because of their 

autonomous and flexible characteristics, they are widely 

used in many important fields such as national defense 

science and technology, industrial manufacturing, life 

services, medical and health. With the continuous 

popularization of mobile robots, path planning problems 

have become the primary problems that need to be solved 

urgently, and the driving efficiency of robots and whether 

the travel route is optimal will seriously affect the walking 

of robots [1-3]. 

According to the different working environments where 

path planning is applicable, there are global static path 

planning and local dynamic path planning, of which global 

static path planning is only suitable for solving the path 

planning problem of moving robots in the static environment 

known for the obstacles in the surrounding environment, and 

the common methods are the Dijkstra algorithm, fast random 

tree search algorithm, A* algorithm [4-5], etc.; local 

dynamic path planning solves the path planning problem of 

mobile robots known in the environment within a range. The 

dynamic window approach, the ant colony algorithm, and 

other methods are common. Among them, Dijkstra is a 

breadth-first search algorithm. The search mode is relatively 
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simple, although it can achieve global path planning; in the 

case of a more complex environment, the algorithm 

calculates more nodes, occupies more memory, the search is 

slow and inefficient, and it is difficult to plan a smooth and 

safe optimal path in a short period of time [6]. The fast 

random tree search algorithm is a sample-based search 

algorithm that has fast search speed and strong ability and 

occupies an important position in high-dimensional 

environments, but the search accuracy of the algorithm is 

low, the path smoothness is poor, and it is difficult to plan 

the optimal path [7]. The standard A* algorithm is based on 

the Dijkstra algorithm to introduce heuristic functions. 

Through the evaluation of the node generation value, the 

optimal path is finally planned. Because of its fast 

calculation speed, path optimization and other advantages, it 

is widely used in global path planning. 

A vast number of experts have researched the classic A* 

algorithm because of its flaws, such as too many inflection 

points and node redundancy [8-10]. The heuristic function of 

the standard A* algorithm is improved by using the 

Manhattan distance-Euclidean distance hybrid method, 

which improves the search efficiency and saves search time 

[11]. The two-way algorithm is used to search in both 

positive and negative directions at the same time to improve 

the search efficiency [12]. The dynamic window method is a 

local dynamic path planning algorithm. The path is relatively 

smooth, but it is easy to fall into the local optimal, and it is 

impossible to reach the target position according to the 

global optimal path [13-15]. The ant colony algorithm is 

robust and easy to combine with other algorithms, but 

converges slowly and takes longer search times [16-18]. 

In the face of complex and dynamic environments, relying 

only on the A* algorithm is not enough. The task cannot be 

completed with a single global or local path planning. 

Considering the advantages and disadvantages of these 

algorithms, global path planning and local path planning are 

combined. The literature [19-22] proposes that a hybrid 

algorithm combining the A* algorithm and the artificial 

potential field method realizes the path planning problem in 

the dynamic environment, but the artificial potential field 

method cannot better plan the local optimal path, which 

reduces the overall efficiency [23-24]. Farhad Bayat deals 

with the mobile robot path planning problem in the presence 

of scattered obstacles in a visually known environment. So 

it is practical and can be applied to static and dynamic 

environments [25].  

None of the above algorithms can solve the problems of 

traditional A* algorithm and dynamic window method 

programming path inflection, low smoothness, and easy fall 

into local optimization. Therefore, this paper proposes an 

improved A* and dynamic window approach method fusion 

algorithm, using the improved A* algorithm to plan the 

global path, and then combining it with the improved 

dynamic window method to complete the local path planning, 

to achieve real-time dynamic obstacle avoidance, and finally 

plan the safe trajectory with optimal path and high 

smoothness. 

II. ENVIRONMENT MODEL DESCRIPTION 

A. RASTER MODELING 

Create an environment model in route planning using a grid 

method that divides the environment space into equal, 

continuous, disjoint grids of a defined granularity. According 

to the actual environmental information in the route planning, 

the grids are set as free and occupied, where the free grid is 

represented by white and the occupied grid is represented by 

black. The coordinate origin is chosen in the lower left corner 

of the two-dimensional plane Cartesian coordinate system; the 

horizontal axis of the grid is represented by the x-axis, and the 

values are incremented sequentially from left to right; the 

vertical axis is represented by the y-axis, the values are 

incremented sequentially from bottom to top, and the specific 

location of each raster in the raster map is represented by 

( , ),( , 1,2,3, , )i ip x y i j n=  . 

 
FIGURE 1. Environment model raster. 

