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Abstract

We have witnessed rapid advancement across major computer vision
benchmarks over the past years. However, the top solutions” hidden compu-
tation cost prevents them from being practically deployable. For example,
training large models until convergence may be prohibitively expensive in
practice, and autonomous driving or augmented reality may require a re-
action time that rivals that of humans, typically 200 milliseconds for visual
stimuli. Clearly, vision algorithms need to be adjusted or redesigned when
meeting resource constraints. This thesis argues that we should embrace
resource constraints into the first principles of algorithm designs. We sup-
port this thesis with principled evaluation frameworks and novel constraint-
aware solutions for both the cases of training and inference of computer vi-
sion tasks.

For evaluation frameworks, we first introduce a formal setting for study-
ing training under the non-asymptotic, resource-constrained regime, i.e.,
budgeted training. Next, we propose streaming accuracy to evaluate latency
and accuracy coherently with a single metric for real-time online perception.
More broadly, building upon this metric, we introduce a meta-benchmark
that systematically converts any single-frame task into a streaming percep-
tion task.

For constraint-aware solutions, we propose a budget-aware learning rate
schedule for budgeted training, and dynamic scheduling and asynchronous
forecasting for streaming perception. We also propose task-specific solu-
tions, including foveated image magnification and progressive knowledge
distillation for 2D object detection, multi-range pyramids for 3D object detec-
tion, and future object detection with backcasting for end-to-end detection,
tracking and forecasting.

We conclude the thesis with discussions on future work. We plan to
extend streaming perception to include long-term forecasting, generalize
our foveated image magnification to arbitrary spatial image understanding
tasks, and explore multi-sensor fusion for long-range 3D detection.
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Chapter 1

Introduction

Computer vision often draws inspiration from biological vision. Through
billions of years of evolution, the animal kingdom witnesses a plethora of
biological vision systems. From an array of nondirectional photoreceptors
to eyes with lenses, corneas and irises that enable high-resolution vision,
the biological vision system is vastly diverse. Yet none of them have an
omnipotent vision system, as such a system must meet resource constraints
necessary for survival, e.g., maintaining a low energy consumption. Studies
have shown that the temporal resolution of biological vision varies greatly
among species, and has close ties to the metabolic rate and the living envi-
ronment [85]. This suggests that biological vision adapts to resource con-
straints.

This thesis argues that the machine vision should also adapt to resource
constraints. First and foremost, meeting resource constraints is the neces-
sary condition for designing a practical visual perception system. A deep
learning model will not run if it exceeds the hardware memory capacity, a
robot will crash if its perception stack is too slow, and a cell phone’s battery
will quickly drain if the camera enhancement algorithm is not energy effi-
cient. One may consider resource constraints as a pure engineering concern,
however, when we embrace resource constraints into our first principles, we
might arrive at novel solutions and eventually reaching a higher level of ar-
tificial intelligence. In neural architecture search, one successful strategy is
to first search the most energy-efficient cell structure and then repeat it mul-
tiple times to form the whole architecture [204]. Although energy was the
search criterion, the final model usually ends up with higher overall accu-
racy for various tasks. In fact, “bounded rationality” is recognized as a fun-
damental issue in computer science, economics and philosophy in 1955 by
the Turing Award and Nobel Prize winner Herbert A. Simon [197]. In his
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seminal work, he proposed a model for studying organisms making deci-
sions with limited computational ability. This thesis restricts the scope to
computer vision and presents a series of projects on resource-constrained
learning and inference to demonstrate the importance of considering re-
source constraints and how to design budget-aware and efficient vision al-
gorithms.

1.1 Overview

Evaluation-Focused Solution-Focused
A A
[ | |
Resource- Resource- Motion Efficient 2D Efficient 3D
Constrained Constrained o . .
- Prediction Perception Perception
Training Inference

Foveated Image
Magnification

Forecasting via Multi-Range
Streamin Fuéi;igigjr?d Learning to Zoom Pyramids
Budgeted Trainin ng and Unzoom (F) )
g g Perception Multi-Modal Far-

Towards Online Field 3D Detection

Forecasting (F) PK;OEVTIT:ZQ/: (F)

Distillation

Figure 1.1: Thesis projects grouped by topics. (F) indicates future work.

As shown in Fig 1.1, my work in the space of resource-constrained learn-
ing and inference can be grouped into two parts, in which one is evaluation-
focused and the other is solution-focused. Within each part, I have explored
several different topics, including resource-constrained training, resource-
constrained inference, motion prediction, efficient 2D perception, and ef-
ficient 3D perception. Under each topic, I have accomplished (or plan to
work on) one or multiple projects. In total, this thesis covers the work of six
projects and three future directions. Each project corresponds to a separate
chapter. Ilist below the publications associated with each project. First, this
list gives credits to all my collaborators. Second, the project websites listed
provide additional multimedia information for supplementary illustrations.
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e Chapter 2: Mengtian Li, Ersin Yumer and Deva Ramanan. Budgeted
Training: Rethinking Deep Neural Network Training Under Resource Con-
straints. In ICLR, 2020. Project website: https://www.cs.cmu.edu/
~mengtial/proj/budgetnn/.

e Chapter 3: Mengtian Li, Yu-Xiong Wang and Deva Ramanan. Towards
Streaming Perception. In ECCV, 2020. Project website: https://www.cs.
cmu.edu/~mengtial/proj/streaming/.

e Chapter 4: Chittesh Thavamani*, Mengtian Li*, Nicolas Cebron and
Deva Ramanan. FOVEA: Foveated Image Magnification for Autonomous
Navigation. In ICCV, 2021. * denotes equal contribution. Project web-
site: https://www.cs.cmu.edu/~mengtial/proj/fovea/.

e Chapter 5: Shengcao Cao, Mengtian Li, James Hays, Deva Ramanan
and Liangyan Gui. Learning Lightweight Object Detectors via Progressive
Knowledge Distillation. Under review.

e Chapter 6: Mengtian Li, Benjamin Wilson, Yu-Xiong Wang, James Hays
and Deva Ramanan. Multi-Range Pyramids for 3D Object Detection. Un-
der review. Project website: https://www.cs.cmu.edu/~mengtial/proj/
multirange/.

e Chapter 7: Neehar Peri, Jonathon Luiten, Mengtian Li, Aljosa Osep,
Laura Leal-Taixé and Deva Ramanan. Forecasting from LiDAR via Future
Object Detection. In CVPR, Jun 2022. Project website: https://github.
com/neeharperi/FutureDet.

In Chapter 8, I will discuss several extensions to the above projects, ei-
ther to cover additional tasks or to improve the efficiency and generality of
proposed solutions in the above projects.

The following subsections contain summary for each project.

1.1.1 Budgeted Training

In most practical settings and theoretical analyses, one assumes that a model
can be trained until convergence. However, the growing complexity of ma-
chine learning datasets and models may violate such assumptions. Indeed,
current approaches for hyper-parameter tuning and neural architecture search
tend to be limited by practical resource constraints. Therefore, we introduce
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a formal setting for studying training under the non-asymptotic, resource-
constrained regime, i.e., budgeted training. We analyze the following prob-
lem: “given a dataset, algorithm, and fixed resource budget, what is the best
achievable performance?” We focus on the number of optimization itera-
tions as the representative resource. Under such a setting, we show that it
is critical to adjust the learning rate schedule according to the given bud-
get. Among budget-aware learning schedules, we find simple linear decay
to be both robust and high-performing. We support our claim through ex-
tensive experiments with state-of-the-art models on ImageNet (image clas-
sification), Kinetics (video classification), MS COCO (object detection and
instance segmentation), and Cityscapes (semantic segmentation). We also
analyze our results and find that the key to a good schedule is budgeted
convergence, a phenomenon whereby the gradient vanishes at the end of
each allowed budget. We also revisit existing approaches for fast conver-
gence and show that budget-aware learning schedules readily outperform
such approaches under (the practical but under-explored) budgeted train-
ing setting.

1.1.2 Streaming Perception

Embodied perception refers to the ability of an autonomous agent to per-
ceive its environment so that it can (re)act. The responsiveness of the agent
is largely governed by latency of its processing pipeline. While past work
has studied the algorithmic trade-off between latency and accuracy, there
has not been a clear metric to compare different methods along the Pareto
optimal latency-accuracy curve. We point out a discrepancy between stan-
dard offline evaluation and real-time applications: by the time an algorithm
finishes processing a particular frame, the surrounding world has changed.
To these ends, we present an approach that coherently integrates latency
and accuracy into a single metric for real-time online perception, which we
refer to as “streaming accuracy”. The key insight behind this metric is to
jointly evaluate the output of the entire perception stack at every time in-
stant, forcing the stack to consider the amount of streaming data that should
be ignored while computation is occurring. More broadly, building upon
this metric, we introduce a meta-benchmark that systematically converts any
single-frame task into a streaming perception task. We focus on the illus-
trative tasks of object detection and instance segmentation in urban video
streams, and contribute a novel dataset with high-quality and temporally-
dense annotations. Our proposed solutions and their empirical analysis
demonstrate a number of surprising conclusions: (1) there exists an optimal
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“sweet spot” that maximizes streaming accuracy along the Pareto optimal
latency-accuracy curve, (2) asynchronous tracking and future forecasting
naturally emerge as internal representations that enable streaming percep-
tion, and (3) dynamic scheduling can be used to overcome temporal alias-
ing, yielding the paradoxical result that latency is sometimes minimized by
sitting idle and “doing nothing”.

1.1.3 Foveated Image Magnification

Efficient processing of high-res video streams is safety-critical for many robotics
applications such as autonomous driving. To maintain real-time perfor-
mance, many practical systems downsample the video stream. But this can
hurt downstream tasks such as (small) object detection. Instead, we take in-
spiration from biological vision systems that allocate more foveal “pixels” to
salient parts of the scene. We introduce FOVEA, an approach for intelligent
downsampling that ensures salient image regions remain “magnified” in the
downsampled output. Given a high-res image, FOVEA applies a differen-
tiable resampling layer that outputs a small fixed-size image canvas, which
is then processed with a differentiable vision module (e.g., object detection
network), whose output is then differentiably backward mapped onto the
original image size. The key idea is to resample such that background pix-
els can make room for salient pixels of interest. In order to ensure the overall
pipeline remains efficient, FOVEA makes use of cheap and readily available
cues for saliency, including dataset-specific spatial priors or temporal priors
computed from object predictions in the recent past. On the autonomous
driving datasets Argoverse-HD and BDD100K, our proposed method boosts
the detection AP over standard Faster R-CNN, both with and without fine-
tuning. Without any noticeable increase in compute, we improve accuracy
on small objects by over 2x without degrading performance on large objects.
Finally, FOVEA sets a new record for streaming AP (from 17.8 to 23.0 on a
GTX 1080 Ti GPU), a metric designed to capture both accuracy and latency.

1.1.4 Progressive Knowledge Distillation

Resource-constrained perception systems such as edge computing and vision-
for-robotics require vision models to be both accurate and lightweight in
computation and memory usage. Knowledge distillation is one effective
strategy to improve the performance of lightweight classification models,
but it is less well-explored for structured outputs such as object detection
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and instance segmentation, where the variable number of outputs and com-
plex internal network modules complicate the distillation. In this paper, we
propose a simple yet surprisingly effective sequential approach to knowl-
edge distillation that progressively transfers the knowledge of a set of teach-
ers to a given lightweight student. Our approach is inspired by curriculum
learning: To distill knowledge from a highly accurate but complex teacher
model, we construct a sequence of teachers to help the student gradually
adapt. We propose a heuristic algorithm to find the near-optimal order of
teachers, and exploit the backbone-neck-head modularity of detection net-
works to distill at the neck level. Extensive experiments show significant
gains brought by our approach. On the MS COCO benchmark, we improve
ResNet-50 based Mask R-CNN’s detection performance by 3.2 AP, and we
improve ResNet-50 based RetinaNet by 3.4 AP.

1.1.5 Multi-Range Pyramids

LiDAR-based 3D detection plays a vital role in autonomous navigation. Con-
temporary solutions make use of 3D voxel representations, often encoded
with a bird’s-eye view (BEV) feature map. While quite intuitive, such rep-
resentations scale quadratically with the spatial range of the map, making
them ill-suited for far-field perception. In this paper, we present a multi-
range representation that retains the benefits of BEV while remaining effi-
cient by exploiting the following insight: near-field lidar measurements are
dense and optimally encoded by small voxels, while far-field measurements
are sparse and better encoded with large voxels. We exploit this observa-
tion to build a collection of range experts tuned for near-vs-far field detec-
tion, and show that they can share information with each other via a sin-
gle multi-range feature pyramid. We show how standard convolutions need
to be adjusted for this novel representation and provide local and global
across-range feature sharing mechanisms to work around this problem. We
evaluate our method on the long-range detection dataset Argoverse (up to
+200m), and find that our method achieves significantly higher accuracy
than competitive baselines while being faster in terms of wall-clock runtime.

1.1.6 Future Object Detection

Object detection and forecasting are fundamental components of embodied
perception. These two problems, however, are largely studied in isolation by
the community. In this paper, we propose an end-to-end approach for detec-
tion and motion forecasting based on raw sensor measurement as opposed
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to ground truth tracks. Instead of predicting the current frame locations
and forecasting forward in time, we directly predict future object locations
and backcast to determine where each trajectory began. Our approach not
only improves overall accuracy compared to other modular or end-to-end
baselines, it also prompts us to rethink the role of explicit tracking for em-
bodied perception. Additionally, by linking future and current locations in
a many-to-one manner, our approach is able to reason about multiple fu-
tures, a capability that was previously considered difficult for end-to-end
approaches. We conduct extensive experiments on the popular nuScenes
dataset and demonstrate the empirical effectiveness of our approach. In ad-
dition, we investigate the appropriateness of reusing standard forecasting
metrics for an end-to-end setup, and find a number of limitations which al-
low us to build simple baselines to game these metrics. We address this
issue with a novel set of joint forecasting and detection metrics that extend
the commonly used AP metrics from the detection community to measuring
forecasting accuracy.



Chapter 2

Budgeted Training

2.1 Introduction

Deep neural networks have made an undeniable impact in advancing the
state-of-the-art for many machine learning tasks. Improvements have been
particularly transformative in computer vision [52,97]. Much of these per-
formance improvements were enabled by an ever-increasing amount of la-
beled visual data [119, 185] and innovations in training architectures [84,

].

However, as training datasets continue to grow in size, we argue that an
additional limiting factor is that of resource constraints for training. Conser-
vative prognostications of dataset sizes — particularly for practical endeavors
such as self-driving cars [16], assistive medical robots [205], and medical
analysis [62] — suggest one will train on datasets orders of magnitude larger
than those that are publicly available today. Such planning efforts will be-
come more and more crucial, because in the limit, it might not even be practical
to visit every training example before running out of resources [18,173].

We note that resource-constrained training already is implicitly widespread,
as the vast majority of practitioners have access to limited compute. This is
particularly true for those pursuing research directions that require a mas-
sive number of training runs, such as hyper-parameter tuning [ 128 ] and neu-
ral architecture search [25, 140,262].

Instead of asking “what is the best performance one can achieve given
this data and algorithm?”, which has been the primary focus in the field so
far, we decorate this question with budgeted training constraints as follows:
“what is the best performance one can achieve given this data and algorithm
within the allowed budget?”. Here, the allowed budget refers to a limitation
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Figure 2.1: We formalize the problem of budgeted training, in which one max-
imizes performance subject to a fixed training budget. We find that a sim-
ple and effective solution is to adjust the learning rate schedule accordingly
and anneal it to 0 at the end of the training budget. This significantly out-
performs off-the-shelf schedules, particularly for small budgets. This plot
shows several training schemes (solid curves) for ResNet-18 on ImageNet.
The vertical axis in the right plot is normalized by the validation accuracy
achieved by the full budget training. The dotted green curve indicates an
efficient way of trading off computation with performance.

on the total time, compute, or cost spent on training. More specifically, we
focus on limiting the number of iterations. This allows us to abstract out the
specific constraint without loss of generality since any one of the aforemen-
tioned constraints could be converted to a finite iteration limit. We make the
underlying assumption that the network architecture is constant throughout
training, though it may be interesting to entertain changes in architecture
during training [ 187,224].

Much of the theoretical analysis of optimization algorithms focuses on
asymptotic convergence and optimality [ 19,160,152 ], which implicitly makes
use of an infinite compute budget. That said, there exists a wide body of
work [108,148,177, ] that provide performance bounds which depend
on the iteration number, which apply even in the non-asymptotic regime.
Our work differs in its exploration of maximizing performance for a fixed
number of iterations. Importantly, the globally optimal solution may not
even be achievable in our budgeted setting.

Given a limited budget, one obvious strategy might be data subsam-
pling [6, ]. However, we discover that a much more effective, simpler,
and under-explored strategy is adopting budget-aware learning rate sched-
ules — if we know that we are limited to a single epoch, one should tune
the learning schedule accordingly. Such budget-aware schedules have been
proposed in previous work [64,133], but often for a fixed learning rate that
depends on dataset statistics. In this paper, we specifically point out linearly
decaying the learning rate to 0 at the end of the budget, may be more robust
than more complicated strategies suggested in prior work. Though we are
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motivated by budget-aware training, we find that a linear schedule is quite
competitive for general learning settings as well. We verify our findings with
state-of-the-art models on ImageNet (image classification), Kinetics (video
classification), MS COCO (object detection and instance segmentation), and
Cityscapes (semantic segmentation).

We conduct several diagnostic experiments that analyze learning rate de-
cays under the budgeted setting. We first observe a statistical correlation
between the learning rate and the full gradient magnitude (over the entire
dataset). Decreasing the learning rate empirically results in a decrease in
the full gradient magnitude. Eventually, as the former goes to zero, the lat-
ter vanishes as well, suggesting that the optimization has reached a critical
point, if not a local minimum'. We call this phenomenon budgeted conver-
gence and we find it generalizes across budgets. On one hand, it implies
that one should decay the learning rate to zero at the end of the training,
even given a small budget. On the other hand, it implies one should not
aggressively decay the learning rate early in the optimization (such as the
case with an exponential schedule) since this may slow down later progress.
Finally, we show that linear budget-aware schedules outperform recently-
proposed fast-converging methods that make use of adaptive learning rates
and restarts.

Our main contributions are as follows:

e We introduce a formal setting for budgeted training based on training
iterations and provide an alternative perspective for existing learning
rate schedules.

e We discover that budget-aware schedules are handy solutions to bud-
geted training. Specifically, our proposed linear schedule is more sim-
ple, robust, and effective than prior approaches, for both budgeted and
general training.

e We provide an empirical justification of the effectiveness of learning
rate decay based on the correlation between the learning rate and the
tull gradient norm.

2.2 Related Work

Learning rates. Stochastic gradient descent dates back to [182]. The core is
its update step: w; = w;—; — awg:, where t (from 1 to T') is the iteration, w

!'Whether such a solution is exactly a local minimum or not is debatable (see Sec 2.2).
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are the parameters to be learned, g is the gradient estimator for the objective
function® F, and « is the learning rate, also known as step size. Given base
learning rate o, we can define the ratio 3, = a; /. Then the set of {5;}]_; is
called the learning rate schedule, which specifies how the learning rate should
vary over the course of training. Our definition differs slighter from prior art as
it separates the base learning rate and learning rate schedule. Learning rates are
well studied for (strongly) convex cost surfaces.

Learning rate schedule for deep learning. In deep learning, there is no
consensus on the exact role of the learning rate. Most theoretical analysis
makes the assumption of a small and constant learning rate [57,58,81]. For
variable rates, one hypothesis is that large rates help move the optimization
over large energy barriers while small rates help converge to a local min-
imum [96,112,144]. Such hypothesis is questioned by recent analysis on
mode connectivity, which has revealed that there does exist a descent path
between solutions that were previously thought to be isolated local minima
[55,69,75]. Despite a lack of theoretical explanation, the community has
adopted a variety of heuristic schedules for practical purposes, two of which
are particularly common:

e step decay: drop the learning rate by a multiplicative factor v after
every d epochs. The default for v is 0.1, but d varies significantly across
tasks.

e exponential: 5, = 7'. There is no default parameter for v and it re-
quires manual tuning.

State-of-the-art codebases for standard vision benchmarks tend to employ
step decay [26,82,97,150,222,234,242], whereas exponential decay has been
successfully used to train Inception networks [201-203]. In spite of their
prevalence, these heuristics have not been well studied. Recent work pro-
poses several new schedules [92,144,198], but much of this past work limits
their evaluation to CIFAR and ImageNet. For example, SGDR [144] advo-
cates for learning-rate restarts based on the results on CIFAR, however, we
find the unexplained form of cosine decay in SGDR is more effective than
the restart technique. Notably, [ 158] demonstrate the effectiveness of linear
rate decay with CaffeNet on downsized ImageNet. In our work, we rigor-
ously evaluate on 5 standard vision benchmarks with state-of-the-art net-
works and under various budgets. [75] also analyze learning rate restarts

ZNote that g can be based on a single example, a mini-batch, the full training set, or the
true data distribution. In most practical settings, momentum SGD is used, but we omit the
momentum here for simplicity.
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and in addition, the warm-up technique, but do not analyze the specific form
of learning rate decay.

Adaptive learning rates. Adaptive learning rate methods [108, 148,177,

| adjust the learning rate according to the local statistics of the cost sur-
face. Despite having better theoretical bounds under certain conditions, they
do not generalize as well as momentum SGD for benchmark tasks that are
much larger than CIFAR [230]. We offer new insights by evaluating them
under the budgeted setting. We show fast descent can be trivially achieved
through budget-aware schedules and aggressive early descent is not desir-
able for achieving good performance in the end.

2.3 Learning Rates and Budgets

2.3.1 Budget-Aware Schedules

Learning rate schedules are often defined assuming unlimited resources. As
we argue, resource constraints are an undeniable practical aspect of learning.
One simple approach for modifying an existing learning rate schedule to a
budgeted setting is early-stopping. Fig 2.1 shows that one can dramatically
improve results of early stopping by more than 60% by tuning the learning
rate for the appropriate budget. To do so, we simply reparameterize the
learning rate sequence with a quantity not only dependent on the absolute
iteration ¢, but also the training budget 7"

Definition (Budget-Aware Schedule). Let 7" be the training budget, ¢
be the current step, then a training progress pis t/T. A budget-aware learning
rate schedule is

By p— f(p), (2.1)

where f(p) is the ratio of learning rate at step ¢ to the base learning rate «.
At first glance, it might be counter-intuitive for a schedule to not depend
onT. For example, for a task that is usually trained with 200 epochs, training
2 epochs will end up at a solution very distant from the global optimal no
matter the schedule. In such cases, conventional wisdom from convex op-
timization suggests that one should employ a large learning rate (constant
schedule) that efficiently descends towards the global optimal. However, in
the non-convex case, we observe empirically that a better strategy is to sys-
tematically decay the learning rate in proportion to the total iteration budget.
Budge-Aware Conversion (BAC). Given a particular rate schedule 3, =
f(t), one simple method for making it budget-aware is to rescale it, i.e., 5, =
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f(pTy), where Tj is the budget used for the original schedule. For instance,
a step decay for 90 epochs with two drops at epoch 30 and epoch 60 will
convert to a schedule that drops at 1/3 and 2/3 training progress. Analo-
gously, an exponential schedule 0.99" for 200 epochs will be converted into
(0.992%)P.

It is worth noting that such an adaptation strategy already exists in well-
known codebases [52] for training with limited schedules. Our experiments
confirm the effectiveness of BAC as a general strategy for converting many
standard schedules to be budget-aware (Tab 2.1). For our remaining experi-
ments, we regard BAC as a known technique and apply it to our baselines by default.

Budget 1% 5% 10% 25% 50% 100%

exp.99 5848 .8030 .8352 .8888 .9072 .9320
BAC .6086 .8560 .8996 .9228 .9272 N/A

step-d1 .5710 .8058 .8422 8702 .8746 .9434
BAC 5880 .8662 .9066 .9312 .9392 N/A

Table 2.1: Effectiveness of budget-aware conversion (BAC) on CIFAR-10 for
image classification with ResNet-18 [84]. The numbers are classification ac-
curacy on the validation set. The 100% budget refers to training for 200
epochs. “step-d1” denotes step decay dropping once at training progress
50%. Please refer to Sec 2.4.1 for the complete setup.

Recent schedules: Interestingly, several recent learning rate schedules
are implicitly defined as a function of progress p = % , and so are budget-
aware by our definition:

e poly [103]: 8, = (1 — p)?. No parameter other than v = 0.9 is used in
published work.

e cosine [144]: 8, = n+ 1(1 —n)(1 + cos(7p)). n specify a lower bound
for the learning rate, which defaults to zero.

e htd [92]: B, = n+ (1 — n)(1 — tanh(L + (U — L)p)). Here n has the
same representation as in cosine. It is reported that L = —6 and U = 3
performs the best.

The poly schedule is a feature in Caffe [ 103 ] and adopted by the semantic
segmentation community [34,251]. The cosine schedule is a byproduct in
work that promotes learning rate restarts [ 144]. The htd schedule is recently
proposed [92], which however, contains only limited empirical evaluation.
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Figure 2.2: We normalize various learning rate schedules by training
progress (left). Our solution to budgeted training is simple and universal —
we decrease the learning rate linearly across the entire given budget (right).

None of these analyze their budget-aware property or provides intuition for
such forms of decay. These schedules were treated as “yet another sched-
ule”. However, our definition of budget-aware makes these schedules stand
out as a general family.

2.3.2 Linear Schedule

Inspired by existing budget-aware schedules, we borrow an even simpler
schedule from the simulated annealing literature [111,153,161]%:

linear: 8, =1 —np. (2.2)

In Fig 2.2, we compare linear schedule with various existing schedules
under the budget-aware setting. Note that this linear schedule is completely
parameter-free. This property is particularly desirable in budgeted train-
ing, where little budget exists for tuning such a parameter. The excellent
generalization of linear schedule across budgets (shown in the next sec-
tion) might imply that the cost surface of deep learning is to some degree
self-similar. Note that a linear schedule, together with other recent budget-
aware schedules, produces a constant learning rate in the asymptotic limit
ie., limp (1 —t/T) = 1. Consequently, such practically high-performing
schedules tend to be ignored in theoretical convergence analysis [ 19, 182].

3A link between SGD and simulated annealing has been recognized decades ago, where
learning rate plays the role of temperature control [17]. Therefore, cooling schedules in
simulated annealing can be transferred into learning rate schedules for SGD.
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Budget 1% 5% 10% 25% 50% 100%
const 5748 + 0337 7989 £ 0003 8350 + 0122 .8658 + 0007 8723 + 0044 8767 + 0066

exp .95 4834 +025 7575 +.0ss 8567 t.omr 9147 +.o0s0 9295 :oos 9468 - o0z
exp .97 5467 + .00 8348 1006 8936 t.om0 9294 +.o0a 9413 rooms 9551 + 000
exp .99  .6069 +.o29 8557 0037 9013 0036 9227 +.003s 9268 + 0026 9310 +.0023

step-dl  .5853 +.o3¢  .8643 £z 9063 + 0023 9307 0020 9423 0027 9426 + 00n
step-d2 5487 + .05  .8342 +.002 9043 + 003+ 9319 +.0037 9461 009 9529 + 0000
step-d3 4879 t.ome 7929 =01 .8864 0027 9259 0006 9437 o001 9527 + o019

htd + 0070 + 0043 +.0014 9449 1 o031 + 0023 + 0013
cosine 6343 £ o080 .8851 -+ .0024 + 0024 +.0024 +.0026 + 0021
poly +.0086 +.0017 9247 + o008 +.0019 9494 + o032 9540 + oor2

linear 6617 0079 8915 0011 9217 + 0028 9412 + 0018 9537 0020 9563 + 0009

Table 2.2: Comparison of learning rate schedules on CIFAR-10. The 1st,
and the place under each budget are color coded. The number here is
the classification accuracy and each one is the average of 3 independent runs.
“step-dx” denotes decay x times at even intervals with v = 0.1. For “exp”
and “step” schedules, BAC (Sec 2.3.1) is applied in place of early stopping.
We can see linear schedule surpasses other schedules under almost all bud-
gets.

2.4 Experiments

In this section, we first compare linear schedule against other existing sched-
ules on the small CIFAR-10 dataset and then on a broad suite of vision bench-
marks. The CIFAR-10 experiment is designed to extensively evaluate each
learning schedule while the vision benchmarks are used to verify the obser-
vation on CIFAR-10. We provide important implementation settings in the
main text while leaving the rest of the details to the Appendix 2.A.12. In
addition, we provide in Appendix 2.A.1 the evaluation with a large number
of random architectures in the setting of neural architecture search.

24.1 CIFAR

CIFAR-10 [117] is a dataset that contains 60,000 tiny images (32 x 32). Given
its small size, it is widely used for validating novel architectures. We fol-
low the standard setup for dataset split [97], which is randomly holding out
5,000 from the 50,000 training images to form the validation set. For each
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budget, we report the best validation accuracy among epochs up till the end
of the budget. We use ResNet-18 [84] as the backbone architecture and uti-
lize SGD with base learning rate 0.1, momentum 0.9, weight decay 0.0005
and a batch size 128.

We study learning schedules in several groups: (a) constant (equivalent
to not using any schedule). (b) & (c) exponential and step decay, both of
which are commonly adopted schedules. (d) htd [92], a quite recent addi-
tion and not yet adopted in practice . We take the parameters with the best-
reported performance (—6, 3). Note that this schedule decays much slower
initially than the linear schedule (Fig 2.2). (e) the smooth-decaying sched-
ules (small curvature), which consists of cosine [144], poly [103] and the
linear schedule.

As shown in Tab 2.2, the group of schedules that are budget-aware by
our definition, outperform other schedules under all budgets. The linear
schedule in particular, performs best most of the time including the typical
full budget case. Noticeably, when exponential schedule is well-tuned for
this task (y = 0.97), it fails to generalize across budgets. In comparison, the
budget-aware group does not require tuning but generalizes much better.

Within the budget-aware schedules, cosine, poly and linear achieve very
similar results. This is expected due to the fact that their numerical similar-
ity at each step (Fig 2.2). These results might indicate that the key for a ro-
bust budgeted-schedule is to decay smoothly to zero. Based on these observations
and results, we suggest linear schedule should be the “go-to” budget-aware
schedule.

2.4.2 Vision Benchmarks

In the previous section, we showed that linear schedule achieves excellent
performance on CIFAR-10, in a relatively toy setting. In this section, we
study the comparison and its generalization to practical large scale datasets
with various state-of-the-art architectures. In particular, we set up experi-
ments to validate the performance of linear schedule across tasks and bud-
gets.

Ideally, one would like to see the performance of all schedules in Fig 2.2
on vision benchmarks. Due to resource constraints, we include only the off-
the-shelf step decay and the linear schedule. Note our CIFAR-10 experiment
suggests that using cosine and poly will achieve similar performance as lin-
ear, which are already budget-aware schedules given our definition, so we
focus on linear schedule in this section.
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Budget 1% 5% 10% 25% 50% 100%
Image classification on ImageNet with ResNet
step 2039 0020 5194 +o0as 5951 0021 6558 + 0018 6796 + o008 6934 + o018
linear 3063 + 0036 5726 0024 6232 + 0004 .6634 0020 .6818 +o013 .6933 + 0012
Object detection on COCO with Mask-RCNN
step .0486 + 002« 2003 + 0008 .2541 +.0005 .3149 + 0015 .3530 + 0005 3767 + 0009
linear 0513 + 0022 .2090 + 0016  .2626 + 0008 3222 + 0014 3572 + 0003 3795 + 0012
Instance segmentation on COCO with Mask-RCNN
step 0487 + 0020 1925 £ o004 2388 0007 2907 + 0003 .3202 £ 0000 3395 -+ 0009
linear 0507 0000 1986 +.o0012 .2457 + 0007 .2942 + o002 .3242 + 0005 .3396 =+ 0000
Semantic segmentation on Cityscapes with PSPNet
step 4941 £ oon 6358 0052 6800 +.0010  .7250 +.0019 7423 + 000a 7651 + 0032
linear 5424 + 0034 6654 + 0014 7076 + 0047 7399 +.0005 7575 + 0041 7633 + 0008
Video classification on Kinetics with I3D
step 2941 +002s 4981 + 0020 5674 + 0013 6459 + 0023 6870 £ o025 7134 + ooz
linear 3286 + 0002 .5297 +o01s 5967 + 0030 .6634 o020 6995 + o011 7223 + 0031

Table 2.3: Robustness of linear schedule across budgets, tasks and architec-
tures. Linear schedule significantly outperforms step decay given limited
budgets. Note that the off-the-shelf decay for each dataset has different pa-
rameters optimized for the specific dataset. For all step decay schedules,
BAC (Sec 2.3.1) is applied to boost their budgeted performance. To reduce
stochastic noise, we report the average and the standard deviation of 3 inde-
pendent runs. See Sec 2.4.2 for the metrics of each task (the higher the better
for all tasks).

We consider the following suite of benchmarks spanning many flagship
vision challenges:

Image classification on ImageNet. ImageNet [ 185] is a widely adopted
standard for image classification task. We use ResNet-18 [54] and report
the top-1 accuracy on the validation set with the best epoch. We follow the
step decay schedule used in [97,165], which drops twice at uniform interval
(v = 0.1atp € {3,2}). We set the full budget to 100 epochs (10 epochs
longer than typical) for easier computation of the budget.

Object detection and instance segmentation on MS COCO. MS COCO
[139] is a widely recognized benchmark for object detection and instance
segmentation. We use the standard COCO AP (averaged over IoU thresh-
olds) metric for evaluating bounding box output and instance mask output.

