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Abstract

In the last decade, security architectures became prominent which protect sensitive data
in isolated execution environments, called enclaves or Trusted Execution Environments
(TEEs), that are backed by hardware-assisted security mechanisms. Relying on hard-
ware mechanisms allows enclave architectures to shrink the software that is inherently
trusted, called Trusted Computing Base (TCB), to a bare minimum which stands in stark
contrast to the large code base that must be trusted in a commodity operating system.
Moreover, in contrast to architectures which deploy security hardware in dedicated com-
puter chips, e.g., Trusted Platform Modules (TPMs) or smart cards, enclave architectures
are deeply integrated into the main processor and thus can utilize the full computational
power of the processor while still reducing hardware costs. Even though enclave archi-
tectures are widely deployed in computing systems, ranging from resource-constraint
microcontrollers and embedded systems over mobile devices to personal computers and
servers, still many challenges must be solved to enable their full potential.

In this dissertation, we design, implement and evaluate multiple novel enclave archi-
tectures and security extensions which contribute significantly to enclave computing
research by tackling multiple research challenges, namely i) providing an open access
to enclave computing on ARM-based systems, ii) protecting diverse sensitive applica-
tions with a single enclave architecture across platforms, and iii) providing side-channel
resilient enclaves.

Openly-accessible Enclave Computing on ARM-based Devices. ARM TrustZone was
one of the first security technologies which enabled enclave computing. Its wide deploy-
ment on mobile devices has the potential to guarantee security for many sensitive mo-
bile applications. Unfortunately, the current enclave architectures based on TrustZone
cannot provide enclave protection for all sensitive applications since each protected ap-
plication increases the attack surface of the system. As a result, enclave computing on
ARM-based devices is today largely blocked for third-party application developers and
mostly used for services from the device vendors. In our work we propose SANCTUARY,
a novel enclave architecture design which enables enclave protection for all sensitive
applications. SANCTUARY achieves this by providing de-privileged enclaves based on a
strong hardware-assisted isolation without requiring to modify hardware. SANCTUARY’s
enclaves do not increase the attack surface of the system and thus solve the challenge of
making TrustZone available to all application developers. We implement and evaluate a
prototype of SANCTUARY on an off-the-shelf ARM-based multi-core chip set.

By making TrustZone openly accessible, SANCTUARY can provide protection for a mul-
titude of applications which process privacy-sensitive data. In Offline Model Guard



(OMG), we implement an offline keyword recognition service in a SANCTUARY enclave
which guarantees, privacy for the user’s speech data, integrity for the machine learn-
ing algorithms and confidentiality for the machine learning models which represent an
important intellectual property for the service provider.

This part of the dissertation is based on the following publications:

[22] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. SANCTUARY: ARMing TrustZone with User-space En-
claves. In Symposium on Network and Distributed System Security (NDSS), 2019.
CORE Rank A*. Appendix A.

[12] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian
Weinert. Offline Model Guard: Secure and Private ML on Mobile Devices. In
Conference on Design, Automation and Test in Europe (DATE), pages 460-465, 2020.
CORE Rank B. Appendix B.

Flexible Enclaves Across Platforms. All existing enclave architectures make assump-
tions regarding the applications they envision to protect. So far, this has led to an one-
size-fits-all design paradigm in which each enclave architecture provides exactly one type
of enclave with inherent capabilities and limitations. As a result, enclave architectures
are either restricted in the applications they can protect or require workarounds to cir-
cumvent the weaknesses of a particular enclave type. In our work CuUrg, we forsake
the one-size-fits-all paradigm and propose the first enclave architecture which provides
multiple types of enclaves in order to fulfill the individual requirements of sensitive
applications. CURE advances the state-of-the-art in enclave architectures and introduces
new hardware security mechanisms which allow to assign system resources, e.g., proces-
sor cores, cache memory or peripherals flexibly to enclaves. We design and implement
a prototype of CURE for the open RISC-V architecture and evaluate its hardware and
performance overhead on an FPGA- and simulator-based evaluation setup.

On emerging heterogeneous computing platforms, potentially hundreds of diverse com-
puting nodes are connected over a Network-on-Chip (NoC) architecture. Enabling en-
clave computing also on NoC-based architectures brings many new security challenges,
e.g., regarding the inclusion of computing nodes from untrusted third-party vendors or
the distribution of sensitive enclave data across multiple nodes. In our work, we com-
bine CURE’s multi-type enclave concept with a novel hardware security component, the
Distributed Memory Guard (DMG), to design the first ever enclave architecture for NoC-
based platforms which is also capable of dealing with untrusted computing nodes and
distributed enclave data.

This part of the dissertation is based on the following publications:
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[o] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Security Ar-
chitecture with CUstomizable and Resilient Enclaves. In USENIX Security Sym-
posium, 2021. CORE Rank A*. Appendix C.

[61] Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel
Mark, Ahmad-Reza Sadeghi, Emmanuel Stapf, and Shaza Zeitouni. Distributed
Memory Guard: Enabling Secure Enclave Computing in NoC-based Architec-
tures. In ACM Design Automation Conference (DAC), pages 985-990, 2021. CORE
Rank A. Appendix D.

New Cache Designs enabling Side-Channel Resilient Enclaves. A large body of se-
curity research has shown the severity of cache side-channel attacks across computing
systems, including enclave architectures. However, none of the deployed enclave archi-
tectures provide cache side-channel resilient enclaves which is a great deficiency. Cache
architectures which allow to strictly partition and assign cache resources to execution
contexts are a promising approach to provide strong side-channel security guarantees.
Unfortunately, existing cache partitioning designs can either not prevent all attacks or
separate the cache only into coarse-grained partitions which leads to an underutilization
of the cache resources and makes the designs unable to scale to a large number of execu-
tion contexts. In our work CHUNKED-CACHE, we propose a novel cache microarchitecture
designed for enclave architectures which allows to assign cache resources exclusively
on-demand to enclaves on a fine-grained cache-set basis. Thus, CHUNKED-CACHE can
support a large number of enclaves while providing the same cache utilization strategy
used in commodity cache architectures. We implement a prototype of CHUNKED-CACHE
in hardware and on a cycle-accurate cache simulator and show its small hardware and
performance overhead during our evaluation.

This part of the dissertation is based on the following publication:
[62] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. CHUNKED-CACHE: On-Demand and Scalable Cache

Isolation for Security Architectures. In Symposium on Network and Distributed
System Security (NDSS), 2022. CORE Rank A*. Appendix E.
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Zusammenfassung

In den letzten zehn Jahren haben sich Sicherheitsarchitekturen durchgesetzt, die sensible
Daten in isolierten Ausfithrungsumgebungen, sogenannten Enklaven oder Trusted Exe-
cution Environments (TEEs), schiitzen, die auf hardwaregestiitzte Sicherheitsmechanis-
men aufbauen. Durch die Verwendung von Hardwaremechanismen konnen Enklaven-
Architekturen die inhdrent vertrauenswiirdige Software, Trusted Computing Base (TCB)
genannt, auf ein Minimum reduzieren, was in starkem Gegensatz zu der grofsen Code-
basis steht, der in einem Standard-Betriebssystem vertraut werden muss. Im Gegensatz
zu Architekturen, bei denen die Sicherheitshardware in speziellen Computerchips, z.
B. Trusted Platform Modules (TPMs) oder Smartcards, untergebracht ist, sind Enklave-
Architekturen tief in den Hauptprozessor integriert und koénnen so die volle Rechen-
leistung des Prozessors nutzen und gleichzeitig die Hardwarekosten senken. Obwohl
Enklave-Architekturen in Computersystemen weit verbreitet sind, von ressourcenbeschr-
dnkten Mikrocontrollern und eingebetteten Systemen iiber mobile Gerdte bis hin zu
Personal Computern und Servern, miissen noch viele Herausforderungen gemeistert
werden, um ihr volles Potenzial auszuschopfen.

In dieser Dissertation entwerfen, implementieren und evaluieren wir mehrere neuar-
tige Enklave-Architekturen und Sicherheitserweiterungen, die einen wichtigen Beitrag
zur Enklave-Computing-Forschung leisten, indem sie mehrere Herausforderungen der
Forschung meistern, namlich i) einen offenen Zugang zum Enklave-Computing auf
ARM-basierten Systemen zu ermoglichen, ii) unterschiedliche sensible Anwendungen
mit einer einzigen Enklave-Architektur plattformiibergreifend zu schiitzen und iii) vor
Seitenkanalangriffen geschiitzte Enklaven bereitzustellen.

Offen zugdngliches Enklave-Computing auf ARM-basierten Gerdaten. ARM Trust-
Zone war eine der ersten Sicherheitstechnologien, die Enklave-Computing ermoglichten.
Ihr breiter Einsatz auf mobilen Geridten besitzt das Potenzial, die Sicherheit vieler sen-
sibler mobiler Anwendungen zu ermoglichen. Leider konnen die derzeitigen auf Trust-
Zone basierenden Enklave-Architekturen keinen Enklave-Schutz aller sensiblen Anwen-
dungen bieten, da jede geschiitzte Anwendung die Angriffsfliche des Systems ver-
groflert. Infolgedessen ist Enklave-Computing auf ARM-basierten Gerdten heute fiir
Anwendungsentwickler von Drittanbietern weitestgehend blockiert und wird haupt-
sdchlich fiir die Dienste der Gerédtehersteller genutzt. In unserer Arbeit schlagen wir
SANCTUARY vor, eine neuartige Enklaven-Architektur, die einen Enklaven-Schutz aller
sensiblen Anwendungen ermoglicht. SANCTUARY erreicht dies, indem es de-privilegierte
Enklaven auf der Basis einer starken hardwaregestiitzten Isolation bereitstellt, ohne je-
doch eine Modifikation der Hardware vorauszusetzen. SANCTUARYs Enklaven erhthen
die Angriffsfliche des Systems nicht und meistern somit die Herausforderung, Trust-

VIII



Zone allen Anwendungsentwicklern zuganglich zu machen. Wir implementieren und
evaluieren einen Prototyp von SANCTUARY auf einem handelstiblichen ARM-basierten
mehrkernigen Chipsatz.