B. THE RASTER GRAIN SIZE IS DETERMINED 

The basic element of the grid method is that the grid 

granularity is the smallest. If the grid particles are too small, 

the path search process will be more difficult, consume a lot 

of computing resources and time, and will not achieve the 

expected goal; if the grid particles are too large, the 

environment model will be different from the real 

environment. The path search algorithm will be unable to 

avoid obstacles or even finish the desired path planning if it is 

too vast. Therefore, grid granularity is extremely important for 

environmental model establishment and path planning. 

III. A* ALGORITHM IMPROVEMENTS 

A. TRADITIONAL A* ALGORITHM 

The A* algorithm is a heuristic path exploration algorithm that 

enables global path planning, inherits the principles of the 

classic Dijkstra algorithm and the BFS algorithm, and 

improves the shortcomings of slower search speeds. The A* 

algorithm sets the evaluation function, searches around from 

the starting point, selects the node with the smallest total 

generation value as the next extension node, and stops the 
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search until the end point, completing the search for the 

optimal path. The cost function is 

 ( ) ( ) ( )f n g n h n= +  (1) 

Where: n  represents the current node; ( )f n  is the cost 

function of the current node; ( )g n  is the actual generation 

value of the mobile robot from the current node to the target 

node n ; ( )h n  is the estimated generation value that will be 

consumed from the current node to the target node. Common 

methods of calculating generation value are Manhattan 

distance, Euclidean distance, and Chebyshev distance. This 

article selects Euclidean distance as the ( )h n  cost function, 

and its calculation formula is expressed as 

 
1

2 2 2( ) [( ) ( ) ]n m n mh n x x y y= − + −  (2) 

Where: ( , )n nx y
 
 represents the current path node coordinates, 

( , )m mx y  represents the target node coordinates. 

The following is a simple proof of the convergence optimal 

point of the A* algorithm. 

Assumption: The secondary advantage 
2G  is a node 

generated in the open table, n  is a node (it is the node with 

the closest distance to the optimal point G  ). 

Proof:  
2 2( ) ( )f G g G=   because 

2( ) 0h G = ; 

2( ) ( )g G g G  because 
2G  is the 

secondary advantage; 

( ) ( )f G g G=   because ( ) 0h G = ; 

2( ) ( )f G f G   from the above; 

( ) ( )h n h n


   basic requirement; 

( ) ( ) ( ) ( )g n h n g n h n


+  +  

( ) ( )f n f G  

Remark: If there is an optimal point, then the A* algorithm 

will always find the optimal point first. 

The traditional A* algorithm mainly searches for four 

domains, as shown in Figure 2a, and Eight Neighborhood 

Search as shown in Figure 2b, and the search neighborhood 

indicates the direction in which the robot can move. In Figure 

2, the gray dot represents the current node position of the robot, 

and the solid arrow represents the robot's search direction. Use 

four neighborhoods to search for / 2  corners per turn and 

eight neighborhoods to search for / 4  corners per turn. 

When there are more search neighborhoods, the direction of 

the search becomes more important, and the overall length of 

the planned path is smaller, but the search is less efficient. 

 

 
a) Four-neighborhood search   b) Eight neighborhood searches 

FIGURE 2. Environment model raster. 

 

The flow chart of the A* algorithm in the actual path search 

process is shown in Figure 3. Traditional A* algorithms are 

confined to finding a single optimal path from beginning to 

end by first splitting the surrounding search space into 

measurable nodes. The A* algorithm creates two lists when 

executed; the open list and the closed list. Unexpanded nodes 

are placed in the open list, and expanded nodes are stored in 

the closed list. When adding a node to the Open list, it is added 

directly to the end, regardless of the value. On each expansion, 

the sizes of all the nodes in the Open list are compared; the 

node with the smallest value is obtained; the node with the 

smallest value is removed from it and added to the Close list. 

If these nodes are not in the Open list, add them all to the Open 

list and choose the smallest node as the current node, in which 

case continue searching for the remaining nodes. If these 

extended nodes are in the Open list, use the current node as 

the parent node, use the cost function to evaluate, recalculate 

the value, loop the above steps until the target is found, and 

finally arrange the nodes in the Open list in reverse order to 

get the optimal path. 

 

n is the end point G?

Yes

No

Yes

No

Create Open list, add node S, create 

Closed list, leave empty

Open list is empty?

