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Abstract—Trajectory planning of the knee joint plays an 

essential role in controlling the lower limb prosthesis. Nowadays, 

the idea of mapping the trajectory of the healthy limb to the 

motion trajectory of the prosthetic joint has begun to emerge. 

However, establishing a simple and intuitive coordination 

mapping is still challenging. This paper employs the method of 

experimental data mining to explore such a coordination 

mapping. The coordination indexes, i.e., the mean absolute 

relative phase (MARP) and the deviation phase (DP), are 

obtained from experimental data. Statistical results covering 

different subjects indicate that the hip motion possesses a stable 

phase difference with the knee, inspiring us to construct a hip-

knee Motion-Lagged Coordination Mapping (MLCM). The 

MLCM first introduces a time lag to the hip motion to avoid 

conventional integral or differential calculations. The model in 

polynomials, which is proved more efficient than Gaussian 

process regression and neural network learning, is then 

constructed to represent the mapping from the lagged hip motion 

to the knee motion. In addition, a strong linear correlation 

between hip-knee MARP and hip-knee motion lag is discovered 

for the first time. By using the MLCM, one can generate the knee 

trajectory for the prosthesis control only via the hip motion of the 

healthy limb, indicating less sensing and better robustness. 

Numerical simulations show that the prosthesis can achieve 

normal gaits at different walking speeds. 

Index Terms—Trajectory planning, Prosthesis control, Lower 

limb coordination, MARP, Motion lag 

 

I. INTRODUCTION 

OR the transfemoral amputees, wearing a lower-limb 

prosthesis is crucial to regain their walking capability. The 

powered knee prosthesis aims to move in a way that a healthy 

knee moves. There are mainly two methods for controlling a 

powered knee prosthesis for this aim. One is the impedance 

control based on a finite state machine (FSM) [1], [2]. The 

FSM-based impedance control divides the entire gait cycle 

into several gait phases (usually 4 or 5) and sets different 

impedance parameters in each gait phase. This control method 
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is mainly used in commercial and prototypic prostheses. 

However, the number of control parameters is usually 10~20, 

making parameter adjustments cost a considerable workload 

[3]. To address this challenge, Wen et al. [4], [5] design 

reinforcement learning (RL) supplementary control, which 

can synchronously tune 12 impedance control parameters and 

generate variant control parameter settings. In another way, 

Shorter and Rouse [6] estimate the ankle impedance in each 

gait phase by experiments and use the estimated impedance to 

control an ankle prosthesis. The other method for prosthesis 

control is the position control based on a reference trajectory. 

The position control framework generates a reference 

trajectory and then uses a low-level controller to minimize the 

error between the actual trajectory and the reference trajectory. 

This method does not need to divide the gait cycle into several 

phases, significantly reducing the number of control 

parameters. For the position control framework, the key 

problem lies in the trajectory planning of the knee joint. 

The reference trajectory for position control is obtained 

through the gait experiments of healthy subjects in advance 

[7]. However, the experiments cannot cover all gait 

parameters (walking speed, step length, etc.) and body 

parameters (height, weight, etc.). This fact implies that the 

reference trajectory suitable for individualized gait and body 

parameters should be planned. Focusing on this issue, 

researchers employ many curve fitting methods (such as spline 

fitting [8], Gaussian process regression (GPR) [9], Fourier 

series fitting [10], etc.) to generate the reference trajectory. 

They further use the generated trajectory for gait treatment of 

severely affected patients (such as hemiplegic patients and 

stroke patients) and achieve effective results [11]. However, 

when the case comes to the position control of the lower-limb 

prosthesis, forcing the prosthesis to move according to the 

reference trajectory seems unreasonable because it ignores the 

role of the amputees’ healthy limbs in co-realizing the gait. 

Other research further reveals that the lower limbs show good 

(Email: jian_xu@fudan.edu.cn (Jian Xu), fanghongbin@fudan.edu.cn 
(Hongbin Fang)) 

Xiaoxu Zhang is with Academy for Engineering & Technology, Fudan 

University, Shanghai 200433, China, Shanghai Engineering Research Center 
of AI & Robotics, Shanghai 200433, China, and MOE Frontiers Center for 

Brain Science, Fudan University, Shanghai 20043, China. (Email: 

zhangxiaoxu@fudan.edu.cn.) 
Qining Wang is with College of Engineering, Peking University, Beijing 

100871, China. (Email: qiningwang@pku.edu.cn)  

Data-Mined Continuous Hip-knee Coordination 

Mapping with Motion Lag for Lower-limb 

Prosthesis Control 
Yang Lv, Jian Xu, Hongbin Fang, Member, IEEE, Xiaoxu Zhang, and Qining Wang, Senior Member, 

IEEE 

F 

mailto:lvy21@m.fudan.edu.cn
mailto:jian_xu@fudan.edu.cn
mailto:fanghongbin@fudan.edu.cn
mailto:zhangxiaoxu@fudan.edu.cn
mailto:qiningwang@pku.edu.cn


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3179978, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

coordination in a comfortable and efficient walking mode [12]. 

Thus, the coordination between the healthy limb and the 

prosthesis should be considered in trajectory planning. 

In modeling the coordination relationship between the 

healthy and prosthetic limbs, the trajectory of the healthy limb 

is often treated as input, and the reference trajectory of the 

prosthesis is the output. One commonly used method to 

establish this mapping is the data-driven method (such as 

Random Forest Model [13] and Recurrent Neural Network 

[14]) due to its good performance in finding the non-empirical 

relationship between several related physical quantities. 