Aufgrund der erreichten offenen Zuganglichkeit von TrustZone kann SANCTUARY eine
Vielzahl von Anwendungen schiitzen, die datenschutzsensible Daten verarbeiten. In Of-
fline Model Guard (OMG) implementieren wir einen offline Worterkennungsdienst in
einer SANCTUARY-Enklave, welcher den Schutz der Nutzersprachdaten, die Integritat der
maschinellen Lernalgorithmen und die Vertraulichkeit der gelernten Modelle, welche
ein wichtiges geistiges Eigentum des Dienstanbieters darstellen, garantiert.

Dieser Teil der Dissertation basiert auf den folgenden Veroffentlichungen:

[22] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, und
Emmanuel Stapf. SANCTUARY: ARMing TrustZone with User-space En-
claves. In Symposium on Network and Distributed System Security (NDSS), 2019.
CORE Rank A*. Appendix A.

[12] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, und Christian
Weinert. Offline Model Guard: Secure and Private ML on Mobile Devices. In
Conference on Design, Automation and Test in Europe (DATE), Seiten 460-465, 2020.
CORE Rank B. Appendix B.

Flexible Plattformiibergreifende Enklaven. Alle bestehenden Enklaven-Architektu-
ren treffen Annahmen tiiber die Anwendungen, welche sie schiitzen wollen. Bislang
hat dies zu einem Paradigma gefiihrt, bei dem jede Enklaven-Architektur genau einen
Enklaven-Typ mit inhdrenten Fahigkeiten und Einschrdankungen bereitstellt. Infolgedes-
sen sind Enklave-Architekturen entweder in den Anwendungen, die sie schiitzen kon-
nen eingeschrankt oder sie sind abhidngig von Behelfslosungen um die Schwichen eines
bestimmten Enklave-Typs zu umgehen. In unserer Arbeit CURE geben wir dieses Ein-
heitsparadigma auf und schlagen die erste Enklaven-Architektur vor, die mehrere Arten
von Enklaven bietet, um die individuellen Anforderungen sensibler Anwendungen zu
erfiillen. CUre entwickelt den Stand der Technik bei Enklave-Architekturen weiter und
fiihrt neue Hardware-Sicherheitsmechanismen ein, die es erlauben, Systemressourcen,
z.B. Prozessorkerne, Cache-Speicher oder Peripheriegeréte, flexibel Enklaven zuzuord-
nen. Wir entwerfen und implementieren einen Prototyp von CURE fiir die offene RISC-
V-Architektur und evaluieren die Hardware- und Leistungskosten des Prototyps auf
einem FPGA- und Simulator-basierten Evaluierungsaufbau.

Auf gerade entstehenden heterogenen Computerplattformen sind potenziell Hunderte
von verschiedenen Rechenknoten iiber eine Network-on-Chip (NoC) Architektur ver-
bunden. Der Einsatz von Enklave-Computing auf NoC-basierten Architekturen bringt
viele neue Sicherheitsherausforderungen mit sich, z.B. in Bezug auf die Einbeziehung
von Rechenknoten von nicht vertrauenswiirdigen Drittanbietern oder die Verteilung sen-
sibler Enklave-Daten {iber mehrere Knoten hinweg. In unserer Arbeit kombinieren wir
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das Konzept von CURE mit mehreren Enklave-Typen mit einer neuartigen Hardware-
Sicherheitskomponente, dem Distributed Memory Guard (DMG), um die erste Enklave-
Architektur fiir NoC-basierte Plattformen zu entwickeln, welche auch mit nicht ver-
trauenswiirdigen Rechenknoten und verteilten Enklave-Daten umgehen kann.

Dieser Teil der Dissertation basiert auf den folgenden Veroffentlichungen:

[o] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, und Emmanuel Stapf. CURE: A Security Ar-
chitecture with CUstomizable and Resilient Enclaves. In USENIX Security Sym-
posium, 2021. CORE Rank A*. Appendix C.

[61] Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel
Mark, Ahmad-Reza Sadeghi, Emmanuel Stapf, und Shaza Zeitouni. Dis-
tributed Memory Guard: Enabling Secure Enclave Computing in NoC-based
Architectures. In ACM Design Automation Conference (DAC), Seiten 985-990,
2021. CORE Rank A. Appendix D.

Neuartige Cache-Designs um vor Seitenkanalangriffen geschiitzte Enklaven bereitzu-
stellen. Zahlreiche Arbeiten in der Sicherheitsforschung haben die Schwere von Cache-
Seitenkanalangriffen auf Computersysteme, einschliefdlich Enklave-Architekturen, aufge-
zeigt. Keine der eingesetzten Enklave-Architekturen bietet jedoch Enklaven, welche re-
sistent gegen Cache-Seitenkanalangriffe sind, was ein grofses Manko darstellt. Cache-
Architekturen, die eine strikte Partitionierung und Zuweisung von Cache-Ressourcen zu
Ausfiihrungskontexten ermoglichen, sind ein vielversprechender Ansatz, um starke Seit-
enkanalsicherheitsgarantien zu bieten. Leider konnen bestehende Cache-Partitionierungs-
designs entweder nicht alle Angriffe verhindern oder den Cache nur in grobe Partitio-
nen aufteilen, was zu einer unzureichenden Ausnutzung der Cache-Ressourcen fiihrt
und es unmoglich macht, die Designs auf eine grofie Anzahl von Ausfithrungskontex-
ten zu skalieren. In unserer Arbeit CHUNKED-CACHE schlagen wir eine neuartige Cache-
Mikroarchitektur fiir Enklave-Architekturen vor, die es ermoglicht, Cache-Ressourcen
exklusiv und bedarfsgerecht, auf einer feingranularen Cache-Set-Basis, Enklaven zuzu-
weisen. Auf diese Weise kann CHUNKED-CACHE eine grofie Anzahl von Enklaven unter-
stiitzen und gleichzeitig die gleiche Cache-Verwendungsstrategie bieten, die in herkémm-
lichen Cache-Architekturen verwendet wird. Wir implementieren einen Prototyp von
CHUNKED-CACHE in Hardware und auf einem zyklusakkuraten Cache-Simulator und
zeigen in unserer Evaluierung dessen geringe Hardware- und Leistungskosten.

Dieser Teil der Dissertation basiert auf der folgenden Veroffentlichung:

[62] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
und Emmanuel Stapf. CHUNKED-CACHE: On-Demand and Scalable Cache
Isolation for Security Architectures. In Symposium on Network and Distributed
System Security (NDSS), 2022. CORE Rank A*. Appendix E.
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and Ahmad-Reza Sadeghi [22], and with Sebastian P. Bayerl, Tommaso Frassetto, Patrick
Jauernig, Korbinian Riedhammer, Ahmad-Reza Sadeghi and Thomas Schneider [12]. For
SANCTUARY [22], I conceived the main ideas and led the research work, whereby Ferdi-
nand Brasser and Patrick Jauernig contributed to the discussions on the design and im-
plementation of SANCTUARY. I focused on all aspects of the research project, including
the design, implementation and evaluation of the SANCTUARY architecture. Ferdinand
Brasser contributed to the design of SANCTUARY, whereas Patrick Jauernig contributed
to the implementation of SANCTUARY. Co-author David Gens contributed to the writ-
ing of the publication. For Offline Model Guard [12], all co-authors contributed to the
discussions on the design and implementation. I focused on the implementation of the
keyword recognition algorithm in a SANCTUARY enclave and its evaluation. Tommaso
Frassetto focused on porting the TensorFlow Lite machine learning framework to Sa-
NCTUARY. Sebastian P. Bayerl focused on preparing the machine learning model and test
data used during the performance evaluation. Patrick Jauernig focused on the design
of the communication protocol used by the SANCTUARY enclave, the user and the ven-
dor of the machine learning model. Christian Weinert contributed to the discussion of
alternative cryptographic secure computation technologies.

Chapter 3 is based on joint works with Raad Bahmani, Ferdinand Brasser, Ghada Des-
souky, Patrick Jauernig, Matthias Klimmek and Ahmad-Reza Sadeghi [9], and with
Ghada Dessouky, Mihailo Isakov, Pouya Mahmoody, Miguel Mark, Shaza Zeitouni, Mich-
el A. Kinsy and Ahmad-Reza Sadeghi [61]. For CURE [9], I conceived the main ideas and
led the research work, whereby Patrick Jauernig and Ghada Dessouky contributed to
the discussions on the design and implementation of CURE. I focused on the design of
Cure’s modifications at the processor, the design and implementation of CURE’s access
control mechanisms at the system bus, and led the evaluation. Moreover, I supervised
the M.Sc. thesis of co-author Matthias Klimmek who focused on the software stack im-
plementation of the CURE architecture and its evaluation. Ghada Dessouky focused on
the design, implementation, and evaluation of the cache partitioning for CURE, whereas
Patrick Jauernig focused on the implementation of CURE’s modifications at the proces-
sor and the software stack evaluation. Raad Bahmani and Ferdinand Brasser contributed
to the writing of the publication. For Distributed Memory Guard [61], Mihailo Isakov
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Introduction

The protection of sensitive data is of great importance on nearly all computing systems
today, whether those are resource-constraint microcontrollers and embedded systems,
mobile devices, personal computers or cloud servers. The sensitive data processed by
these computing systems range from security- and privacy-sensitive data of individuals
(e.g., financial or biometric data), to intellectual property of companies and even sensi-
tive governmental data. Trends such as the Internet of Things (IoT) and new applications
(e.g., autonomous driving) and cloud computing services (e.g., Machine-Learning-as-a-
Service) even increase the demand for security solutions to protect sensitive data across
applications and platforms.