Select the node n with 

smallest ƒ(n) in the Open list

Obtain subs of all 

subsequent nodes of n

Add to the Closed List

Add to the Closed List

Reverse search for

the preceding node

Generate the optimal path

Subs is empty?
Yes

No

Extract a node sub from subs

Solve for the length of the 

path from n to sub

Sub is in the Open 

list or Closed list?

Yes

G(sub) < g(sub)?

Delete history sub
Solve sub nodes

ƒ(sub)=G(sub)+h(sub)

Yes

No

Start

Failure

Success

 

FIGURE 3. A* algorithm flowchart. 

B. ADAPTIVE ADJUSTMENT STEP SIZE ALGORITHM 
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In the A* algorithm, the step length is one of the important 

parameters affecting the mobile robot, and the fixed step size 

makes the mobile robot have defects such as low safety 

performance, poor obstacle avoidance effect and insufficient 

flexibility. Therefore, this paper proposes an adaptive 

adjustment step algorithm, when there are more obstacles in 

the surrounding environment, reducing the step size increases 

the number of nodes per search, and the search path is safer 

and more detailed; when there are fewer obstacles in the 

surrounding environment, increasing the step size speeds up 

and improves the efficiency of search. According to the 

distribution of obstacles, the step size is automatically 

adjusted to enhance the flexibility of the robot. 
The distribution of obstacles in the surrounding 

environment is split into two groups when considering the 

elements impacting step size: whether they are dynamic 

barriers or not, and the quantity and position distribution of 

obstacles within a specific range. 

 

 

FIGURE 4. Robot movement direction and obstacle threat weight 
diagram. 

 

In Figure 4, the robot uses eight-neighborhood search, and 

the trolley model replaces the mobile robot, which has eight 

directions of motion. The number of static obstacles in the 

dark red area in the figure is 
1x , the number of static obstacles 

in the light red area is 
2x , the number of dynamic obstacles in 

the direction of motion is d  , and the closer to the trolley 

model, the greater the threat of obstacles in the area to the 

mobile robot, so the threat function 
1 2( , )f x x  is defined as: 

 1 1 2 21 2

1
0

( , )

1 0

d
k x k x cf x x

d


=

+ += 
 

 (3) 

Where: 
1 2,k k  represents the threat factor of a static obstacle, 

c  represents a self-adjusting constant, 
1 (1,2)k  , 

2 (0.5,1)k  , 

(0,1)c . Then the adaptive adjustment step is 

 1 2 max

1 2 min

( , ) 0

( , ) 0

f x x l d
l

f x x l d

 =
= 

 
 (4) 

Where: 
min max min max, 0.1 , 0.2l l l l m l m  = = . 

Figures 5 and 6 show the path planning results using the 

traditional A* algorithm and the adaptive adjustment step 

algorithm respectively. Table Ⅰ shows the differences in 

elapsed time, number of nodes, elapsed time reduction rate, 

and node reduction rate before and after the method was 

improved. 

We can see from these two graphs that the enhanced A* 

algorithm significantly decreases the number of search nodes. 

The path before and after the algorithm improvement is 

studied using the running time, number of nodes, and running 

time reduction rate as performance indicators to further 

validate the effect of the adaptive adjustment step length 

method. 
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FIGURE 5. Path planning results of the traditional A* algorithm. 
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FIGURE 6. Path planning results of adaptive adjustment step algorithm. 

 

TABLE I 

COMPARISON OF PERFORMANCE INDICATORS BEFORE AND AFTER 

ALGORITHM OPTIMIZATION 

Parameter 
names 

The 

elapsed 
time 

Number of 
nodes 

Elapsed 

time 
reduction 

rate 

Node 

reduction 
rate 

Traditional A* 
algorithm 

0.729s 18 － － 

Adaptive 

regulation step 
algorithm 

0.632s 14 13.31% 33.3% 

 

The performance indices of the traditional A* algorithm 

and the adaptive step-size adjustment technique are compared 

in Table I. The improved algorithm decreases the number of 

nodes by 33.3% and the running time by 13.31%, resulting in 

better operational efficiency. 

C. ARC OPTIMIZATION 
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The traditional A* algorithm has many path inflection points, 

which makes it difficult for the robot to walk, and also poses 

a huge challenge to the load of the motor. In order to satisfy 

the nonholonomic constraints of mobile robots, it is necessary 

to smooth the motion trajectory. The trajectory smoothing 

process can reduce the frequency and amplitude of motor start 

and stop, and thus increase the service life and safety of the 

robot. Therefore, this paper uses the cubic Bezier curve to 

optimize the trajectory and compare it with the original 

trajectory curve. 

