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ABSTRACT Evaluating the performance of players in a dynamic competition is vital for achieving effective
sports coaching. However, a quantitative evaluation of players in racket sports is difficult because it is derived
from the integration of complex tactical and technical (i.e., whole-body movement) performances. In this
study, we propose a new evaluation method for racket sports based on deep reinforcement learning, which
can analyze the motion of a player in more detail, rather than only considering the results (i.e., scores).
Our method uses historical data including information related to the tactical and technical performance of
players to learn the next-score probability as a Q-function, which is used to value the actions of the players.
We leverages long short-term memory model for the learning of Q-function with the poses of the players and
the position of the shuttlecock as the input, which are identified by the AlphaPose and TrackNet algorithms,
respectively. We verified our approach by comparing various baselines and demonstrated the effectiveness
of our method through use cases that analyze the performance of the top badminton players in world-class
events.

INDEX TERMS Deep reinforcement learning, sports analytics, Q-values, action evaluation.

I. INTRODUCTION
With the development of deep learning technologies, com-
puter vision-based deep learning methods have become
increasingly important in sports analytics. Among the broad
scope of tasks to be addressed, player evaluation is a major
task; it has received increasing attention as it can assess
and appraise the actions observed in a game to players,
coaches, and other staff in order to facilitate decision making
(i.e., tactics) and improve technical skills, thus providing a
competitive advantage to an individual or a team.

There are two main approaches for player evaluation. The
first is to use various statistics to sum up ‘‘the total contribu-
tions of a player to his/her team’’ into a number. The second
approach is to assign values to the actions performed during a
match. In the second approach, traditional methods (e.g., [1])

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangcun Shan .

demonstrate significant limitations as they can only evaluate
the actions that directly lead to a score (e.g., shooting), but
are unable to evaluate those actions that indirectly lead to
score. Recently, Markov models have been used to address
this issue, which have the advantage of unified evaluation
criteria (actions are evaluated in the same scale by antici-
pating expected outcomes). These approaches are based on
the analysis of event stream data (including optical data) that
describe the actions performed in a game. However, in racket
sports, the task of action value evaluation of players is almost
unexplored because, in such a sport, technical whole-body
movements have to be evaluated in addition to the tactics.

In racket sports, most previous studies on player evaluation
were limited to traditional methods. Shen et al. evaluate a
single stroke type (lob) in badminton, and defined a good/bad
lob on whether the subsequent action of the opponent is a
smash and leads to a score [2]. This work was considered in
the limited available research. The Q-function in the Markov
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model has the advantage of evaluating all actions (all stroke
types) on the same scale by looking ahead to the outcomes.
Thus, inspired by this idea, we adopt the Markov model
approach (i.e., the second approach in the above paragraph)
using technical whole-body movement and tactical informa-
tion for player evaluation in actual games.

With the recent advances in deep learning, deep rein-
forcement learning (DRL) [3] has been applied in various
fields [4]–[7], and has shown significant promise in player
evaluation in complex and dynamic environments. A previous
method used the Markov model in team sports (e.g., ice
hockey) to evaluate the tactical performance, but ignored
the effect of technical performance on the value of the
action. As racket sports have the characteristic of less partic-
ipants (single- or double-player games), the result of a game
depends largely on individual technical skills. Therefore,
when compared to team sports, the specific sports-based tech-
nical performance of player(s) should be analyzed through
videos. Most previous studies have used active reinforcement
learning (RL) to calculate optimal strategies for complex
continuous-flow games [8], [9]. Similar to Liu et al. [10],
we solve a prediction (not control) problem in the passive
learning (fixed policy) setting. We use RL as a behavioral
analytic tool for real human agents, not to control artificial
agents.

In this study, we propose a player evaluation approach with
play contexts in badminton, which leverages historical match
data containing tactical and technical information to assign a
rating to the actions (e.g., smash) performed by the players in
a match. For a given badminton game, we used deep learning
methods to extract the features from videos that contain infor-
mation related to both the tactical and technical performance
of the players. Through experiments, we examined the effect
of technical and tactical contexts on player evaluation by
applying a DRL method on a badminton dataset (videos of
the BWF: Badminton World Federation). Our research aims
to provide coaches some insight into the influence of the
movements of players on the advantages and disadvantages
in specific competition situations. Therefore, we analyzed the
content of concrete movements and their influence.

In summary, the primary contributions of this study are as
follows:

(1) We propose a player evaluation method in racket sports
based on deep reinforcement learning (DRL) that can analyze
the motion of a player in more detail, instead of analyzing the
results (i.e., scores).