In the last one-and-a-half decades, enclave computing evolved into a very active field
of research and also in practice, technologies have been widely deployed to enable en-
clave architectures, most notably ARM TrustZone-A [151] and TrustZone-M [149], Intel
Software Guard Extensions (SGX) [167, 94, 45], AMD Secure Encrypted Virtualization
(SEV) [105, 106, 107] and IBM Protected Execution Facility (PEF) [98], whereby also new
still undeployed technologies, namely Intel Trust Domain Extensions (TDX) [49] and
ARM Confidential Compute Architecture (CCA) [152] have been announced recently.
Enclave architectures gained prominence since they guarantee a level of security that
goes way beyond the protection capabilities of commodity operating systems. In the
following, we first introduce the high-level design of enclave architectures and delimit
them from other hardware-assisted security solutions. Then, we provide a categoriza-
tion for the broad research field of enclave computing. We connect the high-level design
of enclave architectures with the corresponding research subfields in Figure 1, whereby
we mark defensive research in and attack research in . Lastly, we define
the goals of this dissertation and summarize the contributions that each chapter of this
dissertation makes.

1.1 Enclave Architecture Design

One of the key design elements of an enclave architecture are hardware-assisted security
mechanisms which are deeply integrated into the System-on-Chip (SoC) and which are
configured by a small trusted software component or microcode, which together form
the Trusted Computing Base (TCB) of the system. Using the security mechanisms, en-
clave architectures set up execution contexts, called enclaves, that are strongly isolated
from each other and all system software (e.g., the operating system or hypervisor), as
indicated by the bold lines in Figure 1. Besides the configuration of the security mech-
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Figure 1: Abstract enclave architecture design and subfields of enclave computing research,
whereby defensive research is marked in and attack research in

anisms, the trusted software also provides cryptographic primitives, e.g. to create keys
or perform attestation of enclaves. One key argument for enclave architectures comes
from the deliberation that hardware-assisted security mechanisms and a small trusted
software component are less likely to contain software-exploitable vulnerabilities than
the large code base of commodity system software (e.g., operating systems kernels).
Between 2010 and 2020, on average 67 vulnerabilities with a high or critical severity
(7.0-10.0 CVSS score [109]) were found in the Linux kernel every year [181]. The clear
separation between the commodity system software and the specialized trusted soft-
ware, which only performs security-relevant tasks, distinguishes enclave architectures
also from proposals which combine both tasks in one component, e.g., micro-kernel or
micro-hypervisor approaches [80, 223, 124, 92, 145].

The integration of the security mechanisms into the SoC allows to utilize the computa-
tional power of the system’s main processor for the enclave computations which enables
support for a much wider range of applications than solutions that are implemented
on dedicated security hardware, either as on-chip secure processors [161, 110, 47, 172]
or as off-chip hardware, e.g., Trusted Platform Modules (TPMs) [84] or secure ele-
ments [108, 117]. Depending on the design of the security mechanisms and the overall
enclave architecture, system resources (e.g., memory, cache, processor cores or peripher-
als) can be exclusively assigned to enclaves.

The protection of the sensitive applications, encapsulated in enclaves, from all non-
sensitive applications and system software, represents the main goal of an enclave archi-
tecture. Protection in this context means providing integrity guarantees for enclave pro-
gram code before its execution and inaccessibility during execution, and integrity and
confidentiality guarantees for enclave data at all times. In contrast to most security archi-
tectures designed for resource-constrained microcontrollers [65, 224, 175, 126, 82, 207],
enclave architectures do not configure fixed enclaves during boot but allow an Operat-
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ing System (OS) to dynamically load enclaves during runtime, such as it is also provided
for non-sensitive applications.

In general, enclave architectures focus in their defense mechanisms on a strong software-
based adversary who is able to compromise all system software. Most physical attacks
which are performed from close proximity to the target, e.g., the physical analysis of ex-
ecution times [125], electromagnetic emissions [79] or the power consumption [162], as
well as physical fault injections attacks [10, 24, 37] are typically not considered, only sim-
pler physical attacks, e.g., cold boot attacks [89] or bus snooping [169]. Denial-of-service
attacks which prevent the execution of enclaves are also mostly not considered since an
adversary with control over the system software can trivially shut down the complete
system. The assumption of a privileged software adversary marks a key difference to
capability and in-process isolation systems [74, 222, 241, 251, 262, 57, 269, 208, 234, 36]
which use hardware mechanisms to build sandboxes around processes, e.g., by defin-
ing fine-grained access rules for software objects such as pointers. In contrast to en-
clave architectures, the goal of in-process isolation techniques is to prevent an adver-
sary from escaping the sandbox, not a privileged adversary from entering it. Where
most sandboxing techniques assume that an adversary already controls an execution
context on the system, other hardware-assisted defenses aim to prevent an adversary
from compromising an execution context in the first place using memory corruption
attacks [176, 1, 58, 146, 147, 56, 199]. These hardening approaches represent orthogonal
work which can be used in conjunction with enclave architectures, e.g. to harden the
trusted software component.

1.2 Enclave Computing Research Landscape

In the following, we provide a categorization and summary of the research areas in the
context of enclave computing which we also depict in Figure 1. We start by introducing
the attack research (marked in ) which reveals vulnerabilities of enclave architec-
tures and over which we give an overview in [59]. Followed by the defense research
(marked in ) which proposes new enclave architectures or extends existing ones, we
discuss some of the most well-known enclave architectures also in [115].

1.2.1 Implementation Flaw Exploitation

Typically, because of its minimal size, the trusted software of an enclave architecture
is assumed to be correct. However, as shown by security researchers, deployed trusted
software also contains vulnerabilities that once exploited allow to compromise the sys-
tem [200, 76, 77, 213, 214, 263]. Similarly to the trusted software, the software encap-
sulated in enclaves is also assumed to be correct, though with the reasoning that the
internals of an enclave are out-of-scope for the enclave architecture design. However,
most enclave architectures dictate the usage of Software Development Kits (SDKs) to
implement enclaves for a specific architecture. Research has shown that these SDKs can
contain implementation flaws, e.g., memory corruption vulnerabilities or unchecked re-
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turn values, which can be exploited to extract sensitive data from enclaves [78, 160, 27,
136, 15, 252, 43, 237, 52].

1.2.2 Controlled Side-channel Attacks

Even though system software is explicitly untrusted, it often still plays a supporting
role in the enclave management in order to reuse existing functionality and keep the
trusted software to a minimum. Enclave computing research on controlled side-channel
attacks has shown that the dependency on system software enables attacks in which
the adversary infers information about the internal enclave state by exploiting software
structures, e.g., page tables [258, 25, 245, 168, 170], interrupt handlers [236, 91, 235, 254],
Direct Memory Access (DMA) memory buffers [139] or other critical software struc-
tures [93, 141, 142, 256, 140], as side channels.

1.2.3 Micro-architectural Attacks

The integration of enclave architectures into the SoC saves hardware costs and allows en-
claves to use the full computational power of a system’s main processor. However, from a
security perspective, the integration must be looked at with suspicion since it leads to the
sharing of microarchitectural resources between the enclaves and the untrusted software.
Security research has shown that especially the sharing of cache resources [19, 88, 83, 53,
210, 266] and the speculative execution unit [137, 67, 102, 26, 33, 127, 211, 238, 239, 195]
can be exploited to extract sensitive data from enclaves. Moreover, since adversary and
victim run on the same processor, software-based fault injection attacks could success-
fully be demonstrated on enclaves architectures [230, 191, 190, 171, 120].

1.2.4 Enclave Architecture Designs

Apart from the deployed enclave architectures based on ARM TrustZone [151, 149, 152],
Intel SGX [167, 94, 45, 49], AMD SEV [105, 106, 107] and IBM PEF [98], the defensive
line of enclave computing research proposed a wide range of new enclave architectures
to withstand current state-of-the-art attacks. The key components which define the capa-
bilities and limitations of an enclave architecture are the underlying hardware-assisted
security mechanisms upon which enclaves are implemented. Thus, enclave architectures
can be roughly divided into those that introduce new hardware-based security mecha-
nisms [225, 28, 18, 253, 4, 51, 9, 12, 66, 242, 113, 270, 172, 16, 183, 116, 257, 227] and those
that do not require hardware changes to be implemented and instead utilize already
existing hardware mechanisms [22, 135, 165, 166, 226, 40, 97, 114, 267, 80, 260, 95, 198,
7, 144, 35, 265, 119, 143, 133, 264], whereby many approaches rely on virtualization tech-
nologies [165, 166, 40, 97, 95, 198, 260, 7, 144, 35, 119, 264]. Apart from a categorization
depending on the need for hardware modifications, the research that proposes enclave
architectures can also be grouped by the processor architecture the work focuses on, e.g.,
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ARM [22, 226, 40, 97, 267, 265, 114, 143, 133], X86 [66, 165, 166, 242, 113, 270, 80, 260, 95,
198, 7, 144, 35, 119, 183, 264] or RISC-V [253, 51, 135, 9, 172, 16].

1.2.5 Side-channel Resilient Caches

Protecting enclaves from cache side-channel attacks is an important research challenge
which unfortunately as been mainly ignored in the deployed enclave architectures. Also,
only recently, research proposed side-channel resilient caches which explicitly target en-
clave architectures with their design [60, 62, 202]. Taking the characteristics of enclave
computing into consideration is crucial for the cache design, e.g., the peculiarity that the
elevated security guarantees provided by enclaves are not required for all applications
on the system but only for a sensitive subset must be reflected in the cache design. Since
not many caches specifically designed for enclave architectures have been proposed, we
also include more generic proposals for side-channel resilient caches. In general, the
proposed cache designs can be separated into two major groups. Partitioning-based
approaches [60, 62, 202, 247, 123, 248, 259, 64] remove side channels on the cache by
assigning cache resources exclusively to execution contexts and by preventing all ac-
cesses (read, write and evict) from untrusted software, thus hindering the adversary
from gaining enough information about the victim’s cache utilization for an attack. In
contrast, randomization-based approaches [154, 249, 233, 193, 194, 255, 229, 201] do not
assign cache resources exclusively but randomize the mapping from memory addresses
to cache sets to prevent an adversary from inferring accessed memory addresses from
cache misses, which is crucial for performing a cache side-channel attack.