 

P1 P2

P3P0
 

FIGURE 7. Cubic Bezier curves. 

 

The Bezier curve is mainly applied to the smooth 

processing of two-dimensional plane line segments, as shown 

in Figure 7. The figure is composed of ( 0,1,2,3)iP i =  four 

nodes and connecting line segments between them, and 
0P  is 

the starting point, 
3P  is the end point, and 

iP  is the control 

point. Taking ( )B t  to represent the coordinates at time 

[0,1]t , the cubic Bezier curve formula is: 

 3 2 2 3

0 1 2 3( ) (1 ) 3 (1 ) 3 (1 )B t t P t t P t t P t P= − + − + − +  (5) 

—— Original  path   —— Bessel curve 

0 5 10 15 20
0

5

10

15

20

 

FIGURE 8. Bezier curve path optimization path diagram. 

 

Figure 8 shows the Bezier curve smoothing the entire path, 

and the peaks at the corners are optimized to ensure the robot 

travels smoothly during the operation. The total steering angle 

and path length are significantly lower than the traditional 

curve, reducing the loss of the motor and avoiding the 

unbalance of the robot itself. and satisfy the motion constraints 

of the mobile robot. 

IV. Improved Dynamic Window Approach Method 

At present, most robots perceive the surrounding environment 

based on multi-sensor fusion technology, such as depth 

camera and laser radar, and then use local path planning 

algorithms to complete tasks such as avoiding obstacles and 

chasing dynamic targets according to the obtained information. 

The traditional dynamic window algorithm lacks the guidance 

of global path planning, and can only plan the paths of 

obstacles in the environment in real time. However, in a multi-

obstacle environment, the robot will fall into narrow channel 

oscillation due to the lack of guidance from global planning, 

resulting in a larger global path and being unable to quickly 

plan the optimal path. 

Dynamic Window Approach (DWA) is a velocity-based 

local planner that transforms the path planning problem into a 

constrained optimization problem in velocity vector space. 

The purpose of the dynamic window method is to sample 

multiple sets of data in a two-dimensional space and simulate 

the trajectory of the robot at this speed. To finish the local 

route planning, the ideal trajectory speed is chosen using the 

designed evaluation function. 

 

 

FIGURE 9. Schematic diagram of DWA method. 

 

DWA is shown in Figure 9, model robot, obstacles in grey 

rectangle represent environment, each curve is forecast to get 

multiple sets of line trajectory, dotted line means the robot's 

trajectory and obstacle collision will occur, so the path is not 

the optimal trajectory, selection of the optimal trajectory only 

requires evaluating the rest of the track, and finally, the 

evaluation function's optimal safety trajectory is selected. 

A. KINEMATIC MODEL 

In order to avoid obstacles in real time, the velocity of the 

robot must be sampled in space to simulate its trajectory. 

Generally speaking, the motion state of the robot is measured 

by the linear velocity and angular velocity. Suppose the 

velocity of the robot per unit time is ( , )t tv  , and then select 

the optimal trajectory from all the trajectory through the 

evaluation function. Within a unit time t  interval, the arc-

shaped trajectory can be regarded as a linear motion, and the 

kinematic model is: 
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cos sin

sin cos

x t y t

x t y t

t t t

x x v t v t

y y v t v t

t

 

 

  

= +  − 


= +  − 
 = + 

 (6) 

Define the pose [ , , , ]
T

x y  =q  of the robot in the 

environment, input its own linear velocity and angular 

velocity [ , ]
T

v w=u . The schematic diagram and parameters of 

the model are shown in Figure 10 and Table Ⅱ. 

 
FIGURE 10. Mobile robot kinematics model. 

 

TABLE Ⅱ 
PARAMETERS AND MEANINGS 

Parameter Meaning 

v   Line speed 
  Front wheel angular velocity 

u  Input (including ,v  ) 

q  Pose 

  Angle between the longitudinal and x axis 

  Front wheel steering angle 

   L  Body length 

 

According to the geometric relationship, the angular 

velocity can be obtained   : 

 
tan

v
L


 =  (7) 

so 

 

cos( ) 0

sin( ) 0

tan
0

0 1

L







 
 
 

=  
 
 
  

q u  (8) 

In more detail: 

 

cos( ) 0

sin( ) 0

tan
0

0 1

x

y v

L






 



 
   
       =        
   
    

 (9) 

B. SPEED SAMPLING 

There are infinite groups ( , )v   of robots in the velocity space, 

and the range of sampling velocity is constrained according to 

the actual situation. 