However, the mappings established by the conventional data-

driven method may have two drawbacks. First, the mappings 

include trajectories of nearly all healthy limb joints as inputs, 

which means quite a lot of sensors need to be attached to the 

healthy limb. Second, the mappings need to train a large 

number of parameters. The calculation burden will be a big 

problem for the online deployment of prosthesis control. Thus, 

for the real-time trajectory planning of the prosthesis, a simple 

and intuitive mapping with a minimum number of sensors is 

required.  

To achieve this goal, Valley et al. [15] propose a 

complementary limb motion estimation method (CLME) 

based on statistical regression to establish the mapping from 

the hip and knee motion of the healthy limb to the knee motion 

of the prosthesis. Later, an amputee subject successfully walks 

at different speeds and climbs stairs with the CLME-

controlled knee prosthesis [16]. It is worth noting that only the 

healthy limb’s hip and knee sensor signals are used in the 

CLME method. Some research further decreases the number 

of sensor inputs. Eslamy et al. [17] only use the hip angle and 

angular velocity to obtain the knee angle by Gaussian Process 

Regression (GPR), making the RMSE lower than 5°. Quintero 

et al. [18] use the hip angle and angular velocity (or angular 

integral) to build a phase variable for characterizing the 

reference knee angle, allowing three transfemoral amputees to 

walk naturally at different speeds and slope conditions. 

However, time-differentiating the joint angle to obtain angular 

velocity often amplifies the noise sensitivity of mapping. In 

fact, constructing coordination mapping may not require the 

velocity term or the integral term. For example, the 

coordination relationship between the left and right knee 

motion can be described only by introducing a phase 

difference of 180°. It enlightens us to construct a mapping 

without the velocity term by introducing a coordination phase 

difference parameter. 

The phase difference is always a vital index in joint 

coordination research. The most commonly used index to 

describe the lower limb coordination is the continuous relative 

phase (CRP). CRP is derived from the difference between two 

joints’ phase angles [19]. Furthermore, the mean absolute 

relative phase (MARP) and deviation phase (DP) can be 

derived based on CRP to evaluate joint coordination better. 

MARP [20] is defined by calculating the mean value of CRP 

over the entire gait cycle, and DP [21] is determined by 

calculating the mean value of the CRP’s standard deviation to 

measure the stability of joint coordination. The smaller DP is, 

the more stable the joint coordination exists. Based on these 

two indexes, researchers compare the lower limb coordination 

of subjects of different ages [19], body shapes [22], walking 

speeds [23], and walking situations [20] (level-ground 

walking, up and downstairs, up and down slopes, etc.). 

However, few studies use these indexes to establish 

coordination mapping. 

In general, a simple and intuitive coordination mapping is 

necessary for the online deployment of prosthesis control. 

Lack of comprehension of lower-limb coordination affects the 

establishment of a simple and intuitive coordination mapping. 

Meanwhile, the existing coordination research on the 

quantitative description of MARP and DP indexes is not used 

to establish a coordination mapping. Thus, there is a 

knowledge gap between the study of lower-limb coordination 

and the establishment of coordination mapping. This paper 

aims to fill this knowledge gap and apply coordination 

mapping to the position control of the knee prosthesis. 

The established coordination mapping has three highlights. 

a) It only needs hip motion sensing and does not require 

integral or differential calculations. This feature saves the 

burden of information collection and processing in prosthesis 

control. b) The parameter introduced in this mapping, namely 

motion lag, can be directly estimated from the gait period and 

the walking speed. This feature simplifies the lower-limb 

prosthesis control. c) The established mapping can adapt to 

different individuals and walking speeds to some extent. This 

feature implies broad adaptability to various working 

conditions. 

The structure of this paper is arranged as follows. In Section 

Ⅱ, the gait experiments are conducted to get the coordination 

indexes. Then, the law of the lower limb coordination is 

analyzed. In Section Ⅲ, the hip-knee MLCM is established 

and analyzed. In Section Ⅳ, a specific method of applying the 

hip-knee MLCM to the real-time trajectory generation of the 

knee prosthesis is given and verified on the simulation 

platform. Finally, in Section Ⅴ, we discuss the results of our 

method. 

II. PRELIMINARIES AND MOTIVATION 

This section mainly clarifies the motivation for hip-knee 

coordination mapping based on the following hypothesis: 

Hypothesis: There is a stable coordination phase difference 

between hip and knee over the entire gait cycle when walking 

at uniform speeds. 

A. Experimental protocol 

Five males and five females (mean  std. age: 24.3  1.8 

years, height: 1.71  0.07 m, weight: 58.15  6.33kg, BMI: 

20.28  1.87) were invited to participate in this experiment. 

They all have good sports abilities and do not have any 

musculoskeletal injuries. This study was approved by the 

Ethics Committee at the Fudan University, China (No. 

FE21124) on 16 Aug 2021. The aims and details of the 

protocol were fully explained to the subjects with the signing 

of written informed consent. Subject characteristics are given 

in Table Ⅰ. 
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Each participant performed five walking tests on a treadmill 

at five walking speeds (2.5, 3.5, 4.5, 5.5, 6.5 km/h, denoted as 

WS1, WS2, WS3, WS4, WS5). The data was recorded for two 

minutes after the participant reported adapting to the current 

walking speed for each test. Then, the participant rested for 

another two minutes between tests. Nineteen markers were 

stuck on the subject based on the rule of the Helen-Hayes 

Model [24]. Markers’ movement was recorded at a sampling 

rate of 120 Hz via the OptiTrack motion capture system. 