The AP of the final model on the validation set is reported in our experiment.
We use the challenge winner Mask R-CNN [52] with a ResNet-50 backbone
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and follow its setup. For training, we adopt the 1x schedule (90k iterations),
and the off-the-shelf [582] step decay that drops 2 times with v = 0.1 at
pe 5ok

Semantic segmentation on Cityscapes. Cityscapes [42] is a dataset com-
monly used for evaluating semantic segmentation algorithms. It contains
high quality pixel-level annotations of 5k images in urban scenarios. The
default evaluation metric is the mloU (averaged across class) of the out-
put segmentation map. We use state-of-the-art model PSPNet [251] with a
ResNet-50 backbone and the full budget is 400 epochs as in standard set up.
The mlIoU of the best epoch is reported. Interestingly, unlike other tasks in
this series, this model by default uses the poly schedule. For complete eval-
uation, we add step decay that is the same in our ImageNet experiment in
Tab 2.3.

Video classification on Kinetics with I3D. Kinetics [ 105] is a large-scale
dataset of YouTube videos focusing on human actions. We use the 400-
category version of the dataset and a variant of I3D [26] with training and
data processing code publicly available [222]. The top-1 accuracy of the final
model is used for evaluating the performance. We follow the 4-GPU 300k
iteration schedule [222], which features a step decay that drops 2 times with
vy=0.1atpe {32}

If we factor in the dimension of budgets, Tab 2.3 shows a clear advan-
tage of linear schedule over step decay. For example, on ImageNet, linear
achieves 51.5% improvement at 1% of the budget. Next, we consider the
full budget setting, where we simply swap out the off-the-shelf schedule
with linear schedule. We observe better (video classification) or compara-
ble (other tasks) performance after the swap. This is surprising given the
fact that linear schedule is parameter-free and thus not optimized for the
particular task or network.

In summary, the smoothly decaying linear schedule is a simple and effective
strategy for budgeted training. It significantly outperforms traditional step de-
cay given limited budgets, while achieving comparable performance with
the normal full budget setting.

2.5 Discussion

In this section, we summarize our empirical analysis with a desiderata of
properties for effective budget-aware learning schedules. We highlight those
are inconsistent with conventional wisdom and follow the experimental setup
in Sec 2.4.1 unless otherwise stated.
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Figure 2.3: Budgeted convergence: full gradient norm ||g;|| vanishes over
time (color curves) as learning rate o, (black curves) decays. The first row
shows that the dynamics of full gradient norm correlate with the corre-
sponding learning rate schedule while the second row shows that such phe-
nomena generalize across budgets for budget-aware schedules. Such gener-
alization is most obvious in plot (h), which overlays the full gradient norm
across different budgets. If a schedule does not decay to 0, the gradient norm
does not vanish. For example, if we train a budget-unaware exponential
schedule for 50 epochs (c), the full gradient norm at that time is around 1.5,
suggesting this is a schedule with insufficient final decay of learning rate.

Desideratum: budgeted convergence. Convergence of SGD under non-
convex objectives is measured by lim;_,, E[||[VF|[?] = 0[19]. Intuitively, one
should terminate the optimization when no further local improvement can
be made. What is the natural counterpart for “convergence” within a bud-
get? For a dataset of N examples {(z;,v;)}2Y ,, let us write the full gradient as
9=~ SN VF(z;,5:). We empirically find that the dynamics of ||gf|| over
time highly correlates with the learning rate o, (Fig 2.3). As the learning
rate vanishes for budget-aware schedules, so does the gradient magnitude.
We call this “vanishing gradient” phenomenon budgeted convergence. This
correlation suggests that decaying schedules to near-zero rates (and using
BAC) may be more effective than early stopping. As a side note, budgeted
convergence resonates with classic literature that argues that SGD behaves
similar to simulated annealing [17]. Given that «; and ||g;|| decrease, the
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Schedule Best Progress | Schedule Best Progress
const 81.2% +161% | step-d2 90.5% +9.0%
linear 98.6% +16% | poly 99.1% +13%

Table 2.4: Where does one expect to find the model with the highest vali-
dation accuracy within the training progress? Here we show the best check-
point location measured in training progress p and averaged for each sched-
ule across budgets greater or equal than 10% and 3 different runs.

overall update || — a;g;|| also decreases*. In other words, large moves are
more likely given large learning rates in the beginning, while small moves
are more likely given small learning rates in the end. However, the exact
mechanism by which the learning rate influences the gradient magnitude
remains unclear.

Desideratum: don’t waste the budget. Common machine learning prac-
tise often produces multiple checkpointed models during a training run,
where a validation set is used to select the best one. Such additional opti-
mization is wasteful in our budgeted setting. Tab 2.4 summarizes the progress
point at which the best model tends to be found. Step decay produces an op-
timal model somewhat towards the end of the training, while linear and poly
are almost always optimal at the precise end of the training. This is espe-
cially helpful for state-of-the-art models where evaluation can be expensive.
For example, validation for Kinetics video classification takes several hours.
Budget-aware schedules require validation on only the last few epochs, sav-
ing additional compute.

Aggressive early descent. Guided by asymptotic convergence analysis,
faster descent of the objective might be an apparent desideratum of an opti-
mizer. Many prior optimization methods explicitly call for faster decrease of
the objective [40,108,177]. In contrast, we find that one should not employ
aggressive early descent because large learning rates can prevent budgeted
convergence. Consider AMSGrad [177], an adaptive learning rate that ad-
dresses a convergence issue with the widely-used Adam optimizer [108].
Fig 4 shows that while AMSGrad does quickly descend over the training ob-
jective, it still underperforms budget-aware linear schedules over any given
training budget. To examine why, we derive the equivalent rate B, for AMS-
Grad and show that it is dramatically larger than our defaults, suggesting
the optimizer is too aggressive.

*Note that the momentum in SGD is used, but we assume vanilla SGD to simplify the
discussion, without losing generality.
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Warm restarts. SGDR [144] explores periodic schedules, in which each
period is a cosine scaling. The schedule is intended to escape local minima,
but its effectiveness has been questioned [75]. Fig 5 shows that SDGR has
faster descent but is inferior to budget-aware schedules for any budget (simi-
lar to the adaptive optimizers above). Additional comparisons can be found
in Appendix 2.A.7. Whether there exists a method that achieves promising
anytime performance and budgeted performance at the same time remains
an open question.
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with linear schedule. (a) while AMS-
Grad makes fast initial descent of the
training loss, it is surpassed at each
given budget by the linear schedule. (b)
budgeted convergence is not observed
for AMSGrad — the full gradient norm
llgf|| does not vanish (color curves).
Comparing to a momentum SGD, AMS-
Grad recommends magnitudes larger

with linear schedules. (a) SGDR makes
slightly faster initial descent of the train-
ing loss, but is surpassed at each given
budget by the linear schedule. (b) for
SGDR, the correlation between full gra-
dient norm ||g;|| and learning rate o is
also observed. Warm restart does not
help to achieve better budgeted perfor-
mance.

learning rate B; (black curve).

2.6 Conclusion

This paper introduces a formal setting for budgeted training. Under this
setup, we observe that a simple linear schedule, or any other smooth-decaying
schedules can achieve much better performance. Moreover, the linear sched-
ule even offers comparable performance on existing visual recognition tasks
for the typical full budget case. In addition, we analyze the intriguing prop-
erties of learning rate schedules under budgeted training. We find that the
learning rate schedule controls the gradient magnitude regardless of train-
ing stage. This further suggests that SGD behaves like simulated annealing
and the purpose of a learning rate schedule is to control the stage of opti-
mization.
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2.A Appendix

2.A.1 Rank Prediction

In the introduction of this chapter, we list neural architecture search as an
application of budgeted training. Due to resource constraint, these methods
usually train models with a small budget (10-25 epochs) to evaluate their
relative performance [23,25,175]. Under this setting, the goal is to rank the
performance of different architectures instead of obtaining the best possible ac-
curacy as in the regular case of budgeted training. Then one could ask the
question that whether budgeted training techniques help in better predict-
ing the relative rank. Unfortunately, budgeted training has not been studied
or discussed in the neural architecture search literature, it is unknown how
well models only trained with 10 epochs can tell the relative performance
of the same ones that are trained with 200 epochs. Here we conduct a con-
trolled experiment and show that proper adjustment of learning schedule,
specifically the linear schedule, indeed improves the accuracy of rank pre-
diction.

We adapt the code in [25] to generate 100 random architectures, which
are obtained by random modifications (adding skip connection, removing
layer, changing filter numbers) on top of ResNet-18 [52]. First, we train these
architectures on CIFAR-10 given full budget (200 epochs), following the set-
ting described in Sec 2.4.1. This produces a relative rank between all pairs
of random architectures based on the validation accuracy and this rank is
considered as the target to predict given limited budget. Next, every ran-
dom architecture is trained with various learning schedules under various
small budgets. For each schedule and each budget, this generates a complete
rank. We treat this rank as the prediction and compare it with the target full-
budget rank. The metric we adopt is Kendall’s rank correlation coefficient
(1), a standard statistics metric for measuring rank similarity. It is based on
counting the inversion pairs in the two ranks and (7 + 1) /2 is approximately
the probability of estimating the rank correctly for a pair.

We consider the following schedules: (1) constant, it might be possible
that no learning rate schedule is required if only the relative performance
is considered. (2) step decay (y = 0.1, decay at p € {3,%}), a schedule
commonly used both in regular training and neural architecture search [ 164,

]. (3) cosine, a schedule often used in neural architecture search [23,

]. (4) linear, our proposed schedule. The results of their rank prediction
capability can be seen in Tab 2.5.

The results suggest that with more budget, we can better estimate the
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tull-budget rank between architectures. And even if only relative perfor-
mance is considered, learning rate decay should be applied. Specifically,
smooth-decaying schedule, such as linear or cosine, are preferred over step
decay.

We list some additional details about the experiment. To reduce stochas-
tic noise, each configuration under both the small and full budget is repeated
3 times and the median accuracy is taken. The full-budget model is trained
with linear schedule, similar results are expected with other schedules as
evidenced by the CIFAR-10 results in the main text (Tab 2.2). Among the
100 random architectures, 21 cannot be trained, the rest of 79 models have
validation accuracy spanning from 0.37 to 0.94, with the distribution mass
centered at 0.91. Such skewed and widespread distribution is the typical
case in neural architecture search. We remove the 21 models that cannot be
trained for our experiments. We take the epoch with the best validation ac-
curacy for each configuration, so the drawback of constant or step decay not

having the best model at the very end does not affect this experiment (see
Sec 2.5).

2.A.2 Budgeted Performance Across Architectures

To reinforce our claim that linear schedule generalizes across different set-
tings, we compare budgeted performance of various schedules on random
architectures generated in the previous section. We present two versions of
the results. The first is to directly average the validation accuracy of different
architecture with each schedule and under each budget (Tab 2.6). The sec-
ond is to normalize by dividing the budgeted accuracy by the full-budget
accuracy of the same architecture and then average across different archi-
tectures (Tab 2.7). The second version assumes all architectures enjoy equal

Epoch (Budget) 1(05%) 2(1%) 10 (5%) 20 (10%)

const 0.3451  0.4595  0.6720 0.6926
step-d2 02746  0.3847  0.6651 0.7279
cosine 0.3211 0.4847 0.7023 0.7563
linear 0.3409 0.4348 0.7398 0.7351

Table 2.5: Small-budget and full-budget model rank correlation measured
in Kendall’s tau. Smooth-decaying schedules like linear and cosine can more
accurately predict the true rank of different architectures given limited bud-
get.
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Epoch (Budget) 1(05%) 2(1%) 10 (5%) 20 (10%)

const 0.3892  0.4699  0.6689 0.7061
step-d2 04014 04780  0.6980 0.7754
cosine 0.4616  0.5498  0.7530 0.8029
linear 0.4759  0.5745 0.7652 0.8192

Table 2.6: Small-budget validation accuracy averaged across random archi-
tectures. Linear schedule is the most robust under small budgets.

Epoch (Budget) 1(0.5%) 2 (1%) 10 (5%) 20 (10%)

const 04419 0.5343 0.7550 0.8015
step-d2 0.4590  0.5455 0.789%4 0.8848
cosine 05326  0.6265 0.8615 0.9087
linear 0.5431  0.6626  0.8644 0.9305

Table 2.7: Tab 2.6 normalized by the full-budget accuracy and then averaged
across architectures. Linear schedule achieves solutions closer to their full-
budget performance than the rest of schedules under small budgets.

weighting. Under both cases, linear schedule is the most robust schedule
across architectures under various budgets.

2.A.3 Equivalent Learning Rate For AMSGrad

In the discussion section, we use equivalent learning rate to compare AMS-
Grad [177] with momentum SGD. Here we present the derivation for the

equivalent learning rate f3;.

Let 11, 72 and € be hyper-parameters, then the momentum SGD update
rule is:

my = mmu—1 + (1 —m1) g, (2.3)

Wy = Wi—1 — a(()l)ﬁtmta (2'4)
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Budget 1% 5% 10% 25% 50% 100%

Subset .3834 .6446 .7848 .8586 .9234 N/A
Full 5544 .8328 .9042 .9338 .9464 .9534

Table 2.8: Comparison with offline data subsampling. “Subset” meets the
budget constraint by randomly subsample the dataset prior to training,
while “full” uses all the data, but restricting the number of iterations. Note
that budget-aware schedule is used for “full”.

while the AMSGrad update rule is:

my = mumy_1 + (1 — 1) gy, (2.5)
vy =mv—1 + (1 — m)g5, (2.6)

“ my
my = —, (2.7)

-

. (%3
-t 2.8
Ut 1 _ 7757 ( )
AN max(6M 4, (2.9)
Wy = Wp_q — Oz((f) e (2.10)

oI e
Comparing equation 2.4 with 2.10, we obtain the equivalent learning rate:
B . 0482) 1

t — ~ )
ag” (1= ni) (/o7 +¢)

(2.11)

Note that the above equation holds per each weight. For Fig 2.4a, we take
the median across all dimensions as a scalar summary since it is a skewed
distribution. The mean appears to be even larger and shares the same trend
as the median. In our experiments, we use the default hyper-parameters
(which also turn out to have the best validation accuracy): oz(()l) =0.1, aéz) =
0.001, 7, = 0.9, 75 = 0.99 and e = 1075.

2.A.4 Data Subsampling

Data subsampling is a straight-forward strategy for budgeted training and
can be realized in several different ways. In our work, we limit the num-
ber of iterations to meet the budget constraint and this effectively limits the
number of data points seen during the training process. An alternative is to
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construct a subsampled dataset offline, but keep the same number of train-
ing iterations. Such construction can be done by random sampling, which
might be the most effective strategy for i.i.d (independent and identically dis-
tributed) dataset. We show in Tab 2.8 that even our baseline budge-aware
step decay, together with a limitation on the iterations, can significantly out-
perform this offline strategy. For the subset setting, we use the off-the-shelf
step decay (step-d2) while for the full set setting, we use the same step decay
but with BAC applied (Sec 2.3.1). For detailed setup, we follow Sec 2.4.1.

Of course, more complicated subset construction methods exist, such as
core-set construction [6]. However, such methods usually requires a fea-
ture summary of each data point and the computation of pairwise distance,
making such methods unsuitable for extremely large dataset. In addition,
note that our subsampling experiment is conducted on CIFAR-10, a well-
constructed and balanced dataset, making smarter subsampling methods
less advantageous. Consequently, the result in Tab 2.8 can as well provides
a reasonable estimate for other complicated subsampling methods.

2.A.5 Additional Experiments on Cityscapes (Semantic Seg-
mentation)

In the main text, we compare linear schedule against step decay for vari-
ous tasks. However, the off-the-shelf schedule for PSPNet [251] is poly in-
stead of step decay. Therefore, we include the evaluation of poly schedule
on Cityscapes [42] in Tab 2.9. Given the similarity of poly and linear (Fig
2.2), and the opposite results on CIFAR-10 and Cityscapes, it is inconclusive
that one is strictly better than the other within the smooth-decaying fam-
ily. However, these smooth-decaying methods both outperform step decay
given limited budgets.

Budget 1% 5% 10% 25% 50% 100%

pOly 5476 + 0023 6755 + 0012 7093 + 008 7416 +.0028 .7562 + 0045 7593 + 0043
linear D424 + 003s 6654 + 0014 7076 £.007 7399 + 0005 7575 +.0041 7633 + 0008

Table 2.9: Comparison with off-the-shelf poly schedule on Cityscapes [42]
using PSPNet [251]. Poly and linear are similar smooth-decaying schedules
(Fig 2.2) and thus have similar performance. The exact rank differs from
task to task.
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2.A.6 Additional Comparison with Adaptive Learning Rates

(a) Training Loss (b) Validation Accuracy

10 — 1.0 Method Val Accu
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| Linear 100% os AN AdaBound 9306
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Figure 2.6: Comparison between budget-aware linear schedule and adaptive
learning rate methods on CIFAR-10. We see while adaptive learning rate
methods appear to descent faster than full budget linear schedule, at each
given budget, they are surpassed by the corresponding linear schedule.

In the main text we compare linear schedule with AMSGrad [177] (the
improved version over Adam [108]), we further include the classical method
RMSprop [211] and the more recent AdaBound [148]. We tune these adap-
tive methods for CIFAR-10 and summarize the results in Fig 2.6. We observe
the similar conclusion that budget-aware linear schedule outperforms adap-
tive methods for all given budgets.

Like SGD, those adaptive learning rate methods also takes input a pa-
rameter of base learning rate, which can also be annealed using an existing
schedule. Although it is unclear why one needs to anneal an adaptive meth-
ods, we find that it in facts boosts the performance (“AMSGrad + Linear” in
Fig 2.6).

2.A.7 Additional Comparison with SGDR

This section provides additional evaluation to show that learning rate restart
produces worse results than our proposed budgeted training techniques un-
der budgeted setting. In [144], both a new form of decay (cosine) and the
technique of learning rate restart are proposed. To avoid confusion, we use
“cosine schedule”, or just “cosine”, to refer to the form of decay and SGDR to
a schedule of periodical cosine decays. The comparison with cosine schedule
is already included in the main text. Here we focus on evaluating the period-
ical schedule. SGDR requires two parameters to specify the periods: T, the
length of the first period; Ty, where i-th period has length 7, = T, T |

mult*

In Fig 2.7, we plot the off-the-shelf SGDR schedule with 7T, = 10 (epoch),
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(a) Learning Rate Schedule 1o (b) Validation Accuracy
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Figure 2.7: One issue with off-the-shelf SGDR (7 = 10, Tyt = 2) is that

it is not budget-aware and might end at a poor solution. We convert it to a

budget aware schedule by setting it to restart n times at even intervals across

the budget and n = 2 is shown here (SGDR-12).

Epoch 30 50 150

SGDR .9320 .9458 .9510
linear .9350 .9506 .9532

Table 2.10: Comparison with off-the-shelf SGDR at the end of each period
after the first restart.

Tmut = 2. The validation accuracy plot (on the right) shows that it might
end at a very poor solution (0.8460) since it is not budget-aware. Therefore,
we consider two settings to compare linear schedule with SGDR. The first is
to compare only at the end of each period of SGDR, where budgeted con-
vergence is observed. The second is to convert SGDR into a budget-aware
schedule by setting the schedule to restart n times at even intervals across the
budget. The results under the first and second setting is shown in Tab 2.10
and Tab 2.11 respectively. Under both budget-aware and budget-unaware
setting, linear schedule outperforms SGDR. For detailed setup, we follow
Sec 2.4.1, of the main text and take the median of 3 runs.

2.A.8 Additional Illustrations

In the discussion section (Sec 2.5), we refer to validation accuracy curve for
training on CIFAR-10, which we provide here in Fig 2.8.
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Budget 1% 56  10% 25% 50% 100%

SGDR-r1 .5002 .7908 .8794 .9250 .9380 .9488
SGDR-r2 4710 .7888 .8738 .9216 .9412 .9502
linear 6654 .8920 .9218 .9412 .9546 .9562

Table 2.11: Comparison with SGDR under budget-aware setting. “SGDR-
rl” refers to restarting learning rate once at midpoint of the training
progress, and “SGDR-r2” refers to restarting twice at even interval.

s (a) Training Loss 1o (b) Validation Accuracy

step-d2
1.2 —— linear 0.9

0.91 0.8

0.6 1 0.7 4

0.3 A 0.6 1 step-d2
—— linear

0.0

T T T 0.5 T T T
0 50 100 150 200 0 50 100 150 200

Epoch Epoch

Figure 2.8: Training loss and validation accuracy for training ResNet-18 on
CIFAR-10 using step decay and linear schedule. No generalization gap is
observed when we only modify learning rate schedule. This figure provides
details for the discussion of “don’t waste budget”.

2.A.9 Learning Rates in Convex Optimization

For convex cost surfaces, constant learning rates are guaranteed to converge
when less or equal than 1/L, where L is the Lipschitz constant for the gradi-
ent of the cost function VF [19]. Another well-known result ensures conver-
gence for sequences that decay neither too fast nor too slow [182]: % a; =
00, >, af < 00. One common such instance in convex optimization is a; =
ap/t. For non-convex problems, similar results hold for convergence to a lo-
cal minimum [19]. Unfortunately, there does not exist a theory for learning
rate schedules in the context of general non-convex optimization.

2.A.10 Full Gradient Norm and the Weight Norm

In Sec 2.5, we plot the full gradient norm of the cross-entropy loss, excluding
the regularization part. In fact, we use an L2-regularization (weight decay)
of 0.0004 for these experiments. For completeness, we plot the weight norm
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Figure 2.9: The corresponding weight norm plots for Fig 2.3 and Fig 5. We
find that the weight norm exhibits a similar trend as the gradient norm.

Batch Size Schedule 20% 50% 100%

64 step-d2 9436 + 0037 9505 +.0000 9519 -+ 0009
64 linear 9473 + 0021 9511 + 0008 9526 + 0020
256 Step-dz 8939 + 0027 9291 + 0021 9431 + o008
256 linear 9143 +o01s 9415 + o038 9484 + o013
1024 Step-dz 5851 +.ue0 . 7703 + o1z .8805 + 0007
1024 linear 7415 + 011 8553 £ 0023 .8992 i+ o0a2

Table 2.12: Comparison between linear and step decay with different batch
sizes. We can see that even when we vary the batch size, linear schedule
outperforms step decay.

in Fig 2.9.

2.A.11 Additional ablation studies

Here we explore variations of batch size (Tab 2.12) and initial learning rate
(Tab 2.13). Our definition of budget is the number of examples seen dur-
ing training. So when the batch size increases, the number of iterations de-
creases. For example, on CIFAR-10, the full budget is training with batch size
128 for 200 epochs. If we train with batch size 1024 for 20% of the budget,
that means training for 5 epochs.
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Initial LR 0.001 0.1 1 10

step—d2 9152 L0024 9529 + 0000 .8869 + 0065 N/A
linear 9167 + 0023 .9563 +.0009 .8967 +.0032 N/A

Table 2.13: Comparison between linear and step decay with different initial
learning rate under full budget setting. On one hand, we see that linear
schedule outperforms step decay under various initial learning rate. On the
other hand, we see that initial learning rate is still a very important hyper-
parameter that needs to be tuned even with budget-aware, smooth-decaying
schedules.

2.A.12 Additional Implementation Details

Image classification on ImageNet. We adapt both the network architecture
(ResNet-18) and the data loader from the open source PyTorch ImageNet
example’. The base learning rate used is 0.1 and weight decay 5 x 10~*. We
train using 4 GPUs with asynchronous batch normalization and batch size
128.

Video classification on Kinetics with I3D. The 400-category version of
the dataset is used in the evaluation. We use an open source codebase®
that has training and data processing code publicly available. Note that the
codebase implements a variant of standard I3D [26] that has ResNet as the
backbone. We follow the configuration of run_i3d_baseline_300k_4gpu. sh,
which specifies a base learning rate 0.005 and a weight decay 10~*. Only
learning rate schedule is modified in our experiments. We train using 4
GPUs with asynchronous batch normalization and batch size 32.

Object detection and instance segmentation on MS COCO. We use
the open source implementation of Mask R-CNN”, which is a PyTorch re-
implementation of the official codebase Detectron in the Caffe 2 framework.
We only modify the part of the code for learning rate schedule. The code-
base sets base learning rate to 0.02 and weight decay 10~*. We train with 8
GPUs (batch size 16) and keep the built-in learning rate warm up mecha-
nism, which is an implementation technique that increases learning rate for
0.5k iterations and is intended for stabilizing the initial phase of multi-GPU
training [76]. The 0.5k iterations are kept fixed for all budgets and learning

Shttps://github.com/pytorch/examples/tree/master/imagenet. PyTorch version
04.1.

®https://github.com/facebookresearch/video-nonlocal-net. Caffe 2 version 0.8.1.

"https://github.com/roytseng-tw/Detectron.pytorch. PyTorch version 0.4.1.
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rate decay is applied to the rest of the training progress.

Semantic segmentation on Cityscapes. We adapt a PyTorch codebase
obtained from correspondence with the authors of PSPNet. The base learn-
ing rate is set to 0.01 with weight decay 10~*. The training time augmen-
tation includes random resize, crop, rotation, horizontal flip and Gaussian
blur. We use patch-based testing time augmentation, which cuts the input
image to patches of 713 x 713 and processes each patch independently and
then tiles the patches to form a single output. For overlapped regions, the
average logits of two patches are taken. We train using 4 GPUs with syn-
chronous batch normalization and batch size 12.
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Chapter 3

Streaming Perception

3.1 Introduction

Embodied perception refers to the ability of an autonomous agent to per-
ceive its environment so that it can (re)act. A crucial quantity governing the
responsiveness of the agent is its reaction time. Practical applications, such
as self-driving vehicles or augmented reality and virtual reality (AR/VR),
may require reaction time that rivals that of humans, which is typically 200
milliseconds (ms) for visual stimuli [115]. In such settings, low-latency al-
gorithms are imperative to ensure safe operation or enable a truly immersive
experience.

Historically, the computer vision community has not particularly focused
on algorithmic latency. This is one reason why a disparate set of techniques
(and conference venues) have been developed for robotic vision. Interest-
ingly, latency has been well studied recently (e.g., fast but not necessarily
state-of-the-art accurate detectors such as [138, 142, 178]). But it has still
been primarily explored in an offline setting. Vision-for-online-perception
imposes quite different latency demands as shown in Fig. 3.1, because by
the time an algorithm finishes processing a particular frame — say, after
200ms — the surrounding world has changed! This forces perception to be
ultimately predictive of the future. In fact, such predictive forecasting is a
fundamental property of human vision (e.g., as required whenever a base-
ball player strikes a fast ball [154]). So we argue that streaming perception
should be of interest to general computer vision researchers.

Contribution (meta-benchmark) To help explore embodied vision in a
truly online streaming context, we introduce a general meta-benchmark that
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Computation

Figure 3.1: Latency is inevitable in a real-world perception system. The sys-
tem takes a snapshot of the world at ¢; (the car is at location A), and when
the algorithm finishes processing this observation, the surrounding world
has already changed at ¢, (the car is now at location B, and thus there is a
mismatch between prediction A and ground truth B). If we define stream-
ing perception as a task of continuously reporting back the current state of
the world, then how should one evaluate vision algorithms under such a
setting? We invite the readers to watch a video on the project website that
compares a standard frame-aligned visualization with our latency-aware vi-
sualization [ Link].

systematically converts any single-frame task into a streaming perception
task. Our key insight is that streaming perception requires understanding
the state of the world at all time instants — when a new frame arrives, streaming
algorithms must report the state of the world even if they have not done processing
the previous frame. Within this meta-benchmark, we introduce an approach to
measure the real-time performance of perception systems. The approach is
as simple as querying the state of the world at all time instants, and the qual-
ity of the response is measured by the original task metric. Such an approach
naturally merges latency and accuracy into a single metric. Therefore, the
trade-off between accuracy versus latency can now be measured quantita-
tively. Interestingly, our meta-benchmark naturally evaluates the perception
stack as a whole. For example, a stack may include detection, tracking, and
forecasting modules. Our meta-benchmark can be used to directly compare
such modular stacks to end-to-end black-box algorithms [145]. In addition,
our approach addresses the issue that overall latency of concurrent systems
is hard to evaluate (e.g., latency cannot be simply characterized by the run-
time of a single module).
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Contribution (analysis) Motivated by perception for autonomous vehi-
cles, we instantiate our meta-benchmark on the illustrative tasks of object
detection and instance segmentation in urban video streams. Accompanied
with our streaming evaluation is a novel dataset with high-quality, high-
frame-rate, and temporally-dense annotations of urban videos. Our evalu-
ation on these tasks demonstrates a number of surprising conclusions. (1)
Streaming perception is significantly more challenging than offline percep-
tion. Standard metrics like object-detection average precision (AP) dramati-
cally drop (from 38.0 to 6.2), indicating the need for the community to focus
on such problems. (2) Decision-theoretic scheduling, asynchronous track-
ing, and future forecasting naturally emerge as internal representations that
enable accurate streaming perception, recovering much of the performance
drop (boosting performance to 17.8). With simulation, we can verify that
infinite compute resources modestly improves performance to 20.3, imply-
ing that our conclusions are fundamental to streaming processing, no matter
the hardware. (3) It is well known that perception algorithms can be tuned
to trade off accuracy versus latency. Our analysis shows that there exists
an optimal “sweet spot” that uniquely maximizes streaming accuracy. This
provides a different perspective on such well-explored trade-offs. (4) Fi-
nally, we demonstrate the effectiveness of decision-theoretic reasoning that
dynamically schedules which frame to process at what time. Our analysis
reveals the paradox that latency is minimized by sometimes sitting idle and
“doing nothing”! Intuitively, it is sometimes better to wait for a fresh frame
rather than to begin processing one that will soon become “stale”.

3.2 Related Work

Latency evaluation Latency is a well-studied subject in computer vision.
One school of research focuses on reducing the FLOPS of backbone net-
works [91,249], while another school focuses on reducing the runtime of
testing time algorithms [138,142,178]. We follow suit and create a latency-
accuracy plot under our experiment setting (Fig. 3.2). While such a plot is
suggestive of the trade-off for offline data processing (e.g., archived video
footage), it fails to capture the fact that when the algorithm finishes processing,
the surrounding world has already changed. Therefore, we believe that existing
plots do not reveal the streaming performance of these algorithms. Aside
from computational latency, prior work has also investigated algorithmic la-
tency [151], evaluated by running algorithms on a video in the offline fashion
and measuring how many frames are required to detect an object after it ap-
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pears. In comparison, our evaluation is done in the more realistic online
real-time setting, and applies to any single-frame task, instead of just object
detection.

Real-time evaluation There has not
been much prior effort to evaluate vi- 5
sion algorithms in the real-time fash-
ion in the research community. No- / e~

table exceptions include work on real- ¢ / Retinallet R50
time tracking and real-time simultane- ©2° T+ Mask RENN RSD
ous localization and mapping (SLAM). 15| /f - sk RO o
First, the VOT2017 tracking benchmark  ,, 2 Cascade MRCNN101
specifically included a real-time chal- o ai0 30 a0 sho e 760
lenge [116]. Its benchmark toolkit sends Runtime (ms)

out frames at 20 FPS to participants’
trackers and asks them to report back
results before the next frame arrives.
If the tracker fails to respond in time,
the last reported result is used. This is
equivalent to applying zero-order hold
to trackers’ outputs. In our benchmarks,
we adopt a similar zero-order hold strat-
egy, but extend it to a broader context
of arbitrary single-frame tasks and al-
low for a more delicate interplay be-
tween detection, tracking, and forecast-
ing. Second, the literature on real-time
SLAM also considers benchmark evalu-
ation under a “hard-enforced” real-time
requirement [21,59]. Our analysis suggests that hard-enforcement is too
stringent of a formulation; algorithms should be allowed to run longer than
the frame rate, but should still be scored on their ability to report the state
of the world (e.g., localized map) at frame rate.

Offline AP

Figure 3.2: Prior art routinely ex-
plores the trade-off between de-
tection accuracy versus runtime.
We generate the above plot by
varying the input resolution of
each detection network. We ar-
gue that such plots are exclusive to
offline processing and fail to cap-
ture latency-accuracy trade-offs in
streaming perception. AP stands
for average precision, and is a
standard metric for object detec-
tion [139].

Progressive and anytime algorithms There exists a body of work on pro-
gressive and anytime algorithms that can generate outputs with lower la-
tency. Such work can be traced back to classic research on intelligent plan-
ning under resource constraints [ 15] and flexible computation [90], studied
in the context of Al with bounded rationality [186]. Progressive process-
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Figure 3.3: Our proposed streaming perception evaluation. A streaming al-

gorithm f is provided with (timestamped) observations up until the current
time ¢ and refreshes an output buffer with its latest prediction of the current
state of the world. At the same time, the benchmark constantly queries the
output buffer for estimates of world states. Crucially, f must consider the
amount of streaming observations that should be ignored while computa-
tion is occurring.

ing [260] is a paradigm that splits up an algorithm into sequential modules
that can be dynamically scheduled. Often, scheduling is formulated as a
decision-theoretic problem under resource constraints, which can be solved
in some cases with Markov decision processes (MDPs) [259,260]. Anytime
algorithms are capable of returning a solution at any point in time [259]. Our
work revisits these classic computation paradigms in the context of stream-
ing perception, specifically demonstrating that classic visual tasks (like track-
ing and forecasting) naturally emerge in such bounded resource settings.