The speed constraint of the robot under the influence of 

motor performance is: 

 
min max min max{( , ) | [ , ], [ , ]}lv v v v v   =    (10) 

The speed range that can be achieved under the acceleration 

of the robot under the limitation of the motor driving force is: 

 
{( , ) | [ , ],

[ , ]}

d c d c d

c d c d

v v v v a t v a t

t t



    

=  −  + 

 −  + 
 (11) 

Where: ,c cv   indicates the current linear velocity and angular 

velocity of the robot; ,a da a  indicates the upper and lower 

limits of linear acceleration of the robot; ,a d   indicates the 

upper and lower limits of angular acceleration of the robot. 

When performing local path planning, the robot must 

maintain a safe distance to protect its own safety. As a result, 

the robot must come to a halt before colliding with the 

obstruction; when the speed is decreased to zero, the speed 

space is: 

 1/2 1/2

0 {( , ) | [2 ( , ) ] [2 ( , ) ] }d dV v v dist v a dist v    =  ， (12) 

Where: ( , )dist v   indicates the nearest distance between the 

robot and the obstacle. 

C. EVALUATION FUNCTION 

In the local path planning of the robot, there are several 

sampling velocities available in the velocity space, so it is 

necessary to design an evaluation function to select the 

optimal trajectory. The parameters considered are azimuth, 

velocity and distance respectively. The designed evaluation 

function is: 

 
( , [ ( , ) ( , )

( , ) ( , )]

G v head v stob v

dyob v velo v

     

   

=  + 

+  + 

）
 (13) 

Where, ( , )head v   represents the azimuth evaluation function 

of the robot, and represents the angular deviation between the 

end direction of the current simulated trajectory and the global 

path; ( , )stob v   represents the vertical distance between the 

current simulated trajectory and the static obstacle; ( , )dyob v   

represents the vertical distance between the current simulated 

trajectory and the dynamic obstacle; Evaluation function 

( , )velo v   representing the current simulation speed;   is 

smoothing coefficient, and , , ,     are four-term weighting 

coefficients. Finally, the trajectory with the ( , )G v   smallest 

value is taken as the optimal trajectory. 

In order to meet the requirements of trajectory smoothness,

( , )head v  , ( , )stob v  , ( , )dyob v  , ( , )velo v   needs to be 

normalized and then added. That is, each item is divided by 

the sum of each item: 
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1

( )
_ ( )

( )
n

i

head i
normal head i

head i
=

=


 (14) 

 

1

( )
_ ( )

( )
n

i

stob i
normal stob i

stob i
=

=


 (15) 

 

1

( )
_ ( )

( )
n

i

dyob i
normal dyob i

dyob i
=

=


 (16) 

 

1

( )
_ ( )

( )
n

i

velo i
normal velo i

velo i
=

=


 (17) 

Where, n is all the sampled trajectory points, i  is the current 

trajectory point to be evaluated. The four weights of the 

objective function ( , )G v   are all necessary and finally 

normalized. By continuously adjusting the weight coefficient 

and maximizing the objective function ( , )G v  , the robot can 

avoid obstacles at the fastest speed under the constraints, and 

at the same time move towards the target position. Although 

the obstacle avoidance performance of the DWA algorithm 

depends on the weighting parameter , , ,    , the algorithm 

is still stable even if the value of the weighting parameter 

changes slightly. We found that , , ,     values of 0.7, 0.7, 

0.1 and 0.1 worked well. A higher weight of the target heading 

parameter makes the robot very close to the obstacle. Choose 

appropriate parameters according to the environment. In 

limited barrier situations, a greater target heading weight is 

preferable, while in a large environment, a lower target 

heading weight may be preferable. 

D. DWA SIMULATION VERIFICATION 

The robot will encounter different types of obstacles in the 

path search, namely static obstacles and dynamic obstacles. In 

order to verify the robot path planning in response to the 

effectiveness of the dynamic obstacles, the simulation in 

MATLAB R2020a validation, grids are built environment 

setting, starting point and goal, respectively, in the presence of 

dynamic obstacles in both cases the influence of simulation, 

and compare the results, verify the algorithm on the merit of 

trying to avoid dynamic obstacles. 

Figure 11 shows the algorithm simulation diagram of DWA. 