(2) Methodologically, our method leverages historical data
including the tactical and technical performance information
of players to learn the next-score probability as a Q-function,
which is used to value the actions of the players.

(3) In the experiment, we verified our approach by com-
paring various baselines, and confirmed the effectiveness of
our method through use cases that analyze the performance
of the top badminton players in world-class events.

The remainder of this paper is organized as follows.
An overview of the related works is presented in Section II,

our method is described in Section III, the experimental
results are discussed in Section IV, and this paper is con-
cluded in Section V.

II. RELATED WORK
A. EVALUATION METHODS IN MANY SPORTS
There are twomain approaches employed in evaluating sports
players. One involves boiling down the contributions of a
player into a single number. Some well-known examples
are Wins Above Replacement (WAR) [11] in baseball and
Player efficiency rating (PER) [12] in basketball. The other
approach involves quantifying the value of the action of a
player using the Markov model. Recently, the latter approach
has been applied in various sports. Cervone et al. proposed
Expected Possession Value (EPV) to evaluate the decisions
and actions of players using spatiotemporal tracking data
in basketball [13]. Liu et al. introduced Game Impact Met-
ric (GIM) to aggregate the values of the actions of players
in ice hockey [10]. In soccer, a method of Valuing Actions
by Estimating Probabilities (VAEP) [14] and its variants [15]
has been proposed. A survey on team sports was recently
conducted in [16].

Based on reinforcement learning frameworks, certain
papers were published on team sports using inverse planning
methods, which estimate the action model or reward function
from the observed data using statistical learning techniques.
For example, the state-action value function (Q-function)
of a player was estimated using a recurrent neural network
[10], [17], which was interpreted using a linear model
tree [18]. To evaluate the shooting action of players,
researchers investigated the expected possession value [13],
[19], [20], and the value of the space [21], [22] by extending
a Voronoi diagram [23]. In team games, DRL was used for
estimating the quality of defensive actions in ball-screen
defense in basketball [24]. Compared to these studies on
invasive sports, we propose a DRL framework for racket
sports utilizing technical (i.e., pose) information and tactical
contexts.

B. QUANTITATIVE ANALYSIS IN RACKET SPORTS
In racket sports, there is a broad range of tasks to address.
Most of the related research focused on the detection/tracking
of players and sports equipment (e.g. ball) [25]–[27], stroke
classification [28]–[30], shuttlecock position prediction [31],
and match outcome prediction [32], [33]. Despite the pop-
ularity of racket sports, only a limited number of works
offer computer vision-based solutions for the task of player
evaluation. Certain previous works [34] manually designed
evaluation formula for players (i.e., first approach in the
above paragraph). Pfeiffer et al. were the first to adopt the
Markov model approach for performance diagnosis in table
tennis [35]. McGarry and Franks used the Markov model
for explaining the championship performance in squash [36].
However, these studies discretized the coordinates of location
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and time, which resulted in the loss of information and failed
to generalize the unobservable parts of the state space.

For stroke evaluation, traditional methods require sports
analysts to examine the videos repeatedly, and evaluate
the stroke performance based on their knowledge. Deep
learning-based computer vision approaches extract stroke
features from videos [35], [37], [38] to characterize and
model the competition process. Wang et al. [39] integrated
the knowledge of analysts, and trained a classifier that learned
the evaluation of analysts to obtain quantified evaluation
results; however, their approach using domain knowledge
(table tennis) varies from our general approach for modeling
racket sports. Recently, Wang et al. [40] introduced a bad-
minton language to describe the process, and predict the win
probability in a rally. Compared to reinforcement learning
methods, their method cannot estimate the value of each
stroke directly.

III. PROPOSED METHOD
In this section, we describe the proposed method for estimat-
ing the action value of a player. The overview of our approach
is illustrated in Fig. 1.

FIGURE 1. Overview of our approach. Pose estimation of players and
shuttlecock position detection using AlphaPose [41] and TrackNet [42],
followed by a DRL model for estimating the Q-function. Given a
Q-function, the action value is defined as the change in Q-value due to
the action.

Badminton is a competitive sport, where the winner of a
match is determined based on the best performance out of
three games and each game is played for 21 points. A rally
starts with a serve and endswhen the point is won. To describe
a badminton match, we considered a rally as the analysis
unit. The course of the rally can be described as the transition
from one state to another. A rally in badminton comprises a
sequence of strokes with outcomes.