3.3 Proposed Evaluation

In the previous section, we have shown that existing latency evaluation fails
to capture the streaming performance. To address this issue, here we pro-
pose a new method of evaluation. Intuitively, a streaming benchmark no
longer evaluates a function, but a piece of executable code over a continu-
ous time frame. The code has access to a sensor input buffer that stores the
most recent image frame. The code is responsible for maintaining an output
buffer that represents the up-to-date estimate of the state of the world (e.g., a
list of bounding boxes of objects in the scene). The benchmark examines this
output buffer, comparing it with a ground truth stream of the actual world
state (Fig. 3.3).
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3.3.1 Formal definition

We model a data stream as a set of sensor observations, ground-truth world
states, and timestamps, denoted respectively as {(z;,v;,t;)},. Let f be a
streaming algorithm to be evaluated. At any continuous time ¢, the algorithm
f is provided with observations (and timestamps) that have appeared so far:

{(zs, t)|t: < t} [accessible input at time t] (3.1)

We allow the algorithm f to generate an output prediction at any time. Let s;
be the timestamp that indicates when a particular prediction g; is produced.
The subscript j indexes over the N outputs generated by f over the entire
stream:

{5,514 [all outputs by f] (3.2)

Note that this output stream is not synchronized with the input stream, and
N has no direct relationship with 7. Generally speaking, we expect algo-
rithms to run slower than the frame rate (V < 7).

We benchmark the algorithm f by comparing its most recent output at
time ¢; to the ground-truth y;. We first compute the index of the most recent
output:

@(t) = argmaxs; <t [real-time constraint] (3.3)
J
This is equivalent to the benchmark applying a zero-order hold for the algo-

rithm’s outputs to produce continuous estimation of the world states. Given
an arbitrary single-frame loss L, the benchmark formally evaluates:

Lstream'mg = L({(yzu yw(ti))}iTzl) [evaluation] (34)

By construction, the streaming loss above can be applied to any single-frame
task that computes a loss over a set of ground truth and prediction pairs.

3.3.2 Emergent tracking and forecasting

At first glance, “instant” evaluation may seem unreasonable: the benchmark
at time ¢ queries the state at time ¢. Although x, is made available to the algo-
rithm, any finite-time algorithm cannot make use of it to generate its predic-
tion. For example, if the algorithm takes time At to perform its computation,
then to make a prediction at time ¢, it can only use data before time ¢t — At.
We argue that this is the realistic setting for streaming perception, both in
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biological and robotic systems. Humans and autonomous vehicles must re-
act to the instantaneous state of the world when interacting with dynamic
scenes. Such requirements strongly suggest that perception should be inher-
ently predictive of the future. Our benchmark similarly “forces” algorithms
to reason and forecast into the future, to compensate for the mismatch be-
tween the last processed observation and the present.

One may also wish to take into account the inference time of downstream
actuation modules (that say, need to optimize a motion plan that will be exe-
cuted given the perceived state of the world). It is straightforward to extend
our benchmark to require algorithms to generate a forecast of the world state
when the downstream module finishes its processing. For example, at time
t the benchmark queries the state of the world at time ¢ + 7, where n > 0
represents the inference time of the downstream actuation module.

In order to forecast, the algorithms need to reason temporally through
tracking (in the case of object detection). For example, constant velocity
forecasting requires the tracks of each object over time in order to compute
the velocity. Generally, there are two categories of trackers — post-hoc as-
sociation [12] and template-based visual tracking [146]. In this paper, we
refer them in short as “association” and “tracking”, respectively. Associa-
tion of previously computed detections can be made extremely lightweight
with simple linking of bounding boxes (e.g., based on the overlap). How-
ever, association does not make use of the image itself as done in (visual)
tracking. We posit that trackers may produce better streaming accuracy for
scenes with highly unpredictable motion. As part of emergent solutions to
our streaming perception problem, we include both association and tracking
in our experiments in the next section.

Finally, it is natural to seek out an end-to-end system that directly opti-
mizes streaming perception accuracy. We include one such method in Ap-
pendix 3.C.2 to show that tracking and forecasting-based representations
may also emerge from gradient-based learning.

3.3.3 Computational Constraints

Because our metric is runtime dependent, we need to specify the computa-
tional constraints to enable a fair comparison between algorithms. We first
investigate a single GPU model (Fig. 3.4a), which is used for existing latency
analysis in prior art. In the single GPU model, only a single GPU job (e.g.,
detection or visual tracking) can run at a time. Such a restriction avoids
multi-job interference and memory capacity issues. Note that a reasonable
number of CPU jobs are allowed to run concurrently with the GPU job. For
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(a) Single GPU model (b) Infinite GPU model

Figure 3.4: Two computation models considered in our evaluation. Each
block represents an algorithm running on a device and its length indicates
its runtime.

example, we allow bounding box association and forecasting modules to run
on the CPU in Fig. 3.7.

Nowadays, it is common to have multiple GPUs in a single system. We
investigate an infinite GPU model (Fig. 3.4b), with no restriction on the num-
ber of GPU jobs that can run concurrently. We implement this infinite com-
putation model with simulation, described in the next subsection.

3.3.4 Challenges for practical implementation

While our benchmark is conceptually simple, there are several practical hur-
dles. First, we require high-frame-rate ground truth annotations. However,
due to high annotation cost, most existing video datasets are annotated at
rather sparse frame rates. For example, YouTube-VIS is annotated at 6 FPS,
while the video data rate is 30 FPS [ 238]. Second, our evaluation is hardware
dependent — the same algorithm on different hardware may yield different
streaming performance. Such hardware-in-the-loop testing is commonplace
in control systems [7] and arguably vital for embodied perception (which
should by definition, depend on the agent’s body!). Third, stochasticity in
actual runtimes yields stochasticity in the streaming performance. Note that
the last two issues are also prevalent in existing offline runtime analyses.
Here we present high-level ideas for the solutions and leave additional de-
tails to Appendix 3.A.2 & 3.A.3.

Pseudo ground truth We explore the use of pseudo ground truth labels as
a surrogate to manual high-frame-rate annotations. The pseudo labels are
obtained by running state-of-the-art, arbitrarily expensive offline algorithms
on each frame of a benchmark video. While the absolute performance num-
bers (when benchmarked on ground truth and pseudo ground truth labels)
differ, we find that the rankings of algorithms are remarkably stable. The
Pearson correlation coefficient of the scores of the two ground truth sets
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is 0.9925, suggesting that the real score is literally a linear function of the
pseudo score. Moreover, we find that offline pseudo ground truth could
also be used to self-supervise the training of streaming algorithms.

Simulation While streaming performance is hardware dependent, we now
demonstrate that the benchmark can be evaluated on simulated hardware.
In simulation, the benchmark assigns a runtime to each module of the algo-
rithm, instead of measuring the wall-clock time. Then based on the assigned
runtime, the simulator generates the corresponding output timestamps. The
assigned runtime to each module provides a layer of abstraction on the hard-
ware.

The benefit of simulation is to allow us to assess the algorithm perfor-
mance on non-existent hardware, e.g., a future GPU that is 20% faster or
infinite GPUs in a single system. Simulation also allows our benchmark to
inform practitioners about the design of future hardware platforms, e.g., one
can verify with simulation that 4 GPUs may be “optimal” (producing the
same streaming accuracy as infinite GPUs).

Runtime-induced variance Due to algorithmic choice and system schedul-
ing, different runs of the same algorithm may end up with different run-
times. This variation across runs also affects the overall streaming perfor-
mance. Fortunately, we empirically find that such variance causes a stan-
dard deviation of up to 0.5% under our experiment setting. Therefore, we
omit variance report in our experiments.

3.4 Solutions and Analysis

In this section, we instantiate our meta-benchmark on the illustrative task of
object detection. While we show results on streaming detection, several key
ideas also generalize to other tasks. An instantiation on instance segmenta-
tion can be found in Appendix 3.A.6. We first explain the setup and present
the solutions and analysis. For the solutions, we first consider single-frame
detectors, and then add forecasting and tracking one by one into the dis-
cussion. We focus on the most effective combination of detectors, trackers,
and forecasters which we have evaluated, but include additional methods in
Appendix 3.C.
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Dataset AP AP, AP, APg APy AP

MS COCO 376 503 414 207 598 405
Argoverse-HD (Ours) 306 524 331 122 523 312

Figure 3.5: Comparison between our dataset and MS COCO [139]. Top
shows an example image from Argoverse 1.1 [29], overlaid with our dense
2D annotation (at 30 FPS). Bottom presents results of Mask R-CNN [52]
(ResNet 50) evaluated on the two datasets. AP, AP,; and APg denote AP
for large, medium and small objects respectively. AP5;, AP;5 denote AP with
IoU (Intersection over Union) thresholds at 0.5 and 0.75 respectively. We
first observe that the APs are roughly comparable, showing that our anno-
tation is reasonable in evaluating object detection performance. Second, we
see a significant drop in APg from COCO to ours, suggesting that the de-
tection of small objects is more challenging in our setting. For self-driving
vehicle applications, those small objects are important to identify when the
ego-vehicle is traveling at a high speed or making unprotected turns.

3.4.1 Setup

We extend the publicly available video dataset Argoverse 1.1 [29] with our
own annotations for streaming evaluation, which we name Argoverse-HD
(High-frame-rate Detection). It contains diverse urban outdoor scenes from
two US cities. We select Argoverse for its embodied setting (autonomous
driving) and its high-frame-rate sensor data (30 FPS). We focus on the task
of 2D object detection for our streaming evaluation. Under this setting, the
state of the world v is a list of bounding boxes of the objects of interest. While
Argoverse has multiple sensors, we only use the center RGB camera for sim-
plicity. We collect our own annotations since the dataset does not provide
dense 2D annotations'. For the annotations, we follow MS COCO [139] class
definitions and format. For example, we include the “iscrowd” attribute for

!t is possible to derive 2D annotations from the provided 3D annotations, but we find
that such derived annotations are highly imprecise.
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ambiguous cases where each instance cannot be identified, and therefore
the algorithms will not be wrongfully penalized. We use only a subset of 8
classes (from 80 MS COCO classes) that are directly relevant to autonomous
driving: person, bicycle, car, motorcycle, bus, truck, traffic light, and stop
sign. This definition allows us to evaluate off-the-shelf models trained on
MS COCO. No training is involved in the following experiments unless oth-
erwise specified. All numbers are computed on the validation set, which
contains 24 videos ranging from 15-30 seconds each (the total number of
frames is 15k). Figure 3.5 shows a comparison of our annotation with that of
MS COCO. Additional comparison with other related datasets can be found
in Appendix 3.A.4. All output timing is measured on a single Geforce GTX
1080 Ti GPU (a Tesla V100 counterpart is provided in Appendix 3.A.7).

3.4.2 Detection-Only

Table 3.1 includes the main results of using just detectors for streaming per-
ception. We first examine the case of running a state-of-the-art detector —
Hybrid Task Cascade (HTC) [32], both in the offline and the streaming set-
tings. The AP drops significantly in the streaming setting. Such a result
is not entirely surprising due to its high runtime (700ms). A commonly
adopted strategy for real-time applications is to run a detector that is within
the frame rate. We point out that this strategy may be problematic, since
such a hard-constrained time budget results in poor accuracy for challenging
tasks (Table 3.1 row 3—4). In addition, we find that many existing network
implementations are optimized for throughput rather than latency, reflect-
ing the bias of the community for offline versus online processing! For ex-
ample, image pre-processing (e.g., resizing and normalizing) is often done
on CPU, where it can be pipelined with data pre-fetching. By moving it to
GPU, we save 21ms in latency (for an input of size 960 x 600).

Our benchmarks allow streaming algorithms to choose which frames to
process/ignore. Figure 3.6 compares a straight-forward schedule with our
dynamic schedule (Alg. 1), which attempts to address temporal aliasing
of the former. While spatial aliasing and quantization has been studied in
computer vision [82], temporal quantization in the streaming setting has
not been well explored. Noteably, it is difficult to pre-compute the opti-
mal schedule because of the stochasticity of actual runtimes. Our proposed
scheduling policy (Alg. 1) tries to minimize the expected temporal mis-
match of the output stream and the data stream, thus increasing the overall
streaming performance. Empirically, we find that it raises the AP for the de-
tector (Table 3.1 row 7). We provide a theoretical analysis of the algorithm
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ID Method Detector AP AP, AP, APs AP;y AP7; Runtime
1 Accurate (Offline) HTC @s1.0 380 643 404 170 605 385 700.5
2 Accurate HTC @s1.0 62 93 36 09 111 59 700.5
3  Fast RetinaNet R50 @ s0.2 55 149 04 00 99 5.6 36.4
4  Fast* RetinaNet R50 @ s0.2 60 181 05 00 103 63 31.2
5  Optimized Mask R-CNNR50@s0.5 106 212 63 09 225 88 779
6  Optimized* Mask R-CNNR50@s0.5 120 243 79 1.0 251 10.1 56.7
7 + Scheduling (Alg. 1) Mask R-CNNR50@s0.5 13.0 266 9.2 1.1 268 111 56.7
8  + Infinite GPUs Mask R-CNNR50 @s0.75 14.4 243 113 28 306 121 92.7

Table 3.1: Performance of existing detectors for streaming perception. The
number after @ is the input scale (the full resolution is 1920 x 1200). * means
using GPU for image pre-processing as opposed to using CPU in the off-the-
shelf setting. The last column is the mean runtime of the detector for a single
frame in milliseconds (mask branch disabled if applicable). The first base-
line is to run an accurate detector (row 1), and we observe a significant drop
of AP in the online real-time setting (row 2). Another commonly adopted
baseline for embodied perception is to run a fast detector (row 3—4), whose
runtime is smaller than the frame interval (33ms for 30 FPS streams). Nei-
ther of these baselines achieves good performance. Searching over a wide
suite of detectors and input scales, we find that the optimal solution is Mask
R-CNN (ResNet 50) operating at 0.5 input scale (row 5-6). In addition,
our scheduling algorithm (Alg. 1) boosts the performance by 1.0/2.3 for
AP/AP;, (row 7). In the hypothetical infinite GPU setting, a more expen-
sive detector yields better trade-off (input scale switching from 0.5 to 0.75,
almost doubling the runtime), and it further boosts the performance to 14.4
(row 8), which is the optimal solution achieved by just running the detector.
Simulation suggests that 4 GPUs suffice to maximize streaming accuracy for
this solution.

Algorithm 1: Shrinking-tail policy

1: Given finishing time s and algorithm runtime r in the unit of frames
(assuming r > 1), this policy returns whether the algorithm should
wait for the next frame

2: Define tail function 7(t) =t — [¢]

3: return [7(s + 1) < 7(s)] (Iverson bracket)

and additional empirical results for a wide suite of detectors in Appendix
3.B.1. Note that Alg. 1 is by construction task agnostic (not specific to object
detection).

44



0 1 2 3 4 0 1t 2 3
| Lt | IV bt

\ \ \
Dynamic

(Slow) L .
Sit idle and wait!
(a) Fast vs Accurate (b) Dynamic Scheduling

Figure 3.6: Algorithm scheduling for streaming perception with a single
GPU. (a) A fast detector finishes processing the current frame before the
next frame arrives. An accurate (but slow) detector cannot process every
frame due to high latency. In this example, frame 1 is skipped. Note that
the goal of streaming perception is not to process every frame but to pro-
duce accurate state estimates in a timely manner. (b) One straight-forward
schedule is to simply process the latest available frame upon the completion
of the previous processing (idle-free). However, if latest available frame will
soon become stale, it might be better to idle and wait for a fresh frame (our
dynamic schedule, Alg. 1). In this illustration, Alg. 1 determines that frame
2 will soon become stale and decides to wait (visualized in red) for frame 3
by comparing the tails 7 and 7s.

3.4.3 Forecasting

Now we expand our solution space to include forecasting methods. We ex-
perimented with both constant velocity models and first-order Kalman fil-
ters. We find good performance with the latter, given a small modification to
handle asynchronous sensor measurements (Fig. 3.7). The classic Kalman
filter [ 104] operates on uniform time steps, coupling prediction and correc-
tion updates at each step. In our case, we perform correction updates only
when a sensor measurement is available, but predict at every step. Second,
due to frame-skipping, the Kalman filter should be time-varying (the transi-
tion and the process noise depend on the length of the time interval, details
can be found in Appendix 3.B.2). Association for bounding boxes across
frames is required to update the Kalman filter, and we apply IoU-based
greedy matching. For association and forecasting, the computation involves
only bounding box coordinates and therefore is very lightweight (< 2ms on
CPU). We find that such overhead has little influence on the overall AP. The
results are summarized in Table 3.2.

Streamer (meta-detector) Note that our dynamic scheduler (Alg. 1) and
asynchronous Kalman forecaster can be applied to any off-the-shelf detec-
tor, regardless of its underlying latency (or accuracy). This means that we
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Figure 3.7: Scheduling for association and forecasting. Association takes
place immediately after a new detection result becomes available, and it
links the bounding boxes in two consecutive detection results. Forecast-
ing takes place right before the next time step and it uses an asynchronous
Kalman filter to produce an output as the estimation of the current world
state. By default, the prediction step also updates internal states in the
Kalman filter and is always called before the update step. In our case, we
perform multiple update-free predictions (green blocks) until we receive a
frame result.

ID Method AP APL AP]W APS AP50 AP75
1 Detection + Scheduling + Association + Forecasting 16.7 399 149 12 312 16.0
2 + Re-optimize Detection (s0.5 — s0.75) 178 333 163 32 352 165

+ Infinite GPUs 20.3 385 199 40 391 189

Table 3.2: Streaming perception with joint detection, association, and fore-
casting. Association is done by IoU-based greedy matching, while forecast-
ing is done by an asynchronous Kalman filter. First, we observe that fore-
casting greatly boosts the performance (from Table 3.1 row 7’s 13.0 torow 1’s
16.7). Also, with forecasting compensating for algorithm latency, it is now
desirable to run a more expensive detector (row 2). Searching again over
a large suite of detectors after adding forecasting, we find that the optimal
detector is still Mask R-CNN (ResNet 50), but at input scale 0.75 instead of
0.5 (runtime 93ms and 57ms)

can assemble these modules into a meta-detector — which we call Streamer
— that converts any detector into a streaming detection system that reports
real-time detections at an arbitrary framerate. Appendix 3.B.4 evaluates the
improvement in streaming AP across 80 different settings (8 detectors x 5
image scales x 2 compute models), which vary from 4% to 80% with an
average improvement of 33%.

46



ID Method AP AP, APy APs APs, APrs

1 Detection + Visual Tracking 120 297 112 05 233 113
2 + Forecasting 137 382 142 05 246 136
3+ Re-optimize Detection (s0.5 — s0.75) 165 310 145 28 334 1438
4 + Infinite GPUs w/o Forecasting 144 242 112 2.8 30.6 12.0
5 4+ Forecasting 201 383 197 39 389 187
6  Detection + Simulated Fast Tracker (2x) + Forecasting + Single GPU 19.8 392 202 34 386 181

Table 3.3: Streaming perception with joint detection, visual tracking, and
forecasting. We see that initially visual trackers do not outperform simple as-
sociation (Table 3.2) with the corresponding setting in the single GPU case.
But that is reversed if the tracker can be optimized to run faster (2x) while
maintaining the same accuracy (row 6). Such an assumption is not unrea-
sonable given the fact that the tracker’s job is as simple as updating locations
of previously detected objects.

3.4.4 Visual tracking

Visual tracking is an alternative for low-latency inference, due to its faster
speed than a detector. For our experiments, we adopt the state-of-the-art
multi-object tracker [11] (which is second place in the MOT’19 challenge
[50] and is open sourced), and modify it to only track previously identified
objects to make it faster than the base detector (see Appendix 3.B.3). This
tracker is built upon a two-stage detector and for our experiment, we try
out the configurations of Mask R-CNN with different backbones and with
different input scales. Also, we need a scheduling scheme for this detection
plus tracking setting. For simplicity, we only explored running detection at
fixed strides of 2, 5, 15, and 30. For example, stride 30 means that we run the
detector once and then run the tracker 29 times, with the tracker getting reset
after each new detection. Table 3.3 row 1 contains the best configuration over
backbone, input scale, and detection stride.

3.5 Discussion

Streaming perception remains a challenge Our analysis suggests that stream-
ing perception involves careful integration of detection, tracking, forecast-
ing, and dynamic scheduling. While we present several strong solutions for
streaming perception, the gap between the streaming performance and the
offline performance remains significant (20.3 versus 38.0 in AP). This sug-
gests that there is considerable room for improvement by building a better
detector, tracker, forecaster, or even an end-to-end model that blurs bound-
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ary of these modules.

Formulations of real-time computation Common folk wisdom for real-
time applications like online detection requires that detectors run within
the sensor frame rate. Indeed, classic formulations of anytime processing re-
quire algorithms to satisfy a “contract” that they will finish under a compute
budget [259]. Our analysis suggests that this view of computation might be
too myopic as evidenced by contemporary robotic systems [170]. Instead,
we argue that the sensor rate and compute budget should be seen as design
choices that can be tuned to optimize a downstream task. Our streaming
benchmark allows for such a global perspective.

Det Fast 4 . 3 Det Opt " Det + Forecast

Det Opt

Offljte Real-Time Det fast Det Opt Det Opt + A1 & Forecast | Det + Forecast | + Infinite GPUs
a) Offline vs Real-Time b) Det Fast vs Det Opt c) + Alg 1 & Forecasting d) + Infinite GPUs

Figure 3.8: Qualitative results. Video results can be found on the project
website | Link].

Generalization to other tasks By construction, our meta-benchmark and
dynamic scheduler (Alg. 1) are not restricted to object detection. We illus-
trate such generalization with an additional task of instance segmentation
(Fig. 3.9). However, there are several practical concerns that need to be ad-
dressed. Densely annotating video frames for instance segmentation is al-
most prohibitively expensive. Therefore, we adopt offline pseudo ground
truth (Section 3.3.4) to evaluate streaming performance. Another concern is
that the forecasting module is task-specific. In the case of instance segmen-
tation, we implement it as forecasting the bounding boxes and then warp-
ing the masks accordingly. Please refer to Appendix 3.A.6 for the complete
streaming instance segmentation benchmark.
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a) Pseudo ground truth b) Real-time latency c) Instance mask forecasting

Figure 3.9: Generalization to instance segmentation. (a) The offline pseudo
ground truth we adopt for evaluation is of high quality. (b) A similar latency
pattern can be observed for instance segmentation as in object detection. (c)
Forecasting for instance segmentation can be implemented as forecasting the
bounding boxes and then warping the masks accordingly.

3.6 Conclusion and Future Work

We introduce a meta-benchmark for systematically converting any single-
frame task into a streaming perception task that naturally trades off com-
putation between multiple modules (e.g., detection versus tracking). We
instantiate this meta-benchmark on tasks of object detection and instance
segmentation. In general, we find online perception to be dramatically more
challenging than its offline counterpart, though significant performance can
be recovered by incorporating forecasting. We use our analysis to develop a
simple meta-detector that converts any detector (with any internal latency)
into a streaming perception system that can operate at any frame rate dic-
tated by a downstream task (such as a motion planner). We hope that our
analysis will lead to future endeavor in this under-explored but crucial as-
pect of real-time embodied perception. For example, streaming benchmarks
can be used to motivate attentional processing; by spending more compute
only on spatially [68] or temporally [ 159] challenging regions, one may achieve
even better efficiency-accuracy tradeoffs.
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3.A Appendix A: Benchmark Details

3.A.1 Additional Discussion on the Benchmark Definition

In Section 3.3.1, we defined our benchmark as evaluation over a discrete set
of frames. One might point out that a continuous definition is more con-
sistent with the notion of estimating the state of the world at all time in-
stants for streaming perception. First, we note that it is possible to define a
continuous-time counterpart, where the ground truth can be obtained via
polynomial interpolation and the algorithm prediction can be represented
as a function of time (e.g., simply derived from extrapolating the discrete
output). Also in Eq 3.4, the aggregation function (implicit in L) could be
integration. However, our choice of a discrete definition is mainly for two
reasons: (1) we believe a high-frame-rate data stream is able to approximate
the continuous evaluation; (2) most existing single-frame metrics (L, e.g.,
average-precision) is defined with a discrete set of input and we prefer that
our streaming metric is compatible with these existing metrics.

3.A.2 Pseudo Ground Truth

We use manually obtained ground-truth for bounding-box-based object de-
tection. As we point out in the main text, one could make use of pseudo
ground truth by simply running an (expensive but accurate) off-line detec-
tor to generate detections that could be used to evaluate on-line streaming
detectors.

Here, we analyze the effectiveness of pseudo ground truth detection as
a proxy for ground-truth. We adopt the state-of-the-art detector — Hybrid
Task Cascade (HTC) [32] for computing the offline pseudo ground truth.
As shown in Table 3.1, this offline detector dramatically outperforms all
real-time streaming methods by a large margin. As shown in the main text,
pseudo-streaming AP correlates extraordinarily well with ground-truth-streaming
AP, with a normalized correlation coefficient of 0.9925. This suggests that
pseudo ground truth can be used to rank streaming perception algorithms.

We emphasize that since we have constructed Argoverse-HD by delib-
erately annotating high frame rate bounding boxes, we use real ground truth
for evaluating detection performance. However, obtaining such high-frame-rate
annotations for instance segmentation is expensive. Hence we make use
of pseudo ground-truth instance masks (provided by HTC) to benchmark
streaming instance segmentation (Section 3.A.6).
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3.A.3 Simulation

In true hardware-in-the-loop benchmarking, the output timestamp s; is sim-
ply the wall-clock time at which an algorithm produces an output. While we
hold this as the gold-standard, one can dramatically simplify benchmarking
by making use of simulation, where s; is computed using runtimes of dif-
ferent modules. For example, s; for a single-frame detector on a single GPU
can be simulated by adding its runtime to the time when it starts process-
ing a frame. Complicated perception stacks require considering runtimes of
all modules (we model those that contribute > 1 ms) in order to accurately
simulate timestamps.

Modeling runtime distribution Existing latency analysis [138, 142, 178]
usually reports only the mean runtime of an algorithm. However, empiri-
cal runtimes are in fact stochastic (Fig. 3.10), due to the underlying operating
system scheduling and even due to the algorithm itself (e.g., proposal-based
detectors often take longer when processing a scene with many objects). Be-
cause scene-complexity is often correlated across time, runtimes will also
be correlated (a long runtime for a given frame may also hold for the next
frame).

We performed a statistical analysis of runtimes, and found that a marginal
empirical distribution to work well. We first run the algorithm over the en-
tire dataset to get the empirical distribution of runtimes. At test time, we
randomly sample a runtime when needed from the empirical distribution,
without considering the correlation across time. Empirically, we found that
the results (streaming AP) from a simulated run is within the variance of a
real run.

Simulation for non-existent hardware/algorithm Through simulation, our
evaluation protocol does not directly depend on hardware, but on a collec-
tion of runtime distributions for different modules (known as a runtime pro-
file). One thus has the freedom to alter the distributions. For example, we
can simulate a faster algorithm simply by scaling down the runtime pro-
file. Table 3.3, uses simulation to evaluate the streaming performance of a
non-existent tracker that runs twice as fast as the actual implementation on-
hand. The reduced runtime could have arisen from better hardware; one
can run the benchmark on a Geforce GTX 1080 Ti GPU and simulate the
performance on a Tesla V100 GPU. We find that Tesla V100 makes our de-
tectors run 16% faster, implying we can scale runtime profiles accordingly.
For example, Mask R-CNN R50 @ s0.5 produces a simulated-streaming AP
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Figure 3.10: Runtime distribution for an object detector. Note that runtime
is not constant, and this variance needs to be modeled in a simulation. This
plot is obtained by running RetinaNet (ResNet 50) [135] on Argoverse 1.1
[29] with input scale 0.5.

of 12.652 while the real-streaming AP (on a V100) is 12.645, suggesting that
effectivness of simulated benchmarking.

Infinite GPUs In simulation, we are not restricted by the number of phys-
ical GPUs present in a system. Therefore, we are able to perform analysis
in the infinite GPU setting. In this setting, each detector or visual tracker
runs on a different device without any interference with each other. Equiv-
alently, we run a new GPU job on an existing device as long as it is idle.
As a result, the simulation also provides information on how many GPUs
are required for a particular infinite GPU experiment in practice (i.e., the
maximum number of concurrent jobs). We summarize the number of GPUs
required for the experiments in the main text in Table 3.4. This implies that
our streaming benchmark can be used to inform hardware design of future
robotic platforms.

Runtime-induced variance Asmentioned in the previous section, runtime
is stochastic and has a variance up to 11.1% (standard deviation normalized
by mean). Fortunately, such a variance does not transfer to the variance of
our streaming metric. Empirically, we found that the variance of streaming
AP of different runs (by varying the random seed) is around 0.5% for the
same algorithm. In comparison, independent training runs of Mask R-CNN
[82] on MS COCO [139] with the same random seed yield a variance of 0.3%
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Table 3.4: Summary of the experiments in the infinite GPU settings (in the
main text) and the number of GPUs needed in practice to achieve this per-
formance (i.e., the maximum number of concurrent jobs). This suggest that
our simulation can also identify the optimal hardware configuration

Method # of GPUs
Det (Table 3.1, row 8) 4
Det + Associate + Forecast (Table 3.2, row 3) 4
Det + Visual Track (Table 3.3, row 4) 9
Det + Visual Track + Forecast (Table 3.3, row 5) 9

on the AP (cudnn back-propagation is stochastic by default) [130]. Since the
stochastic noise of streaming evaluation is at the same scale as CNN training,
we ignore runtime-induced variance for our evaluation.

3.A.4 Dataset Annotation and Comparison

Based on the publicly available video dataset Argoverse 1.1 [29], we build
our dataset with high-frame-rate annotations for streaming evaluation —
Argoverse-HD (High-frame-rate Detection). One key feature is that the an-
notation follows MS COCO [139] standards, thus allowing direct evaluation
of COCO pre-trained models on this self-driving vehicle dataset. The anno-
tation is done at 30 FPS without any interpolation used. Unlike some self-
driving vehicle datasets where only cars on the road are annotated [215], we
also annotate background objects since they can potentially enter the driv-
able area. Of course, objects that are too small are omitted and our minimum
sizeis 5x 15 or 15 x 5 (based on the aspect ratio of the object). We outsourced
the annotation job to Scale Al In Table 3.5, we compare our annotation with
existing datasets: DETRAC [225], KITTI-MOTS [215], MOTS [215], UAVDT
[56], Waymo [199], and Youtube-VIS [238].

3.A.5 Experiment Settings

Platforms The CPU used in our experiments is Xeon Gold 5120, and the
GPU is Geforce GTX 1080 Ti. The software environment is PyTorch 1.1 with
CUDA 10.0.

Timing The setup which we time single-frame algorithms mimics the sce-
nario in real-world applications. The offline pipeline involves several steps:
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Table 3.5: Comparison of 2D video object detection datasets. For surveil-
lance camera setups, the cameras are either stationary or have limited mo-
tion. For ego-vehicle setups, the scene dynamics evolve quickly, as (1) the
ego-vehicle is traveling fast, and (2) other objects are much closer to the cam-
era and thus have a higher speed in the image space. Our contributed dataset
(annotation) is a high-frame-rate and high-resolution multi-class one com-
pared to existing datasets

Name Camera Setup Image Res  Image FPS  Annot FPS  Classes  Boxes
DETRAC Survelliance 960 x 540 30 6 4 1.21IM
KITTI-MOTS Ego-Vehicle 1242 x 375 10 10 2 46K

MOTS Generic 1920 x 1080 30 30 2 30K

UAVDT UAV Survelliance 1080 x 540 30 30 1 842K
Waymo Ego-Vehicle 1920 x 1280 10 10 4 11.8M
Youtube-VIS Generic 1280 x 720 30 6 40 131K
Argoverse-HD (Ours) Ego-Vehicle 1920 x 1200 30 30 8 1.26M

loading data from the disk, image pre-processing, neural network forward
pass, and result post-processing. Our timing excludes the first step of load-
ing data from the disk. This step is mainly for dataset-based evaluation. In
actual embodied applications, data come from sensors instead of disks. This
is implemented by loading the entire video to the main memory before the
evaluation starts. In summary, our timing (e.g., the last column of Table 3.1)
starts at the time when the algorithm receives the image in the main mem-
ory, and ends at the time when the results are available in the main memory
(instead of in the GPU memory).

3.A.6 Alternate Task: Instance Segmentation

In the main text, we propose a meta-benchmark and mention that it can be
instantiated with different tasks. In this section, we include full benchmark
evaluation for streaming instance segmentation.

Instance segmentation is a more fine-grained task than object detection.
This creates challenges for streaming evaluation as annotation becomes more
expensive and forecasting is not straight-forward. We address these two is-
sues by leveraging pseudo ground truth and warping masks according to
the forecasted bounding boxes.

Another issue which we observed is that off-the-shelf pipelines are usu-
ally designed for benchmark evaluation or visualization. First, similar to
object detection, we adopt GPU image pre-processing by default. Second,
we found that more than 90% of the time within the mask head of Mask R-
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Table 3.6: Instance segmentation overhead compared with object detection.
This table lists runtimes of several methods with and without the mask head,
and their differences are the extra cost which one has to pay for instance
segmentation. All numbers are milliseconds except the scale column and
the last column. The average overhead is 17ms or 13%

Method Scale w/oMask w/Mask Overhead Overhead
0.2 34.3 414 7.1 21%
0.25 36.1 443 8.2 23%
Mask R-CNN ResNet 50 0.5 56.7 65.6 8.8 16%
0.75 92.7 101.0 8.3 9%
1.0 139.6 147.7 8.1 6%
0.2 38.4 46.4 7.9 21%
0.25 40.9 48.7 7.8 19%
Mask R-CNN ResNet 101 0.5 68.8 76.4 7.6 11%
0.75 119.7 127.1 75 6%
1.0 183.8 190.8 7.0 4%
0.2 60.9 66.0 5.1 8%
0.25 59.2 69.1 9.9 17%
Cascade MRCNN ResNet 50 0.5 80.0 95.4 15.3 19%
0.75 118.1 133.8 15.7 13%
1.0 164.6 181.9 17.3 10%
0.2 66.4 71.0 4.6 7%
0.25 65.4 75.2 9.7 15%
Cascade MRCNN ResNet 101 0.5 92.2 106.6 14.4 16%
0.75 143.4 159.2 15.8 11%
1.0 208.2 225.1 16.9 8%

CNN is spent on transforming masks from the Rol space to the image space
and compressing them in a format to be recognized by the COCO evaluation
toolkit. Clearly, compression can be disabled for streaming perception. We
point out that mask transformation can also be disabled. In practice, masks
are used to tell if a specific point or region contains the object. Instead of
transforming the mask (which involves object-specific image resizing oper-
ations), we can transform the query points or regions, which is simply a
linear transformation over points or control points. Therefore, our timing
does not include Rol-to-image transformation or mask compression. Fur-
thermore, this also implies that we do not pay an additional cost for masks
in forecasting, since only the box coordinates are updated but the masks re-
main in the Rol space.