The starting point is (1,1) and the ending point is (9,9). The 

robot avoids all static obstacles and reaches the goal location 

to finish the simulation of the static environment when the 

environment is packed with static obstacles. When a dynamic 

obstacle appears in the environment and is located on the 

originally planned path, the robot will change its original 

trajectory. The robot successfully avoids the dynamic 

impediment and reaches the target spot, as indicated by the 

solid blue line in the picture. 

0 2 4 6 8
0

2

4

6

8

10

x/ m
10

No dynamic obstacle path
Target point
Dynamic obstacle path
Static obstacle
Dynamic obstacle

y
/m

 

FIGURE 11. DWA algorithm simulation diagram 

 

When carrying out local path planning, DWA can complete 

the avoidance of dynamic and static barriers, but it is simple 

to fall into local optimum and fail to reach the goal location. 

As shown in Figure 12, when the starting point is set as (1,0) 

and the end point is set as (10,10), it is easy to choose to go 

around from the left when using the DWA algorithm. At this 

time, it just falls into the local minimum point, resulting in 

path planning failure and failure to reach the target point. This 

is because when the robot is carrying out local path planning, 

it only deals with the information of surrounding obstacles 

each time and lacks the concept of global path planning. As a 

result, it reaches a dead end of impediments, resulting in path 

planning failure and failure to reach the target site. 
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FIGURE 12. DWA algorithm falls into local optimum. 

V. HYBRID ALGORITHM 

According to the above analysis, robot path planning should 

consider the interference of dynamic obstacles as well as static 

obstacles. The global path planning of the A* algorithm only 

considers static obstacles in the surrounding environment and 

does not consider the influence of dynamic obstacles, which 

may lead to collisions between robots and dynamic obstacles. 

However, the local path planning of the DWA algorithm only 

considers the obstacles in the surrounding environment 

without the awareness of global path planning, which results 
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in the robot falling into the local optimal and failing to reach 

the target point. To solve this problem, the proposed fusion 

algorithm combining the improved A* algorithm and the 

DWA algorithm can not only ensure the avoidance of 

obstacles but also ensure the smoothness and optimality of 

path planning. 

Start and 
target position

Global map

Global 
optimal path

Local map

Improved A* 
algorithm

DWA 
algorithm 

(v, w)

(x, y) 
Coordinate 
information

Mobile robot

Global motion 
path planning

Local motion 
path planning

 

FIGURE 13. Hybrid algorithm planning diagram. 

 

As shown in Figure 13, the improved A * algorithm and 

DWA algorithm combined with a mixture of path planning 

system design, mainly includes global path planning and local 

path planning of two parts, using the improved A * algorithm 

for global path planning, and then according to the 

surrounding environment sensors information to update the 

local maps, combined with planning out the global path 

generation of target. The DWA method is then utilized to 

complete local motion path planning, allowing the robot to 

avoid dynamic impediments, reach the local goal point, update 

the route continuously, and eventually reach the target 

location. 
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FIGURE 14. Schematic diagram of local target point. 

 

The temporary goal points of each stage of the optimized 

dynamic window technique are retrieved from the key points 

of the global path planned by the enhanced A* algorithm. The 

combination of the improved A* algorithm and the DWA 

algorithm can solve the defects of their respective algorithms 

and avoid dynamic obstacles effectively in real time while 

completing the global path planning. As shown in Figure 14, 

the local path planning algorithm combined with the global 

path generates the local target point, and the global target point 

is finally reached after the continuous update of the last local 

target point and the next local target point. The fusion 

algorithm not only ensures the optimal global path, but also 

ensures good obstacle avoidance and movement effects in 

local planning. 

In order to verify the feasibility and effectiveness of the path 

planning of the above mixed algorithm, The local optimum 

state of the DWA algorithm is straightforward to achieve. The 

simulation conditions are the same, and related simulations are 

performed. The starting point is still set to (1, 0), and the end 

point is set (10, 10). The orange path in the figure is the global 

path planning track by using the traditional A * algorithm. On 

this basis, the DWA algorithm is integrated, the search results 

of the mixing algorithm are the red path in the figure. The final 

result is shown in Figure 15. 
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FIGURE 15. Path simulation diagram of hybrid algorithm. 

 

TABLE Ⅲ 

PERFORMANCE COMPARISON OF EACH ALGORITHM 

Algorithm type 
Number of 

turning points 
Smooth 

Avoid 

dynamic 

obstacles 

Path 
length /m 

Traditional A* 
algorithm 

8 No No 14.07 

Improved A* 

algorithm 
6 Yes No 11.92 

DWA algorithm - Yes Yes 
Not 

arrived 

Hybrid algorithm 4 Yes Yes 13.56 

 

As shown in Figure 15, compared with the traditional A* 

algorithm, the fusion algorithm in this paper avoids the 

occurrence of long routes and excessive turning angles. 