According to Helen Hayes Model, the hip, knee, and ankle 

joint trajectories in the sagittal plane were extracted. 

B. Data processing 

For a time-discrete curve ( )it , where  0,it T  and T  is 

the gait period, its phase angle can be extracted by the Hilbert 

transform [25], i.e. 

 ( ) ( ) ( )( )c carctan / ,i i it t t  =   H  (1) 

where  H  means the Hilbert transform of a signal. ( )c it  

is the zero-centered signal defined as 

 ( ) ( ) ( ) ( )( )c max min / 2,i it t   = − +  (2) 

where ( )max  and ( )min   indicate the maximum and the 

minimum of ( )it  over one gait cycle. 

Based on Eq. (1), this study defines the CRP between two 

joint motions as the phase angle of the proximal joint 

subtracting that of the distal joint. According to the distance 

from the joints to the main body, the hip joint is the most 

proximal, followed by the knee joint, and the ankle joint is the 

most distal. For example, the hip-knee CRP, denoted by 

hip-knee , is calculated by subtracting the knee phase angle from 

the hip phase angle. 

 ( ) ( ) ( )hip-knee hip knee .i i it t t  = −  (3) 

Eq. (3) indicates the continuous relative phase between the 

hip and knee angles. Especially, a 0° or 360° CRP means 

completely in-phase motion between the hip and knee joints, 

and a 180° CRP represents completely out-of-phase. By 

referring to Eq. (3), knee-ankle  and hip-ankle  can be calculated 

and explained in the same way. Furthermore, averaging the 

CRP in n gait cycles yields the averaged CRP  : 

 ( ) ( ),

1

1
,

n

i i j

j

t t
n


=

 =   (4) 

where j indicates the jth gait cycle and ( ), 1i j it t j T= + − . By 

calculating the standard deviation of the CRP at each time 

point, the CRP variability   can be obtained: 

 ( ) ( ) ( )( )
2

,

1

1
.

1

n

i i j i

j

t t t
n


=

 = − 
−

  (5) 

Averaging   and   over the gait cycle further yields MARP 

and DP: 

 
( )

( )

MARP ,

DP ,

i

i

t

t

= 

= 
 (6) 

MARP indicates the phase difference between two joints and 

has a similar physical meaning to CRP. When MARP equals 

0° or 360°, the joints’ motions are in phase on average over 

the entire gait cycle. When MARP equals 180°, the joints’ 

motions are out-of-phase on average over the entire gait cycle. 

DP indicates the variability of joint coordination. A smaller 

DP means more stable coordination between the joints.  

 
This study employs MATLAB (version 2020b, MathWorks, 

Natick, MA, USA) to process the detailed calculations defined 

by Eqs. (1)-(6). MARP and DP values of hip-knee, knee-ankle, 

and hip-ankle are calculated for the lower limb motion of all 

ten subjects at five walking speeds. To figure out the effects 

of the gait phase on MARP and DP, we also calculate MARP 

and DP values over the stance phase, swing phase, and entire 

gait cycle, respectively. So, there are 450 MARP values and 

450 DP values (10 subjects*5 speeds*3 gait phases*3 

coordinations). The calculated data is grouped in speed for 

joint coordination evaluation. The angle of the thigh relative 

to the gravitational direction (anticlockwise +) is used to 

describe the hip motion, and the angle between the thigh and 

the shank (flexion +) is adopted to represent the knee motion. 

Besides, the angle of dorsiflexion or plantar flexion 

(dorsiflexion +) indicates the ankle motion. 

The MARP and DP results calculated by MATLAB are then 

TABLE I 

SUBJECT CHARACTERISTICS OF THE EXPERIMENT 

Subject Gender Age Weight (kg) Height (m) BMI 

1 Female 24 49.75 1.66 18.05 
2 Female 23 51.25 1.60 20.02 

3 Female 24 49.55 1.62 18.88 

4 Female 25 56.45 1.72 19.08 
5 Female 22 56.20 1.68 19.91 

6 Male 25 68.05 1.74 22.48 

7 Male 23 66.10 1.76 21.34 
8 Male 24 59.75 1.74 19.74 

9 Male 24 63.85 1.71 21.84 

10 Male 29 60.55 1.85 17.69 

 

 
Fig. 1.  Hip-knee, knee-ankle, hip-ankle MARPs and DPs, where the error bar 

indicates standard deviation between subjects. (a) Hip-knee MARP; (b) Hip-
knee DP; (c) Knee-ankle MARP; (d) Knee-ankle DP; (e) Hip-ankle MARP; 

(f) Hip-ankle DP. 
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given into SPSS (version 20, IBM Corp, Armonk, NY, USA) 

for further statistical analysis. Firstly, the outliers of the 

calculated MARP (15 out of 450) and DP (42 out of 450) 

values are removed because outliers may mislead the 

statistical results. Secondly, the normality of the data is tested. 

If the data obey the normal distribution, the homogeneity test 

of variance will be further carried out. If the data variance is 

homogeneous, analysis of variance (ANOVA) will be used to 

detect the effects of speed on MARP and DP. Otherwise, the 

Games-Howell test will be used. If the data does not obey the 

normal distribution, a non-parametric test (Kruskal-Wallis H 

test) will be carried out to detect the effects of speed and gait 

phase on MARP and DP. The significance level of the results 

is set at 0.05p  . 