1.2.6 Enclave Hardening

Apart from designing new enclave architectures that withstand state-of-the-art attacks,
other enclave computing research has been concerned with hardening the enclaves of
existing enclave architectures by proposing new defense mechanisms against specific
attacks. The categorization of these research works can be aligned with the already
introduced attack vectors on enclave architectures, namely exploitable implementation
flaws, cache side-channel attacks and controlled side-channel attacks. Hardening against
implementation flaws is achieved through the formal verification of the enclave code or
trusted software [219, 220, 134, 71], type-safe programming languages [243] or by finding
vulnerabilities in the enclave code through fuzzing techniques [43]. The defenses against
cache side-channel attacks and controlled side-channel attacks mostly rely on random-
ization techniques, e.g., by adding random noise to memory traces [29], randomizing
data locations [21] or the address space of the enclave [212], or they rely on forcing an
enclave to only perform oblivious memory accesses [2, 3, 205]. Other works use special-
ized transactional memory hardware to hide page faults from an attacker [216], detect an
abnormal enclave interrupt behavior [34] or lock enclave data completely in the cache to
prevent side channels [85]. Pinning enclaves to processor cores [179, 32] is another option
to at least make the core-exclusive side channels inaccessible for an adversary.
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1.2.7 Enclave Use Cases

In general, enclave architectures do not focus on specific use cases but instead aim to
provide isolated execution environments that can cater various applications which pro-
cess sensitive data. Thus, another line of research explores the applicability and useful-
ness of enclave architectures for the protection of a variety of sensitive applications, e.g.,
databases [75, 129, 187], blockchain applications [54, 38], data analysis [209, 268], multi-
party computation [68, 8, 131], language runtimes [204], virtual TPMs [196] or compil-
ers [73]. One type of application which has been studied extensively in the context of
enclave architectures is machine learning. Different strategies have been proposed how
enclaves should be leveraged for their protection, e.g., for privacy-preserving model
training on remote servers [104, 100, 231, 178, 232, 185, 138, 20, 192] or on local de-
vices [90, 206, 12], whereby in some works computationally intensive operations are of-
floaded to Graphics Processing Units (GPUs) to improve performance [232, 185, 101, 206].
Apart from evaluating the applicability of enclaves for specific use cases, other research
works take a more general approach and aim to provide solutions for porting unmod-
ified existing applications to enclave architectures [11, 30, 5, 217, 215, 99, 86] which is
challenging since some architectures, such as Intel SGX, heavily restrict system calls for
its enclaves.

1.3 Dissertation Goals

The goal of this dissertation is to significantly contribute to enclave computing research
by tackling multiple research challenges which we describe in the following.

Enclave Architecture Designs. The goal of enclave architectures to make our com-
puting systems generally more secure requires that all sensitive applications with el-
evated security demands can be protected in enclaves. Unfortunately, enclave archi-
tectures build on the TrustZone technology, which are the most deployed enclave ar-
chitectures today, suffer from design limitations which make it impossible to provide
TrustZone-based protection to third-party applications without security concerns. Ex-
isting research works are either based on virtualization techniques which blocks them
for their intended usage [40, 97, 114], rely on a weak isolation between enclaves based
on virtual address spaces [267, 143, 133, 265], or only provide temporal isolation which
is highly unpractical [226]. One goal of this dissertation is to develop new concepts to
enforce a strong hardware-assisted separation (spatial and temporal) between enclaves
based on the TrustZone technology so that an unrestricted access to TrustZone’s protec-
tion capabilities can be provided to all applications without putting the security of the
computing system in danger.

Apart from limitations specific to the TrustZone technology, most enclave architectures
lack mechanisms to enable a secure communication between enclaves and commodity
peripherals, which is required to support uses cases in which sensitive sensor data is
processed, e.g. biometric authentication, or when sensitive graphic computations are of-
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floaded to a GPU. The enclave architectures which are capable of secure I/O in general
either cannot assign peripherals directly and exclusively to single enclaves [40, 226, 97,
267, 265, 114, 143, 133, 198], require peripheral modifications [119], rely on encrypted
communication between the enclave and the peripheral [242, 113] or are focused on
off-chip GPUs in data centers [270]. In this dissertation, another goal is to develop new
mechanisms to enable secure communication channels between enclaves and periph-
erals which support commodity peripherals and do not rely on encryption schemes.
Moreover, another goal is to adapt the enclave architecture designs also to emerging
NoC-based computing platforms on which the presence of untrusted computing nodes
and the distributed enclave data present additional challenges.

Side-channel Resilient Caches. Cache side-channel attacks are a persistent threat
also to enclave architectures. For their protection, side-channel resilient cache designs
are required which take the peculiarities of enclave architectures into account, e.g., the
assumption of a privileged adversary or the differentiation between applications that
require protection and those that do not. So far, the majority of the proposed cache
architectures [247, 123, 248, 259, 203, 154, 249, 233, 193, 194, 255, 229, 201] do not tar-
get enclave architectures. Moreover, many of the proposed designs do not scale because
they can assign cache resources only in a coarse-grained fashion [123, 247, 248] or cannot
protect against stealthier occupancy-based cache side-channel attacks [154, 233, 229, 64,
193, 194, 249, 255, 201, 60, 259]. In this dissertation, our goal is to develop scalable cache
designs focusing on enclave architectures which provide protection against side-channel
attacks (including occupancy-based attacks [218]) in the presence of strong software ad-
versaries and which minimize their performance impact on non-sensitive applications
and system software on the platform.

Enclave Use Cases. One of the main use cases for enclave architectures frequently
discussed are machine learning applications. One reason is that these applications han-
dle different types of sensitive data which must be protected, namely privacy-sensitive
user data, integrity-sensitive machine learning algorithms and machine learning models
which represent intellectual property. So far, most works focused on a scenario in which
the machine learning applications run on servers in the public cloud [104, 100, 231, 178,
232, 185, 138, 20, 192]. However, today most mobile devices perform machine learning
tasks using privacy-sensitive user data collected locally on the device, e.g., speech recog-
nition/processing, biometric authentication or video/image processing. Thus, another
goal of this thesis is to investigate how enclave architectures can be utilized to protect
user input and machine learning algorithms and models on mobile devices.

A widespread usage of enclave architectures in the future will heavily depend on which
types of application the next generation of enclave architectures will support. Currently,
enclave architectures are static concerning the type of application they can effectively
protect, depending on the assumptions that were made during design time. Their static
nature increases the overhead for porting existing applications to enclaves or makes
the protection of certain applications not possible without security concerns. In order
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to ease the deployment of unmodified applications in enclaves, researchers proposed
multiple approaches to extend enclave capabilities, e.g., by secure file or network I/O or
multithreading [11, 30, 5, 217, 215, 99, 86]. Unfortunately, all proposals require cumber-
some workarounds for the inherent limitations of the underlying enclave architecture.
One important goal of this dissertation is to develop a new enclave architecture design
which does not make assumptions regarding the applications which are protected in its
enclaves. Instead, the architecture should be flexible enough to protect any type of appli-
cation appropriately without workarounds, e.g., if a sensitive application heavily relies
on system calls, the architecture must securely provide them without relying on error-
prone defense mechanisms, such as the verification of system call returns [31].

1.4 Dissertation Outline

In the following, we summarize the remainder of this dissertation, whereby each chapter
describes our contributions and compares them to related work.

Chapter 2: We present SANCTUARY [22], a novel enclave architecture which utilizes
the TrustZone technology to provide strongly-isolated enclaves on ARM-based systems
without relying on virtualization. SANCTUARY runs sensitive applications de-privileged
on temporarily isolated physical processor cores by making use of TrustZone’s versatile
address-space controller. This enforces a two-way hardware-level isolation in which sen-
sitive applications are protected from compromised system software while the system is
also protected from potentially malicious applications in the enclaves. Thus, additional
sensitive applications do not increase the attack surface of the system which allows to
make the TrustZone technology openly accessible without security concerns. We imple-
ment SANCTUARY on a multi-core ARM-based development board and demonstrate its
practicality by thoroughly evaluating our prototype.

Moreover, we present Offline Model Guard (OMG) [12], which represents a real-world
use case implementation on the SANCTUARY platform. We show that SANCTUARY enclaves
can be used to perform offline keyword recognition using TensorFlow Lite for microcon-
trollers on mobile devices while guaranteeing the privacy of the user’s speech data,
the secrecy of the machine learning models provided by the service provider, and the
integrity of the machine learning algorithms.

Chapter 3: We present CURE [9], the first enclave architecture which offers multi-
ple different types of enclaves to protect diverse sensitive applications. CURE provides
sub-space enclaves to enable intra-privilege-level isolation, user-space enclaves with a
small memory and TCB footprint, and also kernel-space enclaves which provide an iso-
lated runtime and drivers to the sensitive applications. CURE introduces new hardware-
assisted security mechanisms which allow kernel-space enclaves to securely communi-
cate with commodity peripherals over Memory Mapped Input/Output (MMIO) and
DMA, without relying on encrypted communication streams. Moreover, CURE’s design
includes a way-based cache partitioning scheme to protect enclaves from cache side-
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channel attacks. We implement CURE for the open RISC-V architecture and thoroughly
evaluate our prototype in terms of hardware and performance overhead on an eval-
uation setup consisting of ISA simulators, a cycle-accurate system simulator and an
FPGA. On standard benchmarks, CURE incurs a geometric mean performance overhead
of 15.33%.

Additionally, we present the Distributed Memory Guard (DMG) [61], a novel hardware
security component which allows to design enclave architectures for heterogeneous com-
puting platforms that connect a large number of on-chip computing nodes over an NoC
architecture. We investigate the problem of memory fragmentation on systems under
heavy load and propose an enclave architecture design based on the DMG which can
handle distributed enclave data and untrusted computing nodes.