By using the video data of badminton games, we first
segmented each game in a match into several rallies. For
each rally, we estimated the XY-coordinate values (17 body
parts in the COCO (Common Objects in Context) dataset)
for joint positions of nose, eyes, ears, shoulders, elbows,
wrists, hips, knees, and ankles using AlphaPose [41]—a
popular high precision multi-person body-pose estimation
system, and detected the shuttlecock position using TrackNet
[42]—an object tracking network that has been proven to
exhibit a decent tracking capability in games with high-speed
balls such as badminton.

As a prepossessing procedure, joint positions that were
not properly estimated owing to an overlap were annotated
through the COCO annotator. Moreover, we assumed that the

midpoint of the two ankles indicates the position of the player,
and the pose represents the coordinate values relative to the
position of the player. For the pose of a left-handed player,
we reversed the corresponding relative coordinate values.

We combined the outputs as an input feature vector of
a DRL model, applied the DRL method to estimate the
Q-values, and finally, obtained the action value from the
Q-values for evaluating the performance of a player. Accord-
ing to the position of the players relative to the camera,
we divided the two players in a game into the front and back
players. We considered the player closer to the camera as the
front player; conversely, the player farther from the camera
is the back player (we sometimes denote them as front and
back, respectively).

A. FORMULATION
We utilized a reinforcement learning framework, specifically
based on the recent sports-related work [10]. The reward R
specifies the player who wins a point at the end of a rally.
In this study, we generalized the strokes to nine types, namely
serve, drop, smash, clear, lift, drive, block, net kill, and net
shot. Fig. 2 illustrates the different stroke types. Action at is
one of the stroke types.

FIGURE 2. Illustration of different stroke types. The trajectories of
(1) serve, (2) drop, (3) smash, (4) clear, (5) lift, (6) drive, (7) block, (8) net
kill, (9) net shot are shown.

To describe the state, we considered the feature vector
at each hit time (the moment when the racket contacts the
shuttlecock) as state representation st at time step t .

The Q-function Q(s, a), represents the conditional proba-
bility that the front resp. back player wins a point at the end
of the rally such that

Qfront/back (s, a) = P(point = 1|st = s, at = a). (1)

The Q-function computes the expected rewards for an action
taken in a given state. Different Q-functions can be used
to study different outcomes of interest, such as goals and
penalties [43]. In a variation from a previous study [35]
that used ‘‘point’’ and ‘‘fault’’ as the expected outcomes,
we used the next-score probability as the Q-function. The
advantages are as follows. 1) Compared to the outcome of a
rally (‘‘point’’ or ‘‘fault’’), the next-score probability function
is highly interpretable, as it models the probability of an
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FIGURE 3. Architecture of the DRL model: two layers of LSTM networks. The input is a combination of feature vectors of
XY-coordinates of the positions of the front and back players, their poses, the position of the shuttlecock, and the action at each
hit time.

event. 2) It can provide coacheswith amore detailed overview
of player performance during a rally.

B. LEARNING THE Q-FUNCTION
Fig. 3 shows the architecture of our DRL model. We con-
structed dynamic two-layer long short-termmemory (LSTM)
networks to learn the Q-function and estimate the Q-values.
The networks take a sequence of states st and actions at at
the moment the player hits the shuttlecock (hit frame) as the
input. We used this model to simultaneously evaluate both the
front and back players in a given rally.

The LSTM networks have an input layer with 256 nodes,
a hidden layer with 256 nodes, and a dense output layer
with 3 output nodes. The three output nodes, QBack (s, a),
QFront (s, a), and QRally_end (s, a), represent the probability
that the front/back player wins the next point according to
the present state and action and the probability that a rally
ends according to the present state and action. The LSTM
networks require four types of input data for model training,
namely the XY-coordinates of the positions of the front and
back players, both their poses, the position of the shuttlecock,
and the action.

In this study, the Q-function is learned via a neural net-
work, which is called a function approximation approach.
We approximate Q-function by the LSTM networks,
we denote LSTM networks as q, then the approximation can

be written as:

Q(s, a) ≈ q(s, a;w), (2)

where LSTM networks are parameterized by w. We use the
positions of the front and back players, both their poses, and
the position of the shuttlecock as the state s, and the action a
in q(s, a;w).
We applied state–action–reward–state–action, which is an

on-policy reinforcement learning algorithm for estimating
Q-values. The Q-value for a state-action is updated using the
following equation:

Q(st , at )← Q(st , at )+α [R+ γQ (st+1, at+1)−Q(st , at )] ,

(3)

where st+1 and at+1 denote the state and action at time step
t+1. α is the learning rate, and γ is the discount factor. Instead
of tabular learning, we considered the neural networks as
function approximators.