C. Statistical Results 

Table Ⅱ indicates that the p-values of MARP with respect 

to different walking speeds are all smaller than 0.05. This 

feature illustrates that walking speed has a significant effect 

on interlimb MARP. In Fig.1a, c, and e, one can find that 

except for knee-ankle MARP at WS1, the MARP values of 

arbitrary two joints decrease with the walking speed increase. 

Besides, hip-knee, knee-ankle, and hip-ankle MARP values 

decrease at different ranges. Fig. 1a shows that the range of 

hip-knee MARP is 18.01°, which is significantly smaller than 

that of knee-ankle (41.01°, Fig.1c) and hip-ankle MARP 

(60.94°, Fig.1e). 

 
Table Ⅱ also indicates that walking speed significantly 

affects interlimb DP values. For example, in Fig.1b, d, and f, 

one can find that the DP values of arbitrary two joints at WS3 

are significantly smaller than those at other walking speeds, 

which implies the coordination stability is the best at WS3. In 

fact, WS3 (4.5 km/h) is the closest to the normal walking 

speed of human adults (1.26 m/s  4.5 km/h according to [23]). 

In other words, one can achieve the best coordination stability 

at normal walking speed. In addition, the hip-knee DP 

(2.96°~5.07°) is generally smaller than the knee-ankle DP 

(5.13°~8.79°) and hip-ankle DP (4.02°~7.47°). Thus, the hip-

knee phase difference is the most stable in lower-limb 

coordination. 

Table Ⅲ indicates that the gait phase does not significantly 

affect interlimb MARP and DP values, suggesting that the 

coordination phase difference is consistent in the stance and 

swing phases. Thus, the coordination mapping can be realized 

time-continuously over the entire gait cycle. 

D. Motivation for hip-knee coordination mapping 

 
Fig.2 shows the standard deviations of MARP and DP 

between different subjects. As can be seen, the standard 

deviation of hip-knee MARP is much smaller than that of the 

knee-ankle and hip-ankle MARPs. This feature means the hip-

knee coordination phase difference has strong consistency and 

regularity between different subjects. Unlike the MARP 

results, the standard deviation of hip-knee DP is not always 

the smallest, e.g., WS1 and WS3, but maintains at a low level 

( 0.83 0.17  ). Thus, hip-knee coordination variability is also 

consistent among different subjects. The above analysis 

reveals that the hip-knee coordination relationship, especially 

the coordination phase difference represented by MARP, is 

not easily affected by individual differences. Combined with 

the analysis in the previous subsection, the hypothesis is 

validated. Hence, a hip-knee coordination mapping may be 

established by considering the coordination phase difference. 

 

 
 

III. HIP-KNEE MOTION-LAGGED COORDINATION MAPPING 

According to the analysis in subsection Ⅱ.D, there is a stable 

phase difference between the hip and knee joint motions. This 

phase difference causes the hip joint and the knee joint to 

move with a constant time interval, called the hip-knee motion 

lag, from the perspective of time history. If the hip motion can 

be shifted backward with the hip-knee motion lag, it will be 

TABLE Ⅱ 

EFFECTS OF WALKING SPEED ON MARP AND DP (EVALUATED BY P-VALUE) 

  Total Period Stance Phase Swing Phase  

MARP 

Hip-knee <0.0001 <0.0001 0.001 

Knee-ankle <0.0001 <0.0001 <0.0001 

Hip-ankle <0.0001 <0.0001 <0.0001 

DP 

Hip-knee <0.0001 0.002 <0.0001 

Knee-ankle <0.0001 <0.0001 0.001 

Hip-ankle <0.0001 <0.0001 0.014 

 

 
Fig. 2.  Standard deviations of (a) MARP and (b) DP through entire gait cycle 

between different subjects. 

  

Hip-knee Knee-ankle Hip-ankle

(a) (b)

TABLE Ⅲ 

EFFECTS OF GAIT PHASE ON MARP AND DP, THE P-VALUES ARE OBTAINED BY COMPARING THE MARP AND DP RESULTS OVER STANCE PHASE AND SWING PHASE 

WITH THOSE OVER ENTIRE GAIT CYCLE 

  
WS1 p-value WS2 p-value WS3 p-value WS4 p-value WS5 p-value 

Stance Swing Stance Swing Stance Swing Stance Swing Stance Swing 

MARP 

Hip-knee 0.921 0.640 0.854 0.877 0.775 0.480 0.429 0.473 0.251 0.224 

Knee-ankle 0.612 0.870 0.508 0.369 0.344 0.275 0.331 0.616 0.450 0.940 

Hip-ankle 0.441 0.414 0.820 0.359 0.312 0.300 0.296 0.231 0.370 0.084 

DP 

Hip-knee 1.000 0.334 0.635 0.219 0.474 0.096 0.759 0.379 0.257 0.096 

Knee-ankle 0.277 0.070 0.420 0.164 0.514 0.895 0.660 0.498 0.769 0.462 

Hip-ankle 0.198 0.099 0.193 0.134 0.661 0.126 0.191 0.086 0.517 0.129 
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easier to establish the coordination mapping because the 

shifted hip motion and the knee motion are completely in-

phase or out-of-phase. This section is carried out by 

developing such a mapping and analyzing it. 

A. MLCM: Motion-Lagged Coordination Mapping 

We introduce three candidates for the form of MLCM. The 

first is an n-order (n=2,3,4,5) polynomial. 

 ( ) ( )
0

,
n

i
i

i

y t C x t 
=

= −  (7) 

where ( )y t  is the normalized mapped knee motion, ( )x t −  

the normalized shifted hip motion,   the hip-knee motion lag, 

and iC  the polynomial coefficient to the ith order. 