Chapter 4: We present CHUNKED-CACHE [62], a novel side-channel resilient cache de-
sign targeting enclaves architectures. CHUNKED-CACHE’s design is based on a strict cache
partitioning strategy which assigns cache resources on a cache-set granularity exclu-
sively to enclaves. Thus, CHUNKED-CACHE scales to a large number of enclaves and
at the same time minimizes the performance impact on the system software and all
non-sensitive applications. The strict partitioning of CHUNKED-CACHE allows to also pre-
vent occupancy-based cache side-channel attacks. We implement a hardware model of
CHUNKED-CACHE and include it in a cycle-accurate cache simulator. We evaluate the
hardware and power consumption overhead of our CHUNKED-CACHE prototype and
provide a thorough performance evaluation using real-world applications and standard
computing benchmarks, which shows that CHUNKED-CACHE induces on average a 43%
lower cache miss rate than way-based partitioning schemes.

In Chapter 5, we conclude this dissertation and propose directions for future research
on enclave computing.






Openly-accessible Enclave Computing
on ARM-based Devices

The ARM TrustZone technology was one of the first set of hardware-assisted security
mechanisms which allowed to implement enclave architectures. The traditional enclave
architectures based on TrustZone, which are now widely deployed on mobile devices,
partition the system into two worlds, the normal world and the secure world. The normal
world contains the commodity untrusted Operating System (OS) and all non-sensitive
applications, whereas the secure world contains a Trusted OS (TOS) which isolates sen-
sitive applications, called Trusted Apps (TAs), using separate virtual address spaces.
Moreover, the TOS provides all OS services to the TAs, such as memory management,
thread handling and also the handling of sensitive peripherals, e.g., fingerprint sensors
or iris scanners. The enhanced functionality of a typical TOS leads to a large code basis
in the order of 100 KLOC [27]. As a result, the TOS presents a large attack surface, espe-
cially for the TAs which communicate with the TOS over a feature-rich interface. Thus,
every TA that is added to the secure world increases the probability of vulnerabilities
that might lead to a compromise of the system [200, 76, 77, 213, 214, 263, 78]. Applying
our definition of an enclave architecture presented in Section 1.1, all software running in
the secure world must be viewed as a coherent enclave and the traditional architectures
based on TrustZone thus as single-enclave architectures.

The mobile device vendors mostly share this view on TrustZone and thus security-
minded vendors either prevent third-party developers completely from deploying own
apps in the secure world, or only allow TAs which passed a rigorous and costly cer-
tification process. As a result, the security capabilities of TrustZone are mostly used
to protect services of the device vendors, e.g., key management or Digital Rights Man-
agement (DRM), whereas many applications which process privacy-sensitive user data,
e.g. machine learning applications which collected data over the mobile phone camera
or microphone, remain unprotected. To change the current situation, new TrustZone-
based multi-enclave architectures are required which can protect additional sensitive
applications without an increase of the system TCB and thus enable an open access to
TrustZone’s protection capabilities.

In this chapter, we describe our contributions to TrustZone-based enclave architectures
and to the protection of machine learning applications using enclaves (Section 2.1). More-
over, we summarize related research and position our work to it (Section 2.2).

11
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2.1 Contributions

In this section, we summarize the contributions of this dissertation to providing an
openly-accessible TrustZone and in showcasing the protection of machine learning ap-
plications in enclaves.

2.1.1  SANCTUARY: ARMing TrustZone with User-space Enclaves

This dissertation contributes to the enclave computing research of Enclave Architecture De-
signs (Section 1.2.4) by designing, implementing and evaluating a novel TrustZone-based
enclave architecture, named SANcTUARY, which is described in the following publication
that can be found in Appendix A:

[22] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. SANCTUARY: ARMing TrustZone with User-space En-
claves. In Symposium on Network and Distributed System Security (NDSS), 2019.
CORE Rank A*. Appendix A.

Normal-world Enclaves. The core idea of SANCTUARY is to cut the direct connection
between the TCB size of TrustZone-based architectures and the number of protected
sensitive applications by constructing strongly-isolated enclaves in the normal world.
The de-privileged SANCTUARY enclaves, shown in Figure 2, comprise a sensitive applica-
tion and a runtime which provides all required OS services to the sensitive application,
e.g., memory management, thread or interrupt handling. Thus, the code base running
in the secure world can be substantially reduced and in the SANCTUARY design, it only
contains security-relevant code from the device vendor which primarily manages the
setup of the SANCTUARY enclaves. The secure world code, called security primitives, can
also offer some security services to the enclaves if required, such as remote attestation
or sealed storage. Thus, in contrast to the traditional TrustZone-based architectures, the
secure world presents only a minimal interface, or no interface at all, to the sensitive ap-
plications encapsulated in SANCTUARY enclaves. As a result, a malicious or compromised
enclave does not pose a threat to the overall system security which in turn enables an
open access to TrustZone since all third-party developers can freely protect their sensi-
tive applications within SANCTUARY enclaves.

SANCTUARY’s normal-world enclaves are constructed by making use of a so far over-
looked feature of the TrustZone-enabled memory controller provided by ARM, called
the TrustZone Address-Space Controller (TZASC) [148]. The TZASC is typically used to
assign memory regions to either the normal or secure world which is achieved by per-
forming access control on all memory transactions the TZASC receives over the system
bus. The differentiation between normal and secure world transactions is made based on
the Non-Secure (NS) signal which is part of every memory transaction and which indi-
cates whether the sender of the transaction, e.g. a processor core, is currently executing
in the normal or secure world mode. The world mode, and thus the value of the NS sig-
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Figure 2: High-level design of the SANCTUARY enclave architecture which isolates the SANCTUARY
enclave, consisting of sensitive application and runtime, on processor core B. The TCB
marked in green consists of the trusted firmware and security primitives provided by
the device vendor.

nal, is configured by the trusted firmware during context switching between the normal
and secure world. The trusted firmware forms the highest-privileged software running
on TrustZone-enabled processors. As we discovered during our research, the TZASC is
also able to perform access control upon another bus signal, the Non-Secure Access ID
(NSAID) signal, which is used to identify senders of memory transactions. As depicted
in Figure 2 in SANCTUARY, we assign an unique NSAID to every processor core on the
system and use the TZASC to bind normal-world memory regions temporarily to sin-
gle physical processor cores. With this isolation primitive, we can construct SANCTUARY
enclaves in the normal world.

The setup of a SANCTUARY enclave begins with the request of a non-sensitive application
to execute a sensitive application. Subsequently, the commodity OS loads the sensitive
application binary and SANCTUARY runtime, and identifies the processor core with the
least amount of load. Next, the selected core is freed from all pending processes and
suspended. After a switch to the secure world, the trusted security primitives configure
the TZASC in a way that the memory region containing the sensitive application and
SANCTUARY runtime is made accessible exclusively for the suspended core. After verify-
ing the application and runtime binaries using digital signatures, the security primitives
wake up the suspended core which starts executing the SANCTUARY runtime. After the
runtime is finished booting, it jumps into the sensitive application code. The sensitive
application can now perform its requested task, whereby SANCTUARY enables a commu-
nication over shared memory with the untrusted OS and the security primitives in the
secure world. When the sensitive application finished its execution, the security primi-
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tives securely store the enclave state, clean the enclave’s memory, reconfigure the TZASC
and give control over the core back to the OS. While an enclave is running, all sensitive
data stored in the core-exclusive cache structures, e.g., the Translation Lookaside Buffer
(TLB) or L1 cache, are automatically protected from a malicious OS since SANCTUARY
enclaves are isolated on physical processor cores. Regarding the shared L2 cache, Sa-
NCTUARY can enforce that no enclave data gets cached in it.

Implementation & Evaluation. We implement a prototype of SANCTUARY on the HiKey
960 development board containing the Huawei Kirin 960 chip set frequently used on mo-
bile devices. We implement a normal-world OS based on the Linux kernel and include a

custom kernel module to enable the communication with the SANCTUARY enclave and se-
cure world. We implement the security primitives provided by the device vendor based

on a reduced version of OP-TEE [153]. For the SANCTUARY enclave runtime, we use a

modified version of the Zircon microkernel [158] which also offers a user space in which

we run the sensitive applications. SANCTUARY’s design does not require hardware mod-
ifications, only the NSAID assignment must be altered to achieve that every processor

core receives an unique ID which makes them distinguishable for the TZASC.

We evaluate the performance of SANCTUARY using microbenchmarks and a two-factor
authentication use case. In our microbenchmark evaluation, we measure basic opera-
tions performed during the life cycle of an enclave, including setting up the enclave on
an isolated core, communicating with the normal and secure world, and tearing down
the enclave. For the enclave setup, we measure around 200 ms (450 ms when excluding
all enclave data from the L2 cache), whereby most of the time (59%) is spent on shutting
down the selected processor core for which we rely on the hotplugging mechanism pro-
vided by the Linux kernel. Booting the Zircon microkernel constitutes for another 30%
of the enclave setup time. Most of the remaining time is used for loading and verifying
the SANCTUARY binaries. For the enclave shutdown, we measure a duration of around
100 ms, whereby the cleaning of the enclave memory constitutes for 45% of the time
and the core reboot for 53%. We also measure the time required to call a SANCTUARY
enclave from the normal world and also how long it takes to call the secure world from
a SANCTUARY enclave. For the former case, we measure 150 us on average, whereas for
the later case we measure 310 us on average. The reason for the time doubling is that in
our prototype, a call from the SANCTUARY enclave to the secure world is performed over
the normal world and thus two context switches are required. This can be prevented by
including the secure-world driver also in the SANCTUARY enclave runtime.