For the instance segmentation benchmark, we use the same dataset and
the same method HTC [32] for the pseudo ground truth as for detection, and
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Table 3.7: Streaming evaluation for instance segmentation. We find that
many of our observations for object detection still hold for instance segmentation:
(1) AP drops significantly when moving from offline to real time, (2) the
optimal “sweet spot” is not the fastest algorithm but the algorithm with run-
time more than the unit frame interval, and (3) both our dynamic schedul-
ing and infinite GPUs further boost the performance. Note that the absolute
numbers might appear higher than the tables in the main text since we use
pseudo ground truth here

ID Method Detector AP AP; APy APs APsy AP75 Runtime
1 Accurate (Offline) Cascade MRCNN R50 @s1.0 63.1 63.0 609 479 81.6 694 225.1
2 Accurate Cascade MRCNN R50 @s1.0 11.8 115 8.1 54 204 111 225.1
3  Fast Mask R-CNN R50 @ s0.2 83 165 21 0.0 136 83 414
4 Optimized Mask R-CNN R50 @ s0.5 172 199 138 5.2 31.8 15.1 65.6
5 + Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 183 214 149 5.8 335 164 65.5
6  + Infinite GPUs Mask R-CNN R50 @ s0.75 206 200 190 91 384 182 100.8

Table 3.8: Streaming evaluation for instance segmentation with forecasting.
Despite that we only forecast boxes and warp masks accordingly, we still ob-
serve significant improvement from forecasting for mask AP. The optimized
algorithm for row 1 is Mask R-CNN ResNet 50 @ s0.5, and for row 2 is Mask
R-CNN ResNet 50 @ s0.75

ID Method AP APL AP]\,{ APS AP50 AP75
1 Detection + Scheduling + Association + Forecasting 241 324 23.0 6.0 437 220
2 4 Infinite GPUs 292 307 302 114 53.0 267

we include 4 methods: Mask R-CNN [82] and Cascade Mask R-CNN [24]
with ResNet 50 and ResNet 101 backbones. Since these are hybrid methods
that produce both instance boxes and masks, we can measure the overhead
of including masks as the difference between runtime with and without the
mask head in Table 3.6. We find that the average overhead is around 13%.
We include the streaming evaluation in Tables 3.7 and 3.8 (with forecasting).

3.A.7 Alternate Hardware: Tesla V100

In the main text, we propose a meta-benchmark and mention that it can be
instantiated with different hardware platforms. In this section, we include
full benchmark evaluation for streaming detection with Tesla V100 (a faster
GPU than GTX 1080 Ti used in the main text).

While our benchmark is hardware dependent, the method of evaluation
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Table 3.9: Performance of detectors for streaming perception on Tesla V100
(a faster GPU than the Geforce GTX 1080 Ti used in the main text). By com-
paring with Table 3.1 in the main text, we see that runtime is shortened and
the AP is increased due to the boost of hardware performance. Different
from Table 3.1, we only consider GPU image pre-processing here for sim-
plicity. Interestingly, with additional computation power, Tesla V100 enables
more expensive models like input scale 0.75 (row 4) and Cascade Mask R-
CNN (row 5) to be the optimal configurations (detector and scale) under
their corresponding settings. Note that the improvement from our dynamic
scheduler is orthogonal to the boost from hardware performance

ID Method Detector AP AP; AP, APs AP; AP7; Runtime
1 Accurate (Offline) HTC @s1.0 38.0 643 404 170 605 385 338.0
2 Accurate HTC@sl1.0 82 123 51 1.6 153 76 338.0
3  Fast RetinaNet R50 @ s0.25 64 173 0.6 0.0 119 6.0 43.3
4 Optimized Mask R-CNN R50 @ s0.75 13.0 222 95 23 276 109 721
5  + Scheduling (Alg. 1) Cascade MRCNNR50@5s0.5 14.0 288 99 10 268 122 60.2
6  + Infinite GPUs Mask R-CNN R50 @ s1.0 159 241 132 49 342 133 98.8

Table 3.10: Streaming perception with joint detection, association, and fore-
casting on Tesla V100 (corresponding to Table 3.2 in the main text). We
observe similar boost as in the detection only setting (Table 3.9). The “re-
optimize detection” step finds that Mask R-CNN R50 @ s1.0 outperforms
Cascade Mask R-CNN R50 @ s0.5 with forecasting (row?2), and it also hap-
pens to be the optimal detector with infinite GPUs (row 3)

ID Method AP AP, AP, APs APs APr
1 Detection + Scheduling + Association + Forecasting 182 427 161 11 309 17.7
2 + Re-optimize Detection 196 33.0 192 53 385 17.9
3+ Infinite GPUs 229 387 231 69 438 212

generalizes across hardware platforms, and our conclusions largely hold
when the hardware environment changes. We follow the same setup as in
the experiments in the main text, except that we use Tesla V100 from Ama-
zon Web Services (EC2 instance of type p3. 2x1arge). We provide the results
for detection, forecasting, and tracking in Tables 3.9, 3.10, and 3.11, respec-
tively. We see that the improvement due to better hardware is largely orthogonal
to the algorithmic improvement proposed in the main text.
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Table 3.11: Streaming perception with joint detection, visual tracking, and
forecasting on Tesla V100 (corresponding to Table 3.3 in the main text). We
find the similar conclusions that visual tracking with forecasting does not
outperform association with forecasting in the single GPU case and achieves
comparable performance in the infinite GPU case

ID Method AP AP;, APy, APg AP5y APrs
1 Detection + Visual Tracking 126 215 9.0 22 271 105
2 + Forecasting 18.0 347 168 3.2 36.0 164
3+ Infinite GPUs w/o Forecasting 144 242 112 28 306 120
4 + Forecasting 228 386 23.0 69 437 210
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3.B  Appendix B: Solution Details

3.B.1 Dynamic Scheduling

In the main text, we propose the dynamic scheduling algorithm (Alg. 1) to

reduce temporal aliasing. Such an algorithm is counter-intuitive in that it

minimizes latency by sometimes sitting idle. In this subsection, we provide

additional theoretical analysis and empirical results for algorithm schedul-

ing. We first introduce the framework to study algorithm scheduling for

streaming perception. Next, we show theoretically that our dynamic schedul-
ing outperforms naive idle-free scheduling for any constant runtime larger

than the frame interval and any long-enough sequence length. Lastly, we

verify empirically the superiority of our dynamic scheduling.

To study algorithm scheduling, we assume no concurrency (i.e., a single

job at a time) and that jobs are not interruptible. For notational simplicity,
we assume a fixed input frame rate where frame z; is the frame available at
time i € {0,...,7 — 1} (i.e., zero-based indexing), and therefore i can be
used to denote both frame index and time. We assume that time (time axis,
runtime, and latency) is represented in the units of the number of frames. We also
assume g to be a single-frame algorithm, and the streaming algorithm f is thus
composed of g and a scheduling policy. No tracking or forecasting is used
in the discussion below. Let k; be the input frame index that was processed
to generate output o; = (y;,s;): if y; = g(z;), then k; = i. We denote the
runtime of g as r.
Definition (Temporal Mismatch) When the benchmark queries for the state
of the world at frame ¢, the temporal mismatch is 4§, := ¢ — k;, where j =
argmax;, s;; < i. If there is no output available, ; = 0. We denote the
average temporal mismatch over the entire sequence as 4.

Intuitively, the temporal mismatch measures the latency of a streaming
algorithm f in the unit of the number of frames (Fig. 3.11). This latency
is typically higher than the runtime of the single-frame algorithm g itself
due to the blocking effect of consecutive execution blocks. For example, in
Figure 3.11, although runtime r < 2, the average mismatch § = 15/7 > 2
for T' = 7. Note that we define 4, := 0 if there is no output available. To
avoid the degenerate case where an algorithm processes nothing and yields
a zero cumulative temporal mismatch, we assume that all schedules start
processing the first frame immediately at ¢ = 0.

MDP Naive idle-free scheduling processes the next available frame imme-
diately after the previous execution is finished. However, a scheduler can
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choose when and which frames to process. Selection among such choices
over the data sequence can be modeled as a decision policy under a Markov
decision process (MDP). An MDP formulation allows one to compute the ex-
pected future cumulative mismatch for a given policy under stochastic run-
times r. In theory, one may also be able to compute the optimal schedule
(that minimizes expected cumulative mismatches) through policy search
algorithms. However, Figure 3.10 shows that practical runtime profiles have
low variance and are unimodal. If one assumes that runtimes are determin-
istic and fixed at a constant value, we will now show that our shrinking-tail
policy outperforms idle-free over a range of runtimes r and sequence lengths
T. We believe that constant runtime is a reasonable assumption for our set-
ting, and empirically verify so after our theoretical analysis.

Pattern analysis Crucially, constant runtimes ensure that all transitions are
deterministic, allowing for a global view of the sequence. Our key observa-
tion is that the global sequence will contain repeating mismatch patterns. Analy-
sis of one such pattern sheds light on the cumulative mismatch of the entire
sequence. For example, r = 1.5 under idle-free repeats itself every 2 pro-
cessing blocks. However, different patterns emerge for different values of r
and for different policies. We assume that r > 1 to avoid the trivial schedule
where an algorithm consistently finishes before the next frame arrives. We

0 1 2 4 5 6
1 1 1 1 1 1 | f
ETeF::L:ti‘f)Ln g(xo) 9(x1) 9(x3)
e g 0 g(x) 9(r) g(x) g(xs)
Folrn Ezzrl\n(gi)éry @ 9 0 1 1 3
v 002 3 4 3
Cl\lljlrlr;rl‘jr::ttfl:\fge 0 0 2 8 12 15

Figure 3.11: Temporal mismatch for single-frame algorithms. Take t = 3
(query index i = 3) as an example (highlighted in orange): when the bench-
mark queries for y;, the latest prediction is g(x(), whose input index is 0, thus
leading to a temporal mismatch of 3 (frames).
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write 0; and & for the average temporal mismatch ¢ for the idle-free and
shrinking-tail policies, respectively. Our analysis is based on the concept of
tail: 7(t) :=t— [t|. We denote 7(r) as 7, for short. Note that the integral part
of runtime does not contribute to the temporal quantization effect, and we
thus focus on the discussion of 1 < r < 2 for simplicity. We split our analysis
into 3 differentcases: r =2,1.5 <r<2,and 1 <r < 1.5.

Case1 The firstis a special case where 7, = 0. It can be easily verified that
idle-free is equivalent to shrinking-tail, and thus ds = djs.

Case2 Now we inspect the case with 1.5 < r < 2. Since 7(2r) < 0.5 < 7(r),
the shrinking-tail policy will output true (waiting) after processing the first
frame. The waiting aligns the execution again with the integral time step,
and thus for the subsequent processing blocks, it also outputs true (waiting).
In summary, shrinking-tail always outputs true in this case, and its pattern in
mismatch is agnostic to the specific runtime r (Fig. 3.12). Let 0" denote § with
runtime 7, then we can draw the conclusion that 0} = 0.2 for [r,| = |r2],
T(Tl) > 05, and T(TQ) > 0.5.

We then focus on a particular case of » = 1.5. As shown in Figure 3.13,
idle-free repeats itself in a period of 3 frames, and shrinking-tail repeats it-
self in a period of 2 frames. Together, they form a joint pattern that repeats
itself in a period of 6 frames (their least common multiple). The diagram
shows that within each common period, the difference of cumulative mis-
match between idle-free and shrinking-tail is increased by 1. And it is the
same for all common periods. Therefore, if ' = 6n + 1 for some positive
integer n (intuitively, the entire sequence is a multiple of several common
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Figure 3.12: Mismatch is the same for the shrinking-tail policy with different
runtime 7, and ry as long as |r1| = |r2], 7(r1) > 0.5, and 7(r3) > 0.5.
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periods), 6%° < 6°. Additionally, Figure 3.13 enumerates all possible cases,
where the sequence ends before a common period is over or in the middle
of a common period. All these cases have §%° < 6L°.

Next, it is straightforward to see thatthe cumulative mismatch will not
decrease if one increases the runtime r of ¢g: 6" < §™ if r; < ry. Therefore,

for 1.5 <r < 2, we have

6L = 045 < 6% < o (3.5)

Case 3 The last case with 1 < r < 1.5 (i.e., 7, < 0.5) is more complicated
than previous cases because the underlying repeating pattern never exactly
repeats itself. To address this issue, we must introduce several new concepts
to characterize such near-repeating patterns. We first observe a special type
of execution block:

Definition (Shrinking-Tail Block) Denoting the start and the end time of
an execution block as ¢; and ¢,, a shrinking-tail block is an execution block such
that 7(¢;) > 7(t2). As shown in Figure 3.14, a shrinking-tail block increases
temporal mismatch.

0 1 2 3 4 5 6 7 8 9 10 11 12 .
Sy Sy
| | Period | | | | | | | Commen Period | | |
B
Idle-Free 0 1 3 4 6 7 9 10
i i i i i i i i i i i i |
Input Index @ 0 0 0 1 3 3 4] 6 6 7 9 9
| | | | | | | | | | | | |
| | | | | | | | | | | | |
Mismatch 0! 0 2| 3 3! 2! 3! 3! 2| 3 3| 2| 3!
| | | | | | | | | | | | |
Coeiod
| | | | | | | | | | | | |
| \ | | | | | | | | | | |
| ) \ | | | | | | | | | }
| | | | | | | | | | | | }
L
Input Index @ 2 0 0 2| 2 4 4 6! 6! 8! 8! 10,
| | | | | | | | | | | | |
| | | | | | | | | | | | |
Mismatch 0 0! 2| 3 2] 3] 2] 3 2! 3! 2! 3! 2,
e
| | | | | | | | | | | | |
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Cumulative ¢ | 0! 0! 0! 11 0 1! 11 11 1! 21 11 21
vimah S
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Figure 3.13: For r = 1.5, shrinking-tail achieves less cumulative mismatch
than idle-free. Note that each policy has its own repeating period and
shrinking-tail always achieves 1 less cumulative mismatch within each com-
mon period.
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Figure 3.14: A shrinking-tail execution block (orange) increases temporal
mismatch.

Definition (Shrinking-Tail Cycle) A sequence of execution blocks can be
divided into segments by a shrinking-tail block or an idle gap. A shrinking-
tail cycle is a set of queries covered by the segment between these dividers.
Specifically, the cycle starts from the 0-th query, the last query of a shrinking-
tail block, or the query at the end of an idle gap. The cycle ends either when
the sequence ends or the next cycle starts. The length of a cycle is the number
of queries it covers.

As shown in Figure 3.15, shrinking-tail cycles are small segments of the
entire sequence and they may have different lengths. Note that the defini-
tions of both shrinking-tail block and cycle are agnostic to r, but we only
refer to them during our discussion for 1 < r < 1.5. Instead of comparing
¢ for idle-free and shrinking-tail directly, we compare them for each cycle
(denoted as Si(fc) and gﬁf ) respectively). First, we observe that a shrinking-tail
cycle starts with either a shrinking-tail block or an idle gap and ends with
consecutive tail-increasing blocks. Second, we observe that most queries
have a mismatch of 2 for both policies (e.g., Cycle 2’s queries 20 to 21 and
Cycle 4’s queries 18 to 19 in Fig. 3.15), and that the second query in a cycle
is always 3 due to having a shrinking-tail block or an idle-gap before it. This
is the rounding effect when adding multiple fractional numbers. The differ-
ence between the two policies is thus the mismatch of the first query. For
1 < r < 1.5, the first query of idle-free has a mismatch of 3, while shrinking-
tail has a mismatch of 2. Intuitively, given that the majority of queries are
with mismatch 2, the number of queries with mismatch 3 determines the
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Figure 3.15: Shrinking-tail cycle. Intuitively, blocks within each shrinking-
tail cycle has tails increasing (73 < 7 < 13 and 75 < 76 < 77). It ends when
the tail decreases or there is an idle gap, and thus the tail “shrinks”.

relationship between 6 5 < 5. Therefore, when the sequence length is
long enough, the policy with a smaller §(¢) leads to a smaller overall cumu-
lative mismatch.

Now, we present a more formal analysis on the above statement. To
quantify the cycle patterns, we first quantify the number of consecutive tail-
increasing blocks. Let the number of consecutive tail-increasing blocks be
a and the tail of the first block covered by the cycle be b (in the case where
the first block starts after an idle gap, we define b to be 0). We first observe
that a = max{d'|a't, + b < 1,d € N} = [ 2 bJ Also, b has its own range for
each policy. For idle-free, 0 < b < 7,, and for shrinking-tail, b = 0. Taking
Figure 3.15 for example (7, = 0.3), Cycle 1 has a = 3 and b = 0, Cycle 2 has
a=2and b= 74, and Cycle4 hasa =3 and b = 0.

Since a might vary from cycle to cycle, we introduce a reference quantity
that is constant and can be used to measure the length of cycles. Let ay be
the a when b = 0, i.e., ag = | 1], and ¢ be the length of a cycle. For idle-free
policy, ¢ = ag + 2 or ag + 1. The variable length in cycles is due to variable
b between cycles. When b < 1 — ay7,, we have the first type of cycle with
length ay + 2 (denoted as ¢;); when b > 1 — ay7,, we have the second type
of cycle of length aq + 1 (denoted as c,). The starting cycle in a sequence
is always the first type, while the ensuing cycles can be either the first or
second type. Note that it is possible that all cycles are the first type. For
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example, when r = 1.25, each cycle resets itself and b = 0 for all cycles. For
shrinking-tail policy, each cycle resets itself (whose length denoted as c3).
Note that ¢y, c2, c3 denotes the length of the 3 types of cycles and Cycle 1, 2,
3, ... in the figures denote specific cycle instances. From the above analysis,
we can see

Cq :a0+2, Co :a0+1, C3 :a0+1. (36)
_ 2 - 2 - 1
ot = 2, oY= 2, O&Y=—""12. (37
Therefore,
o5 <o < oY (3.8)

Next, we explain how to infer the relationship between ¢ from that be-
tween 6(°). To analyze the mismatch of the whole sequence, we need to in-
spect the boundary cases at the start and the end of the sequence, where
the cycle-based analysis might not hold. As shown in Figure 3.16, the first
cycles for both policies have different mismatch patterns due to empty de-
tection at the first two queries. Compared to regular cycles in Figure 3.15,
the first cycle has 6 and 5 less total mismatch for idle-free and shrinking-tail
policy respectively. Let m4, ms, and mgz be the number of complete cycles of
type ¢1, ¢z, and c3 in a sequence, respectively, d be the number of residual

0 1 2 3 4 5 6 7 8 9 10 11 12 13
| | | | | | | | | | | | | |
T T T T T T T T T T T T T T
I I I I I I I I I I I I I I
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| | | | | | | | | | | | | |
i | Cyclel i i i iCycle 2 | i i iCycle3 | i i
1 1 L 1 | 1 L 1 j l L 1 j i
i | | | | [ | | \ (] | | | |
Input Index 0/ ) 0 1 2 2 3 5 6 6 7] 9 10 10
I I I I I I I I I I I I I I
Mismatch 0 ol 21 21 2! 3! 3! 2! 2| 3] 3| 2| 2! 3!
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Input Index ¢, 0! 0 1 2| 2] 4, 5] 6 6| 8| 9] 10| 10|
I I I I I I I I I I I I I I
I I I I I I I I I I I I I
A T R L B R R T
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|
Mismatch 0] 0

|

|

Figure 3.16: The first cycles for both policies have different mismatch pat-
terns.
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queries at the end of the sequence that do not complete a cycle, and e be the
total mismatch of these d queries, then we have

T = mycy + mocy + di (3.9)
T = mgcs + dg (3.10)
0y = (mlclgi(fcl) + m2025_i(f02) —6+ei)/T (3.11)
S = (336l — 5+ eq) /T (3.12)

Note that the above holds only when m; > 1 and m3 > 1 (the sequence is at
least one cycle long for both policies). If 7" is smaller or equal to one cycle, the
two policies are equivalent and d; = ds. When T’ is large enough (e.g., T —
00), the §(°) terms dominate Eq 3.11 and Eq 3.12, and due to Eq 3.7, we have
0 < dif, which shows that the shrinking-tail policy is superior. Formally,
when T' > C(r), where C(r) is some constant depending on r, dst < Oif-

Summary of the theoretical analysis Considering all 3 cases, we can draw
the conclusion that s < &; when T'is large enough (greater than C(r) if 7. <
0.5, and no requirement otherwise). By achieving less average mismatch,
shrinking-tail outperforms idle-free.

Practical Performance of Dynamic Scheduling

We apply our dynamic schedule (Alg. 1) to a wide suite of detectors under
the same settings as our main experiments and summarize the results in
Table 3.12. In practice, runtime is stochastic due to complicated software and
hardware scheduling or running an input adaptive model, but we find the
theoretical results obtained under constant runtime assumption generalizes
to most of the practical cases under our experiment setting.

3.B.2 Additional Details for Forecasting

We use an asynchronous Kalman filter for our forecasting module. The state
representation which we choose is [z, y, w, h, &, ¥, W, h], where [z, 1, w, h] are
the top-left coordinates, and width and height of the bounding box, and
the remaining four are their derivatives. The state transition is assumed to
be linear. We also test with the representation used in SORT [12], which as-
sumes that the area (the product of the width and the height) varies linearly
instead of that each of the width and the height varies linearly. We find that
such a representation produces lower numbers in AP.
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Table 3.12: Empirical performance comparison before and after using Alg.
1. We see that our shrinking-tail policy consistently boosts the streaming
performance for different detectors and for different input scales. We also
observe some failure cases (last two rows), where runtime is close to one
frame duration. This is because our theoretical analysis assumes constant
runtime, while it is dynamic in practice. Hence, the variance in runtime
when it is a boundary value can make a noticeable difference on the perfor-
mance

Method AP (Before) AP (After) Runtime (ms) Runtime (frames)
SSD @ s0.5 9.7 9.7 66.7 2.0
RetinaNet R50 @ s0.5 10.9 11.6 54.5 1.6
RetinaNet R101 @ s0.5 9.9 9.9 66.8 2.0
Mask R-CNN R101 @ s0.5 11.0 111 68.8 2.1
Cascade MRCNN R50 @ s0.5 11.3 11.7 80.0 24
Cascade MRCNN R101 @ s0.5 10.3 111 92.2 2.8
HTC @s0.5 7.9 8.0 240.8 7.2
Mask R-CNN R50 @ s0.25 7.7 7.8 36.1 1.1
Mask R-CNN R50 @ s0.5 12.0 13.0 56.7 1.7
Mask R-CNN R50 @ s0.75 11.5 12.6 92.7 2.8
Mask R-CNN R50 @ s1.0 10.6 10.7 139.6 4.2
RetinaNet R50 @ s0.25 6.9 6.8 33.4 1.0
Mask R-CNN R50 @ s0.2 6.5 6.3 343 1.0

As explained in the main text, Kalman filter needs to be asynchronous
and time-varying for streaming perception. Let At; be the time-varying in-
tervals between updates or prediction steps, we pick the transition matrix to
be:

F, — |:I4><4 Aik14><4:| (3.13)
4x4
and the process noise to be
Qi = At;Isys (3.14)

Intuitively, the process noise is larger the longer between the updates.

All forecasting modules are implemented on the CPU and thus can be
parallelized while the detector runs on the GPU. Our batched (over multi-
ple objects) implementation of the asynchronous Kalman filter takes 0.98 &
0.39ms for the update step and 0.22 & 0.07ms for the prediction step, which
are relatively very small overheads compared to detector runtimes. For scal-
able evaluation, we assume zero runtime for the association and forecasting
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Figure 3.17: Multi-object visual tracker. The advantage of a visual tracker is
that it runs faster than a detector and thus yields lower latency for streaming
perception. The multi-object tracker used here is modified from [11]. It is
mostly the same as a two-stage detector, except that its box head uses the last
known object location as input in place of region proposals. Therefore, we
get a computation saving by not running the RPN head. Runtime is mea-
sured for Mask R-CNN (ResNet 50) with input scale 0.5.

module, and implement forecasting as post-processing of the detection out-
puts. One might wonder that a simulated post-processing run and an actual
real-time parallel execution might have different final APs. We have also im-
plemented the latter for verification purposes. For most settings the differ-
ences are within 1%. Although for some settings the difference can reach
3%, we find such fluctuation does not affect the relative rankings.

3.B.3 Additional Details for Visual Tracking

For our tracking experiments (Section 3.4.4), we adapt and modify the state-
of-the-art multi-object tracker [11]. A component breakdown in Fig. 3.17
explains how this tracker works and why it has the potential to achieve better
performance under the streaming setting.

3.B.4 Evaluation of Our Meta-Detector Streamer

Streamer is introduced in Section 3.4.3 in the main text. Given a detector and
an input scale, Streamer automatically schedules the detector and employs
forecasting to compensate for some of its latency. In the single GPU case,
our dynamic schedule (Alg. 1) is used and in the infinite GPU case, idle-
free scheduling (Fig. 3.4c) is used. Proper scheduling requires the knowl-
edge of runtime of the algorithm, which is known in the case of benchmark
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Table 3.13: Performance boost after applying Streamer. “(B)” standards for
“Before”, and “(A)” standards for “After”. The evaluation setting is the
same as Table 3.1 in the main text. This table assumes a single GPU, and
an infinite GPU counterpart can be found in Table 3.14. Under this setting,
we observe significant improvement in AP, ranging from 5% to 78%, and av-
eraging at 34%

Method Scale AP(B) AP(A) Boost AP.(B) APr(A) Boost
0.2 9.5 10.4 9% 23.5 28.6 21%
0.25 9.3 10.6 14% 23.9 31.5 32%
SSD 0.5 9.7 13.5 40% 20.0 324 62%
0.75 6.0 10.7 78% 115 19.8 72%
1.0 42 7.3 76% 7.3 12.5 72%
0.2 6.0 6.3 5% 18.1 21.3 17%
0.25 6.9 7.5 9% 19.8 26.2 33%
RetinaNet R50 0.5 10.9 14.2 30% 241 38.3 59%
0.75 10.8 16.1 50% 20.2 329 63%
1.0 9.9 14.1 42% 16.7 24.7 48%
0.2 5.4 59 9% 14.7 19.8 35%
0.25 6.5 74 14% 18.2 25.8 42%
RetinaNet R101 0.5 9.9 13.0 31% 21.5 33.6 56%
0.75 9.9 145 47% 18.1 27.7 53%
1.0 8.9 12.7 42% 14.7 22.0 50%
0.2 6.5 7.2 11% 18.0 25.1 40%
0.25 7.7 9.1 19% 20.1 29.9 49%
Mask R-CNN R50 0.5 12.0 16.7 39% 243 39.9 64%
0.75 11.5 17.8 54% 19.5 333 71%
1.0 10.6 15.0 42% 16.6 25.0 50%
0.2 6.3 7.2 14% 16.7 24.1 45%
0.25 7.6 9.0 17% 19.3 285 48%
Mask R-CNN R101 0.5 11.0 15.2 39% 21.6 354 64%
0.75 10.0 15.3 52% 16.8 28.0 67%
1.0 8.8 12.4 42% 13.7 21.2 55%
0.2 6.2 7.8 25% 154 25.5 66%
0.25 7.5 9.6 28% 18.4 30.1 63%
Cascade MRCNN R50 0.5 11.3 16.4 45% 22.6 37.5 66%
0.75 109 16.7 54% 18.6 29.8 60%
1.0 10.1 15.7 55% 154 253 64%
0.2 6.1 7.3 20% 15.2 23.1 52%
0.25 74 9.5 28% 17.6 29.6 69%
Cascade MRCNN R101 0.5 10.3 15.4 49% 20.5 341 66%
0.75 9.5 14.7 54% 16.1 26.1 62%
1.0 8.8 129 46% 13.7 21.8 59%
0.2 5.6 6.8 22% 12.0 17.0 42%
0.25 6.3 8.3 31% 13.0 19.8 53%
HTC 0.5 7.9 10.8 38% 13.3 19.9 49%
0.75 7.1 8.6 22% 114 14.8 30%
1.0 6.4 7.2 12% 9.6 114 18%
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Table 3.14: Performance boost after applying Streamer. “(B)” standards for
“Before”, and “(A)” standards for “After”. The evaluation setting is the
same as Table 3.1 in the main text. This table assumes infinite GPUs, and
a single GPU counterpart can be found in Table 3.13. Under this setting, we
observe significant improvement in AP, ranging from 4% to 80%, and aver-
aging at 32%

Method Scale AP(B) AP(A) Boost AP.(B) APr(A) Boost
0.2 9.9 10.6 7% 25.5 29.4 15%
0.25 9.6 10.7 12% 249 31.7 27%
SSD 0.5 11.3 14.7 30% 241 354 47%
0.75 8.0 13.3 66% 14.6 25.6 76%
1.0 5.5 9.8 80% 10.0 16.5 65%
0.2 6.1 6.3 4% 18.6 21.3 15%
0.25 7.1 7.6 8% 21.4 27.1 26%
RetinaNet R50 0.5 12.3 14.7 20% 28.1 40.1 42%
0.75 13.1 18.0 37% 243 37.8 56%
1.0 11.7 17.3 48% 19.5 31.3 60%
0.2 5.5 6.0 9% 15.3 20.1 32%
0.25 6.7 7.5 12% 18.8 26.1 38%
RetinaNet R101 0.5 11.3 14.0 24% 25.3 38.1 50%
0.75 11.8 17.0 44% 21.3 34.3 61%
1.0 10.8 16.3 51% 18.2 28.2 55%
0.2 6.7 74 10% 20.0 26.2 31%
0.25 7.8 9.2 17% 20.8 30.1 45%
Mask R-CNN R50 0.5 13.9 17.4 26% 29.0 42.6 47%
0.75 144 20.3 40% 243 38.5 59%
1.0 124 18.7 51% 19.4 314 62%
0.2 6.5 7.3 13% 17.4 243 40%
0.25 7.9 9.1 15% 20.5 289 41%
Mask R-CNN R101 0.5 11.9 16.2 36% 23.7 384 62%
0.75 124 18.5 49% 20.3 35.3 74%
1.0 10.6 16.2 53% 16.9 27.7 64%
0.2 7.0 79 13% 18.9 26.5 40%
0.25 8.5 9.9 16% 22.3 31.7 42%
Cascade MRCNN R50 0.5 129 17.6 37% 26.0 41.2 58%
0.75 13.2 199 51% 221 36.5 65%
1.0 12.6 19.8 57% 19.0 31.8 67%
0.2 6.8 79 17% 17.8 26.6 49%
0.25 8.3 9.8 18% 21.0 317 50%
Cascade MRCNN R101 0.5 12.6 17.0 35% 25.0 38.5 54%
0.75 114 17.7 56% 19.0 32.7 72%
1.0 10.5 16.6 59% 16.7 27.6 65%
0.2 6.3 8.0 27% 14.0 21.8 55%
0.25 7.3 9.8 34% 15.7 25.5 62%
HTC 0.5 9.2 13.7 50% 16.3 26.9 65%
0.75 8.2 114 39% 13.2 20.5 55%
1.0 74 9.3 25% 11.1 15.8 43%
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evaluation. When applied in the wild, we can optionally track runtime of
the algorithm on unseen data and adjust the scheduling accordingly. The
forecasting module is implemented with asynchronous Kalman filter (Sec-
tion 3.B.2).

Streamer has several key features. First, it enables synchronous process-
ing for an asynchronous problem. Under the commonly studied settings
(both offline and online), computation is synchronous in that the outputs
and the inputs have a natural one-to-one correspondence. Therefore, many
existing temporal reasoning models assume that the inputs are at a uniform
rate and each input corresponds to an output [54,63,72]. In the real-time
setting, however, such a relationship does not exist due to the latency of the
algorithm, i.e., the number of outputs can be arbitrary. Streamer converts de-
tectors with arbitrary runtimes into systems that output at a designated fixed
rate. In short, it abstracts away the asynchronous nature of the problem and
therefore allows downstream synchronous processing. Second, by adopt-
ing forecasting, Streamer significantly boosts the performance of streaming
perception. In Tables 3.13 and 3.14, we evaluate the detection AP before and
after applying our meta-detector. We observe relative improvement from 4%
to 80% with an average of 33% in detection AP under 80 different settings (8
detectors x 5 image scales x 2 compute models). Note that the difference
of this evaluation and benchmark evaluation in the main text is that we fix
the detector and input scale here, while benchmark evaluation searches over
the best configuration of detectors and input scales. For the infinite GPU set-
tings, we discount the boost from additional compute itself.

3.B.5 Implementation Details

Detectors We experiment with a large suite of object detectors: SSD [142],
RetinaNet [ 138], Mask R-CNN [82], Cascade Mask R-CNN [24], and HTC
[32]. The “optimized” and “re-optimized” rows in all tables represent the
optimal configuration over all detectors and all input scales of 0.2, 0.25, 0.5,
0.75, and 1.0. We adopt mmdetection codebase [33] (one of the fastest open-
source implementation for Mask R-CNN) for object detectors. Note that for
all detectors, the implementation has reproduced both the accuracy and run-
time reported in the original papers.