The second candidate is an RBF neural network[26], which 

uses the Gaussian function[27] as its activation function. The 

number of neurons is set to be 5. The third candidate is a GPR 

model, which is identical to that in [17] except for a different 

input (inputs in [17]: hip angle and angular velocity, our input: 

normalized shifted hip angle). These two candidates are 

chosen as the state of the art because they are widely used to 

fit curves and achieve good results in recent years. 

The three candidates mentioned above will use the same 

experimental data to construct our MLCM. Their 

performances will be evaluated based on prediction accuracy 

and time, and the best-performing candidate will be used as 

the final form of MLCM. 

The entire process of constructing the MLCM is shown in 

Fig.3(a). First, the normalized hip motion is shifted backward 

with a given lag  . Then, parameter regression is conducted 

to map the normalized shifted backward hip motion to the 

normalized experimental knee motion. The regression 

strategies for polynomial, RBF, and GPR are the least square 

method, gradient descent method, and Bayesian Optimization, 

respectively. Finally, the k-means clustering algorithm is 

employed to find the center points and standard variances of 

the RBF network. 

After parameter regression, the normalized mapped knee 

motion is obtained. Then, we come to the most important step 

of finding the best-fitted motion lag. The following reward 

function, denoted as r , is defined to evaluate the motion lag 

fitness. 

 ( ) ( ) ( ) ( )( )  ,  Cov ,  D D 0,1 ,r y y y y y y=   (8) 

where 

( )

( )

( )

T T T

0 0 0

2
T T

2

0 0

2
T T

2

0 0

1 1 1
Cov ,  ,

T T T

1 1
D ,

T T

1 1
D ,

T T

y y yydt ydt ydt

y y dt ydt

y y dt ydt

  
= −   

  

 
= −  

 

 
= −  

 

  

 
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here y  is the measured signal of knee motion, and T 

represents the gait period time. The larger the value of 

( ),  r y y , the stronger the consistency between the two signals, 

and the better the motion lag fitness is. To determine the 

optimal motion lag,   is traversed from 0 to T, and then the 

largest ( ),  r y y  is selected. The corresponding   is 

determined to be the motion lag used in the mapping, and the 

corresponding regression results determine the mapping 

parameters. 

Fig.3(b) shows the time histories of mapped knee angles 

with or without motion lag. One can find that the motion-

lagged models all achieve good fitness for the experimental 

data. On the contrary, corresponding models without motion 

lag barely fit the experimental data. This feature can be 

explained by referring to the phase diagram in Fig.3(a). Before 

shifting the hip motion, each hip angle maps to two different 

knee angles, so knee angle cannot be determined only by hip 

angle. After shifting the hip motion with motion lag, each hip 

angle can map to two similar knee angles, so the mapping from 

hip angle to knee angle can be realized with a small error. 

Therefore, motion lag is necessary for our coordination 

mapping. So far, the effectiveness of MLCM has been verified. 

 

B. Comparisons with the SOTA 

In this subsection, the prediction accuracy and prediction 

time will be evaluated for three candidates to determine the 

MLCM form. In addition, the MLCM will also be compared 

with the mapping used in [17] (as state of the art). All the 

calculations are completed on the computer with a CPU of 

Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. 

 
Fig. 3.  (a) Flowchart of hip-knee MLCM construction. In the left-side 
figure, experimental hip-knee angle phase diagram is shown. In the right-

side figure, shifted hip-knee angle phase diagram and the fitting curve of 

( )f x
 is shown. The form of ( )f x

 can be a polynomial, a RBF neural 

network or a GPR model, as introduced in subsection Ⅲ.A. (b) Time 
histories of experimental knee angle and mapped knee angle using different 

candidates for Subject 8 at WS3 (4.5km/h). The black solid line is the 

experimental data. The red, green, blue solid line is the motion-lagged GPR 
model, RBF network, 2-order polynomial. The red, green, blue dashed line 

is the corresponding candidate without motion lag. 
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The MLCM will be applied to predict knee motion at any 

walking speed in the real-time prosthesis controller. We hence 

perform leave-one-out-cross-validation (LOOCV)[14] to 

present our results. For the data at five walking speeds of each 

subject, one of the walking speeds is taken as the test set, and 

the other four walking speeds are used as training sets. Thus, 

four groups of mapping parameters can be obtained from 

training sets and then be averaged to act as the mapping 

parameters of the test set. In this way, the prediction accuracy 

for every walking speed of ten subjects is obtained by 

calculating the RMSEs between the mapped and experimental 

data. The average prediction RMSEs and prediction time for 

each walking speed are plotted in Fig.4.  

Fig.4(a) shows that the MLCM shows higher accuracy 

(smaller RMSE) than SOTA, and the accuracy is almost the 

same between the GPR and polynomial candidates. The 

prediction accuracy slightly increases with the polynomial 

order, except for WS1. In terms of prediction time (Fig.4(b)), 

the GPR candidate costs the most, which is not conducive to 

the online deployment of the algorithm. Because the 

polynomial candidate is more straightforward and faster than 

other candidates, and the prediction accuracy is not sensitive 

to the polynomial order, we choose the polynomial of order 

four as the final MLCM form. 