Our network is trained with loss L as:

L =
1
n

n∑
t=1

(
Q(st , at )− R− γQ (st+1, at+1)

)2
. (4)

The network is trained using the Adam optimizer with a
learning rate of 10−5 for 90 epochs. The hyperparameters
were set to γ = 0.3.
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FIGURE 4. Typical example of the analysis in a rally. Left: For each rally, the graph shows the probability that the front/back player scores the
next point, as estimated by the DRL model. A greater action value leads to major changes in the scoring chance. The network can also
capture smaller changes associated with every action under different technical and tactical contexts. Right: Action value of each stroke
performed by the front/back player.

C. STROKE EVALUATION
For each action of the front/back player in a rally, action value
A can be computed as:

At+1 = Qplayer (st+1, at+1)− Qplayer (st , at ). (5)

We set the probability that the front/back player will win
the next point (Q-value) before service as 0. We calculated
the action value of each stroke type and the corresponding
number of each stroke type that a player takes in each game,
and calculated the average action value of each stroke type
performed by a player in a game, as shown in Fig. 4.

We present a typical example to demonstrate the effective-
ness of our approach. The graph on the left in Fig. 4 shows
the dynamic changes in the Q-values of a rally in a match
between Lin (back player) and Lee (front player), which was
conducted on March 17, 2018. The back player Lin won this
rally in the end. The figure plots the values of the three output
nodes. The graph on the right in Fig. 4 shows the action
value of each stroke performed by the front and back players.
According to the bar chart, the fourth stroke, which was a
‘‘smash’’ performed by Lin, has the greatest action value, and
the fifth stroke, which was a ‘‘block’’ performed by Lee, has a
minor action value. The result of the action value is consistent
with our intuitive feelings from the video that the ‘‘smash’’
performed by Lin was significantly powerful, and Lee failed
to intercept the shuttle through the ‘‘block’’ stroke.

Moreover, this figure provides more insights on the rally.
The intuitive feelings gained from the video may make the
coach erroneously attribute the loss of a point to the poor
defensive ‘‘block’’ performed by Lee. However, our result
shows the action value of the ‘‘block’’ is positive, albeit a
small one. Conversely, the third stroke, which was a ‘‘clear’’
stroke performed by Lee, has a negative action value; after
this stroke, Lin seized the chance to attack using the offensive
‘‘smash’’ action. We examined the video and identified that

Lee returned the shuttle to a position closer to Lin with
the ‘‘clear’’ action; consequently, Lin has sufficient time to
jump and attack with a ‘‘smash.’’ The figure reflects that the
previous actions in a rally have an indirect impact on the
final result. Therefore, we can conclude that the result of our
approach can provide useful clues for further analysis over
the course of multiple strokes in a rally.

IV. EXPERIMENTS
A. DATASETS
We collected videos from the BWF TV channel. We ignored
the cross-view problem, and only selected videos captured
from a single view (as shown in Fig. 1). Our constructed
dataset provides information regarding game contexts and
player actions for the 2018-2020 BWF season, which con-
tains 21 matches, covering 22 players and 320 rallies.
Data and codes are available at https://github.com/
Ning-D/Evaluate_Badminton_Stroke.

B. VERIFICATION OF OUR METHOD
We evaluated the design choices of our approach in terms
of input components by comparing the performance of the
LSTM networks with different inputs.

As presented in Table 1, a model trained with all the
input components (shuttle position, player position, and
player pose) achieves the best performance, indicating that
all the input components contribute in estimating an accurate
Q-function.

TABLE 1. Comparison of each input feature by eliminating the different
input features from the total input. We report loss function L according
to Eq. (4), which was evaluated on a badminton dataset.
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Next, we examined the effect of the stroke type on our
model. As the action is a primary element in reinforce-
ment learning, we used a fully supervised LSTM model
(non-reinforcement learning) to examine the effect of action
(stroke types) by eliminating it from the total input. The
results show that the stroke type feature can help in improv-
ing the accuracy of the fully supervised LSTM model (loss
function value: 0.0995) when compared to a model that does
not consider this feature (0.1274).