Potentially better implementation We acknowledge that there are addi-
tional bells and whistles to reduce runtime of object detectors, which might
further improve the results on our benchmark. We focus on general tech-
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niques instead of device- or application-specific ones. For example, we have
explored GPU image pre-processing, which is applicable to all GPUs. An-
other implementation technique is to use half-precision floating-point num-
bers (FP16), which we have not explored, since it will only pay off for certain
GPUs that have been optimized for FP16 computation (it is reported that
FP16 yields only marginal testing time speed boost on 1080 Ti [37]).

3.C Appendix C: Additional Baselines

3.C.1 Forecasting Baselines

We have also tested linear extrapolation (i.e., constant velocity) and quadratic
extrapolation for forecasting detection results. We include an illustration of
linear forecasting in Fig. 3.18, and the quadratic counterpart is a straight-
forward extension that involves three latest detection results. Though they
produce inferior results than Kalman filter, we include the results in Ta-
ble 3.15 for completeness.

0 1 2 3 4 ¢

| | | | .

>

Association (CPU)

vy = (by — bp)/(1 - 0)

Forecasting (CPU) ~
b4, = b]_ + U1(4 - 1)

Figure 3.18: Scheduling for linear forecasting. The scheduling is similar as
with the Kalman filter case in that both are asynchronous. The difference is
that linear forecasting does not explicitly maintain a state representation but
only stores two latest detection results. Association takes place immediately
after a new detection result becomes available, and it links the bounding
boxes in two consecutive detection results and computes a velocity estimate.
Forecasting takes place right before the next time step, and it uses linear ex-
trapolation to produce an output as the estimation of the current world state.
The equations represent the computation for reporting to benchmark query
att = 4. bis a simplified representation for object location. At this time, only
detection results for frame 0 and 1 are available, but through association and
forecasting, the algorithm can make a better prediction for the current world
state.
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Table 3.15: Comparison of different forecasting methods for streaming per-
ception. We see that both linear and Kalman filter forecasting methods sig-
nificantly improve the streaming performance. Kalman filter further out-
performs the linear forecasting. The quadratic forecasting decreases the AP,
suggesting that high-order extrapolation is not suitable for this task. The de-
tection used here is Mask R-CNN ResNet 50 @ s0.5 with dynamic scheduling
(Alg. 1)

ID Method AP AP L AP M AP S AP50 AP75
1 No Forecasting 13.0  26.6 9.2 1.1 26.8 11.1
2 Linear (constant velocity) 157  38.1 13.8 1.1 30.2 14.8
3 Quadratic 97 238 6.6 0.4 21.4 7.9

4 Kalman filter 16.7  39.8 14.9 1.2 31.2 16.0

Table 3.16: Standard offline forecasting evaluation for the end-to-end
method F2F [145]. The goal is to forecast 3 frames into the future. Sur-
prisingly, the more expensive F2F method performs worse than the simpler
Kalman filter in terms of the overall AP

ID Method AP AP L AP M AP S AP50 AP75
1 None (copy last) 134 243 109 19 279 113
2  Linear 16.3 34.8 16.8 1.8 329 143
3  Kalman filter 191 403 198 26 358 17.7
4 F2F 183 41.0 200 25 339 171

3.C.2 An End-to-End Baseline

In the main text, we break down the streaming detection task into detection,
tracking, and forecasting for modular analysis. Alternatively, it is also pos-
sible to train a model that directly outputs detection results in the future.
F2F [145] is one such model. Building upon Mask R-CNN, it does tempo-
ral reasoning and forecasting at the level of FPN feature maps. Note that
no explicit tracking is performed. In this section, we compare against this
end-to-end baseline in both offline and streaming settings.

In the offline setting, the algorithm is given s frames as input history, and
outputs detection results for ¢ frames ahead. This is the same as the evalu-
ation in [145]. We set both s and ¢ to be 3, as the optimal detector in our
forecasting experiments (Table 3.2) has runtime of 2.78 frames. Since F2F
forecasts at the FPN feature level, it is agnostic to second stage tasks. In our
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Table 3.17: Streaming evaluation for the end-to-end method F2F [145]. The
setting is the same as the experiments in the main text. Rows 1 and 2 are the
optimized detector and the Kalman filter forecasting solution from the main
text. The underlying detectors used are Mask R-CNN ResNet 50 at scale 0.5
and scale 0.75 respectively. Row 3 suggests that F2F has a low streaming AP,
due to its forecasting module being very expensive (last column, runtime in
milliseconds). For diagnostics purpose, we assume F2F to run as fast as our
optimized detector (row 4), and arm it with our scheduling algorithm (row
5). But even so, F2F still under-performs the simple Kalman filter solution

ID Method AP AP; APp; APg AP5y AP7; Runtime
1  Detection 120 243 79 1.0 251 101 56.7
2 + Scheduling (Alg 1)+ KF 17.8 333 163 3.2 352 16.5 92.7
3 F2F 62 111 34 0.8 13.1 5.2 321.6
4  F2F (Simulated Fast) 141 291 127 19 289 120 92.7
5 + Scheduling (Alg. 1) 156 330 152 21 307 139 92.7

evaluation, we focus on the bounding box detection task instead of instance
segmentation. Also, we conduct experiments on Argoverse-HD, consistent
with the setting in our other experiments. Due to a lack of annotation, we
adopt pseudo ground truth (Section 3.A.2) for training (data from the orig-
inal training set of Argoverse 1.1 [29]). We implement our own version of
F2F based on mmdetection (instead of Detectron as done in [145]). We train
the model for 12 epochs end-to-end (a 50% longer schedule than combined
stages in [145]). For a fair comparison, we also finetuned the detectors on
Argoverse with the same pseudo ground truth. For Mask R-CNN ResNet
50 at scale 0.5, it boosts the offline box AP from 19.4 to 22.9. We use this
tinetuned detector in our method to compare against F2F. The results are
summarized in Table 3.16. We see that an end-to-end solution does not im-
mediately boost the performance. We believe that it is still an open problem
on how to effectively replace tracking and forecasting with an end-to-end
solution.

In the streaming setting, F2F can be viewed as a detector that compen-
sates its own latency. The results are summarized in Table 3.17. We see that
F2F is too expensive compared with other streaming solutions, showing that
forecasting can help only if it is fast under our evaluation. Note that the de-
tectors (row 1-2) are not finetuned as in the offline case, which means that
they can be further improved.
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Chapter 4

Foveated Image Magnification

4.1 Introduction

Safety-critical robotic agents such as self-driving cars make use of an enor-
mous suite of high-resolution perceptual sensors, with the goal of minimiz-
ing blind spots, maximizing perception range, and ensuring redundancy [22,

,199]. We argue that “over-sensed” perception platforms provide unique
challenges for vision algorithms since those visual sensors must rapidly con-
sume sensor streams while continuously reporting back the state of the world.
While numerous techniques exist to make a particular model run fast, such
as quantization [213], model compression [38], and inference optimization
[171], at the end of the day, simple approaches that subsample sensor data
(both spatially by frame downsampling and temporally by frame dropping)
are still most effective for meeting latency constraints [129]. However, sub-
sampling clearly throws away information, negating the goals of high-reso-
lution sensing in the first place! This status quo calls for novel vision algo-
rithms.

To address this challenge, we take inspiration from the human visual
system; biological vision makes fundamental use of attentional processing.
While current sensing stacks make use of regular grid sampling, the human
vision system in the periphery has a much lower resolution than in the center
(fovea), due to the pooling of information from retinal receptors by retinal
ganglion cells. Such variable resolution is commonly known as foveal vision
[122].

In this paper, we propose FOVEAted image magnification (FOVEA) for
object detection, which retains high resolution for objects of interest while
maintaining a small canvas size. We exploit the sparsity of detection datasets
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Figure 4.1: Standard image downsampling (top right) limits the capability
of the object detector to find small objects. In this paper, we propose an at-
tentional warping method (bottom right) that enlarges salient objects in the
image while maintaining a small input resolution. Challenges arise when
warping also alters the output labels (e.g., bounding boxes).

— objects of interest usually only cover a portion of the image. The key idea
is to resample such that background pixels can make room for salient pixels of in-
terest. The input images are downsampled and warped such that salient
areas in the warped image have higher resolutions. While image warping
has been explored for image classification [102, 176] and regression [176],
major challenges remain when applying such methods to detailed spatial
prediction tasks such as object detection. First, processing warped images
will produce warped spatial predictions (bounding box coordinates). We
make use of differentiable backward maps to unwarp spatial predictions
back to the original space. Second, it is hard to efficiently identify salient
regions; in the worst case, a saliency network tuned for object detection may
be as expensive as the downstream detection network itself, thereby elimi-
nating any win from downsampling. In our case, we make use of cheap and
readily available saliency cues, either in the form of dataset-specific spatial
priors (i.e., small objects tend to exist near a fixed horizon) or temporal pri-
ors (small objects tend to lie nearby small object predictions from previous
frames). Third, previous image warps (tuned for image classification tasks)
can produce cropped image outputs. Since objects can appear near the im-
age boundary, we introduce anti-cropping constraints on the warping.

We validate our approach on two self-driving datasets for 2D object de-
tection: Argoverse-HD [129] and BDD100K [244]. First, we show that FOVEA
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can improve the performance of off-the-shelf detectors (Faster R-CNN [ 180]).
Next, we finetune detectors with differentiable image warping and back-
ward label mapping, further boosting performance. In both cases, small
objects improve by more than 2x in average precision (AP). Finally, we eval-
uate FOVEA under streaming perception metrics designed to capture both
accuracy and latency [129], producing state-of-the-art results.

4.2 Related Work

Object detection Object detection is one of the most fundamental prob-
lems in computer vision. Many methods have pushed the state-of-the-art in
detection accuracy [32,73,137,169,180], and many others aim for improv-
ing the efficiency of the detectors [14, , , ]. The introduction of
fully convolution processing [192] and spatial pyramid pooling [83] have
allowed us to process the input image in its original size and shape. How-
ever, it is still a common practice to downsample the input image for effi-
ciency purposes. Efficiency becomes a more prominent issue when people
move to the video domain. In video object detection, the focus has been on
how to make use of temporal information to reduce the number of detectors
invoked [147,255,257]. These methods work well on simple datasets like
ImageNet VID [185], but might be unsuitable for the self-driving car senar-
ios, where multiple new objects appear at almost every frame. Furthermore,
those methods are usually designed to work in the offline fashion, i.e., allow-
ing access to future frames. Detection methods are the building blocks of our
framework, and our proposed approach is largely agnostic to any particular
detector.

Online/streaming perception In the online setting, the algorithm must
work without future knowledge. [ 136] proposes the Temporal Shift Module
that enables video understanding through channel shifting and in the on-
line setting, the shifting is restricted to be uni-directional. [11] proposes a
multi-object tracking method that takes input previous frame detection as
addition proposals for the current frame. Our method also takes previous
frame detection as input, but we use that to guide image warping. Stream-
ing accuracy [129] is a recently proposed metric that evaluates the output of
a perception algorithm at all time instants, forcing the algorithm to consider
the amount of streaming data that must be ignored while computation is
occuring. [129] demonstrates that streaming object detection accuracy can
be significantly improved by tuning the input frame resolution and framer-
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Figure 4.2: Our proposed method for object detection. Given bounding box
predictions from the previous frame (if the input are videos) or a collec-
tion of all the ground truth bounding boxes in the training set, the saliency
generator creates a saliency map and that is fed into the spatial transformer
(adapted from [102,176]) to downsample the high-resolution input frame
while magnifying salient regions. Then we feed the downsampled input
into a regular object detector, and it produces bounding box output in the
warped space, which is then converted back to the original image space as
the final output.

ate. In this work, we demonstrate that adaptive attentional processing is an
orthogonal dimension for improving streaming performance.

Adaptive visual attention Attentional processing has been well studied in
the vision community, and it appears in different forms [45,95,110,132,141,

]. Specially in this paper, we focus on dynamic resolutions. For image
classification, [212] designs an algorithm to select high-resolution patches,
assuming each patch is associated with a data acquisition cost. [152] ap-
plies non-uniform downsampling to semantic segmentation and relies on
the network to learn both the forward and backward mapping, whose con-
sistency is not guaranteed. For object detection, a dynamic zoom-in algo-
rithm is proposed that processes high-resolution patches sequentially [68].
However, sequential execution might not meet latency requirements for real-
time applications. Most similar to our work, [ 176] proposes an adaptive im-
age sampling strategy that allocates more pixels for salient areas, allowing
a better downstream task performance. But the method only works for im-
age classification and regression, where the output is agnostic to the input
transformation.
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4.3 Approach

Assume we are given a training set of image-label pairs (/, L). We wish to
learn a nonlinear deep predictor f that produces a low loss £(f(/),L). In-
spired by past work [102,176], we observe that certain labeling tasks can be
performed more effectively by warping/resampling the input image. How-
ever, when the label L itself is spatially defined (e.g., bounding box coordi-
nates or semantic pixel labels), the label itself may need to be warped, or al-
ternatively, the output of the deep predictor may need to be inverse-warped.

In this section, we first introduce the saliency-guided spatial transform
from related work as the foundation of our method. Next, we introduce our
solutions to address the challenges in image warping for object detection.
An overview of FOVEA, our method, is shown in Fig 4.2.

4.3.1 Background: Saliency-Guided Spatial Transform

The seminal work of spatial transformer networks (STN) introduces a differ-
entiable warping layer for input images and feature maps [102]. It was later
extended to incorporate a saliency map to guide the warping [176]. Here
we provide implementation details that are crucial to our method. Please
refer to the original papers [102,176] for more details.

A 2D transformation can be written as:

T (x,y) = (29y), (4.1)

where (z,y) and (2, ') are the input and output coordinates. Since image
pixels are usually discrete, interpolation is required to sample values at non-
integral coordinates. An image warp Wy takes input an image /, samples
the pixel values according to the given transformation 7, and outputs the
warped image I":

I'(T(x,y)) = 1(z,y) (4.2)

Naive forward warping of discrete pixel locations from input / can result in
non-integral target pixel positions that need to be “splatted” onto the pixel
grid of I, which can produce artifacts such as holes. Instead, image warps
are routinely implemented via a backward map [9]: iterate over each output
pixel grid location, compute its inverse mapping T~ to find its corresponding
input coordinates (which may be non-integral), and bilinearly interpolate its
color from neighboring input pixel grid points:

I'(z,y) = (T (z,y)) (4.3)
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Warping Wy implemented
with backward mapping 7!

Interpolation

1. Identity for invariant
T 7. T
quantities (class labels)
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original space < warped space

3. Wy-1 for images

(segmentation)
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Figure 4.3: Image warps Wy are commonly implemented via a backward
map 7 ! followed by (bilinear) interpolation of nearby source pixel grid
values, since forward mapping 7 can result in target pixel positions that do
not lie on the pixel grid (not shown). Though image warping is an exten-
sively studied topic (notably by [102,176] in the context of differentiable
neural warps), its effect on labels is less explored because much prior art
focuses on global labels invariant to warps (e.g. an image class label). We
explore warping for spatial prediction tasks whose output must be trans-
formed back into the original image space to generate consistent output.
Interestingly, transforming pixel-level labels with warp Wy-1 requires in-
verting 7!, which can be difficult depending on its parameterization [9].
In this paper, we focus on transforming pixel coordinates of bounding boxes,
which requires only the already-computed backward map 7' (the red ar-
row).
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In other words, the implementation of Wy only requires the knowledge of the inverse
transformation T 1. The pixel iteration can be replaced with a batch operation
by using a grid generator and apply the transformation 7! over the entire
grid.

STN uses a differentiable formulation of 7,”! (parameterized by 6) and
an ensuing bilinear grid sampler, which is differentiable and parameter-
free. [176] proposes a special form of 7! parameterized by a saliency map
S: T,”' = T¢''. This transform has a convolution form and is therefore fast,
using the intuition that each input pixel (z, y) attracts samples from the orig-
inal image with a force S(z, y), leading to more sampling at salient regions.
We point out that both [102] and [176] ignore the effect of warping on the output
label space and skip the modeling of the forward transform T, which (we will show)
is required for unwarping certain label types.

4.3.2 Image Warping for Object Detection

In this section, we first explain our high-level inference formulation, then our
specific form of the warping, and in the end some adjustments for training
the task network.

Inference formulation We visually lay out the space of image and label
warps in Fig 4.3. Recent methods for differentiable image warping assume
labels are invariant under the warping (the first pathway in Fig 4.3). For ob-
ject detection, however, image warping clearly warps bounding box outputs.
To produce consistent outputs (e.g., for computing bounding box losses dur-
ing learning), these warped outputs need to transformed back into the origi-
nal space (the second pathway in Fig 4.3). Quite conveniently, because stan-
dard image warping is implemented via the backward map 7', the back-
ward map is already computed in-network and so can be directly applied to
the pixel coordinates of the predicted bounding box. The complete proce-
dure for our approach f can be written as f(I,7) = T~ '(f(Wy(I))). where
f(-) is the nonlinear function that returns bounding box coordinates of pre-
dicted detections. Importantly, this convenience doesn't exist when warping
pixel-level values; e.g., when warping a segmentation mask back to the orig-
inal image input space (the third pathway in Fig 4.3). Here, one needs to
invert 7! to explicitly compute the forward warp 7.

81



Warping formulation We adopt the saliency-guided warping formulation
from [176]:

. oy 8@ YRz, y), ()2
T ) = S (), () (44
L S () ()
T ) = S (), (o) (45)

where £ is a distance kernel (we use a Gaussian kernel in our experiments).
However, in this general form, axis-aligned bounding boxes might have dif-
ferent connotations in the original and warped space. To ensure axis align-
ment is preserved during the mapping, we restrict the warping to be sepa-
rable along the two dimensions, i.e., 7 '(z,y) = (T, '(z), 7, *(y)). For each
dimension, we adapt the previous formulation to 1D:

o S Se(a) (2 )2
T =S @)
LSRG )y
Ay e mr

(4.6)

(4.7)

We call this formulation separable and the general form nonseparable. Note
that the nonseparable formulation has a 2D saliency map parameter, whereas
the separable formulation has two 1D saliency maps, one for each axis. Fig4.4
shows an example of each type of warp.

One nice property of 7 is that it is differentiable and thus can be trained
with backpropagation. One limitation though is that its inverse 7 doesn’t
have a closed-form solution, nor does its derivative. The absence of T is not
ideal, and we propose some workaround as shown in the following subsec-
tion.

Anti-Cropping Constraint We find the convolution form of saliency-guided
spatial transform tends to crop the images, which might be acceptable for im-
age classification where a large margin exists around the border. However,
any cropping in object detection creates a chance to miss objects. We solve
this by using reflect padding on the saliency map while applying the attrac-
tion kernel in Eq 4.6. This introduces symmetries about each of the edges
of the saliency map, eliminating all horizontal offsets along vertical image
edges and vice versa. Thus cropping is impossible under this formulation.
A 1D illustration is shown in Fig 4.5 to explain the problem and the solution.
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Figure 4.4: By restricting the general class of warps (left) to be separable
(right), we ensure that bounding boxes in the warped image (examples out-
lined in red) remain axis-aligned. We demonstrate that such regularization
(surprisingly) improves performance, even though doing so theoretically
restricts the range of expressible warps (details in Sec 4.4.1).

Training formulation Once we have the inference formulation, training is
also straightforward as we require the loss £ to be computed in the origi-
nal space: L(Q(f(Wr(I)),L), where Q is the label-type-specific backward
mapping as shown in Fig 4.3, and in our case, @ = 7 '. Note that Wr, f
and 7! are all differentiable. While inference itself does not require the
knowledge of T, it is not the case for training detectors with region proposal
networks (RPN) [180]. When training RPNs [180], the regression targets
are the deltas between the anchors and the ground truth, and the deltas are
later used in Rol Pooling/Align [82,83]. The former should be computed in
the original space (the ground truth is in the original space), while the latter
is in the warped space (Rol Pooling/Align is over the warped image). This
implies that the deltas need first to be learned in the original space, applied
to the bounding box, and then mapped to the warped space using 7 for Rol
Pooling/Align. But as discussed before, 7" cannot be easily computed. As a
workaround, we omit the delta encoding and adopt Generalized IoU (GIoU)
loss [181] to account for the lost stability. The main idea of GIoU is to better
reflect the similarity of predicted and ground truth bounding boxes in cases
of zero intersection; this has been shown to improve results.

4.3.3 KDE Saliency Generator

Prior work [102,176] trains a saliency network to generate saliency maps,
which we explore as a baseline in Sec 4.4.1. Because saliency maps for object
detection appear hard to learn, we explore cheap alternatives for saliency
map construction: dataset-level priors over object locations or temporal pri-
ors extracted from previous frame’s predictions. Both priors can be opera-
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(a) Default, 0 ~ 5.5 (b) Anti-crop, o & 5.5 (C) Anti-crop, o &~ 1.7

Figure 4.5: Saliency-guided transform illustrated in 1D. The red curve is
a saliency map S. The bottom row of dots are the output points (at uni-
form intervals), and the top row of dots are the locations where we’ve sam-
pled each output point from the original “image”, as computed by applying
Ts ' to the output points. (a) The default transform can be understood as a
weighted average over the output points and thus ignores points with near
zero weights such as those at the boundaries. (b) Note the effects of intro-
ducing anti-crop reflect padding, and (c) how decreasing the std dev ¢ of
the attraction kernel k results in more local warping around each peak (bet-
ter for multimodal saliency distributions).

tionalized with an approach that converts bounding boxes to a saliency map.

Intuitively, we build a saliency map by “overlaying” boxes on top of one
another via non-parametric kernel density estimation (KDE). More precisely,
given a set of bounding boxes B with centers ¢;, heights h; and widths w;,
we model the saliency map Sp as a sum of normal distributions:

a 1 Ww; 0
gub — TRl > N (ci,b [o hD (4.8)
)eB

(ci,wi,hy

where @ and b are hyperparameters for amplitude and bandwidth, respec-
tively, and K is the size of the attraction kernel £ in Eq 4.6. Adding the
small constant is done to prevent extreme warps. We then normalize the 2D
saliency map such that it sums to 1 and marginalize along the two axes if
using the separable formulation'. As laid out in the previous section, this
is then used to generate the image transformation 75 ' according to Eq 4.6.
Ensuring that each kernel is locally normalized produces our desired behav-
ior; we'll have high saliency for pixels covered by objects, and even higher

!'When using the separable formulation, we could instead skip the intermediate 2D
saliency map representation. However, we opt not to, because the intermediate 2D saliency
map produces more interpretable visualizations, and the difference in runtime is negligible.
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saliency for pixels covered by small objects (that have their Gaussian mass
focused on a smaller object size).

We can apply Sg to the set of all bounding boxes in the training set to ob-
tain a dataset-wide prior (denoted as Sp), or apply it to the previous frame’s
predictions to obtain a image-specific temporal prior (denoted as S;). The
former encodes dataset-level spatial priors such as small objects appearing
near the horizon (Fig 4.7). The latter encodes a form of temporal contextual
priming, allocating pixel samples to previously seen objects (with a default
of uniform saliency for the first frame). We also experiment with a weighted
combination of both: S¢ = a - Sy + (1 — a) - Sp. All of the above saliency
generators are differentiable, so the final task loss can be used to learn hy-
perparameters a, b, c.

4.4 Experiments

We first compare FOVEA to naive downsampling on autonomous driving
datasets such as Argoverse-HD. Next, we use streaming perception metrics
to show that the accuracy gain is worth the additional cost in latency. Finally,
we present results on BDD100K, showing the generalization of our method.
We include additional results, diagnostic experiments, and implementation
details in the appendix.

4.4.1 Object Detection for Autonomous Navigation

Argoverse-HD [129] is an object detection dataset for autonomous vehicles.
Noteably, it contains high framerate (30 FPS) data and annotations. As is
standard practice, we adopt AP for evaluation. We also report end-to-end
latency (including image preprocessing, network inference, and bounding
box postprocessing) measured on a single GTX 1080 Ti GPU. The image res-
olution for this dataset is 1920 x 1200, much larger than COCO’s, which is
capped at 640. Since all models used in this paper are fully convolutional,
we run them with different input scales, denoted by ratios to the native res-
olution, e.g., 0.5x means an input resolution of 960 x 600.

Baseline and Setup

The baseline we compare to throughout our experiments is Faster RCNN
[180] with a ResNet-50 backbone [84] plus FPN [137]. The default input
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scale for both the baseline and our method is 0.5x. For the baseline, how-
ever, we additionally train and test at 0.75x and 1x scales, to derive a sense
of the latency-accuracy tradeoff using this model. Our contribution is or-
thogonal to the choice of the baseline detector and we obtain similar results
with other detectors including RetinaNet [138] and YOLOF [35] (shown in
Appendix 4.A.2). Additionally, we compare against other zoom-based ap-
proaches [68,176] in Appendix 4.A.3.

Notably, Argoverse-HD'’s training set only contains pseudo ground truth
(at the time of paper submission) generated by running high-performing de-
tector HTC [32] in the offline setting. For all experiments, unless otherwise
stated, we train on the train split with pseudo ground truth annotations,
and evaluate on the val split with real annotations. Additional measures
are taken to prevent overfitting to biased annotations. We finetune COCO
pretrained models on Argoverse-HD for only 3 epochs (i.e., early stopping).
We use momentum SGD with a batch size of 8§, a learning rate of 0.02, 0.9
momentum, 10~* weight decay, and a step-wise linear learning rate decay
for this short schedule [130]. Also, when training detectors with warped in-
put, we apply our modifications to RPN and the loss function as discussed
in Sec 4.3.2.

Learned Saliency

Our first control experiment does not make use of bounding box KDE pri-
ors, but rather directly learns a global, dataset-wide saliency map S(z,y) via
backprop. We directly learn both separable and nonseparable saliency maps
in Tab 4.1. Training configuration and implementation details are given in
Appendix 4.A.6.

We find that both separable and nonseparable warps significantly im-
prove overall AP over the baseline, owing to the boosted performance on
small objects. However, there is also a small decrease in AP on large ob-
jects. Interestingly, even though nonseparable warps are more flexible, the
learned solutions look nearly separable (Fig 4.6) but perform worse, indi-
cating overfitting. Therefore, going forward, we focus on separable warps
in our experiments.

Following [176], we also learn a “saliency network” that maps each input
image to its saliency map via a ResNet-18 backbone [84]. In this sense, the
learned saliency map would adapt to each image. However, we find that this
approach very unstable for object detection. From our experiments, even
with a small learning rate of 10~° on the saliency network, the model learns
a degeneracy in which an extreme warp leads to no proposals being matched
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Figure 4.6: The learned direct separable (left) and nonseparable (right)
dataset-wide warps. Despite the vastly greater flexibility of nonseparable
warps, the learned warp is almost separable anyway.

with ground truth bounding boxes in the Rol bounding box head, leading
to a regression loss of 0.

KDE Saliency Generator

This section makes use of the KDE construction in Sec 4.3.3 to generate saliency
maps. We first manually tune the amplitude a and bandwidth b to obtain
desired magnifications. We find that an amplitude ¢ = 1 and a bandwidth
b = 64 works the best, paired with an attraction kernel of std. dev. of about
17.8% the image height, which allows for more local warps as illustrated in
Fig 4.5. We finetune our models using the same configuration as the base-
line, the only difference being the added bounding box and saliency-guided
spatial transformation layer. We learn Sp using all bounding boxes from
the training set and for simplicity, learn S; with jittered ground-truth boxes
from the current frame (though at test-time it always uses predictions from
the previous frame). We set a = 0.5 for S¢.

We then learn hyperparameters a and b through backpropagation, since
our KDE formulation is differentiable. We initialize parameters a’ and 0’ to
0, under the construction that a = |1 + /| + 0.1,0 = 64 - |1 + ¥'| + 0.1. The
learning rate of o’ and V¥ is set to 10~* with zero weight decay. Other than
this, we train the learned KDE (LKDE) model with the same configuration
as the baseline. We implement the S; formulation.

All results are shown in Table 4.1. Even without finetuning our detec-
tor, using a simple fixed dataset-wide warp Sp, we find significant improve-
ments in AP. As we migrate to temporal priors with finetuning, we see even
more improvement. As in the learned saliency case, these improvements in
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overall AP are due to large boosts in APy, outweighing the small decreases
in AP;. Combining our saliency signals (S¢) doesn’t help, because in our
case, it seems that the temporal signal is strictly stronger than the dataset-
wide signal. Perhaps if we had an alternate source of saliency like a map
overlay, combining saliencies could help. Our best method overall is LKDE,
which learned optimal values a = 1.07,b = 71.6. Learning a nonseparable
saliency performs better than our hand-constructed dataset-wide warp Sp;
however, they’re both outperformed by S;. Importantly, our LKDE not only
significantly improves APg, but also improves all other accuracy measures,
suggesting that our method does not need to tradeoff accuracy of large ob-
jects for that of small objects. Finally, we note that our increased performance
comes at the cost of only about 2 ms in latency.

Argoverse-HD before finetuning

Method AP AP;y AP;; APs APy, AP, person mbike tffclight bike bus stop car truck Latency (ms)
Baseline 215 358 223 28 224 506 208 9.1 139 71 480 161 372 202 494+1.0
KDE (Sp) 233 400 229 54 255 489 209 13.7 12.2 93 506 20.1 40.0 195 52.0+ 1.0
KDE (Sr) 241 407 243 85 245 483 23.0 17.7 15.1 100 495 175 41.0 194 51.2+0.7
KDE (S¢) 240 405 243 74 260 482 225 14.9 14.0 95 49.7 20.6 410 199 52.0+1.2

Upp. Bound (0.75x) 27.6 451 282 79 308 519 297 14.3 21.5 6.6 544 256 447 237 869 £ 1.6
Upp. Bound (1.0x) 327 519 343 144 356 518 337 21.1 33.1 57 572 367 495 246 1339 £22

Argoverse-HD after finetuning

Method AP AP; AP;; APs APy AP, person mbike tffclight bike bus stop car truck Latency (ms)
Baseline 242 389 261 49 290 509 22.8 7.5 233 59 446 193 437 266 50.9 +£ 0.9
Learned Sep. 272 448 283 122 29.1 466 242 14.0 22.6 7.7 395 318 50.0 278 51.5+ 1.0
Learned Nonsep. 259 429 265 100 284 485 252 119 20.9 71 395 251 494 281 50.0 +£0.8
KDE (Sp) 267 433 278 82 297 541 254 135 22.0 8.0 459 213 481 293 50.8 £ 1.2
KDE (S) 28.0 455 292 104 31.0 545 273 16.9 24.3 9.0 445 232 505 284 522 +09
KDE (S¢) 272 447 284 91 309 536 274 14.5 23.0 7.0 448 219 499 29.5 521409
LKDE (S;) 281 459 289 103 309 541 27.5 17.9 23.6 81 454 231 502 287 50.5 + 0.8

Upp. Bound (0.75x) 29.2 476 311 116 321 533 296 12.7 30.8 79 441 298 488 301 870+ 1.4
Upper Bound (1.0x) 333 539 350 168 348 53.6 33.1 20.9 38.7 6.7 447 367 527 327 135.0 £ 1.6

Table 4.1: Results before and after finetuning on Argoverse-HD. Without
retraining, processing warped images (KDE S}, top table) improves overall
AP by 2.6 points and triples APg. Even larger gains can be observed after
finetuning, making our final solution (LKDE S;) performing close to the
0.75x upper bound. Please refer to the text for a more detailed discussion.

4.4.2 Streaming Accuracy for Cost-Performance Evaluation

Streaming accuracy is a metric that coherently integrates latency into stan-
dard accuracy evaluation and therefore is able to quantitatively measure the
accuracy-latency tradeoff for embodied perception [ 129]. Such a setup is achieved
by having the benchmark stream the data to the algorithm in real-time and
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KDE (Sp) - 0.5x - Saliency Map

KDE (S.) - 0.5x - Saliency Map

Figure 4.7: Qualitative results for our methods after finetuning on
Argoverse-HD. The cars in the distance (in the dotted boxes), undetected
at 0.5x scale, are detected at 1x scale, and partially detected by our methods.
Different rows show the variations within our method based on the source
of attention.
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ID Method AP APs APy APp

1 Priorart[129] 178 32 163 333
2 4+ Better implementation 19.3 4.1 183 349
3 4 Train with pseudo GT 212 3.7 239 4338
4 2+ Ours (S7) 193 52 185 39.0
5 3+ Ours (Sy) 23.0 7.0 237 449

Table 4.2: Streaming evaluation in the full-stack (with forecasting) setting
on Argoverse-HD. We show that our proposed method significantly im-
proves previous state-of-the-art by 5.2, in which 1.5 is from better imple-
mentation, 1.9 is from making use of pseudo ground truth and 1.8 is from
our proposed KDE warping.

query for the state of the world at all time instants. One of their key obser-
vations is that by the algorithm finishes processing, the world has around
changed and therefore proper temporal scheduling and forecasting meth-
ods should be used to compensate for this latency. Here we adopt their
evaluation protocol for our cost-performance analysis. In our case of stream-
ing object detection, the streaming accuracy refers to streaming AP. We use
the same GPU (GTX 1080 Ti) and their public available codebase for a fair
comparison with their proposed solution. Their proposed solution includes
a scale-tuned detector (Faster R-CNN), dynamic scheduler (shrinking-tail)
and Kalman Filter forecastor. Our experiments focus on improving the de-
tector and we keep the scheduler and forecastor fixed.