C. Relationship between motion lag and MARP 

For two sinusoidal signals at the same frequency with a 

certain phase difference, e.g., ( )siny t= and

( )siny t = + , the conversion between the phase difference 

  in the frequency domain and the time lag   in the time 

domain can be represented as /  =  or 

 ( )/ 2 ,T  =  (9) 

where 2 /T  =  is the period of the sinusoidal signal. This 

equation inspires us to inspect the intrinsic relationship 

between the identified hip-knee motion lag   and the widely 

used MARP. 

Table S.I in Supplementary lists all the hip-knee MARPs 

and motion lags of all subjects at different walking speeds. By 

referring to Eq. (9), Fig.5 takes the independent and 

responding variables as MARP T  (T is the period time) and 

the motion lag  , respectively. One can find that these points 

show obvious linear correlations, except for the data point of 

Subject 7 at Speed 1. This data will be discarded in subsequent 

analysis. The explanation for this outlier will be discussed in 

Section Ⅴ. Using the LSM to fit these data points yields the 

following linear expression. 

 
2

0.0482MARP T 0.006,

0.9412.R

 =  +

=
 (10) 

It is not difficult to find that the curve fitting result, shown as 

the black dashed line in Fig.5, indicates a satisfying linear 

relationship between the motion lag and the hip-knee MARP. 

However, it is worth noting that in the sinusoidal signal, the 

slope of the curve should be 1/ 2 0.16  , which is distinct 

from our result of 0.0482. This difference remains to be 

studied in our follow-up research work. 

 
This linear relationship fills the knowledge gap between the 

research of lower-limb coordination and the establishment of 

coordination mapping. It tells us the motion lag parameter 

introduced in the mapping is meaningful in lower-limb 

coordination. Instead of traversing from 0 to T to find the 

optimal motion lag (the method used in subsection Ⅲ.A), we 

can obtain the motion lag by calculating the MARP and the 

period time. In this way, the MLCM will be practicable for the 

real-time control of the prosthesis. 

IV. APPLICATION TO PROSTHESIS CONTROL: A SIMULATION 

EXAMPLE 

The MLCM established in Section Ⅳ can be used for the 

trajectory planning of the knee prosthesis. This section gives 

a control strategy for applying the mapping to generate the 

reference knee trajectory in real-time. To verify the 

effectiveness of our control strategy, we apply it to the 

prosthesis-healthy limb heterogenous coupled model 

established in our previous research [28]. The results show the 

potential of this control strategy in the motion of the knee 

prosthesis under different walking speeds. 

A. Dynamic model 

 
Fig. 4.  (a) The RMSEs for each walking speed using different mappings, 

where the error bar represents the standard deviation between subjects. (b) 

Prediction time for each walking speed using different mappings. Polyn 
represents an n-order polynomial. GPR SOTA represents the model used in 

[17], where hip angle and angular velocity are used as inputs.  
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Fig. 5.  Linear relationship between hip-knee phase difference and motion 

lag. 
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As shown in Fig.6, the transfemoral amputee wearing a 

prosthesis is a multi-link system composed of eight segments. 

This system can be divided into two parts, i.e., the prosthesis 

and the human body. The prosthetic subsystem consists of the 

prosthetic thigh, the prosthetic shank, and the prosthetic foot. 

The human body subsystem includes the trunk, the healthy 

thigh, the healthy shank, the healthy foot, and the residual 

thigh. The prosthetic thigh and residual thigh are rigidly 

connected through the socket. Each foot is supposed to be 

triangular. The knee prosthesis and ankle prosthesis are all 

driven by motors. The ground reaction force governs the heel 

and toe of each foot. Based on the Lagrange equation of the 

second kind, the dynamic model of prosthesis-healthy limb 

coupled system can be derived as 

 ( ) ( ) ( ) ( ) ( ), , , ,e q+ + = +M q q C q q q N q F q q F q q  (11) 

where ( )1 2 3 11 22 1 2, , , , , , , ,
T

x y      =q , x  and y  are the 

horizontal and vertical displacement of the hip joint, 1  and 

11  are the angles of the prosthesis thigh and shank relative to 

the vertical direction, 2  and 22  are the angles of the healthy 

thigh and shank relative to the vertical direction, 3  are the 

trunk angle relative to the vertical direction, 1  and 2  are 

the angles of prosthesis foot and healthy foot relative to the 

horizontal direction. All the above angles are in the 

counterclockwise direction. ( )M q  is the mass matrix, 

( ),C q q  is the Coriolis force or centrifugal force term, ( )N q  

is the gravity term, ( ),eF q q  is the generalized force term 

generated by the foot-ground interaction force and the 

unilateral constraint force of the knee joint, ( ),qF q q  is the 

generalized force term caused by the healthy limb and residual 

limb joints, knee and ankle prosthesis motors. The form of 

( ),eF q q  can be referred to [28]. The forms of ( )M q , 

( ),C q q , ( )N q , and ( ),qF q q  are given in Supplementary. 

 
The knee motor and ankle motor are generated by PD 

control. The form of knee  and ankle  will be given in 

subsection Ⅳ.C when it comes to the control architecture of 

the prosthesis. After the above derivation, we have obtained 

the prosthesis-healthy limb heterogenous coupled dynamic 

model. 

B. Real-time estimation of motion lag 

Based on the hip-knee MLCM, we can generate the 

predicted knee trajectory of the prosthesis just from the hip 

trajectory of the healthy limb and then apply this trajectory to 

the position control of the knee prosthesis. In this way, only 

one hip motion sensor will be mounted on the residual limb 

for prosthesis control.  

Notice that the motion lag   in the MLCM should be 

estimated in real-time. According to Eq. (10), MARP and T 

must be obtained to calculate the motion lag in real-time. 