For our two-factor authentication use case, we implement an One-Time Password (OTP)
generator in a SANCTUARY enclave. In a first step, the enclave performs, with the help
of the security primitives, remote attestation at a backend to receive a secret key which,
in a second step, is used by the enclave to generate valid OTPs. In our evaluation, we
measure a duration of 1.2 s (1.8 s without L2 cache) for the complete process from the
start of the secret key provisioning up to the point where the user receives the OTP. For
the key provisioning step, which is only performed once after installation, we measure
884 ms on average (1174 ms without L2) and for the OTP generation step 365 ms on
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average (630 ms without L2). Our use-case evaluation shows that SANCTUARY provides
a practical performance. Moreover, SANCTUARY does not negatively influence the user
experience since the OS remains fully responsive during the enclave execution.

2.1.2 Offline Model Guard: Secure and Private ML on Mobile Devices

This dissertation contributes to the enclave computing research of Enclave Use Cases
(Section 1.2.7) by designing, implementing and evaluating a secure and private offline
machine learning service, called Offline Model Guard (OMG), using the SANCTUARY
enclave architecture. OMG is described in the following publication that can be found
in Appendix B:

[12] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian
Weinert. Offline Model Guard: Secure and Private ML on Mobile Devices. In
Conference on Design, Automation and Test in Europe (DATE), pages 460-465, 2020.
CORE Rank B. Appendix B.

Protocol Design. The Offline Model Guard (OMG) service is based on the SANCTUARY
enclave architecture [22] and protects sensitive Machine Learning (ML) applications in
an offline scenario on mobile devices. The protection of an ML application in its entirety
is a challenging task since it requires to protect different types of sensitive data. Firstly,
the privacy-sensitive user data which the ML algorithm processes, e.g. voice data, must
be securely collected on the device without being intercepted by an adversary. Thus, the
device must provide a secure connection between the ML application and the used sen-
sor. Secondly, the ML model used for inference, which is typically trained in a backend
system on large data sets, must be securely provisioned to the device since the model
presents valuable intellectual property for the vendor of the ML application. Lastly, the
integrity of the ML algorithm must be guaranteed at all times to prevent a manipulation
of the ML algorithm which could lead to false inference results.

OMBG provides privacy, secrecy and integrity for ML applications. We depict OMGs de-
sign in Figure 3. In order to protect a sensitive ML application with OMG, the application
is first implemented in a SANCTUARY enclave and bundled with a runtime that supports
all libraries required by the application, e.g., a specific ML framework. Then, the enclave
is provisioned to a system implementing the SANCTUARY enclave architecture. When an
application of the commodity OS triggers the execution of the sensitive ML application,
a corresponding SANCTUARY enclave is created, shown in in Figure 3. Then after en-
clave setup @, the integrity of the ML algorithm is proven to the OS application and the
ML vendor using the attestation functionalities of SANCTUARY. Next @, the enclave es-
tablishes an encrypted communication channel to the backend of the ML vendor which
is used to provision the enclave with an ML model. Subsequently (3), the received en-
crypted and rollback-protected ML model is stored outside of the enclave for later use.
The provisioning and storing of the ML model must only be performed once when the
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Figure 3: Offline Model Guard (OMG) design using the SANCTUARY enclave architecture which
splits the system into the normal world, secure world and SaNcTUARY enclaves. OMG
provides privacy for the user input, secrecy for the ML model and integrity for the ML
algorithm.

ML application is used for the first time, or, when the model is updated by the ML
vendor. OMG reuses the OS functionality for storing the ML model and communicating
with the ML vendor backend which is not a security concern since all data is encrypted.
We omit these details in Figure 3 for the sake of clarity. To use the ML model, the en-
clave again establishes a secure connection to the vendor to receive a decryption key for
decrypting the model ). Then, the enclave sets up a secure connection to a sensor, e.g.
a microphone, over the secure world software (5), marked in green, and starts collecting
user data. After the data collection, the ML algorithm performs inference upon the data.
The classification result is then returned to the OS application ®. The OMG design also
allows to perform offline training with the collected data on the mobile device, depend-
ing on whether the computational power of the mobile device application processor is
sufficient for this task.

Implementation & Evaluation. We implement OMG on a HiKey 960 development
board extended with the SANCTUARY enclave architecture. In our prototype, we imple-
ment an offline keyword recognition algorithm in an enclave which can classify com-
mand keywords when receiving an audio file as an input. As the ML algorithm, we
use a small neural network, consisting of a 2D convolutional layer, a ReLU activation
layer and a mapping layer, which we implement using the TensorFlow Lite for micro-
controllers library [157]. We perform the model training on a separate device using the
Speech Command [250] data set consisting of 105,000 WAVE audio files of people say-
ing 30 different commands, whereby we preprocess the audio files and generate a com-
pressed spectrogram from each audio signal. The resulting compressed model, which
we load into our keyword recognition enclave, has a size of 49 KB. In our performance
evaluation, we measure the time for a keyword inference performed in a SANCTUARY
enclave and compare it against an execution outside of an enclave. The setup of the
enclave takes around 200 ms until completion, including the suspension of a processor
core, the verification of the enclave and the runtime boot. During the ML inference, Sa-
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NCTUARY introduces only a small performance overhead of 2% which is caused by the
context switching between the enclave, normal and secure world. We also verify that the
classification accuracy of the ML algorithm is not influenced by SANcTUARY. Our evalu-
ation demonstrates that OMG is capable of providing privacy, secrecy and integrity for
sensitive ML applications on mobile devices at moderate performance costs.

2.2 Related Work

In the following, we summarize research related to SANCTUARY [22] and OMG [12], and
compare it to our work. For SANCTUARY, we focus on the most related work, namely
enclave architectures which target ARM-based computing systems. For a more general
summary of enclaves architectures, we refer the reader to Section 3.2.1. For OMG, we
focus on related work which protects machine learning applications in enclaves.

2.2.1  Enclave Architectures for ARM-based Computing Systems

We categorize the enclave architectures focusing or ARM-based platforms by the tech-
nologies that are used to isolate enclaves from each other and the system software,
namely virtualization technologies, software such as an operating system kernel, and
TrustZone’s hardware mechanisms.

Virtualization-based Isolation

Typically, hardware-assisted virtualization technologies introduce a high-privileged soft-
ware component, called hypervisor, which manages the hardware resources invisible to
the Virtual Machines (VMs). Because of its elevated rights, security research frequently
proposed to use the hypervisor to construct enclave architectures.

On ARM-based systems, Cho et al. [40] propose a design in which the hypervisor is
used to create a software compartment that is isolated from the normal world and se-
cure world software, called the On-demand Software Protection (OSP) world. Whenever
the execution of a sensitive application, called Security Critical Code (SCC) by the au-
thors, is triggered from the normal world software, the virtualization extensions are
activated on all processor cores by making use of Inter-Processor Interrupts (IPIs). Then,
the OSP hypervisor is loaded from the secure world to setup the OSP world. Next, the
SCC binary is decrypted, loaded into the OSP world and then executed in user space.
When the SCC terminates, the OSP world is stored in the secure world and the virtualiza-
tion extensions turned off. As a result, OSP only suffers from performance degradation
caused by the second-level address translation while an SCC is executed. However, it is
crucial for the design that the virtualization extensions are activated on all cores before
an SCC is executed since a privileged adversary could otherwise map the memory of
an SCC into his own memory space. To prevent a compromised core from ignoring the
IPIs, the configuration of the General Interrupt Controller (GIC) is performed during the
secure boot process and locked afterwards. The authors of PrivateZone [114] propose
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a design very similar to OSP. Also in PrivateZone, a third isolated compartment next
to the normal and secure world is set up, called Private Execution Environment (PrEE),
in which the sensitive applications are executed, shielded from the normal world. In
contrast to OSP, the trusted software which configures the PrEE is not executed in the
hypervisor mode but in monitor mode which is the highest privileged software level on
an ARM processor.

In vIZ [97], virtualization technologies are also utilized to design an ARM-based en-
clave architecture, whereby an enclave is represented by a hardened VM running in the
normal world. In contrast to OSP [40] and PrivateZone [114], VIZ runs a complete Xen
hypervisor [103] on the platform which contradicts the enclave architecture design goal
of a minimal software TCB. Thus, the authors propose to outsource all sensitive function-
ality, e.g., the VM and hypervisor memory management or the handling of peripherals
and VM states, from the hypervisor to the secure world in order to remove the hyper-
visor from the TCB. Whenever a context switch between VMs is performed or when a
VM'’s page tables must be modified, a switch to the secure world is required to verify
the decisions of the hypervisor. Moreover, to make sure that a compromised hypervisor
is not circumventing the security mechanisms of vIZ, the hypervisor code must by an-
alyzed to verify that it does not contain any sensitive instructions, e.g., to disable the
Memory Management Unit (MMU) or to modify the page table base address.

Software-based Isolation

The traditional TrustZone-based enclave architectures assume a secure OS running in
the secure world which isolates enclaves, represented by Trusted Apps in user space.
Since the security of all enclaves depends on the correctness of the relatively large
secure OS (in the order of 100 KLOC [27]), we refer to this isolation mechanism as
software-based. The size of a typical secure OS grew larger over time since more and
more functionality was added to it, e.g., the support of secure peripherals such as fin-
gerprint sensors. In early works on TrustZone, the size of the secure world code was
kept small by using only a trusted language runtime instead of a full OS to manage the
Trusted Apps [204]. Comparable designs have also been proposed for the M-Shield se-
curity technology from Texas Instruments [128]. Multiple newer works try to strengthen
enclave security by again reducing the software TCB from the complete secure OS to a
smaller subset. TEEv [143] substitutes the secure OS with a hypervisor-like component,
called TEE-visor, which manages enclaves in the form of VMs. Since hardware-assisted
virtualization in the secure world is not yet available, the authors of TEEv propose other
security mechanisms to separate the kernel of an enclave VM from the TEE-visor which
both run in the secure privileged exception level (S-EL1). To achieve this, the authors
rely on intra-privilege-level isolation techniques proposed by related work [55, 41]. In
TEEv, all memory management is performed by the TEE-visor which sets up different
address spaces for the enclaves and itself. Additionally, a gating component is required
in the secure world which administers the secure context switches from enclaves to the
TEE-visor. As in vIZ [97], TEEv must verify that no enclave contains sensitive instruc-
tions which could circumvent TEEv’s security mechanisms. PrOS [133] also provides a
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software-only virtualization for the secure world which suffers from the same limita-
tions as TEEv. However, in contrast to TEEv, the trusted software in PrOS managing the
enclaves, called PVisor, is executed in the monitor mode (EL3). Thus, a virtualized secure
OS can occupy the S-ELo and S-EL1 privilege levels. TEEv and PrOS both rely on intra-
privilege-level separation techniques to isolate enclaves in the form of VMs. With the
ARMVS8.4 architecture revision, ARM introduces hardware-assisted virtualization also
in the secure world which allows to achieve the goals of TEEv and PrOS more efficiently
without workarounds. However, to this date, Apple’s A13-A15 are the only processors
that already implement the ARMv8.4 architecture specification.