Tab 4.2 presents our evaluation under the full-stack setting (a table for
the detection-only setting is included in Appendix 4.A.5. We see that FOVEA
greatly improves the previous state-of-the-art. The improvement first comes
from a faster and slightly more accurate implementation of the baseline (please
refer to Appendix 4.A.6 for the implementation details). Note that under
streaming perception, a faster algorithm while maintaining the same offline
accuracy translates to an algorithm with higher streaming accuracy. The sec-
ond improvement is due to training on pseudo ground truth (discussed in
Sec 4.4.1). Importantly, our KDE image warping further boosts the stream-
ing accuracy significantly on top of these improvements. Overall, these re-
sults suggest that image warping is a cost-efficient way to improve accuracy.
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ID Method AP APs APy APp

1  Baseline (0.5x) 151 1.0 106 39.0
2 Ours Sp (0.5x) 13.7 1.3 100 347
3 Ours S; (0.5x) 164 21 128 386
4  Baseline (0.75x) 19.7 30 161 44.2
5  Ours Sp (0.75x) 182 34 154 40.0
6  Ours Sy (0.75x) 201 52 17.0 425
7 Upper bound (1.0x) 226 57 201 457

Table 4.3: Cross-dataset generalization to BDD100K [244]. Rows 2 & 5 are
saliency computed on the Argoverse-HD training set, as expected, they fail
to generalize to a novel dataset. Despite operating at a larger temporal stride
(5 FPS vs 30 FPS), our proposed image-adaptive KDE warping generalizes
to a novel dataset (row 3 & 6). Note that here the image native resolution is
smaller at 1280 x 720.

4.4.3 Cross-Dataset Generalization

Our experiments so far are all conducted on the Argoverse-HD dataset. In
this section, we cross-validate our proposed method on another autonomous
driving dataset BDD100K [244]. Note that BDD100K and Argoverse-HD are
collected in different cities. For simplicity, we only test out off-the-shelf gen-
eralization without any finetuning. We experiment on the validation split
of the MOT2020 subset, which contains 200 videos with 2D bounding boxes
annotated at 5 FPS (40K frames in total). Also, we only evaluate on common
classes between BDD100K and Argoverse-HD: person, bicycle, car, motorcy-
cle, bus, and truck. The results are summarized in Tab 4.3, which demon-
strate the generalization capability of our proposed method.

4,5 Conclusion

We propose FOVEA, a highly efficient attentional model for object detection.
Our model magnifies regions likely to contain objects, making use of top-
down saliency priors learned from a dataset or from temporal context. To do
so, we make use of differentiable image warping that ensures bounding box
predictions can be mapped back to the original image space. The proposed
approach significantly improves over the baselines on Argoverse-HD and
BDD100K. For future work, it would be natural to make use of trajectory

91



forecasting models to provide even more accurate saliency maps for online
processing.
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4.A Appendix

4.A.1 Additional Diagnostic Experiments
The Role of Explicit Backward Label Mapping

Related work either focus on tasks with labels invariant to warping like im-
age classification or gaze estimation [102, 176] (discussed in Sec 4.3.1), or
expect an implicit backward mapping to be learned through black-box end-
to-end training [152] (discussed in Sec 4.2). In this section, we suggest that
the implicit backward label mapping approach is not feasible for object de-
tection. To this end, we train and test our KDE methods minus any bounding
box unwarping. Specifically, we no longer unwarp bounding boxes when
computing loss during training and when outputting final detections dur-
ing testing. Instead, we expect the model to output detections in the original
image space.

Due to instability, additional measures are taken to make it end-to-end
trainable. First, we train with a decreased learning rate of le-4. Second, we
train with and without adding ground truth bounding boxes to Rol propos-
als. The main KDE experiments do not add ground truth to Rol proposals,
because there is no way of warping bounding boxes into the warped image
space (the implementation of 7 does not exist). We additionally try setting
this option here, because it would help the Rol head converge quicker, under
the expectation that the RPN should output proposals in the original space.
All other training settings are identical to the baseline setup (Sec 4.4.1).

Results are shown in Tab 4.4. The overall AP is single-digit under all
of these configurations, demonstrating the difficulty of implicitly learning
the backward label mapping. This is likely due to the fact that our model is
pretrained on COCO [139], so it has learned to localize objects based on their
exact locations in the image, and finetuning on Argoverse-HD is not enough
to “unlearn” this behavior and learn the backward label mapping. Another
factor is thatin the S; and S¢ cases, each image is warped differently, making
the task of learning the backwards label mapping even more challenging.
We suspect that training from scratch with a larger dataset like COCO and
using the warp parameters (e.g. the saliency map) as input may produce
better results. However, this only reinforces the appeal of our method due
to ease of implementation and cross-warp generalizability (we can avoid
having to train a new model for each warping mechanism).
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Sensitivity to Quality of Previous-Frame Detections

Two of our methods, S; and S¢ are dependent on the accuracy of the previous-
frame detections. In this section, we analyze the sensitivity of such a depen-
dency through a soft upper bound on S; and S¢, which is generated using
the current frame’s ground truth annotations in place of detections from the
previous frame. This soft upper bound is a perfect saliency map, up to the
amplitude and bandwidth hyperparameters. Note that this is only a change
in the testing configuration.

We report results in Tab 4.4. We see a significant boost in accuracy in all
cases. Notably, the finetuned KDE S; model at 0.5x scale achieves an AP of
29.6, outperforming the baseline’s accuracy of 29.2 at 0.75x scale.

Sensitivity to Inter-Frame Motion

Having noted that the S; and S¢ formulations are sensitive to the accuracy of
the previous-frame detections, in this section, we further test its robustness
to motion between frames. We use ground truth bounding boxes (rather
than detections) from the previous frame in order to isolate the effect of mo-
tion on accuracy. We introduce a jitter parameter j and translate each of the
ground truth bounding boxes in the x and y directions by values sampled
from U(—7, j). The translation values are in pixels in reference to the origi-
nal image size of 1920 x 1200. As in Sec 4.A.1, this is a purely testing-time
change. Also note that the upper bound experiments in Sec 4.A.1 follows by
setting j = 0. We test only on S; and report the full results in Tab 4.4. We
also plot summarized results and discuss observations in 4.8.

4.A.2 FOVEA Beyond Faster R-CNN

In the main text and other sections of the appendix, we conduct our experi-
ment based on Faster R-CNN. However, our proposed warping-for-detection
framework is agnostic to specific detectors. To show this, we test our meth-
ods on RetinaNet [ 135], a popular single-stage object detector, and on YOLOF
[35], a recent YOLO variant that avoids bells and whistles and long training
schedules (up to 8x for ImageNet and 11x for COCO compared to standard
schedules for YOLOv4 [14]).

For both these detectors, we test baselines at 0.5x and 0.75x scales both
before and after finetuning. We then compare these results against our KDE
St method at 0.5x scale. We use a learning rate of 0.01 for the RetinaNet KDE
St model and 0.005 for the RetinaNet baselines. All other training settings

94



Argoverse-HD before finetuning

Method AP AP;, AP;; APg APy, AP, person mbike tffclight bike bus stop car truck
Main Results (copied from the main text for comparison)
Baseline 215 358 223 28 224 506 208 9.1 13.9 71 480 161 372 202
KDE (Sp) 233 400 229 54 255 489 209 13.7 12.2 93 506 20.1 40.0 195
KDE (S;) 241 407 243 85 245 483 23.0 17.7 151 100 495 175 41.0 194
KDE (S¢) 240 405 243 74 260 482 225 14.9 14.0 95 497 206 41.0 19.9

Upp. Bound (0.75x) 27.6 451 282 79 308 519 297 14.3 21.5 6.6 544 256 447 237
Upp. Bound (1x) 327 519 343 144 356 518 337 21.1 33.1 57 572 367 495 24.6

Without an Explicit Backward Label Mapping (Sec 4.A.1)

KDE (Sp) 54 142 37 00 09 207 32 0.4 1.2 08 279 00 53 42

KDE (S)) 61 156 40 02 0.8 203 2.3 0.6 0.7 1.8 308 00 70 54

KDE (S¢) 60 159 38 01 09 219 3.0 0.6 0.9 15 302 00 67 52
Upper Bound with Ground Truth Saliency (Sec 4.A.1)

KDE (S/) 254 426 256 91 262 495 253 17.4 16.8 101 494 234 417 194

KDE (S¢) 245 417 246 75 268 488 236 14.5 15.2 9.7 497 226 413 198

Sensitivity to Inter-Frame Motion (Sec 4.A.1)
KDE (S;),j =10 253 429 253 84 267 491 250 16.4 162 101 488 250 418 195
KDE (S51),j =25 241 410 245 64 261 490 240 12.6 15.2 9.0 485 229 411 196
KDE (S7), j =50 225 383 229 42 241 491 219 9.9 144 82 484 185 39.0 19.7
KDE (S;),j=100 209 351 216 28 219 480 201 7.1 14.0 68 478 153 36.7 19.1
KDE (S;),j =200 200 335 206 25 205 467 192 6.0 13.4 62 467 143 355 185

Argoverse-HD after finetuning

Method AP AP5y AP;; APy APy AP, person mbike tffclight bike bus stop car truck
Main Results (copied from the main text for comparison)
Baseline 242 389 261 49 290 509 228 7.5 23.3 59 446 193 437 266
Learned Sep. 272 448 283 122 291 466 242 14.0 22.6 77 395 318 500 278
Learned Nonsep. 259 429 265 100 284 485 252 11.9 209 71 395 251 494 281
KDE (Sp) 267 433 278 82 297 541 254 13.5 22.0 8.0 459 213 481 293
KDE (Sr) 280 455 292 104 310 545 273 16.9 24.3 9.0 445 232 505 284
KDE (S¢) 272 447 284 91 309 536 274 14.5 23.0 70 448 219 499 295
LKDE (S;) 281 459 289 103 309 541 275 17.9 23.6 81 454 231 502 287
Upp. Bound (0.75x) 292 476 311 116 321 533 29.6 12.7 30.8 79 441 298 488 301
Upp. Bound (1x) 333 539 350 168 348 536 331 20.9 38.7 6.7 447 367 527 327
Without an Explicit Backward Label Mapplng (Sec 4.A.1)
KDE (Sp),noRoIGT 21 26 25 00 40 0.6 0.0 0.0 0.6 148 00 00 09
KDE (Sp) 1.8 27 19 0.0 00 32 0.6 0.0 0.0 0.0 133 00 01 06
KDE (S;),noRoIGT 25 30 29 00 01 43 0.7 0.0 0.0 06 170 09 00 09
KDE (Sr) 20 28 24 00 00 37 0.6 0.0 0.0 0.0 148 00 03 05
Upper Bound with Ground Truth Saliency (Sec 4.A.1)
KDE (S)) 29.6 487 307 120 328 544 283 16.3 27.7 99 439 306 509 288
KDE (S¢) 278 455 288 96 317 534 275 13.9 24.7 6.5 445 251 502 29.6
Sensitivity to Inter-Frame Motion (Sec 4.A.1)
KDE (Sy), 5 =10 294 483 307 115 328 546 279 15.9 27.2 9.7 437 311 506 287
KDE (S1),j =25 280 461 292 92 321 553 264 13.9 259 93 439 268 492 287
KDE (S;), j =50 262 429 277 66 305 549 241 12.1 249 8.6 441 218 462 279
KDE (S;), j =100 245 399 258 48 286 535 223 10.2 23.5 76 435 177 439 271
KDE (S;), j = 200 236 383 252 42 278 530 21.4 8.6 22.8 74 429 16.6 427 26.6

Table 4.4: Additional diagnostics experiments on Argoverse-HD. Please re-
fer to Sec 4.A.1 for a detailed discussion.

for RetinaNet are identical to the Faster-RCNN baseline. For YOLOF, we use
a learning rate of 0.012 and keep all other settings true to the original paper.
Results are presented in Tab 4.5.
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Figure 4.8: Plots showing the effect of motion (jitter) on AP using the KDE S;
formulation. Results have been normalized according to the AP at Ojitter. As
is intuitive, motion affects APg the most and AP}, the least. After finetuning
(with an artificial jitter of 50), we see that the model reacts less adversely to
jitter, indicating that our regularization has helped.

4.A.3 Comparison Against Additional Baselines

There are other approaches that make use of image warping or patch-wise
zoom for visual understanding. The first noticeable work [176], explained
extensively in the main text, warps the input image for tasks that have labels
invariant to warping. The second noticeable work [68] employs reinforce-
ment learning (RL) to decide which patches to zoom in for high-resolution
processing. In this section, we attempt to compare our FOVEA with these
two approaches.

Our method builds upon spatial transformer networks [102,176] and we
have already compared against [176] sporadically in the main text. Here
provides a summary of all the differences (see Tab 4.6). A naive approach
might directly penalize the discrepancy between the output of the (warped)
network and the unwarped ground-truth in an attempt to implicitly learn
the inverse mapping, but this results in abysmal performance (dropping
28.1 to 2.5 AP, discussed in Sec 4.A.1). To solve this issue, in Sec 4.3.1, we
note that [102,176] actually learn a backward map 7 ! instead of a forward
one 7. This allows us to add a backward-map layer that transforms bound-
ing box coordinates back to the original space via 7!, dramatically improv-
ing accuracy. A second significant difference with [102, ] is our focus on
attention-for-efficiency. If the effort required to determine where to attend
is more than the effort to run the raw detector, attentional processing can be
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Method AP AP50 AP75 APS APM APL

RetinaNet, Before Finetuning on Argoverse-HD

Baseline (0.5x) 185 297 186 13 172 488
KDE (S7) 185 312 179 45 168 449
Upp. Bound (0.75x) 24.8 388 255 45 287 520

RetinaNet, After Finetuning on Argoverse-HD

Baseline (0.5x) 226 389 214 40 220 531
KDE (S1) 249 403 253 71 277 506
Upp. Bound (0.75x) 299 486 301 9.7 325 542

YOLOF, Before Finetuning on Argoverse-HD

Baseline (0.5x) 150 254 143 0.6 11.0 46.0
KDE (S1) 16.8 290 160 09 140 464
Upp. Bound (0.75x) 21.6 355 223 23 222 527

YOLOF, After Finetuning on Argoverse-HD

Baseline (0.5x) 184 305 183 14 165 479
KDE (S7) 213 367 202 35 218 497
Upp. Bound (0.75x) 25.1 413 253 47 276 541

Table 4.5: Experiments with RetinaNet [138] and YOLOF [35]. We fol-
low the same setup as the experiment with Faster R-CNN. The top quarter
suggests that unlike Faster R-CNN, RetinaNet does not work off-the-shelf
with our KDE warping. However, the second quarter suggests similar per-
formance boosts as with Faster R-CNN can be gained after finetuning on
Argoverse-HD. Interestingly, for YOLOF, our method boosts AP in all cate-
gories — small, medium, and large — even with off-the-shelf weights.

inefficient (see the next paragraph). [176] introduces a lightweight saliency
network to produce a heatmap for where to attend; however, this model does
not extend to object detection, perhaps because it requires the larger capacity
of a detection network (see Sec 4.4.1). Instead, we replace this feedforward
network with an essentially zero-cost saliency map constructed via a sim-
ple but effective global spatial prior (computed offline) or temporal prior
(computed from previous frame’s detections). Next, we propose a tech-
nique to prevent cropping during warping (via reflection padding, as shown
in Fig 4.5), which also boosts performance by a noticeable amount. Finally,
as stated in the training formulation in Sec 4.3.2, it doesn’t even make sense
to train a standard RPN-based detector with warped input due to choice of
delta encoding (which normally helps stabilize training). We must remove
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this standard encoding and use GIoU to compensate for the lost stability
during training.

Method AP
FOVEA (Ours full) 28.1

w /o Explicit backward mapping 2.5

w/o0 KDE saliency (using saliency netasin [176]) Doesn’t train
w/o Anti-crop regularization 26.9
w/o direct RPN box encoding N/A

Table 4.6: Summary of key modifications in FOVEA.

Next, we attempt to compare against this RL-based zoom method [68]
using our baseline detector (public implementation from mmdetection [33])
on their Caltech Pedestrian Dataset [53]. However, while their full-scale
800 x 600 Faster R-CNN detector reportedly takes 304ms, our implemen-
tation is dramatically faster (44ms), consistent with the literature for mod-
ern implementations and GPUs. This changes the conclusions of that work
because full-scale processing is now faster than coarse plus zoomed-in pro-
cessing (taking 28ms and 25ms respectively), even assuming a zero-runtime
RL module (44ms < 28ms + 25ms).

4.A.4 Additional Visualizations

Please refer to Fig 4.9 and 4.10 for additional qualitative results of our method.

4.A.5 Detection-Only Streaming Evaluation

In Sec 4.4.2 of the main text, we provide the full-stack evaluation for stream-
ing detection. Here we provide the detection-only evaluation for complete-
ness in Tab 4.7. This setting only allows detection and scheduling, and thus
isolating the contribution of tracking and forecasting. We observe similar
trend as in the full-stack setting in Tab 4.2.

4.A.6 Additional Implementation Details

In this section, we provide additional details necessary to reproduce the re-
sults in the main text.
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Figure 4.9: Additional examples of the S; KDE warping method. Bounding
boxes on the saliency map denote previous frame detections, and bounding
boxes on the warped image denote current frame detections. The magni-
fication heatmap depicts the amount of magnification at different regions
of the warped image. (a) is an example of S; correctly adapting to an off-
center horizon. (b) shows a multimodal saliency distribution, leading to a
multimodal magnification in the z direction. (c) is another example of S;
correctly magnifying small objects in the horizon. (d) is a failure case in
which duplicate detections of the traffic lights in the previous frame leads to
more magnification than desired along that horizontal strip. One solution to
this could be to weight our KDE kernels by the confidence of the detection.
(e) is another failure case of S, in which a small clipped detection along the
right edge leads to extreme magnification in that region. One general issue
we observe is that the regions immediately adjacent to magnified regions are
often contracted. This is visible in the magnification heatmaps as the blue
shadows around magnified regions. This is a byproduct of the dropoff in
attraction effect of the local attraction kernel. Perhaps using non-Gaussian

kernels can mitigate this issue.
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Figure 4.10: Examples of KDE warp computed from bounding boxes, ex-
tracted from a training dataset (Sp) or the previous frame’s detections
(S1,Sc). We visualize predicted bounding boxes in the warped image. Re-
call that large objects won't be visible in the saliency due to their large vari-
ance from Eq 4.8. (a) Sp magnifies the horizon (b) S; magnifies the center
of the image, similar to Sp (c) Sy adapts to magnify the mid-right region (d)
Sc’s saliency combines the temporal and spatial biases.
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ID Method AP APs APy APp

1 Priorart[129] 13.0 1.1 92 266
2 4+ Better implementation 144 19 115 27.9
3 4+ Train with pseudo GT 157 3.0 148 271
4 2+ Ours (S)) 157 47 128 2638
5 3+ Ours (Sy) 171 55 151 276

Table 4.7: Streaming evaluation in the detection-only setting. First, we are
able to improve over previous state-of-the-art through better implementa-
tion (row 2) and training with pseudo ground truth (row 3). Second, our
proposed KDE warping further boosts the streaming accuracy (row 4-5).

For the learned separable model from Sec 4.4.1, we use two arrays of
length 31 to model saliency along the x and y dimensions, and during train-
ing, we blur the image with a 47 x 47 Gaussian filter in the first epoch, a trick
introduced in [176] to force the model to zoom. For the learned nonsepa-
rable model, we use an 11 x 11 saliency grid, and we blur the image with a
31 x 31 filter in the first epoch. We use an attraction kernel k with a standard
deviation of 5.5 for both versions. Additionally, we multiply the learning
rate and weight decay of saliency parameters by 0.5 in the first epoch and
0.2 in the last two epochs, for stability. We find that we don’t need anti-crop
regularization here, because learning a fixed warp tends to behave nicely.

For each of our KDE methods, we use arrays of length 31 and 51 to model
saliency in the vertical and horizontal directions, respectively. This is chosen
to match the aspect ratio of the original input image and thereby preserve
the vertical and horizontal “forces” exerted by the attraction kernel.

For the baseline detector, we adopt the Faster R-CNN implementation of
mmdetection 2.7 [33]. All our experiments are conducted in an environment
with PyTorch 1.6, CUDA 10.2 and cuDNN 7.6.5. For streaming evaluation,
we mention a performance boost due to better implementation in Tab 4.7
& Tab 4.2, and the changes are mainly adopting newer versions of mmde-
tection and cuDNN compared to the solution in [129] (switching from a
smooth L1 loss to L1 loss for the regression part and code optimization).
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Chapter 5

Progressive Knowledge
Distillation

5.1 Introduction

The success of recent deep neural network models generally depends on an
elaborate design of architectures with tens or hundreds of millions of model
parameters. However, their huge computational complexity and massive
memory/storage requirements make them challenging to be deployed in
safety-critical real-time applications, especially on devices with limited re-
sources, such as self-driving cars or virtual/augmented reality models. Such
concerns have spawned a wide body of literature on compression and accel-
eration techniques. Many approaches focus on reducing computation de-
mands by sparsifying/pruning networks [80, 124 ], quantization [174,232],
or neural architecture search [140,262], but reduced computation does not
always translate to lower latency because of subtle issues with memory ac-
cess and caching on GPUs [52,204].

Distillation: Rather than searching over new architectures, we seek to
better train existing lightweight architectures that have already been care-
fully engineered for efficient memory access. Instead of relying on addi-
tional data or human supervision, we follow the large body of work on
knowledge distillation [88,246], first proposed by Bucilud et al. for compress-
ing the information from a large ensemble of models into a small model [20].
While most recent efforts in knowledge distillation focus on image classifica-
tion, relatively less work exists for distilling object detectors. It is nontrivial
to extend classification distillation methods to object detection and instance
segmentation due to the complicated outputs of the tasks. Most detectors
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Figure 5.1: Progressive knowledge distillation on MS COCO [139]. We show
the accuracy-efficiency trade-off for state-of-the-art lightweight detectors ob-
tained by varying input image resolutions, focusing on improving off-the-
shelf (‘OTS") Mask R-CNN with ResNet-18 (black) and ResNet-50 (beige)
backbones. Sequential distillation with more accurate but slower teachers
(first the purple and then the green) strictly improves student performance
without any increase in inference time. Distillation is particularly effective
for lightweight networks, improving accuracy of ResNet-18 based Mask R-
CNN by 3.7% overall AP and 6.3% large-AP (the latter of which is particu-
larly relevant for finding nearby/large objects in an autonomous navigation
context).

operate with multi-task heads (for region proposal generation, bounding
box regression, and classification) that can generate variable-length outputs.
Many distillation methods make use of internal features for distillation, but
detection networks typically have complex modules that are hard to align
across different architectures. Moreover, teacher architectures that are sig-
nificantly larger than a student may serve as poor targets for distillation be-
cause of the capacity gap between the two models [39,157].

Our approach: To address these challenges, we propose a method to
learn lightweight detectors through progressive modular knowledge distillation.
Specifically, we focus on two problems: First, what knowledge should be
transferred from the teacher to the student? Second, how can we resolve the
capacity gap between a large teacher and a small student? Typical knowl-
edge distillation uses the logits of a teacher network as targets for learning
by the student network [55]. Activations of intermediate layers can also be
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used as targets [ 1,99, , ]. We follow this line of work, and use inter-

mediate activations of the teacher to supervise the student, making use of

modular backbone-neck-head structures to align student and teacher features.

This enables us to distill a student using teachers with different backbone

architectures or even different input resolutions. For the second question,

although networks with more advanced architectures tend to have better

performance, empirical results show that a larger model may not serve as a

better teacher because large capacity gaps between the teacher and student

can degrade knowledge transfer [39]. On the other hand, the architectural
similarity between the teacher and student can significantly influence the
effectiveness of distillation [157]. Because different teachers may provide
complementary knowledge to a student, several multi-teacher distillation
methods have recently been proposed [190,216,245]. One rather straight-
forward approach might be using the average response (of logits or features)
across all teachers as the supervision signal [88]. We find that sequential dis-
tillation of multiple teachers arranged into a curriculum significantly improves
progressive knowledge transfer. Given a student, we design a heuristic algo-
rithm to determine the order of teachers to use. Furthermore, by analyzing
the training loss dynamics of the student model, we find the improvement is
not due to minimizing the training loss better. Rather, the knowledge trans-
ferred from multiple teachers can lead the student to a flat minimum, and
thus help the student generalize better.

To summarize, we use the feature-based knowledge from multiple teach-
ers to progressively distill a student. Our main contributions include:

e We propose a framework for learning lightweight detectors through pro-
gressive knowledge distillation. Our approach is simple, straightforward,
yet effective.

e We develop a principled way to automatically design a sequence of teach-
ers appropriate for a specific student and progressively distill the student.

e We perform comprehensive empirical evaluation on the challenging MS
COCO dataset [ 139]. We have observed consistent gains (> 3% AP), sum-
marized in Figure 5.1 and Table 5.3&5.4.

e We show that the performance gain comes from better generalization rather
than better optimization.

5.2 Related Work

Knowledge Distillation: Knowledge distillation or transfer, an idea of train-
ing a shallow student network with supervision from a deep teacher, was
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originally proposed in [20], and later formally popularized by [58]. Differ-
ent categories of knowledge can be used, such as response-based knowl-
edge [58], feature-based knowledge [87, 184], and relation-based knowl-
edge [240]. Several multi-teacher knowledge distillation methods have re-
cently been proposed [190, 216], which usually use the average of logits
and feature representations as the knowledge [243], or randomly select one
teacher from the pool of teacher networks at each iteration [66]. Mirzadeh et
al. [157] find that an intermediate teacher assistant (which is decided based
on architectural similarities) can bridge the gap between the student and
the teacher. We find it more effective to use a sequence of teachers instead
of their ensemble, and extend [157] to a more general case where teacher
models have diverse architectures and their relative ordering is unknown.
Object Detection and Instance Segmentation: The past several years have
seen remarkable progress in object detection and instance segmentation. A
variety of convolutional neural network (CNN) based object detection frame-
works have been proposed and could be generally divided into two cate-
gories: single-stage methods and two-stage methods. Typical single-stage
methods include YOLO [178,179] and RetinaNet [138], and typical two-
stage methods include Faster R-CNN [ 180], R-FCN [44], and Mask R-CNN [
Recently, several multi-stage frameworks are proposed and achieve the state-
of-the art performance, such as HTC [32] and DetectoRS [169]. These de-
tection frameworks achieve better detection accuracy with better backbone
networks as feature extractors and with more complicated heads, which are
more computationally expensive.

Knowledge Distillation for Detection and Segmentation: To reduce the
computational cost, knowledge distillation has been used to develop efficient
detectors [30,43,51,100,143,196,221]. Liet al. [131] mimic ROI-pooled fea-
ture responses between a student and teacher to learn an efficient detector.
Shmelkov et al. [196] mimic the logit responses from ROI-pooled features
between a student and teacher to combat catastrophic forgetting during in-
cremental learning. Chen ef al. [31] use mimic learning between the CNN
backbones of a teacher and student Faster R-CNN. Mehta and Ozturk [155]
propose objectness scaled distillation which weighs the loss incurred by each
teacher predicted object using its confidence score. Wang et al. [219] ap-
ply mimic learning to imitate the responses of a teacher on regions near the
ground-truth boxes. Zhang et al. [248] use attention and non-local mod-
ules to guide distillation, enabling the student to focus on foreground ob-
jects and learn relation between objects. Guo et al. [78] decouple features
from object and background regions and assign different importance for the
student to learn. Dai et al. [46] make use of general instance patches, and
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design feature-based and relation-based distillation losses. Different from
these methods that distill a single teacher, we study distillation from multi-
ple teachers where a proper sequence of teachers is required. Also, we find a
very simple feature matching loss is adequate to significantly boost student
performance, and thus our training pipeline is more efficient than previous
methods.

5.3 Approach

We propose to progressively distill a student model S with a pool of N teach-
ers P = {T;}),. Both the student and teacher models are composed of
four modules: (1) backbone architecture, which is used for feature extrac-
tion, such as ResNet [84] and ResNeXt [233]; (2) neck, which is used to ex-
tract multi-level feature maps from different stages of the backbone, such as
FPN [137] and Bi-FPN [205]; (3) optional region proposal network (RPN),
which is used in two-stage detectors for sparse prediction; and (4) head,
which generates final predictions for object detection and segmentation. We
denote the output feature maps of the neck as FN*', where Net can be either
the student model S or one of the teachers T; € P. With neck modules like
FPN, the feature maps can be multiple-level. We first introduce how to dis-
till with a single teacher 7; in Section 5.3.2 and then introduce how to distill
with multiple teachers in Section 5.3.3.

5.3.1 Models

To test the versatility of our progressive knowledge distillation strategy, we
consider a diverse set of object detectors, namely, RetinaNet [138], Mask R-
CNN [82], FCOS [210], HTC [32], and DetectoRS [169]. These networks
have a wide range of runtime and detection performance.

RetinaNet and FCOS are single-stage detectors, consisting of ResNet back-
bone, FPN neck, and a detection head. RetinaNet produces dense predic-
tions based on anchors, while FCOS is an anchor-free method producing
multi-level, per-pixel predictions.

Mask R-CNN, HTC, and DetectoRS are two/multi-stage detectors, con-
sisting of ResNet backbone, FPN neck, region proposal networks (RPN),
and prediction heads. In Mask R-CNN, the prediction heads predict cat-
egories, refine the bounding box, and generate a pixel mask of the object
based on the first stage proposal. HTC is a cascading framework interweav-
ing detection and segmentation for a joint multi-stage processing. DetectoRS
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Figure 5.2: Progressive knowledge distillation for object detectors. Left:
For each teacher-student pair, the training target is composed of two parts:
Lgistin minimizes the discrepancy between the neck feature maps of the stu-
dent and the current teacher, and Lgetect is the original detection loss based
on the ground truth. Right: We use a sequence of teacher models to distill
the lightweight student detector. The sequence of teachers forms a curricu-
lum. Using a proper sequence of teachers can significantly boost the stu-
dent model’s performance. The example performance curve illustrates our
method improves the COCO validation AP of ResNet-50 backboned

student first from 36.5% to 37.9% using HTC (Teacher 1), and then
from 37.9% to 39.9% using DetectoRS (Teacher 2).

extends HTC with the switchable atrous convolution (SAC) and the recur-
sive feature pyramid (RFP).

We select RetinaNet and Mask R-CNN as the student models, due to
their low latency, simple structure, and wide application, for single-stage
and two-stage object detection respectively. More advanced models such as
DetectoRS have better detection performance, but require much more train-
ing/ inference time, so we use them as teachers. We aim to achieve a higher
performance without changing the student model’s architecture, with the
help of a sequence of teacher models from the pool.

5.3.2 Single Teacher Distillation

In order to learn a fast yet accurate student detector S through distillation,
we encourage the feature representation of a student network to be similar
to that of the teacher network [31,237]. To this end, we minimize the dis-
crepancy between the feature representations of the teacher and the student.
Without bells and whistles, we simply minimize the L2 distance between F'"*
and F*:

Laisan = ||F" — T(FS)H; , (5.1)

where 7 () is a function used to match the feature map dimensions of the
teacher and the student.
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We define r(-) as follows:

e (Homogeneous) If the numbers of channels C' and the spatial resolutions
H,W are both the same between 7} and S, i.e., CT' = C°, H': = H?,
WTi = W#, r(-) is an identity function.

o (Heterogeneous, different channels) If the numbers of channels C' are
different and the spatial resolutions H, W are the same, i.e., CT £ OF,
HT = HS, W% = W9, we use 1 x 1 convolutional filters as r(-).

o (Heterogeneous, different resolutions) If the spatial resolutions H, W are
different and the numbers of channels C' are the same, i.e., CT = C¥,
HT £ HS, WT £ W¥, we use an upsampling layer as 7 ().

Note that the mapping () is only required at training time and thus not

adding any overhead to the inference.

Our overall loss function can be written as:

L= )\Ldisﬁll + Ldetecta (52)

where )\ is a balancing hyper-parameter and Letect is the detection loss based
on the ground truth labels. Compared to state-of-the-art detection distilla-
tion approaches [31,78,219,248], which introduce more complex designs of
the distillation loss, our method is simpler and does not require running the
heads of the teacher model. Our distillation loss is illustrated in Figure 5.2-
Left.

5.3.3 Progressive Distillation with Multiple Teachers

The overall aim of knowledge distillation is to make a student mimic a teacher’s
output, so that the student is able to obtain similar performance to that of
the teacher. However, the capacity of the student model is limited, making it
hard for the student to learn from a highly complex teacher [39]. To address
this issue, multiple teacher networks are used to provide more supervision
to a student [190, 243]. Unlike previous methods [120, 162,207,231, 247]
which distill knowledge from the ensemble of logits or feature information
simultaneously, we propose to distill feature-based knowledge from multi-
ple teachers sequentially. Our key insight is that instead of mimicking the en-
semble of all feature information together, the student can be distilled more
effectively by the knowledge provided by one proper teacher each time. This
progressive knowledge distillation approach can be considered as designing
a curriculum [10] offered by a sequence of teachers, as illustrated in Fig-
ure 5.2-Right.

The crucial question is: What is the proper order O of the teachers when dis-
tilling the student? A brute-force approach might search over all orders and
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pick the best (that produces a distilled student with the highest validation
accuracy). However, the space of permutation orders grows exponentially
with the number of teachers, making this impractical to scale. Therefore, we
propose a principled and efficient approach based on a correlation analysis
of each model’s learned feature representation.

First, we quantify the dissimilarity between each pair of models’ repre-
sentations, as a proxy for the capacity gap between the two models. Rep-
resentation (dis)similarity [113,172,218] has been studied to understand
the learning capacity of neural models. In our setting, we find a linear re-
gression model is adequate for measuring the representation dissimilarity.
Given two pre-trained detector models A and B, we can freeze the two mod-
els’ parameters, thus fixing the feature representations. Then we can learn
a linear mapping r(-), implemented by a 1 x 1 convolutional layer at each
feature level, as specified in the heterogeneous case in Section 5.3.2. r(-) is
trained to minimize Lgisun, SO it can transform A’s features to approximate
B’s features. After training r(-), we evaluate it by Lgisun on the validation set,
and denote the validation loss as the adaptation cost C(A, B). This metric can
be a proxy of the capacity gap between a pair of models: When C(A, B) is
zero, a linear mapping can transform A’s features to B’s, and there is no addi-
tional knowledge from B. When C(A, B) is large, it is more difficult to adapt
A’s representation to B’s. Note that the adaptation cost is non-symmetric —
it is relatively easier to adapt a high-capacity model’s representations to a
low-capacity model’s representations, than the other way around.