According to Eqs. (3)-(6), the calculation of MARP uses the 

motion data of the hip and knee, which requires the placement 

of sensors on the thigh and shank of the healthy limb. In 

addition, the calculation of MARP involves the Hilbert 

transform, which requires at least one cycle of gait data in 

advance. To avoid placing extra sensors on the healthy limb 

and reduce the calculation complexity of MARP, we need to 

establish the relationship between easily obtained real-time 

gait parameters and MARP. Observing Fig.1a, we consider a 

linear correlation between MARP and walking speed, denoted 

as v.  

 1 2MARP ,a v a= +  (12) 

where 1a  and 2a  are coefficients. Substituting Eq. (12) into 

Eq. (10) yields 

 
1 2

1 2 3

0.0482 T 0.0482 T 0.006

T T+ ,

a v a

A v A A

 =  +  +

=  + 
 (13) 

where v  is the walking speed (m/s), and T is the time period 

(s). Using the LSM and the data of 10 subjects at five walking 

speeds (the data of Subject at Speed 1 is discarded) for 

identification, we can obtain  

1 0.0094A = − , 2 0.2547A = , 3 0.0020A = − . 

It is found that the RMSE of the identified motion lag and the 

actual motion lag is 0.0124s, which is acceptable compared to 

the average motion lag (0.2570s, relative error percentage 

4.82%).  

So far, the motion lag will be estimated by Eq. (13) if we 

can obtain the walking speed and period time in real-time. The 

research shows that period time can be obtained according to 

the time interval between two heel strike moments, which are 

easily detected by the pressure sensor on the sole of the foot 

[29]. Meanwhile, A model-based method to estimate walking 

speed with only a shank-embedded IMU is proposed in [30]. 

Thus, the walking speed and period time estimation can be 

realized by installing a pressure sensor on the sole of the 

prosthesis foot and an IMU on the shank of the prosthesis. 

Further, the motion lag can be estimated in real-time. 

C. Control architecture based on MLCM 

The control strategy flow chart is shown in Fig.7. First, the 

IMU sensor attached to the thigh records the hip motion signal. 

Then, the motion lag is calculated in real-time by Eq. (13), and 

the reference trajectory of the knee prosthesis knee
d  is 

generated by using the hip-knee MLCM. The real trajectory 

and angular velocity of the knee joint are measured for the 

feedback term of control. At last, a PD control strategy is 

applied to generate the knee torque, which is expressed as 

 ( ) ( )knee ,knee knee knee ,knee knee knee ,d d
p dK K    =  − +  −  (14) 

where knee  and knee  are the reference angle and angular 

velocity of knee prosthesis, knee  and knee  are the angle and 

 
Fig. 6.  Prosthesis-healthy limb heterogenous coupled model 
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angular velocity of the knee prosthesis in the simulation. 

,kneepK  and ,kneedK  are set as 1275 and 60. 

 
The ankle torque is also generated by the PD control 

strategy. 

 ( ) ( )ankle ,ankle ankle ankle ,ankle ankle ankle ,d d
p dK K    = − + −  (15) 

where ankle  and ankle  are the reference angle and angular 

velocity of ankle prosthesis obtained in subsection Ⅱ.A, ankle  

and ankle  are the angle and angular velocity of ankle 

prosthesis in the simulation, ,anklepK  and ,ankledK  are set as 

170 and 17. 

D. Control results 

 

 

Table Ⅳ shows the RMSEs between prosthetic and 

experimental trajectories for each walking speed. The standard 

deviation represents the difference across subjects. Compared 

with the prediction RMSE in Fig.4(a), the controlled 

prosthesis RMSE is more significant. This error increase is 

mainly caused by the contact between the prosthesis and the 

ground. Except for WS1, the RMSE increases with the growth 

of walking speed. Basically, the RMSEs maintain below 10°. 

The results verify the feasibility of our control strategy in 

simulation. Real prosthesis experiments also need to be 

carried out in the future. 

Fig.8 shows the simulation results with changing speeds of 

Subject 4 (randomly selected). The mapping parameters take 

the average of five walking speeds and do not change during 

the simulation. Assuming that the sensor has obtained the 

walking speed and period time, the motion lag can be easily 

estimated by Eq. (13). The maximum knee angle increases 

significantly after speed change, which may be caused by the 

increase of the range of hip angle. The results show that our 

method is suitable for changing speed motion. 

V. DISCUSSION 

A. Hip-ankle and knee-ankle coordination 

In Section Ⅱ, the existence of a hip-knee coordination 

mapping is pointed out through statistical analysis. It can be 

found that the performance of hip-ankle and knee-ankle 

coordination (MARP and DP values) is quite different among 

different individuals compared to that of hip-knee 

coordination. A reasonable explanation is that because the foot 

connected to the ankle joint directly contact the ground, the 

ankle angle is greatly affected by the foot-ground contact, 

making its coordination with other joints (knee-ankle and hip-

ankle) relatively unstable. Thus, the coordination mappings of 

hip-ankle and knee-ankle are more difficult to establish than 

that of hip-knee. If further study wants to explore knee-ankle 

and hip-ankle coordination, the factor of foot-ground contact 

should be considered. 