Some works proposing enclave architectures adopt the software-based enclave isolation
of traditional TrustZone-based architectures and instead focus on other limitations of
TrustZone. The authors of CaSE [265] focus on the inability of TrustZone to protect
sensitive data in the Dynamic Random Access Memory (DRAM) from physical attacks,
such as cold-boot attacks [89] or bus snooping [169]. It must be noted though that a
successful attack on a DRAM chip connected to an ARM-based SoC represents an ad-
vanced physical attack, which requires costly technical equipment, since the DRAM
chips are typically soldered on top of the SoC in a Package-on-Package (PoP) fashion
which makes them hard to reach for an adversary. In CaSE, all sensitive applications are
encrypted when stored in the DRAM. When a sensitive application is invoked, CaSE’s
trusted software, which runs in the secure world, loads the encrypted binary in the L2
cache and marks all cache lines with the Non-Secure (NS) flag so that only the secure
world can access it. Then, CaSE verifies and decrypts the application binary. During run-
time of the application, the L2 cache is locked so that no sensitive data can be evicted
from the cache by an adversary. On every context switch between applications or when
performing memory paging, CaSE encrypts the application data before it leaves the SoC.
SecTEE [267] achieves a similar goal by executing the complete secure world software
in an on-chip memory instead of the cache. Additionally, SecTEE considers the attack
class of cache side-channel attacks. The authors propose a page-coloring scheme which
assigns secure world memory to the sensitive applications in such a way that they do not
compete over the same cache sets. Similar to CaSE, SecTEE uses the cache locking mech-
anism of ARM processors to prevent an adversary from evicting sensitive application
data from the cache.

Temporal TrustZone-based Isolation

In TrustICE [226], the TrustZone hardware mechanisms which separate normal and
secure world are also used to protect sensitive applications from each other and the
normal-world OS in so-called Isolated Computing Environments (ICE). When the normal-
world OS is executed, all ICE instances are stored in the secure-world memory. When
an ICE execution is triggered from a normal-world application, the secure-world soft-
ware, called Trusted Domain Controller (TDC), verifies the binary of the called ICE,
suspends the complete normal-world OS and reconfigures the secure-world memory
partition achieving that the ICE binary becomes part of the normal-world memory. In
the following, control is given to the ICE which runs as a standalone component in
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the normal world. When the ICE execution is finished, the TDC clears the processor
state and caches, reconfigures the memory partitions and restores the normal-world OS.
Thereby, TrustICE achieves a temporal isolation of the sensitive applications from the
OS since always just one of both is executed on the system at one point in time.

Comparison

The main goal of SANCTUARY is to overcome the single-enclave limitation of traditional
TrustZone-based architectures and instead provide a design with multiple enclaves that
are strongly isolated using TrustZone’s hardware-assisted security mechanisms. This
goal marks a key difference to the works CaSE [265] and SecTEE [267] which rely on
the software-based isolation of Trusted Apps used in traditional TrustZone-based archi-
tectures which was shown to be insufficient [27]. The protection from physical attacks
on the memory chip, on which CaSE and SecTEE focus, is an orthogonal problem. The
proposed solutions, locking the sensitive applications in the cache or in on-chip memory;,
are also applicable to SANCTUARY. SecTEE is the only related work which also considers
cache side-channel attacks, whereby SecTEE implements a page-coloring scheme which
requires modifications at the memory management software of the Trusted OS. In con-
trast, SANCTUARY protects the enclaves by excluding all enclave memory from the shared
cache. TEEv [143] and PrOS [133] also rely on a software-based isolation but use it to
implement software-based virtualization in the secure world. The main limitation of
both approaches is that they require to check all enclave binaries for instructions that
could circumvent the isolation which is impractical and error-prone. SANCTUARY does
not need to resort to techniques for intra-privilege-level isolation and instead provides
a strong isolation on temporarily separated physical processor cores.

Another design goal of SANCTUARY is to not rely on the hypervisor privilege level for
managing the enclaves and configuring the hardware-assisted security mechanisms,
since this blocks the hypervisor for its intended purpose, namely hardware virtual-
ization, or for other usages required by the device vendor, e.g., for running firmware
code. In contrast to OSP [40], PrivateZone [114] and vTZ [97], SANCTUARY does not de-
ploy any software in the hypervisor privilege level. Therefore, SANCTUARY does not in-
duce a performance overhead caused by second-level address translation from which all
works relying on virtualization [40, 114, 97] suffer to some extent. Moreover, to protect
against DMA attacks, virtualization-based approaches require Input/Output Memory
Management Units (IOMMU ) in front of all DMA-capable devices. In SANCTUARY, the
enclave memory is automatically protected from rogue peripheral accesses. Comparable
to TEEv [143] and PrOS [133], VTZ [97] must analyze the hypervisor binaries to prevent
the inclusion of privileged instructions, e.g. to modify the page table base address, which
could be used to bypass the security mechanisms of the enclave architecture.

The key difference to TrustICE [226] is that SANCTUARY does not require to suspend the
OS when an enclave is executed. SANCTUARY provides spatial and temporal isolation
for enclaves, whereas TrustICE can only provide temporal isolation which makes this
approach highly limited in practice since a suspended OS is completely unresponsive to
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input from the device user. Moreover, TrustICE only provides a one-way isolation which
means that the OS cannot access the enclave data but a malicious enclaves might be
able to access data of the suspended OS since it is stored in the normal world memory:.
SANCTUARY in contrast provides a two-way isolation where the enclaves are protected
from a malicious OS and, at the same time, the OS from malicious enclaves.

2.2.2 Protecting Machine Learning Applications in Enclaves

Ohrimenko et al. [178] were one of the first to protect ML applications in SGX enclaves.
The authors assume a scenario where sensitive data from multiple data providers is
locally encrypted and aggregated on a remote server to train ML models, whereby SGX
enclaves are used to protect the unencrypted data during the training process. After
the training, the models are shared with all data providers to perform inference upon
them. In this scenario, the SGX enclaves might leak information to the untrusted system
software on the server through data-dependent access patterns [258]. Therefore, the
authors develop data-oblivious variants of standard ML algorithms, e.g., support vector
machines, neural networks or decision trees, which guarantee that all accesses from the
ML algorithms to the memory, disk or network do not depend on secret data.

Myelin [104] provides security guarantees comparable to the work from Ohrimenko et
al. [178] since it relies on data-oblivious implementations of Deep Neural Networks
(DNNSs). In Myelin, every model owner compiles its deep learning model into a privacy-
preserving model graph which is then trained on a remote server inside of an SGX en-
clave, using privacy-sensitive training data. Privado [231] also considers the leakage of
memory access patterns when DNNs are executed in SGX enclaves on a remote server.
The authors show that this leakage can be exploited by an adversary to learn which
classification result of the network corresponds to which neuron activation when do-
ing inference. This is possible since the activation of a neuron depends on a threshold
function which performs data-dependent memory accesses. When a Machine-Learning-
as-a-service (MLaas) customer sends encrypted data to the enclave, the adversary can
collect memory access patterns to infer the classification of the encrypted data. As Ohri-
menko et al. [178], the authors of Privado propose modified ML algorithms which are
free of input-dependent access patterns. Occlumency [138], as Privado [231], focuses on
deep-learning inference as a use case and proposes optimization techniques to speed up
the inference in SGX enclaves.

In Chiron [100], an MLaas scenario is considered where input data is collected from an
MLaas customer and used to train ML models without revealing the data to the MLaas
provider or the ML algorithms to the MLaas customer. This is achieved by performing
the model training in a Ryoan [99] enclave (based on SGX) which protects the MLaas
customer’s data but still offers the MLaas provider the possibility to freely select, config-
ure and train the ML models. SecureTF [192] has the same goal as Chiron and provides
a general ML framework for SGX which is based on Scone [5]. MLCapsule [90] follows
a different approach and protects the customer data by never sending it to the cloud. In-
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stead, the ML algorithms and models are sent to the customer and protected from direct
customer access in SGX, thus MLCapsule supports an offline MLaas scenario.

VoiceGuard [20] targets the use case of speech recognition. In VoiceGuard, sensitive
audio data is collected from user devices, e.g., IoT devices like Amazon Echo, Google
Home or Apple HomePod, and sent to a service provider where the data is used for
inference on proprietary ML models coming from ML vendors. The service provider
shields the computations in an SGX enclave, thereby protecting the privacy-sensitive
user data and the proprietary ML models of the ML vendors. The inference results are
then sent back to the user devices.

All approaches described so far execute the ML algorithms on the main processor im-
plementing SGX. However, many state-of-the-art ML algorithms use GPUs (or other
hardware accelerators) to achieve a higher performance [130]. Slalom [232] also utilizes
SGX enclaves but offloads parts of the ML computations to GPUs. The authors idea is
to split the computation of DNNs in sensitive and non-sensitive parts, whereby only the
sensitive parts are executed on the main processor in an SGX enclave. The non-sensitive
parts are accelerated on a GPU. Using SGX, Slalom achieves protection for the privacy-
sensitive user data and integrity for the ML computations, but not confidentiality for the
ML model. The authors of eNNclave [206] also split the ML computations into sensitive
and non-sensitive parts. However, in contrast to Slalom [232] which offloads all linear
layers of the DNN to the GPU, eNNclave offloads only the last dense layers in which it
keeps all confidential model parameters. Moreover, eNNclave assumes an offline infer-
ence scenario on the client side comparable to MLCapsule [90].