We design a heuristic algorithm to acquire a proper distillation order O
automatically, as shown in Algorithm 2. Suppose the maximum number
of teachers to be selected is limited by £ (which can be arbitrarily decided
according to desired training time), and we aim to find a teacher index se-
quence a no longer than k. We construct the teacher order backwards: The
best performing teacher is set as the final target 7,,, ; before the final teacher,
we use another teacher, which has the smallest adaptation cost C(-, 7, ) to
that final teacher, as the penultimate teacher 7,,, ,. We repeat this procedure
to find preceding teachers, until: (1) when trying to select T,,;, we find the
transfer costs from remaining teachers to the next teacher C(-,75,,,,) are all
larger than the transfer cost from the student to the next teacher C(S, 7., );
or (2) we reach the given maximum step limit k. Intuitively, the resulting
sequence of teachers bridges the gap between the student model and the
teacher, with an increasingly difficult curriculum.

109



Algorithm 2: Determining the Teacher Order

Input: Student model S
Pool of teacher models P = {T;},
Teacher models’ performance {Q(T;)}Y,
Maximum number of selected teachers &
Output: Sequence of teachers O,len(0) < k
Pick the best performing teacher: 7T,,, + arg maxy,ep Q(7y),
O« [1T.,]
Exclude from pool: P « P\ {1y, }
forj«+ k—1to1ldo
Get candidate sub-pool:
Pj = {Tu ‘ T, € Pvc(TuvT&jH) < C(Sv Taj+1)}
if P; # () then
Pick the teacher closest to T,
T,, + argming,ep, C(T,, T,
Prepend 7, to O
Exclude from pool: P < P\ {T,,}
else
| Break
end
end
return O

j+1°

1)

Our algorithm for designing teacher orders is lightweight. In fact, the
main computation overhead of our algorithm is to train a set of tiny linear
mappings (R*° — R?* for FPN-based [137] detectors). It takes about 3
GPU hours for each student model, which is negligible compared to the dis-
tillation process that takes hundreds of GPU hours.

5.4 Experiments

We experiment with a variety of student-teacher pairs on object detection
and instance segmentation tasks. We mainly focus on distilling the vanilla
RetinaNet [ 138] and Mask R-CNN [82 ] models to approach the performance
of slower, more sophisticated architectures. We investigate the impacts of
different teachers and their orders. We show the generality and robustness
of our framework on different datasets. We evaluate the improved accuracy-
efficiency trade-off not only in the standard offline setting, but also in the
recently proposed streaming perception scenario [129].
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Input AP Runtime
Model Res. Backbone Neck Head Box Mask  (ms)

Teachers

I 1x R50 FPN Mask R-CNN 382 347 51

I 1x R50 FPN FCOS 38.7 - 36

1 1x R50 FPN HTC 423 374 181
v 1x R504+SAC RFP HTC (DetectoRS) | 49.1 42.6 223
A% 1x R50+SAC RFP  Mask R-CNN 451 401 142
Students

I 1x R50 FPN  RetinaNet 36.5 - 43

I 1x R50 FPN Mask R-CNN 38.2 347 51

1 1x R18 FPN  Mask R-CNN 33.3 305 29

v 0.25x  R50 FPN  Mask R-CNN 258 23.0 17

Table 5.1: Configurations of the stu-
dent and teacher detectors, and their
performance on the COCO bench-
mark. We investigate a variety of
models with heterogeneous input
resolutions, backbones, necks, and
head structures. “1x” input resolu-
tion refers to the standard 1333 x
800 resolution, and ‘0.25x” means
333 x 200 resolution. ‘R-" backbones
are ResNets with different number
of layers.

S': RetinaNet
as|

0.060 <~ 1.94
@ . 1.401

Figure 5.3: Adaptation costs among

models. The number on each di-
rected edge is the adaptation cost
metric described in Section 5.3.3.
Some edges are not shown for visual
clarity. The red path is suggested
by our proposed Algorithm 2 when
k = 3 teachers are selected: (1) use
the best performing Teacher IV as
the final teacher in the sequence, (2)
use the teacher closest to Teacher IV,
which is Teacher III, as the second
teacher, and (3) use the teacher clos-
est to Teacher III, which is Teacher I,
as the first teacher.

Datasets: We evaluate on two challenging object detection datasets: MS
COCO 2017 [139] (licensed under CC BY 4.0) and Argoverse-HD [129] (li-
censed under CC BY-NC-SA 4.0). The gold-standard COCO dataset con-
tains bounding boxes and instance segmentations for 80 common object cat-
egories. We train our models on the split of train2017 (118k images) and
report results on val2017 (5k images). Due to space limit, we discuss details
and experiment results of Argoverse-HD in the supplementary materials.
Evaluation Metrics: We report the standard COCO-style Average Precision
(AP) metric which averages AP across Intersection over Union (IoU) thresh-
olds from 0.5 to 0.95 with an interval of 0.05. We report AP for large, medium,
and small objects, and with IoU thresholds at 0.5 and 0.75. We report end-
to-end latency (from an unprocessed image to the final bounding boxes and
masks) as the runtime, and measure it on a single NVIDIA Tesla V100 Graph-
ics Card. We report streaming AP for accuracy-latency trade-off evaluation,
which is explained in the supplementary materials.

Student and Teacher Models: To investigate the impact of different teacher
models and their combinations, as shown in Table 5.1, we construct a variety
of student-teacher pairs from a set of state-of-the-art object detection and in-
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stance segmentation networks, including Mask R-CNN [52], RetinaNet [ 138],
FCOS [210], HTC [32], and DetectoRS [169].

Baselines: We compare with three most recent state-of-the-art approaches
to detector distillation [46,78,248]. We directly use the best reported results
from their paper for comparison, even though each previous work uses a
different teacher model that best fits the method. Our main contribution is
orthogonal to previous methods: We leverage a sequence of teachers to distill
the student, instead of designing a sophisticated distillation loss to better
transfer knowledge from one single teacher. Since we are studying a new
setting where multiple teachers are available, which is missing in previous
literature, we mainly focus on the absolute improvements — the performance
of our distilled student models compared with the original student models
and with the performance upper-bound of the teacher models. Meanwhile,
the combination of these two orthogonal directions can lead to further im-
provement. We demonstrate this by combining the attention-guided and
non-local distillation from [248] (which includes public code and results for
both of our student models) with our sequential distillation. We find using
a sequence of teachers, instead of their ensemble, is more effective. Due to
space limit we leave this comparison in the supplementary material.
Implementation Details: We implement detectors using the MMDetection
codebase [33]. We train on 8 GPUs for 12 epochs for each distillation. For
MS COCO, we use the standard input resolution of 1,333 x 800, with each
GPU hosting 2 images. We use an initial learning rate of 0.01 (for RetinaNet
students) or 0.02 (for Mask R-CNN students). We use stochastic gradient
descent and a momentum of 0.9. We perform a grid search over the hyper-
parameter \. While the optimal values are dependent on the architectures
of the teacher and student models, we find the performance is not very sen-
sitive to A between 0.3 and 0.8. We set A = 0.5 for RetinaNet students and
A = 0.8 for Mask R-CNN students.

5.4.1 Searching for the Near-Optimal Teacher Order

As we have discussed in Section 5.3.3, finding the optimal order of teachers
for the progressive knowledge distillation takes factorial time complexity. To
acquire a near-optimal teacher order, we propose the heuristic Algorithm 2.
In this section, we will validate that this algorithm can provide highly com-
petitive teacher orders.

To achieve this comprehensive comparison, we distill Student I with all
orders of teachers from the pool Teacher I-IV. We use a reduced training bud-
get: For each teacher, we only train the student for 3 epochs on MS COCO.
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38.4

Suggested  Student | All student Ranking in 38,0 97 Our teacher orders Y S— .
teacher order AP APrange  all orders % 37.64 o :
1 v 367 | [36.2,36.8] 2/4 é 3721
2| M-IV 376 | [362,376] 1/16 & 3681 s :
3| I=II-=IV 379 | [36.2,38.0] 2/40 3647 ° . :
4| I-II-1V 379 | [36.2,382] 7/ 64 360 T T I T

Table 5.2: Comparison of teacher order suggested by Algorithm 2 with all
other orders under limited training budgets [130]. k£ denotes the maximum
number of used teachers. Left: We show some statistics of possible student
AP performance and the ranking of the student using our distillation order.
Right: We visualize the comparative advantage of our teacher orders (red
dots) over all other orders (black dots). Some black scatter points overlap
due to the same student AP. Our proposed Algorithm 2 can consistently pro-
duce highly competitive distillation orders of teachers.

We use the linear learning rate schedule, which has been shown comparably
effective in a limited budget setting by [ 130].

We first measure the adaptation costs among the student and teacher
models. A visualization of the cost graph is shown in Figure 5.3. Follow-
ing Algorithm 2, we can construct a sequence of teachers. We compare
the teacher orders given by our proposed algorithm against all other orders,
via the performance of the distilled student’s performance. As shown in
Table 5.2, teacher orders suggested by Algorithm 2 are consistently near-
optimal in this setting. In the following sections, we will use order provided
by Algorithm 2, without brute-force iterating over all possible orders. One
may question that the greedy path selection shown in Figure 5.3 is be infe-
rior to a global optimization algorithm. However, we find the later teachers
impact the student performance more profoundly, so we need to greedily
select teachers from the sequence tail. More details and comparison with
other heuristics are provided in the supplementary material.

5.4.2 Distillation with Homogeneous Teachers

We start by distilling RetinaNet and Mask R-CNN with a ResNet-50 back-
bone (Student I & II). Here we consider homogeneous teachers where the
numbers of channels and the spatial resolutions of feature maps are con-
sistent between the student and teacher. For the RetinaNet student, we still
consider the pool of Teacher I-IV, the same as Section 5.4.1. To control the
total training time, we limit the number of teachers to be 2. Thus, we initial-
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ize from an off-the-shelf (‘OTS’) student, and sequentially distill it with 2
teachers, in total 24 epochs (equivalent to a 2x training schedule). We also
compare with student models trained with a longer 3x training schedule.
For the Mask R-CNN student, we should no longer use Teacher I (the stu-
dent modelitself) or Teacher II (the single-stage teacher does not outperform
the student by a large margin). To compensate for that, we include Teacher
V, which can be considered as a hybrid model of DetectoRS backbone /neck
and Mask R-CNN head. Thus, the teacher pool for Mask R-CNN includes
Teacher III-V. More architectural details are listed in Table 5.1.

Following Section 5.4.1, we use Algorithm 2 to determine the sequence
of teachers to use for each student. For the RetinaNet student, our algo-
rithm suggests teacher sequence III-1V. For the Mask R-CNN student, our
algorithm suggests teacher sequence V—IV. Table 5.3 shows the results on
COCO. Additional results, analysis, and ablation studies of Mask R-CNN
distillation can be found in the supplementary materials.

Overall performance: Our distilled student models (row 3&10) signifi-
cantly improves over the ‘OTS’ students (row 1&8). The box AP of RetinaNet
is improved from 36.5% to 39.9% (+3.4%). The box AP of Mask R-CNN is
improved from 38.2% to 41.4% (+3.2%) and the mask AP of Mask R-CNN is
improved from 34.7% to 37.3% (+2.6%). After progressive distillation, our
resulting Mask R-CNN detector has comparable performance with HTC teacher,
but much less runtime (51ms vs. 181ms).

Comparison with baselines: First, the performance gain is not merely
from a longer training schedule. Our distilled student models (row 3&10)
consistently outperform original students trained with a 3x schedule (row
2&9). Moreover, our approach itself has outperformed previous methods in
row 4, 5,6, 11. This comparison shows that a very simple distillation loss can
already outperform all previous complicated designs, if a sequence of teach-
ers is properly used. Meanwhile, our training pipeline is more efficient than
other distillation-based methods. For example, with the same student and
teacher pair and the same number of epochs, our method requires about
20% less training time than [248] because we directly distill feature maps
without computing attention and non-local modules. It is worth noting that
our detection performance for large objects receives the most gain (about 6%
AP/, improvement for both models). The reason why we emphasize APy, is
that, in an efficiency-centric real-world application (e.g. autonomous driv-
ing, robot navigation), detecting nearby larger objects is more critical than
others. From a realistic perspective, better AP, shows better applicability of
our approach. When further augmenting an advanced distillation mecha-
nism [248] with sequential distillation (row 7&12), we achieve the best stu-
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Box Mask

ID | Model Method AP APy, AP;; APg APy AP, | AP APsy, AP;; APs APy AP
1 OTS 365 554 391 204 403 481
2 Longer 3x training schedule 395 588 422 23.8 432 503
3 Reti Ours, distilled by Teachers III—1V 39.9 59.2 427 217 433 541
etinaNet
4 | (StudentI) Guo et al., CVPR 2021 78] 39.7 59.6 429 234 43.6 529
5 Dai et al., CVPR 2021 [46] 39.1 59.0 423 228 431 523
6 Zhang et al., ICLR 2021 [248] 39.6 588 421 227 433 525
7 Our sequential distillation + [248]’s loss | 40.2 59.4 43.1 217 435 55.6
8 Mask OTS 382 588 414 219 409 495 347 557 372 183 374 472
9 RCNN Longer 3x training schedule 409 613 448 244 446 523|371 583 399 184 398 519
10 (Student Ours, distilled by Teachers V—IV 414 619 451 233 450 554 373 588 398 194 404 521
11 ‘ 1) ‘ Zhang et al., ICLR 2021 [248] 1 413 619 451 233 448 553|372 586 401 173 400 551
12 Our sequential distillation + [248]’s loss | 41.6  62.0 454 233 447 559 |374 59.0 404 17.5 40.0 56.2

t Reproduced using the code by the authors to acquire complete results including AP5o, AP75.

Table 5.3: Homogeneous distillation of COCO detectors, where students
with ResNet-50 backbones are distilled with teachers with ResNet-50 back-
bones. We report the detection (‘Box”) and segmentation (‘Mask”) APs, and
we compare our distilled student with off-the-shelf (‘OTS’) student, longer
trained student, and the state-of-the-art distillation baselines. Our distilled
student significantly improves the detection AP over the ‘OTS’ student by
3.4% for RetinaNet and 3.2% for Mask R-CNN, and outperforms the base-
lines. A combination of our sequential distillation with an advanced distil-
lation loss design can lead to even further improvement.

dent performance. This fact reveals more potential in detector distillation: In
parallel to developing better distillation mechanisms, a teacher curriculum
sequence may further boost the student performance for free.

5.4.3 Distillation with Heterogeneous Teachers

We now consider a more challenging heterogeneous scenario, where stu-
dents and teachers have different backbones or input resolutions. Specifi-
cally, Student III, a ResNet-18 Mask R-CNN, is distilled with ResNet-50 teach-
ers; Student IV, a model with reduced input resolution, is distilled with
teachers trained with larger input resolutions. The results are summarized
in Table 5.4, and additional results and ablation studies are included in the
supplementary material.

Heterogeneous backbones: Student III has a ResNet-18 backbone and
about half runtime as its ResNet-50 counterpart (Teacher I). We find the
proper distillation scheme for Student III is to use the sequence of Teacher
[—=+V—=1V, which significantly improves Student III over the ‘OTS” model.
The box AP of Student III is improved from 33.3% to 37.0% (+3.7%), and
especially for large objects, AP, is improved from 43.6% to 50.0% (+6.4%).
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AP Runtime

ID | Model Backbone Resolution Box Mask (ms)
1 | TeacherI R50 1x 382 34.7 51
2 | Teacher IV R50 1x 49.1 426 223
3 | Teacher V R50 1x 45.1 40.1 142
4 | Student III, OTS R18 1x 333 305 29
5 | Student III, Our distilled | R18 1x 37.0 33.7 29
6 | Student IV, OTS R50 0.25x 25.8 23.0 17
7 | Student IV, Our distilled | R50 0.25% 31.5 28.2 17

Table 5.4: Heterogeneous distillation of COCO detectors, where students
with smaller backbones (ResNet-18 vs. ResNet-50) or input resolutions
(333 x 200 vs. 1333 x 800) are distilled with heterogeneous teachers, requir-
ing additional transfer logic (Sec. 5.3.2). We report the detection (“Box’),
segmentation ("‘Mask’) APs and runtime, and compare our distilled student
with its teachers and off-the-shelf (‘OTS’) student. Our distilled students
significantly improves the APs over the ‘OTS’ students by over 3%.

Heterogeneous input resolutions: Although inputs with varying res-
olutions can be fed into most object detectors without changing the archi-
tecture, the performance often degenerates when there is a resolution mis-
match between training and evaluation [129,205]. If ultimately we want
to apply a detector to low-resolution inputs for fast inference, it is better to
use low-resolution inputs during training. On the other hand, we conjecture
that teachers with high-resolution inputs may provide finer details that can
assist the student. With our progressive distillation approach, we investi-
gate the improvement of a low-resolution student distilled by a sequence of
teachers with high-resolution inputs. We denote the standard input reso-
lution 1333 x 800 as 1x, and a reduced resolution 333 x 200 as 0.25x. We
distill Student IV (with 0.25x resolution) by a sequence of Teacher I variants
(0.5x — 0.75x — 1x). From Table 5.4, we can see substantial improvement
brought by progressive knowledge distillation: the box AP is improved from
25.8% to 31.5% (+5.7%) and the mask AP is improved from 23.0% to 28.2%
(+5.2%).
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5.4.4 Unpacking the Performance Gain: Generalization or
Optimization?

We have shown that our distilled student significantly improves the final
accuracy on the validation data over the off-the-shelf student. As further
demonstrated in Figure 5.4a, the detection validation accuracy of the dis-
tilled student is gradually increasing during the distillation process, and
achieving a higher value compared with the student trained without teach-
ers. A natural question then arises — why is distillation helping? There are
two possible hypotheses: (1) improved optimization: distillation facilitates the
optimization procedure, leading to a local minimum with a lower loss, and
(2) improved generalization: the distillation process helps the student gener-
alize to unseen data.

Improved optimization is typically manifested through a better model, a
lower training loss and a higher validation accuracy, which is exactly the case
for Mask R-CNN, HTC and DetectoRS. As a consequence, one might think
that distillation works in the same way. However, our investigation suggests
the opposite — our progressive distillation increases both the validation ac-
curacy and the training loss, and therefore effectively reduces the general-
ization gap. In Figure 5.4, we compare the original RetinaNet model and the
distilled student, which have the same architecture, the same latency and are
trained on the same data, but with different supervision (only ground-truth
labels vs. additional knowledge distillation). To eliminate the influence of
learning rate changes, we train the original student with a 3x schedule and
restart the learning rate at the same time with the distilled student. Inter-
estingly, although distillation can improve the student’s validation perfor-
mance, the training detection loss of the distilled student is higher than the
original student. This suggests that distillation does not help the optimiza-
tion process to find a local minimum with a lower training loss, but rather
strengthen the generalizability of the student model.

To further support this observation, we also visualize the local loss land-
scape, following the technique proposed by Li et al. [127]. The distilled stu-
dent has a flatter loss landscape (Figure 5.4d) compared to the original one
(Figure 5.4c). As widely believed in the machine learning literature, flat
minima lead to better generalization [89, 106]. The observation shown in
Figure 5.4 is illustrated for RetinaNet, but we also have similar observation in
other student/teacher pairs. As a conclusion, knowledge distillation, which
enforces the student to mimic the teachers’ features, can be considered as an
implicit regularization, and helps the student combat overfitting and achieve
better generalization.
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Figure 5.4: Comparisons of student models trained with and without teach-
ers. We train a ResNet-50 backboned RetinaNet (Student I) with: (A) a
prolonged 3x training schedule (curves in blue); (B) progressive knowl-
edge distillation from HTC (Teacher III) and then DetectoRS (Teacher IV)
(curves in -green-red). We compare the validation AP (Figure 5.4a)
and the training detection loss Lgetect (Figure 5.4b) of the two students dur-
ing the training process. Despite its worse training loss, the distilled student
can generalize better on the validation set. We also compare the loss land-
scapes [127] of the original student (Figure 5.4c) and the distilled student
(Figure 5.4d). Distillation can guide the student to converge to a flatter lo-
cal minimum. These observations suggest distillation helps generalization
rather than optimization.
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5.5 Conclusion

We present a simple sequential approach to knowledge distillation, which
progressively transfers the knowledge of a sequence of high-capacity teach-
ers to learn a lightweight object detection and instance segmentation model.
Our approach leverages modular structures to align student and teacher fea-
tures and arranges multiple teachers into a curriculum, thus effectively mit-
igating the representation gap between the teacher and student. Extensive
experiments demonstrate our state-of-the-art accuracy-latency trade-off on
the challenging COCO dataset. We also conduct analysis to examine why
distillation helps given the same model and dataset and find that distillation,
via the implicit regularization imposed by teachers’ supervision, improves
generalization rather than optimization.
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5.A Appendix

5.A.1 More Results on Searching for the Near-Optimal Teacher
Order

In this section, we show more detailed results about searching a proper
teacher order for progressive knowledge distillation, and validate the ap-
proach we propose in the main paper. As described in Section 3.3, we first
quantify the adaptation cost C(-, -) between every pair of models in our pool,
and then use a heuristic method (Algorithm 1) to construct a sequence of
teachers. We have shown that the teacher order suggested by our algorithm
is highly competitive in Table 2. One might think there should be better
choices than a greedy algorithm on a directed graph, such as a shortest-path
algorithm. To validate our algorithm design, we compare our Algorithm 1
against several other algorithms.

To begin with, we include the detailed adaptation costs C(-, -) among Reti-
naNet (Student I) and its teachers (Teacher I-IV) in Table 5.5. As described
in Section 4.1, we have distilled Student I with all possible teacher orders in
the pool, using a reduced training budget of 3 epochs for each teacher. The
results of these mini-budget distillation are summarized in Table 5.6.

Table 5.5: Adaptation costs among Student I (RetinaNet) and Teacher I-IV
(Mask R-CNN, FCOS, HTC, DetectoRS). The adaptation cost is computed
pair-wise as described in Section 3.3 of the main paper. Using this metric we
can construct a directed graph, as illustrated in Figure 3.

To StudentI Teacherl TeacherIl TeacherIIl Teacher IV
From
Student I - 0.939 0.060 1.568 1.254
Teacher I 0.183 - 0.070 0.934 0.963
Teacher II 0.339 1.181 - 1.940 1.401
Teacher III 0.191 0.484 0.082 - 0.890
Teacher IV 0.232 0.767 0.077 1.248 -

Given the adaptation costs in Table 5.5, we can construct a directed graph,
part of which has been illustrated in Figure 3. On the directed graph, we can
run several algorithms to select a path. Besides our Algorithm 1, one may
also propose these algorithms:

e Shortest-path (sum): Set the student as the source node, and set the best
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Table 5.6: Performance of Student I (RetinaNet) distilled with different
teacher sequences, under reduced training budgets. For each teacher in the
sequence, the student is trained for 3 epochs on COCO. After progressive
knowledge distillation, the student is evaluated on the COCO validation set.
The teacher orders suggested by Algorithm 1 are marked bold.

Length Teacher  Student Length Teacher Student Length Teacher Student

Sequence AP Sequence AP Sequence AP

1 36.8 —I—IV 38.0 NI—I—I1-IV 38.2

1 v 36.7 [-III—-IV 37.9 M—I-I-IV 38.1
I 36.4 I—IV—II 37.9 [-I—II—IV 38.1

I 36.2 I—II—IV 37.9 O—II—I1-IV 38.0
II—I—IV 37.8 [-II—-IV—II 38.0

nI—I1v 37.6 I-II—IV 37.7 O—I-II—IV 379
IV—II 373 I-IV—II 37.6 NI—I—-IV—II 379
II—1I 37.3 IV—II—III 37.5 [ I—II—IV 379

I—=IV 37.3 IV—III—II 37.5 IV—=I=II—1I 37.7
IV—III 37.2 I—I-IV 37.5 M—I—IV—III 37.7

’ 1-11 37.1 I—II—II 37.5 [—-II—IV—III 37.7
VI 37.0 3 IV—I-III 37.4 4 IV=II—I1-1I 37.6
I—1v 37.0 I—IV—III 37.4 IV—=I=II—III 37.6

-1 37.0 II—IvV—I 37.4 MI—IV—II—I 37.6

II—I 36.9 II—I—II 37.4 MI—IV—I—II 37.6
II—III 36.8 I-IV—II 37.4 MI—I—IV—I 37.6

111 36.8 IV—II—I 37.3 [=IV—II—II 37.6
IV—III—I 37.3 IV—=II—I—III 37.5

IV—=I—=II 37.3 IV—II—II—1 37.5

[—=II—III 37.3 I—-IV—-I—III 37.5

II—=IV—I 37.2 I—II—IV—I 37.5

II—I—III 37.2 [=IV—=II—II 37.5

I—I1—I 37.2 I—IV—II—I 37.4

II—II—I 37.1 IV—=II—=II—I 37.3

Table 5.7: Comparison of four algorithms for teacher order selection, in the
mini-budget distillation setting. Our Algorithm 1 can consistently produce
a better teacher order than other algorithms.

Suggested Student Ranking in Suggested Student Ranking in

k| Algorithm teacher order AP all orders k ‘ Algorithm teacher order AP all orders
Shortest-path (sum) | IV 36.7 2/4 Shortest-path (sum) | I—-I=IV 37.5 9/40

1 Shortest-path (max) | IV 36.7 2/4 3 Shortest-path (max) | I=II—=IV 379 2/40
Forward construction | IT 36.2 4/4 Forward construction | I—I—III 372 25 /40
Our Algorithm 1 v 36.7 2/4 Our Algorithm 1 I=1I—1V 37.9 2/40
Shortest-path (sum) | II=IV 37.0 7/16 Shortest-path (sum) | I=I=II-IV 379 7/ 64

5 Shortest-path (max) | I-IV 37.3 2/16 4 Shortest-path (max) | I—I-II—=IV 379 7 / 64
Forward construction | II—I 36.9 10/ 16 Forward construction | I—1—I1—IV 37.9 7/ 64
Our Algorithm 1 -1V 37.6 1/16 Our Algorithm 1 I=II—=IV 379 7/ 64

performing teacher as the target node 7),. Find apath S — T, — --- —
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Ty, that minimizes the sum of adaptation costs along the path:

.....

e Shortest-path (max): Set the student as the source node, and set the
best performing teacher as the target node 7),. Find a path § — T, —
.-+ = T), that minimizes the maximum of adaptation costs along the path:

e Forward construction: Contrary to Algorithm 1, we may start from the
student and choose the nearest teacher from the current one, to construct
the sequence:

Ty, < argming,ep C(S,Ty), Ty, < argming,ep C(Th;, Tu).

The output teacher sequences and corresponding student performance
of these three algorithms are summarized in Table 5.7. In this setting, our Al-
gorithm 1 can consistently produce a competitive teacher order that leads to
a good performance of the distilled student. Compared to our Algorithm 1,
shortest-path (max) can achieve a similar performance, and it is only worse
than ours when & = 2. Forward construction performs worst among the
four algorithms.

In summary, a greedy backward construction like Algorithm 1 works the
best in our setting, rather than globally optimized shortest-path algorithms.
The final target teacher has the most profound impact on the distilled stu-
dent’s performance. In order to fully assist the final teacher, we need to use
another teacher with the minimal adaptation cost to the final teacher before
it, which is exactly the behavior of Algorithm 1.

5.A.2 Ablation Study on Distillation with Homogeneous Teach-
ers

In this section, we provide more details about distillation with homogeneous
teachers (Section 4.2). We investigate (1) the impact of each individual
teacher; and (2) distillation with teachers simultaneously vs. sequentially.

Impact of individual teachers: We first distill Student II with each of the
three teachers individually: Teacher IIT has the same backbone and neck but
a more advanced head; Teacher IV has more advanced backbone, neck, and
head; Teacher V has the same head but more advanced backbone and neck.
Table 5.8 provides the performance of the three teachers, where Teacher IV
achieves the best performance (row 1-3). From Table 5.9, we can see that
our distilled students (row 2-7) significantly and consistently outperform the
off-the-shelf student (row 1), demonstrating the effectiveness of our distilla-
tion strategy irrespective of the types of teachers. Moreover, the improvement of
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Table 5.8: Homogeneous distillation of COCO detectors, where students
with ResNet-50 backbones are distilled with teachers with ResNet-50 back-
bones. We report the detection (‘Box”) and segmentation (‘Mask”) APs and
runtime, and we compare our distilled student with its teachers, off-the-shelf
(‘OTS’) student. Our distilled student significantly improves the APs over
the ‘OTS’ student by around 3%.

D | Model Box Mask Runtime
AP AP;y APy APs APy, AP, | AP APs AP;; APs APy AP (ms)
1 | Teacher III 423 61.1 458 237 456 563|374 584 402 196 404 51.7 181
2 | Teacher IV 49.1 677 534 299 530 652|426 651 460 241 464 58.6 223
3 | Teacher V 45.1 663 493 278 49.0 593 |40.1 63.1 428 229 438 548 142
4 | StudentII (OTS) 382 588 414 219 409 495|347 557 372 183 374 472 51
5 | StudentII (distilled) | 41.4 61.9 451 233 45.0 554 |373 588 39.8 194 404 521 49

Table 5.9: Ablation study of homogeneous distillation of COCO detectors
(models in Table 5.8). Our distillation strategy is consistently effective irre-
spective of teacher type. Moreover, sequential distillation with two teachers
outperforms both distillation with a single teacher and simultaneous distil-
lation with two teachers. Our best distilled student is obtained by progres-
sive distillation, where Student Il is first distilled with Teacher V (a weaker,
more similar teacher with the same head as Student II) and then distilled
with Teacher IV (a stronger teacher whose architecture is completely differ-
ent from Student II).

Box Mask
ID | Student IT AP APy, AP»; APy AP, AP, | AP AP;, AP;; APs AP, AP,
1 |oTs 1382 588 414 219 409 495|347 557 372 183 574 472
2 | Distilled by Teacher III 402 607 438 225 438 534 363 573 387 189 393 503
3 | Distilled by Teacher IV 408 615 446 230 443 542 368 583 394 192 399 510
4 | Distilled by Teacher V 408 614 445 229 443 542 366 581 391 192 396 510
5 | Distilled by Teachers IV+V | 39.8 60.3 434 221 433 529 [359 571 381 183 39.0 498
6 | Distilled by Teachers IV—5V | 410 617 44.8 230 443 549 |368 583 392 195 399 513
7 | Distilled by Teachers VIV | 41.4 619 451 233 450 554 |37.3 588 398 194 404 521

the student distilled with Teacher V (row 2) over that with Teacher III (row
3) shows that a more powerful teacher generally leads to a better distilled
student. Interestingly, although Teacher IV is more powerful than Teacher
V, Table 5.9 shows that their distilled students achieve quite similar AP (row
2 vs. row 4). This indicates that an even more powerful teacher does not
necessarily further improve the distilled student; too large a capacity and
structure gap between the teacher and student will limit the effectiveness of
distillation. Also, it is easier to distill from teachers with the same head.
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Simultaneous vs. progressive distillation: We now distill Student II with
the combined teachers, and we choose the top-performing Teacher IV and
Teacher V. We investigate two types of combination — simultaneous distilla-
tion with a feature matching loss between each teacher and the student (row
5), and sequential distillation with teachers one by one (row 6-7). First, we
find that using both teachers simultaneously (row 5) is even worse than our
method using a single teacher (row 2-4). This shows that integrating differ-
ent types of knowledge from multiple teachers is not a trivial task — simulta-
neously using the features from multiple teachers might provide conflicting
supervisions to the student model and thus hinder its distillation process. By
contrast, our sequential distillation overcomes this issue and improves the
performance irrespective of the order of the teachers (row 6-7 vs. row 1-4). Sec-
ond, the sequential order of the teachers makes a difference. A curriculum-
like progression (row 7), where the teacher with a smaller adaptation cost is
used first and that with a larger adaptation cost & a higher performance is
used later, leads to the best performance.

Overall performance: Our best distillation performance is achieved when
we first distill Student II with a curriculum of teachers (Teacher V—IV).
Overall, the box AP is improved from 38.2% to 41.4% and the mask AP is
improved from 34.7% to 37.3%. Our resulting Mask R-CNN detector has
comparable performance with HTC, but much smaller runtime.

5.A.3 Ablation Study on Distillation with Heterogeneous Teach-
ers

In this section, we provide more details about distillation with heteroge-
neous teachers (Section 4.3). We investigate the heterogeneous cases where
the backbones or input resolutions are different between the teachers and
student.

Overall performance: Again, Tables 5.10 and 5.11 show that our distillation
strategy is consistently effective with respect to all the teachers and their
combinations, e.g., the box AP improves from 33.3% to 37.0% and the mask
AP improves from 30.5% to 33.7%.

Two signature findings in heterogeneous distillation: Compared to the ho-
mogeneous case, we find the capacity gap between models is a more impor-
tant factor, and to bridge this gap a proper teacher order plays a more critical
role. Details are explained as follows.

The student-teacher capacity gap is more pronounced in heterogeneous distillation.
Among the four teachers, Teacher I shares exactly the same neck and head
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Table 5.10: Heterogenous distillation of COCO detectors, where students
with ResNet-18 backbones are distilled with teachers with ResNet-50 back-
bone, requiring additional transfer logic (Section 3.2). We report the detec-
tion (‘Box”) and segmentation ("‘Mask’) APs and runtime, and we compare
our distilled student with its teachers, and off-the-shelf (‘OTS’) student. Our
distilled student significantly improves the APs over the ‘OTS” student by
over 3%.