B. Individual differences of MLCM 

 
According to subsection Ⅱ.D, individual differences do not 

easily affect the hip-knee coordination relationship. Thus, the 

hip-knee MLCM is expected to be applied to different 

individuals. To explore the feasibility of this idea, We apply 

 
Fig. 7.  Control flow chart. 
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TABLE Ⅳ 

RMSES BETWEEN PROSTHESIS TRAJECTORY AND EXPERIMENTAL 

TRAJECTORY FOR EACH WALKING SPEED 

 WS1 WS2 WS3 WS4 WS5 

RMSE(°) 
7.84 

±1.62 

7.37 

±2.22 

8.26 

±2.81 

8.62 

±2.62 

9.61 

±1.56 

 

 
Fig. 8.  The control results of knee angle (Subject 4) with changing speeds. 
Red dashed line for experimental knee angle, blue solid line for prosthesis 

knee angle obtained by PD control, gray solid line for walking speed. (a) 

WS1-WS2; (b) WS2-WS3. Because of the human weight and other factors, 
the walking speed is obtained from the speed of the heel marker during 

stance phase. Due to human weight and other factors, there is a certain 

difference between the real walking speed and the walking speed displayed 
by the treadmill. 
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Fig. 9 The prediction RMSEs using the mapping of different subjects, 

where the error bar represents the standard deviation between the RMSEs 
obtained from the mapping of different subjects. 
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the mapping of all other subjects to the subject’s motion that 

need to be predicted (e.g., use the mapping of Subjects 2~10 

to predict the knee angle of Subject 1). The prediction RMSEs 

are shown in Fig.9. As shown in the figure, in addition to WS1 

and WS5, the middle three walking speeds can achieve RMSE 

below 5°. This feature indicates that the mapping has a certain 

universality among subjects. Further research should deeply 

explore the relationship between the MLCM and the subject 

physical parameters (body segments’ weight, length, etc.). 

C. Relationship between the hip-knee MARP and the motion 

lag 

The relationship between the hip-knee MARP and the 

motion lag is further revealed. In sinusoidal signals, the 

relationship between phase difference and time lag is definite 

and intuitive. However, for non-harmonic signals such as hip 

and knee motions, the relationship between the two has never 

been studied. Using MARP to characterize the hip-knee phase 

difference and the method in subsection Ⅲ.A to calculate the 

motion lag, we established the linear relationship between the 

two for the first time. Furthermore, we learned that this 

relationship is stable and does not change with walking speed 

and individual subjects. Thus, instead of qualitatively 

analyzing the coordination between the hip and the knee 

through MARP, we reveal the vital role of MARP in hip-knee 

coordination. Nevertheless, the deeper physical meaning of 

the linear relationship between the hip-knee MARP and the 

motion lag needs to be explored in the future. 

D. An explanation for the excluded data point 

In Fig.5, the data point of Subject 7 at WS1 is excluded 

because the motion lag is 1.0363s (see Table S.I in 

Supplementary material), which is distinct from other data 

points of the motion lag. This outlier can be explained by the 

relationship of reward function with motion lag shown in 

Fig.10. As can be seen, the reward function has two local 

maximal values, and these two maximal values are very close. 

The motion lag of Subject 7 at WS1 is obtained at the maximal 

value near the right end, whereas the other motion lags are 

picked at the maximal values near the left end. By observing 

the knee motion and shifted hip motion in Fig.3(a), we can 

find that if the motion lag is obtained at the maximal value 

near the left end, the hip motion translates to a state where the 

motion trends between the hip and the knee are basically 

opposite. Therefore, we can reasonably speculate that if the 

motion lag is obtained at the maximal value near the left end, 

the hip motion will translate to a state where the hip and knee 

motion trend is the same. This speculation can be verified in 

subsequent studies. For consistency of the results, when 

calculating the MLCM of Subject 7 at WS1, we directly take 

its motion lag as 0.33s. 

 

E. Limitations and future work 

This study also has some limitations. First, gait experiments 

with more subjects need to be carried out. At present, the 

MLCM is not strictly universal among subjects (e.g., at WS1 

and WS5), partly because the number of subjects for training 

is small. After sufficient gait experiments are conducted, the 

subject physical parameters (body segments’ weight, length, 

etc.) can be considered to establish a more universal mapping. 

Second, this paper only studies level-ground walking. We 

believe that gait coordination also exists when going 

up/downstairs and up/down slopes. Third, gait experiments 

with the real prosthesis should be carried out to verify the 

effectiveness of our control method. The simulation in Section 

Ⅳ shows the potential of MLCM for the prosthesis position 

control with only one IMU sensor attached to the thigh. It is 

verified in [31] that the IMU-based hip angle estimation can 

typically achieve an RMSE smaller than 5°, which is 

acceptable for most common clinical situations according to 

[32]. But the actual estimation effect and control effect still 

need to be demonstrated through experiments. 

VI. CONCLUSION 

This study contributed to the lower-limb prosthesis control 

by proposing a simple and intuitive trajectory planning 

method, i.e., the Motion-Lagged Coordination Mapping 

(MLCM). The MLCM revealed a linear correlation between 

the MARP and the motion lag, which built a solid link from 

the biomechanical index to the control coefficient. Three 

highlighted features of the established mapping model 

indicate a bright prospect of employing it to control the lower-

limb prosthesis. First, this model only needs hip motion 

sensing and does not require integral or differential 

calculations. This feature saves the burden of information 

collection and processing. Second, the motion lag in this 

mapping model can be directly estimated from the period time 

and the walking speed. Third, the established model is suitable 

for different individuals and walking speeds, so far as we 

know. This feature implies broad adaptability to various 

working conditions. Therefore, it will simplify subsequent 

control of the lower-limb prosthesis. 
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