Furthermore, as shown in Table Ⅲ, the improved hybrid 

method decreases the number of turns by 50% and the path 

length by 3.62% to the traditional A* algorithm, improving 

planning efficiency. 

The hybrid algorithm's trajectory may be seen above. A 

smooth curve, the combined advantage of the two, not only 

solves the A* algorithm's inability to avoid dynamic obstacles, 

but also compensates for the DWA algorithm's inability to fall 

into the most optimal defects in local path planning, allowing 

the track to meet the motor and angle to the smoothness of the 

constraint conditions. 
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VI. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to verify the effectiveness of the fusion algorithm 

proposed in this paper, the robot operating system (ROS) was 

used for verification. The experimental environment was a 64-

bit Ubuntu 18.04 operating system with 4GB of memory, and 

the experimental platform was ROS(Melodic). The starting 

point of path planning was (1,0) and the target point position 

was (17,15). In Figure 16, the green arrow represents the 

position and direction of the starting point, and the red arrow 

represents the position and direction of the target point.  

 

 
FIGURE 16. Traditional A* path planning under ROS. 

 

The traditional A* algorithm's path involves several turning 

sections and large turning degrees, resulting in increased path 

redundancy and a severe reduction in the motor's operating 

efficiency and life, which is detrimental to the mobile robot 

walking. 

The realization results of the fusion algorithm in ROS in 

this paper are shown in Figure 17. The red line represents 

global path planning, the green line represents local path 

planning, and the blue area represents the expansion layer of 

the obstacle. The path planning process of a mobile robot in 

the initial, intermediate and final stages is described in the 

figure respectively. The robot avoids impediments in the 

general direction of global route planning, as well as local path 

planning, in order to complete the navigation assignment as 

rapidly as feasible. 

 

 
(a) start position  

 
(b) middle position 

 
(c) end position 

FIGURE 17. Fusion algorithm path planning in ROS. 

 

By using the fusion algorithm proposed in this paper, the 

path smoothness is guaranteed, the redundant points and the 

turning angle are reduced effectively, and the smoothness and 

length of the path are optimized. 

Considering that the mobile robot may encounter 

interference from dynamic obstacles when walking, dynamic 

obstacles are added to the path planned by the fusion 

algorithm, and the path planned by the mobile robot is shown 

in Figure 18. The figure describes the path planning process 

of the mobile robot in the beginning, end and middle to avoid 

obstacles. The blue circles and bar squares in the figure 

replace dynamic obstacles. Due to the limited size of the 

picture, the box selects the local details of the mobile robot 

walking along the path, and the local zoom is displayed in the 

lower right corner of the picture.  

 
(a) start position 
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(b) position 1 

 

 
(c) position 2 

 

 
(d) end position 

FIGURE 18. Path planning under dynamic obstacles. 

 

As can be seen from Figure 18, the mobile robot will move 

forward along the previous path before encountering dynamic 

obstacles. When there are dynamic impediments in the way, 

the mobile robot will use radar location to take emergency 

obstacle avoidance to escape the dynamic obstacles, allowing 

the mobile robot to complete its local path planning. 

The experiment used the mobile robot which is shown in 

Figure 19 as the test object. This mobile robot has multiple 

sensors, such as an inertial measurement unit (IMU), lidar, 

camera and coded geared motor. It also has four 45-degree 

mecanum wheels with rollers. The experimental environment 

is a rectangular area of 8 m   10 m. The obstacles in the area 

are three rectangular blocks of 0.3 m   1 m that are randomly 

placed in the field. The master and slave connection are 

configured in the experiment, and the Raspberry Pi on the 

mobile robot is used as the host, and the Cartographers 

algorithm is used to build a raster map of the experimental 

scene. 

 

Lidar

Mecanum Wheel

Camera

  

FIGURE 19. Laboratory equipment and experimental site. 

 

Table Ⅳ lists the selection of some main hardware 

equipment and parameters in the design process of the mobile 

robot. The selection of parameters determines the 

performance of the algorithm to some extent. 