C. CHARACTERISTICS OF THE PLAYERS IDENTIFIED
USING OUR METHOD
The matches considered here include one final, two semi-
finals, and one quarter-final men’s singles matches in
the 2018 BWF World Tour, which are the matches in the All
England Open Tournament between Lin Dan and Shi Yuqi,
Huang Yuxiang and Lin Dan, Son Wan-ho and Shi Yuqi, and
Lin Dan and Lee Chong Wei. We examined the performance
of the players from the perspective of the average action value
of each stroke type performed by a player in a match (Fig. 5).
For example, we identified that, when Lin was playing

against Huang and Lee (Figs. 5 (B) and (D)), the strokes
performed by Lin were superior to those by his opponents.
Lin had fewer stroke types whose action value were substan-
tially below zero, especially when he was playing against
Lee. His offensive strokes such as ‘‘smash’’ and ‘‘net shot’’
were better than those of Lee. However, when playing against
Shi (Fig. 5 (A)), Lin did not display significant advantages,
which would explain why he lost the final match. During
the match between Shi and Son (Fig. 5 (C)), Shi showed
superior performance in offensive strokes such as ‘‘smash’’
and ‘‘net shot.’’ The summary of all player action values in the
2018–2020 BWF Tour as indicated in Table 2.

D. RELATIONSHIP WITH SCORE
Owing to the cross-view scenes in badminton videos,
we could only use a portion of the rallies in each match.
Therefore, to further demonstrate the effectiveness of our
approach, we examined the relationship between aver-
age (maximum) action values and the score, as shown in
Figs. 6 (A) and (B). Here, the average (maximum) action
values refer to the average value of the maximum value of
the actions performed by a player in each rally over several
rallies, and the score indicates the number of points scored by
the front/back player in a match.

Spearman’s rank correlation coefficient ρ was applied to
quantify the correlation, because we also examined the rela-
tionship with the rank of the players, as described in the next
subsection. Fig. 6 (A) shows that ρ = 0.150 (p > 0.05),
indicating that there is no correlation between the score and
average action value. Fig. 6 (B) shows that ρ = 0.312(p <
0.05), which reflects a weak positive monotonic correlation
between the score and average (maximum) action value.

The results suggest that the average (maximum) action
value could be associated with the score, and if the maximum
action value of a player in a rally is greater than that of his

FIGURE 5. Average action value of each stroke types in four badminton
finals: (A) Final, (B) Semi-final, (C) Semi-final, (D) Quarter-final.

opponent, the action can lead to obtaining the score of the
rally.

E. RELATIONSHIP WITH THE RANK OF THE PLAYER
We also examined the relationship between the rank of the
player and average (maximum) action values, as shown in
Figs. 6 (C) and (D) Here, the average action values refer to
the average value of all actions performed by a player over
several rallies. For the rank of a player, we used the official
ranking data of the BWF for the front/back player. Fig. 6
(C) shows that ρ = −0.353 (p < 0.05), which reflects a weak
negativemonotonic correlation between the rank of the player
and average action value. Fig. 6 (D) shows that ρ = −0.048
(p > 0.05), which indicates that there is no correlation
between the rank of the player and average (maximum) action
value.
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TABLE 2. Player action values in the 2018–2020 BWF tour.

FIGURE 6. Upper (A, B) Correlation between the score and average action value/average (maximum) action value.
Lower (C, D) Correlation between the rank of the player and average action value/average (maximum) action value.

The results suggest that average action value can be asso-
ciated with the rank of the player, and higher ranked players
tend to perform actions with higher action values.

F. CORRELATION COMPARISON WITH BASELINE
No previous studies have used the DRL model to evaluate
each stroke in racket sports and compared with the similar

method in team sports of ice hockey [10], our study took into
account the importance of technical performance in single-
racket sports. To evaluate our method, we eliminated the
information of technical performance (player pose) and used
it as a baseline.

Here, we computed the same Spearman’s rank correla-
tion coefficient ρ as above regarding the baseline model.
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TABLE 3. Spearman’s correlation coefficient values between standard
success measures and our methods including a baseline. The bold value
indicates a statistically significant correlation (p < 0.05).

We summarized the results in Table 3, which shows that there
was no correlation between player evaluation metrics and
standard success for baseline model (ps > 0.05). Compared
to the baseline, our method (full model) shows a weak mono-
tonic correlation in the two success measures. The correlation
results suggest some important information in our full model
(pose information) to evaluate the performance of the players.

V. CONCLUSION
In this study, we applied the DRL method to the task of
player evaluation in racket sports (badminton). We devel-
oped a framework to estimate the action value of a player
from an input video. We verified our approach by compar-
ing various baselines, and validated the effectiveness of our
method through use cases that analyzed the performance of
top badminton players in world-class events. We also discov-
ered valuable insights into the correlation between the action
value and the score/rank. We shared a badminton dataset with
ground truth annotations of both stroke types and game scores
publicly.

In our future work, we plan to improve the framework (e.g.,
modeling of players separately for player-specific analysis),
and extend our framework to other racket sports such as ten-
nis. We also believe that more accurate 3D feature extraction
can help in modeling different sports.
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