D | Model Box Mask Runtime
AP AP;y AP;; APs AP, AP, | AP APs, AP;; APs AP, APp (ms)
1 | TeacherI 382 588 414 219 409 495 (347 557 372 183 374 472 51
2 | Teacher III 423 61.1 458 237 456 563|374 584 402 19.6 404 517 181
3 | Teacher IV 491 677 534 299 530 652 426 651 460 241 464 586 223
4 | Teacher V 451 663 493 278 490 593|401 63.1 428 229 438 548 142
5 | Student III (OTS) 333 529 359 182 359 436 (305 50.0 321 155 329 418 29
6 | Student III (Distilled) | 37.0 56.8 39.9 20.2 398 50.0 |33.7 536 36.0 172 36.0 47.3 29

structure with the student, and has a similar but larger backbone; Teacher V
has the same head with the student as well, but has a different backbone and
neck; Teacher IIT has similar backbone and neck, but has a different head; and
Teacher IV is the most powerful one with completely different architecture.
Table 5.11 (rows 3-6) summarizes the distillation results with single teach-
ers. First, directly distilling from the strongest teacher (Teacher IV) does
not yield the largest improvement. Second, a relatively less powerful but
more similar teacher (Teacher I) leads to the best distillation performance,
improving the APs by 2%, although teachers V, III, and IV are all stronger
than Teacher I. One possible reason is that Teacher I has the same neck and
head as Student III as well as similar but deeper backbone, so the capac-
ity gap between Student III and Teacher I is the smallest. Finally, we find
that Teacher Ill is a strong but not particularly helpful teacher, achieving the
worst distillation results. One possible reason is that Teacher III has a very
different head from Student III, while not as stand-alone accurate as Teacher
IV, making it unable to provide enough guidance to Student III. These ob-
servations suggest that a smaller capacity gap between the student and the
teacher may facilities knowledge transfer.

The sequential order of the teachers plays a more critical role in the heterogeneous
setting. Table 5.11 (row 7-12) presents representative results with different
orders or combinations of the teachers. Again, a proper progressive distil-
lation (row 12) outperforms simultaneous distillation (row 7-9). Notably,
it is necessary to start with Teacher I, since the capacity gap between Stu-
dent III and Teacher I is minimal, with difference only on the depth of their
ResNet backbones. These results confirm the importance of our curriculum-
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Table 5.11: Ablation study for heterogeneous COCO detector distillation
(models in Table 5.10). Student III (Mask R-CNN with a ResNet-18 back-
bone) is distilled with teachers with different and larger ResNet-50 back-
bones. Training Student III for more epochs improves its performance, but
not as much as progressive distillation with teachers. Note that for each
distillation we train 12 epochs. Our distillation strategy is consistently effec-
tive irrespective of the types of teachers. Moreover, our sequential distillation
with multiple teachers outperforms simultaneous distillation with multiple
teachers. Our best distilled student is obtained by progressive distillation,
where Student IIl is first distilled with Teacher I (a most similar teacher with
the same head and neck as Student IIl and a deeper backbone), then distilled
with Teacher V (a stronger teacher with the same head as Student III), and
finally distilled with Teacher IV (a strongest teacher whose architecture is
completely different from Student III).

D | Model Box Mask
AP AP;, AP;; APs APy APp | AP APy, AP;; APs APy AP,
1 \ Student III (OTS) \ 333 529 359 182 359 436 \ 30,5 50.0 321 155 329 418
2 | +12 epochs 346 545 372 188 369 46.1 |316 515 336 158 337 440
3 | +24 epochs 345 542 372 188 365 458 (315 512 338 16.0 334 437
4 | +36 epochs 346 542 374 186 369 467|316 51.1 338 157 33.6 443
3 | Distilled by Teacher I 358 55.8 388 193 388 479 (326 527 348 160 353 455
4 | Distilled by Teacher III 352 552 378 191 378 474|321 520 340 161 345 452
5 | Distilled by Teacher IV 355 552 382 190 379 480 (324 519 345 159 348 456
6 | Distilled by Teacher V 354 552 383 194 379 484 (322 522 343 154 344 458
7 | Distilled by Teachers IV+V 348 549 372 190 372 470|316 517 339 157 338 442
8 | Distilled by Teachers I+IV+V 360 554 391 182 381 483|321 53.0 347 158 347 46.1
9 | Distilled by Teachers I+III+IV+V | 36.1 552 39.0 184 382 480 |31.7 529 343 151 342 463
10 | Distilled by Teachers I-V 365 563 393 195 388 494 (332 532 353 164 354 4638
11 | Distilled by Teachers V—IV 352 552 378 191 378 474 (321 520 340 161 345 452
12 | Distilled by Teachers [-V—IV 370 568 399 20.2 398 50.0 337 536 360 172 36.0 473

like progression to best benefit from multiple teachers.

Training a student longer vs. distilling a student: As another sanity check,
Table 5.11 includes results of training Student III with more epochs without
distillation (row 2-4). We can see that the first 12 additional epochs improve
APs by 1%, but there are no significant improvements even if we train for a
longer period. This shows the effectiveness of detector distillation.
Distillation with different model resolutions: In Table 5.11, we have per-
formed distillation where the student and teacher models operated on the
same input image resolution (e.g., the standard resolution 1,333 x 800 on
MS COCO). In practice, one way to further reduce the latency/runtime of
the student is to operate on lower-resolution images. However, this poses
additional challenges — with a teacher of high input resolution and a stu-
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dent of low input resolution, they become even more heterogeneous. More-
over, image resolution substantially affects object detection performance [4].
Here, we are interested in performing distillation with models trained with
images of different resolutions to further investigate the generalizability of
our approach. More specifically, we use high-resolution models as teachers
and low-resolution models as students, as shown in Table 5.12 (row 1-4).

Table 5.12: Detectors trained with different input resolutions on the COCO
dataset. We use a series of Teacher I variants: Teacher I-1 is trained with
the standard input resolution of 1,333 x 800; Teacher I-2 is trained with
1,000 x 600 input; Teacher I-3 is trained with 666 x 400 input; and the student
is trained with 333 x 200 input. We report the detection (‘Box”) and segmen-
tation ("‘Mask’) APs and runtime. We compare our distilled student with
its teachers, and off-the-shelf (‘OTS’) student. Our approach is effective with
even more heterogeneous teacher and student models of different input resolutions.

Input
Resolution

Box
AP APy AP;; APs APy, APp

Teacher I-1 1333 x 800 | 38.2 588 414 219 409 495 (347 557 372 183 374 472 31.5
Teacher I-2 1000 x 600 | 37.2 577 405 191 409 504 336 543 359 156 370 477 24.9
Teacher I-3 666 < 400 | 347 540 372 156 381 504 312 505 332 122 344 470 19.7

Student (OTS) 333 x200 | 258 419 271 70 278 443|230 387 237 50 237 413 16.9
Student (distilled) | 333 x 200 | 31.5 49.8 333 123 343 489 282 46,5 290 93 303 454 16.9

Mask
AP AP, AP;; APs AP, AP,

Runtime

ID | Model
(ms)

1
2
3

4
5

In these experiments, the teacher and student feature maps have differ-
ent spatial resolution. To tackle this, we simply upsample the spatial maps
of the student and supervise the student with the teachers’ features. Again,
Table 5.12 shows that our approach is effective in this more challenging sce-
nario. Our best performance is achieved by progressively distilling the stu-
dent with its Teacher I-3, I-2, and I-1.

5.A.4 Generalizability: Combination with Other Distillation
Methods

Our main contribution is a general and flexible distillation framework — pro-
gressive knowledge distillation via a sequence of teachers. In principle, this
tframework is agnostic to specific distillation methods and loss designs when
distilling the student with a specific teacher during the intermediate stage.
In the main paper, we showed that under this progressive distillation frame-
work, a simple distillation method that matches the feature maps from the
neck module without any modification or augmentation has already achieved
the state-of-the-art performance. A natural question then arises — if using a
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more sophisticated distillation method, will the student performance fur-
ther improve? Our investigation in this section shows that this is indeed the
case.

Table 5.13: Our progressive knowledge distillation via a sequence of teach-
ers is a general and flexible distillation framework: a recent, powerful de-
tector distillation method by Zhang et al. [248] can be incorporated into our
framework to further improve the distilled student performance. By replac-
ing our original distillation method (which simply matches feature maps)
with the more sophisticated distillation method from [248] and by using our
proposed progressive teacher sequence (V—IV), the student can achieve the
best performance. From a different perspective, our progressive framework
enables the use of a simple feature matching distillation method, which to
some extent diminishes the benefit of designing more sophisticated distilla-
tion methods. For fair comparison, the total distillation training epochs are
set to 24. If two teachers are used, the student is distilled with each teacher
for 12 epochs.

Box Mask
AP APs, AP;; APs AP, AP, | AP APy, AP;; APs AP, AP,

Teacher IV - - 491 677 534 299 530 652|426 651 460 241 464 586
Teacher V - - 451 663 493 278 490 593 |40.1 63.1 428 229 438 548
Teacher VI - - 473 663 517 282 517 627|411 635 444 229 449 563
Student IT (OTS) - 382 588 414 219 409 495|347 557 372 183 374 472

413 619 451 233 448 553|372 586 401 173 400 551

Distillation

Loss Teacher(s)

D ‘ Model

[248] VI
Ours Ours (V—1IV)
[248] Ours (V—1V)

Student IT 414 619 451 233 450 554|373 588 398 194 404 521

416 620 454 233 447 559 374 59.0 404 175 40.0 56.2

N ONUl| N

Table 5.14: Generalizability on Argoverse-HD. On the left, we report stan-
dard detection accuracy. ‘OTS” and distilled students are trained on COCO.
We observe 2% AP gains through distillation, even on novel testsets. On
the right, we report streaming detection accuracy as defined in [129], in
the detection-only setting on a Tesla V100 GPU. The second column denotes
the optimal input resolution (that maximizes streaming accuracy). First, we
discover that a lighter model and full-resolution input is much more help-
ful than having an accurate but complex model that needs to downsize in-
put resolution. Second, our proposed distillation approach further improves
over the lightweight model.

Model | box AP | APy | APrs | APs | APy | AP,
Detector Input AP AP;, AP;; APs APy AP

oTs 32.7 52 | 345 |14.7 | 358 |52.8
Stud- I | ictilled | 344 | 542 | 359 | 15.0 | 36.8 | 57.7 Cas. MRCNNS50[129] 05x 140 268 122 10 99 288
oTS MRCNN18 (Ours) 10x 237 448 226 104 231 378

Stud. III ‘

28.9 ‘48.8 ‘30.0 ‘12.8 ‘31.3 ‘49,2 MRCNN18 (+ Distill) 1.0x 250 458 242 105 241 39.3

Distilled | 30.6 49.7 | 31.8 | 12.9 | 32.6 | 51.9
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Specifically, we incorporate a recent, powerful detector distillation method
by Zhang et al. [248] into our progressive distillation framework. This method
uses attention and non-local modules to transform the feature maps and
guide distillation, and thus the student can focus on foreground objects and
learn relation between objects. They only use one teacher model for all two-
stage detector students. The teacher is Cascade Mask R-CNN [24] with
ResNeXt-101 [233] backbone and deformable convolutions [256], and we
denote it as Teacher VI. After adding it to the teacher pool for Student II
(Mask R-CNN), the teacher sequence suggested by our heuristic is still Teacher
V—IV. We then use this sequence of teachers to distill the student, and we
replace our original feature map matching with that in their method.

We summarize the performance of the teachers and distilled Student II
in Table 5.13. We have several interesting observations. First, as expected,
when incorporating an elaborate distillation method/loss into our progres-
sive knowledge distillation framework, we can further improve [ 248] by 0.3%
overall AP and 1.1% mask AP Large. Second, our progressive framework en-
ables the use of a simple feature matching distillation method, which to some
extent diminishes the benefit of designing more sophisticated distillation
methods. Third, while they both improve the student performance, our orig-
inal approach and the approach combined with [248] seem to “teach” the
student slightly different knowledge — for example, our original approach
significantly improves the mask AP of small objects from 18.3% to 19.4%,
while our approach combined with [248] significantly improves the mask
AP of large objects from 47.2% to 56.2%. Also, we point out that [248] may
decrease the mask performance for small objects after distillation from 18.3%
to 17.3% (contrasting row 4 & 5) and there is a trade-off between mask AP
Large and mask AP Small of their approach.

5.A.5 Generalizability to Other Datasets and Evaluation Pro-
tocols

In this section, we study the generalizability of our approach. As an ex-
tension from the gold-standard COCO benchmark, we evaluate our distilled
student (trained on COCO) on another dataset, Argoverse-HD, and with an-
other metric, streaming accuracy, and perform distillation on Argoverse-HD
directly.

Argoverse-HD is a more challenging dataset than COCO due to higher reso-
lution images and significantly more small objects. Constructed from the au-
tonomous driving dataset Argoverse 1.1 [29], Argoverse-HD contains RGB
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video sequences and dense 2D bounding box annotations (1,260k boxes in
total). It consists of 8 object categories, which are a subset of 80 COCO classes
and are directly relevant to autonomous driving: person, bicycle, car, mo-
torcycle, bus, truck, traffic light, and stop sign. There are 38k training im-
ages and 15k validation images. We report results on the validation images.
We test the distilled models trained on COCO on Argoverse-HD without re-
training. Table 5.14-left shows the generalizability of our approach.
Streaming accuracy is a recently proposed metric that simultaneously eval-
uates both the accuracy and latency of algorithms in an online real-time
setting [129]. The evaluator queries the state of the world at all time in-
stants, forcing algorithms to consider the amount of streaming data that
must be ignored while processing the last frame. Following the setup pro-
posed in [129], we evaluate streaming AP in the context of real-time ob-
ject detection for autonomous vehicles. Table 5.14-right shows our approach
outperforming the prior results from [129] by a dramatic margin. We find
significant wins by using an exceedingly lightweight network (ResNet-18
based Mask R-CNN) that can process full-resolution images without sacri-
ficing latency. Due to much higher quantities of small objects, high-reslution
processing is more effective than deeper network structures. In addition,
progressive distillation further improves performance.

Table 5.15: Heterogenous distillation of Argoverse-HD detectors, where a
student with ResNet-18 backbone is distilled with teachers with ResNet-50
backbones. We report the detection (“‘Box”) APs and runtime. We compare
our distilled student with its teachers, and off-the-shelf (‘OTS’) student. Our
distilled student significantly improves the APs over the ‘OTS’ student by
over 2%. Notably, our distilled student achieves detection accuracy that is
comparable with Teacher A but with only around third of the runtime.

Box Runtime
ID | Model Backbone Neck Method (Head) AP APy, AP, APs APy AP (ms)
1 | Teacher A ResNet-50 FPN  Faster R-CNN 296 482 305 164 331 451 79.2
2 | Teacher B ResNet-50 FPN Cascade 323 504 350 164 371 477 89.0
3 | Teacher C ResNet-50 + SAC RFP  Faster R-CNN 329 51.0 355 176 337 529 230.8
4 | Teacher D ResNet-50 + SAC RFP  Cascade 345 520 377 179 370 528 | 2412
5 | Student (OTS) ResNet-18 FPN  Faster R-CNN 27.1 481 275 144 312 400 29.3
6 | Student (distilled) | ResNet-18 FPN  Faster R-CNN 292 49 309 15 317 456 29.5

Direct distillation on Argoverse-HD: After testing the distilled model which
is trained on COCO, on the Argoverse-HD dataset [ 129 | without re-training,
we have shown the generalizability of the already-distilled models. Here
we directly distill the student model on Argoverse-HD, using Faster R-CNN
with a ResNet-18 backbone as the student model. As shown in Table 5.15,
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we use four teachers with ResNet-50 backbones (row 1-4), including Faster
R-CNN [180] (Teacher A), Cascade R-CNN [24] (Teacher B), and Detec-
toRS [169] (Teachers C & D).

The results are summarized in Table 5.15. Our best distillation perfor-
mance is achieved when we first distill the student with a similar teacher
(Teacher A), and then progressively distill with more powerful teachers
(Teachers B, then C, and finally D). Overall, the bbox mAP is improved from
27.1% to 29.2%.

In addition, comparing with Table 5.14-left, the absolute performance of
the teachers and students in Table 5.15 is lower. This is because here we use
weaker teachers and student models (Faster R-CNN for fast experiments)
than the models used in Table 5.14-left (Mask R-CNN). However, the relative
improvement (between the distilled and OTS students) of box AP (2.1%) is
larger than that in Table 5.14-left (1.7%), indicating that learning distillation
directly on Argoverse-HD further improves the performance.
Implementation Details: Consistent with the previous implementation de-
tails, here we implement the detectors using the MMDetection codebase. We
train on 8 NVIDIA Tesla V100 Graphics Card for 12 epochs for each distilla-
tion. We use the input resolution of 1,920 x 1,200, with each GPU hosting 1
image. We use an initial learning rate of 0.02 and a linear learning rate decay.
We use SGD and a momentum of 0.9. We use 0.8 as the hyper-parameter ).
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Chapter 6

Multi-Range Pyramids

6.1 Introduction

3D object detection plays a vital role in autonomous navigation. Despite the
maturity of methods in the existing literature, most treat detection range as
a constant instead of an adjustable hyperparameter [ 121,236,241 ]. However,
we argue that detection range is application dependent. For example, small
indoor robots may detect only up to a few meters while autonomous delivery
trucks may require hundreds of meters of detection range to meet the safety
requirement due to higher traveling speed and longer braking distance.

In this paper, we first study the effect of tuning detection range for the
dominant paradigm of bird’s-eye view (BEV) based 3D detection. BEV-
based detectors operate on a dense 2D BEV feature map whose spatial di-
mensions are directly determined by the processing range and the voxel size
(grid density). Interestingly, the existing literature on 2D detection has con-
verged on image resolution (and backbone depth) as the handy “knobs” for
trading off accuracy-vs-latency [129,205,217]. We revisit these questions
in the context of 3D, and find somewhat surprisingly that range is an even
more effective parameter for trading off these quantities. For example, we
show that even if the sensor (dataset) includes objects up to 200m, opti-
mal accuracy-vs-latency tradeoffs maybe achieved by artificially limiting the
range of the model to 100m, essentially “giving up” on far-field detections
and re-allocating the additional compute to smaller (higher resolution) vox-
els in the near-field. More importantly, this analysis reveals that models can
be tuned for particular ranges by adjusting other hyperparameters such as
voxel resolution. We denote models optimized for specific ranges as range
experts.
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Figure 6.1: (a) Given a far-range LiDAR input (e.g., 400m x400m), most ex-
isting 3D detectors will either run into memory issues or spend hundreds
of milleseconds to process the input. (b) We explore several ways to reduce
compute: downsample the point cloud, adopt a coarser grid, and limit the
processing range. We find that different tradeoffs are optimal for different
ranges; near-range voxels can exploit finer cell sizes, while far-range voxels
benefit from larger voxels that reduce sparsity while remaining efficient. (c)
We propose a novel BEV feature pyramid that allocates more voxel resolu-
tion to nearby measurements. (d) Note that each range is voxelized using
the same grid density and therefore resulting in feature maps of the same
size. This allows us to stack the feature maps together for efficient batch pro-
cessing and multi-range feature sharing within a single network.

Given a collection of experts tuned for various ranges, one approach for
combining their output is simply ensembling their detections; e.g., combine
0-100m detections from the 100m expert with 100-200m detections from the
200m expert. We find such an ensemble greatly boosts detection accuracy.
While perhaps unsurprising, such an architecture is performant because it
exploits the well-known but under-emphasized property of LiDAR: farther
range implies more sparsity.

However, naive ensembling is prohibitively expensive, since compute
scales linearly with the number of range experts. This leads to the natural
question: can we achieve multi-range performance without paying the com-
pute cost? In this paper, we show that one can perform even better while re-
maining efficient by sharing features across range experts via a multi-range
feature pyramid (Fig. 6.1). We begin by noting that the natural internal rep-
resentations of properly-aligned range experts (that differ by ranges in pow-
ers of 2) themselves naturally align across adjacent layers of a neural back-
bone. This allows feature maps across the range experts (with varying grid
resolutions and ranges) to be stack-able into a single model for efficient batch
processing and multi-range feature sharing. We call this representation a
multi-range pyramid (MRP), analogous to image feature pyramids common
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to 2D detection [ 137].

One might wonder that if long
range is the bottleneck, why not
adopt other alternative representa-
tions, such as range view? 3D BEV
models are attractive because they
are orthographic and translation-
equivariant; one need not worry
about perspective distortions aris-
ing from far-away objects (that
would have a smaller footprint in a
range image). As a result, there ex-
ist more mature methods for data
augmentation [61] and temporal fu-
sion, either at the sensor level [121,

, ] or at the feature level [98,

]. Because of the strong em-
pirical performance of 3D BEV de-
tectors [241], we argue that mak-
ing them range-efficient will be in-
creasingly important as LiDAR sen-
sors themselves increase in range
and density.

To work with MRP in 3D de-
tectors, one needs to address sev-
eral technical challenges. The first
challenge is how to efficiently create

30

251

20

Accuracy (CDS)

151

50 100 150 200
Runtime (ms)

Figure 6.2: To reduce latency, should
one increase voxel size or limit range?
One can rerun a 100m-trained model
(the orange dot) on different ranges
(the green curve) by exploiting fully-
convolutional processing. Retrain-
ing the model with 2X-larger voxels
(yellow triangle) does reduce com-
pute, but dramatically reduces accu-
racy. Additionally, not shown above,
we have explored point cloud sub-
sampling, but find this negligibly re-
duces latency.

such a pyramid. Most BEV feature extractors begin by sparesly computing
point features and then scattering them onto a dense BEV grid. We share the
initial sparse point cloud features across all ranges by introducing a novel
multi-range scattering operation. The next challenge is how to share fea-
tures across ranges that may or may not be spatially aligned. We address
this with two approaches; assuming unaligned features, we first disentan-
gle range processing through group convolution and then share features

globally with a squeeze & excitation (SE) layer [

]. If features are aligned,

we replace the standard convolution operation in the BEV backbone with a

multi-range convolution.

One difficulty with evaluation is the lack of long-range 3D detection datasets.
Arguably the most popular 3D detection benchmark is NuScenes [

], but

it annotates objects only up to 50m. As such, we validate our approach on
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Argoverse [29], which includes annotations for objects up to 200m. We plan
to evaluate on other long range datasets as they are released. Our evalua-
tions compare to strong baselines for efficient 3D detection, such as PointPil-

lars [121].
We summarize our contributions as follows:

1. We study the impact of range as a tunable parameter for 3D object de-
tection. We draw analogy to image resolution and find the surprising
conclusion that sometimes, the best solution is to limit the detection
range.

2. We propose a novel multiple-range representation for BEV feature maps.
We show how to build a full detector based on this novel representa-
tion.

3. We conduct extensive experiments on Argoverse dataset, showing the
superior efficiency of our proposed method.

6.2 Related Work

3D detection models can be roughly categorized as: bird’s-eye view, voxel-
grid, graph, and range-view representation models. Unlike 2D images, point
clouds are amenable to a number of different representations — each with
distinct advantages and disadvantages.

Bird’s-eye view Representations. 3D perception using 2D convolution en-
ables fast, efficient feature aggregation due to mature, highly optimized ker-
nels available in open-source libraries; however, these methods must be care-
tully designed to encode geometric information in the gravity-aligned axis.
[121] encode a point cloud as a “pseudo-image” — applying a PointNet
[167] encoding to a set of sparse pillars in the BEV. [36] explore a multi-
sensor fusion model which consists of a bird’s-eye and range view of lidar
sensor data, and RGB imagery. However, ego-centric point clouds are not
dense in the BEV which consequently wastes both memory and computa-
tion. Specialized sparse operators may address the issues of density, but are
often not as tuned for gpu-based computation.

Voxel-grid Representations. 3D convolution provides rich, expressive ge-
ometric features at the cost of a cubic run-time w.r.t. the quantized grid di-
mensions — leading to considerable compute challenges. [253] introduced
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the first end-to-end learning approach for 3D object detection by augment-
ing point features with positional encodings within a voxel-grid. [236] ex-
ploited the sparsity of a point cloud through 3D sparse convolution — greatly
improving run-time to speeds suitable for exploring real-time applications.
[206] combine voxel and point level processing to exploit the efficiency of
a regular grid and the geometric richness of fine-grained points. Similar to
our work, [250,258] emphasize that point clouds become sparse at range —
leading to an imbalanced spatial distribution of points. The authors address
this observation by representing point clouds with polar and cylindrical rep-
resentations, respectively; however, this can lead to spatial distortions and
break the translation equivariance assumed by convolutional filters.

Graph Representations. Graph representations of point clouds encode dy-
namic neighborhoods between points while also permitting a sparse repre-
sentation in the form of a sparse matrix or adjacency list [168,223]. [194]
operate directly on point clouds, without voxelization, using point-wise fea-
ture vectors for bottom up proposal generation. [94] propose using random
sampling to process large point clouds to circumvent costly processing from
farthest point sampling and inverse density sampling. Graph representa-
tions oftentimes require costly neighborhood computation using methods
such as: k-nearest or fixed-radius nearest neighbors. Despite their flexible
representation, 3D detection models on state-of-the-art leaderboards are still
dominated by voxel-grid and BEV based methods [22,199].

Range-view Representations. The range-view refers to the projection of
an unordered set of three-dimensional coordinates onto a two-dimensional
grid which contains the distance from a visible point to the sensor. Unlike
the voxel-grid or graph representations, the range-view is not information-
preserving for 3D data, i.e., each sensor return must have a clear line-of-
sight between itself and the vantage point. [ 156] combine a range-view rep-
resentation with probabilistic cuboid encoding for 3D detection. [28] ex-
plore applying different kernels to the range-view image to counteract per-
spective distortions and large depth gradients w.r.t. to inclination and az-
imuth. [200] construct a two-stage approach: first performing foreground
segmentation in the range-view, then applying sparse convolutions on the
remaining points.
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6.3 Approach

In this section, we first introduce our proposed MRP representation, and
then show how we build a detector using this representation. Lastly, we
discuss options for sharing features across different range representations.

6.3.1 Multi-Range Pyramid

Without loss of generality, we assume a square processing range with an
equal distance along the x and y axes in this paper. Let R be the intended
processing range in the BEV, and V' to be the base voxel size'. Given sparse
point cloud features (C' channels) as input, we construct a P-level multi-
range pyramid (MRP) through voxelization and scattering with different
range and voxel size settings. Specifically, at level i of the pyramid, it covers
arange of r; = 527 and uses a voxel size of v; = 5 fori € 1, ..., P. Note that
the spatial dimension of the feature map at each level remains a constant
throughout the pyramid: w; = r;/v; = R/V := W. Also, voxelization and
scatter operations do not alter the number of channels, and therefore, the
feature map at level i contains C' channels. Finally, the entire MRP is created
by stacking each level-i feature map along the channel, resulting in a single
feature map of size PC' x W x W.

To facilitate a fair and simple comparison with the baseline model, we
restrict the MRP size to match exactly with the baseline: if the baseline back-
bone takes C, x W}, x W}, as input, we construct an MRP with the size of each
level to be % x Wy x Wy. The reduction in channels is achieved via a linear
layer placed at the end of the point processing pipeline. When the model ar-
chitecture is fixed, the dominating factors for the size of model are the range
and the voxel size. Therefore, we introduce a notation r/s to represent the
complexity of the model (or the base size of the feature map), where 7 is
the range and s is the reciprocal of the voxel size, since voxel sizes are usu-
ally smaller than 1. For example, 100/4 represents a model with detection
range 100m and a voxel size 0.25m. An equal size MRP with 2 levels can be
represented by 100/4 + 50/8.

Next, we explain how we construct MRP in practise. To share computa-
tion, we can first perform voxelization and scattering once to create a huge

!More precisely, we use the term “voxel size” to denote the voxel dimension in the x
dimension. In general, a voxel size is a 3D dimension. In this paper, we do not change the
voxel size along the z (height) axis, and we assume a symmetric voxel is used along the x
and y axes.
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Figure 6.3: Our proposed multi-range pyramid (MRP) for 3D object detec-
tion. Building upon existing BEV frameworks (e.g., PointPillars [121]), we
replace multiple range-specific 2D BEV backbones with a single MRP that
enables across-range feature sharing. MRPs are constructed by first com-
puting sparse voxel-based point features at the finest resolution of interest
and the largest range of interest. These sparse features are then multi-range
scattered to multiple feature maps, tuned for different ranges and voxel
grid sizes. MRPs then share features across range-specific feature maps,
both through global pooling (Fig. 6.4) and local multi-range convolutions
(Fig. 6.5). Finally, the output from range-specific neck layers are resampled
into a single high-resolution, long-range feature map that is processed by a
detection head.

dense feature map of size R/V x 2P~1, then we duplicate the crop the fea-
ture maps to form the pyramid. Finally, we resize and stack them together.
This procedure is depicted in the bottom left of Fig. 6.3. The benefit is that
the point processing pipeline gets shared and it can be implemented trivially
with existing set of operations. However, the explicit creation of such a large
feature map is prohibitively expensive in GPU memory for large ranges (e.g.,
6400 x 6400). To workaround this issue, we introduce a new operator that
we call multi-range scatter. It takes fine-grained voxels (at size ;#-;) as input
and directly construct a MRP with all levels stacked together. Compared
with standard scattering operation, the multi-range version handles clashes
of voxels mapped to the same cell due to the conceptual resizing operation.
The implementation is fast and introduces overhead of only 2ms.

6.3.2 MRP-Based 3D Detectors

Once we have MRP defined, we show how to incorporate it into 3D detec-
tors. First, we assume the detector make use of BEV representation at some
stages, which usually correspond to the backbone and the neck. As show
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Figure 6.4: Global feature sharing in MRP. (a) If we apply the standard con-
volution module on unaligned multirange feature maps, range information
may be mixed in suboptimal ways. (b) Therefore, we use group convolu-
tions to restrict the information flow across backbone layers to be range-
specific. (c) To allow some feature sharing across ranges, we introduce a
squeeze & excitation (SE) that computes global features that do not require
spatial alignment. (d) We inject SE layers at the end of each stage in the
backbone.

in Fig. 6.3, we inject MRP construction and inversion layers to before and
after the BEV processing stages within the base 3D detector. We modify the
BEV processing part itself to make it compatible with MRP (discussed in
the next subsection), but keep everything else (e.g., point feature extraction,
and detection head) the same as our base model. The construction process
is based on the multi-range scatter introduced in the previous section. The
inversion process is a simple chain of split, resize and merge operations. Spe-
cially, given an MRP of size PC' x W x W, we first split along the channel
dimension to get P levels of feature maps and then resize level ¢ by a fac-
tor of 2!, Intuitively, this is aligning the spatial representation according
to the bottom level of the pyramid. Then we take the finest information for
each range intervals from the respective level (e.g., the center region feature
is always from the top level) to form a single feature map of size C' x W x W.
To be exactly consistent with the base model pipeline, one could upsample
the channels to PC, but we find such an operation makes little difference in
practise.

6.3.3 Multi-Range Feature Sharing

After adopting the MRP representation, if we simply use the original back-
bone and neck, the model may produce suboptimal predictions due spatial
alignment. As shown in Fig. 6.1, each level of the stacked MRP feature map
correspond to a different range of the input point cloud. If we apply stan-
dard convolution that mixes the channels together, we are forcing the net-
work to resolve the spatial alignment by itself, which may not be the most
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efficient way to make use of channels. The next immediate solution might
be processing different level separately with P different backbone and necks
so that the spatial alignment can be avoided. However, running multiple
models introduces unnecessary overhead in function calls and GPU kernel
calls. Taking both factors into consideration, we replace each standard con-
volution with group convolution with group equal to the number of levels
P (Fig. 6.4ab). Note that the normalization and activation layers in a convo-
lution module do not mix channel together by default and there is no need
of group normalization. With such a replacement, we are able to “run” mul-
tiple range models within a single model. Note that this design is agnostic
to specific choice of the backbone and the neck as long as they are convolu-
tional. Since we are using group convolutions, the theoretical FLOPs of an
MRP-based model is smaller than the baseline model with the same feature
size. More precisely, the FLOPs of MRP is 1/ P of the original model for each
convolution module.

While the range representations are now disentangled during convolu-
tion, processing each range map separately may not be efficient usage of
available channels. We propose two ways of feature sharing across different
levels of the pyramid.

Global feature sharing. The spatial alignment is not an issue if the spatial
resolution is 1 x 1. This suggests that we can first pool globally and then
convolve the features across range groups. Fortunately, the community has
already found a way to effectively incorporate the globally pooled features
into downstream layers, and that is through a squeeze & excitation (SE)
layer [93]. We illustrate an SE layer in Fig. 6.4c and where we place them in
the network in Fig. 6.4d. Once we insert SE layers into the network, sharing
takes place automatically, at a global level. We add an SE layer at the end of
each backbone stage, and add an residual connection if it is not present. No
SE layer is added inside the neck. Note that SE layers are cheap to compute
and adds only negligible overhead to the overall runtime.

Local feature sharing. We offer an alternative fine-grained sharing strat-
egy at a larger computation cost (Fig. 6.5). The key idea is we first make
use of slicing and resizing operations to align the features maps and per-
form convolutions over aligned features in a cascade fashion from the top to
the bottom of the pyramid. We observe that level i in an MRP corresponds
to the center region of level (i — 1), but with a different spatial resolution.
We define a new operation multi-range convolution (MRConv) in this way:
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Figure 6.5: Local feature sharing in MRP. We explore an alternative feature
sharing strategy that replaces each standard convolution in the backbone
and neck with a multi-range convolution (MRConv). The key idea is to align
teature maps spatially and then perform convolution on the aligned portion.
A detailed description can be found in Section 6.3.3.

we first take the center slice and of level i, upsample it by 2x and then con-
catenate with level (i — 1) for convolution. Then we split the results by half
along the channel dimension. One half becomes the new level i 