 
TABLE Ⅳ 

HARDWARE EQUIPMENT AND ITS MAIN PARAMETERS 

Hardware 
equipment 

Main parameter or type 

Lidar 
Scan angle: 0-360° 

Scan distance:0.15-12m 

Camera 

Resolution:320x240(16bits) 

Fps: 30 

Detection scope:0.8-6.0m 
IMU MPU9250 

Raspberry Pi Raspberry Pi 3b+ 

 

The scanning angle of the lidar is selected from 0-360°, 

which is more conducive to quickly obtaining information 

about the surrounding environment and obstacles; the 

minimum scanning distance 
min 0.15d m= , the maximum 

scanning distance 
max 12d m= , the selected scanning distance 

range are more suitable for the experimental environment of 

this paper. 

The choice of camera will affect the mobile robot's ability 

to perceive the environment. The better the resolution, frame 

rate and detection range of the main parameters, the better. 

However, considering the experimental cost, the details of the 

parameters selected in the table have fully met the 

experimental requirements of this paper. IMU is a device that 

measures the three-axis angular velocity and acceleration of 

an object. Angular velocity and acceleration are important 

parameters for kinematic modeling, and they are also the basic 

parameters of the algorithm in this paper. The accuracy of the 

data will greatly affect the performance of the algorithm. The 

Raspberry Pi is a small single-board computer with the 

Ubuntu 18.04 (ROS melodic) operating system installed. 

Figure 20(b, c) shows the mobile robot in the face of a 

complex obstacle, using its own sensor for state estimation, at 
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the same time using the AMCL localization algorithm and 

mixing to complete the autonomous navigation of the mobile 

robot path planning algorithm. 

Considering that the mobile robot may encounter the 

interference of dynamic obstacles when walking, dynamic 

obstacles are added to the path planned by the fusion 

algorithm. The mobile robot moves forward along the 

previous path before encountering dynamic obstacles. When 

there are dynamic obstacles in the path, the mobile robot will 

rely on radar to locate emergency obstacles and bypass the 

dynamic obstacles. The experimental results are shown in 

Figure 20(d). 

 

  

(a) lab environment                    (b) traditional A* path planning 

Obstacle1

Obstacle2

Obstacle3Path

Robot

Goal

  

(c) fusion algorithm path planning (d) path planning under dynamic 
obstacles. 

FIGURE 20. Experimental environment and algorithm path planning. 

 

The experimental results are shown in Table V. We can 

infer that the suggested hybrid method can successfully 

complete path planning based on the smoothness of the 

experimental site. The initial marching and navigation will 

undoubtedly influence the mobile robot, but this will have no 

effect on the ultimate path planning and obstacle avoidance 

procedure. 

 
TABLE Ⅴ 

COMPARISON OF TRADITIONAL AND HYBRID ALGORITHMS 

Navigation results (10 times) 
Traditional 
algorithms 

Hybrid 
algorithms 

Experimental site area 80m2 80m2 

Average elapsed time 55.42s 49.73s 
Path turning point 7 3 

Average error at the end point 3 cm 2 cm 

 

Table V shows that under the same environment, the hybrid 

algorithm in this paper reduces the average time consumption 

by 10.27%, the number of path inflection points by 57.14%, 

and the accuracy is higher than 33.33% compared with the 

traditional algorithm. The results further verify the superiority 

of the fusion algorithm, which has good applicability and 

security for real and complex dynamic environments, and can 

timely and reliably avoid new dynamic obstacles in the path, 

and has the function of dynamic obstacle avoidance. 

VII. CONCLUSION 

The traditional A* method is improved in this paper: we 

employ an adaptive modifying step size algorithm and a cubic 

Bezier curve to handle the concerns of too many turning points 

and too big turning angles in the search route, reducing run 

time and increasing robot motion efficiency. 

The global path planning system based on the A* algorithm 

and the Bezier curve in this article evaluates the effects of 

weights, optimizes the corners of the produced task path, and 

smooths the path using the Bezier curve. 

Based on the improvement of A*, the hybrid path planning 

algorithm is proposed in this paper. It integrates the DWA 

algorithm for real-time obstacle avoidance, which 

compensates for the poor timeliness of the A* algorithm. The 

optimal path is planned by combining the global path-related 

information to realize the optimization of route length, 

smoothness and safety performance. 

By comparing the simulation experiments, the real-time, 

validity and security of the proposed fusion algorithm of 

improved A* and DWA are verified. In the future, robot path 

planning algorithms will be studied in multi-fields and multi-

scenes, and the path planning of mobile robots in multi-task 

complex scenes will be further explored by combining deep 

learning and machine vision. 
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