In Telekine [101], a scenario is assumed in which cloud GPUs are rented to boost the
performance of locally executed ML algorithms. The authors assume a GPU architec-
ture that provides enclaves, as proposed by Graviton [242], which enables an encrypted
communication between the trusted client and the GPU. Even though all data streams
are encrypted, the authors show that in this scenario an adversary can predict the clas-
sification of encrypted input data by observing the timing of the GPU kernel execution.
Telekine proposes a client library which modifies the commands send to the GPU in a
way that all data streams become data oblivious. Visor [185] also relies on GPU enclaves
as provided by Graviton [242], however in Visor, the authors assume that the ML applica-
tion, in this case Video-analytics-as-a-service, is completely executed on the cloud server,
whereby the video decoding and image processing is performed in the SGX enclave and
the classification on the GPU.

Comparison

One key difference between Offline Model Guard (OMG) [12] and most related work
is that OMG focuses on protecting the inference of sensitive ML applications when
performed on local user devices. The model training, which requires large data sets
and consumes a lot of computational resources, is assumed to be performed on the
trusted backend of the ML vendor. Ohrimenko et al. [178], Myelin [104], Chiron [100],
SecureTF [192] and Slalom [232] all focus on protecting privacy-sensitive user data dur-
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ing the ML model training on remote servers. Privado [231], VoiceGuard [20], Occlu-
mency [138] and Visor [185] also target remote servers but focus on ML inference. The
only other works that focus on ML inference on local user devices are MLCapsule [90]
and eNNclave [206].

Apart from the usage scenario, all other works rely on Intel SGX for protection, whereas
some execute the ML algorithm on the main processor [178, 104, 100, 192, 231, 20, 138,
90], others offload security uncritical tasks to GPUs [232, 206] or assume an enclave archi-
tecture on the GPU to also offload security-sensitive computations [101, 185]. OMG, in
contrast, utilizes SANCTUARY enclaves and thus is the only approach directly applicable
to mobile devices. From a security perspective, relying on SANCTUARY enclaves also has
other advantages. Firstly, it allows OMG to protect the ML applications from controlled
side-channel attacks, without modifying the ML algorithms, since SANCTUARY enclaves
contain a runtime that provides OS services independently from the untrusted commod-
ity OS. Secondly, OMG is the only work that is able to tackle the challenge of securely
collecting privacy-sensitive user data on the local user device. OMG achieves this by
using the TrustZone secure world for privacy-preserving data collection, which, in con-
trast to Intel SGX, enables a secure communication between enclaves and sensors, e.g. a
microphone. MLCapsule [90] and eNNclave [206], which also focus on offline inference,
do not consider the challenge of secure data collection.
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Flexible Enclaves Across Platforms

The requirements sensitive applications impose on a security architecture vary consider-
ably between applications, e.g., whether they require dynamic memory allocation, multi-
threading, secure file or network I/0, a secure user interface or secure communication
channels to peripherals, such as sensors or specialized computing hardware. In the en-
clave computing landscape, various enclave architectures have been proposed which all
provide a certain type of enclave, depending on what the architecture designers thought
would be the best enclave to protect sensitive applications running on the system. As a
result, many architectures [35, 260, 95, 198, 166, 45, 66, 51, 18, 18, 253, 4] provide enclaves
which comprise only a process (or part of a process) in user space which offers a small
memory footprint and a minimal TCB. However, user-space enclaves typically rely on
services provided by the untrusted OS which makes them susceptible for side-channel
attacks. Other architectures [116, 264, 227, 257, 97, 105, 49, 152] encapsulate complete
VMs in enclaves which makes them suitable for protecting existing software stacks with-
out modifications but similar to user-space enclaves, VM enclaves depend on services
from the untrusted system software, in this case the hypervisor. In contrast, still other
architectures [165, 7, 135, 151, 265, 267, 22, 226, 133, 40, 114] provide enclaves which
are largely self-sustained and do not depend on the untrusted system software which
makes them more resilient against attacks from a compromised OS or hypervisor and
allows them to provide a secure interaction with peripherals. The independence from
the system software, however, increases the memory footprint and TCB size of these
enclaves, which we call kernel-space enclaves, which makes them more susceptible to
implementation flaws.

All enclave types have their pros and cons and are better or worse suited to protect a
particular sensitive application. Nevertheless, existing architectures follow a one-size-fits-
all approach in which all sensitive applications must be protected within a single type
of enclave. In order to satisfy the requirements of a diverse set of sensitive applications
and support more enclave use cases, without building software workarounds to extend
one-type enclave architectures [11, 30, 5, 217, 215, 99, 86], new designs are required
which provide more flexible enclaves so that the security architectures adapt to the re-
quirements of the sensitive applications and not the other way around. This becomes
even more important in emerging heterogeneous computing platforms where comput-
ing nodes, e.g. processors or hardware accelerators, are connected over a Network-on-
Chip (NoC) architecture. In such a scenario, enclaves must deal with a potentially large
number of different computing nodes with which sensitive applications might demand
to securely interact.
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In this chapter, we describe our contributions to enable flexible enclaves across platforms
(Section 3.1), summarize related research and position our work to it (Section 3.2).

3.1 Contributions

In this section, we summarize the contributions of this dissertation to providing flexi-
ble enclaves on computing platforms with traditional bus architectures and emerging
Network-on-Chip (NoC) architectures.

3.1.1 CURE: A Security Architecture with CUstomizable and Resilient
Enclaves

This dissertation contributes to the enclave computing research of Enclave Architecture
Designs (Section 1.2.4) by designing, implementing and evaluating a novel enclave ar-
chitecture, named CURE. Being the first architecture which provides multiple types of
enclaves on one platform, CURE also contributes to the enclave computing research of
Enclave Use Cases (Section 1.2.7). CURE is described in the following publication that can
be found in Appendix C:

[o] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. CURE: A Security Ar-
chitecture with CUstomizable and Resilient Enclaves. In USENIX Security Sym-
posium, 2021. CORE Rank A*. Appendix C.

Hardware-assisted Security Mechanisms. CURE’s high-level design is depicted in Fig-
ure 4, whereby all hardware modifications are colored in . At its core, CURE's design
is based on a system bus extended with additional registers and control logic to imple-
ment access control capabilities. On every port of the system bus that connects to a child
component, e.g., a peripheral or the memory bus, registers and control logic are added
after the system bus arbitration logic, whereas at the ports connecting parent compo-
nents, e.g. DMA-capable devices, the additional hardware is introduced before the ad-
dress decoder. In combination, the added registers and logic form a system-wide access
control mechanism at a central location, named filter engine in Figure 4, which observes
all bus transactions, whether they come from the processor cores and target peripherals
or the memory controller, or from DMA-capable devices, e.g. a GPU connected over a
DMA controller. In Figure 4, we leave out DMA-capable devices for the sake of clarity.
In CuUREg, this central access control mechanism is used to assign contiguous memory re-
gions to enclaves. Moreover, it enables an enclave-to-peripheral binding in which, on the
one hand, MMIO peripherals can be exclusively assigned to enclaves, and, on the other
hand, also DMA-capable devices, configured over MMIO, can be bound to enclaves. In
both cases, CURE enables a non-encrypted communication with the enclaves.

Apart from the modifications at the system bus, CURE requires small hardware changes
at the processor cores. CURE introduces an additional register at the highest-privileged
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Figure 4: High-level design of the CURE enclave architecture, providing user-space enclaves
(Enclavey), kernel-space enclaves (Enclavep) and sub-space enclaves (represented by
the Security Monitor). Modified hardware components are marked in

software level, named the Enclave ID (EID) register, that indicates which enclave a pro-
cessor core currently executes. Further modifications enforce that the EID register can
only be accessed by the TCB of the system, which we call Security Monitor (SM), and
which runs in the highest-privileged software level. The EID register is used as a system-
wide identifier for the currently executed enclave. Thus, to perform access control upon
it, the EID content must be transmitted to CURE’s hardware-assisted security mecha-
nisms as part of every memory transaction. In CURE, this is achieved by extending the
bus protocol, which is implemented between the processor core, cache and system bus,
with an EID signal. Moreover, CURE’s design also includes a modified Last-Level Cache
(LLC) which tags cache line with the ID of the owning enclave and which allows to
assign cache ways to enclaves, on-demand and adjustable during runtime, in order to
protect them from cache side-channel attacks. The configuration of all security mecha-
nisms is performed by the SM which also provides security services to the enclaves, such
as local and remote attestation, key management or a secure rollback-protected storage
for the enclave state.

Enclave Types. The described hardware-assisted security mechanisms enable CURE to
provide multiple types of enclaves to protect diverse sensitive applications. First of all,
since CURE'’s security mechanisms are located at the system bus outside of the proces-
sor boundary, access control is performed on physical memory addresses. This allows
CuURrE to also enforce access control for bare-metal software which in turn enables CURE
to support self-sustained kernel-space enclaves (Enclavep in Figure 4) which execute a
privileged runtime inside the enclave boundary that can provide services, such as mem-
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ory management, multi-threading or interrupt handling to the enclave, independent
from the untrusted OS. The assignment of memory regions, cache resources or periph-
erals to an enclave is performed by the SM when setting up the enclave by configuring
the hardware-assisted security mechanisms and modified cache controller accordingly.
By assigning peripherals to enclaves and by including the corresponding device drivers
into the enclave runtime, CURE achieves an enclave-to-peripheral binding also for un-
modified peripherals which do not support encrypted communication.

Besides providing kernel-space enclaves, CURE uses the same security mechanisms to
also provide user-space enclaves (Enclave, in Figure 4) with a small TCB which are
scheduled by the OS like regular unprotected applications. Since user-space enclaves de-
pend on the services provided by the OS, CURE protects the enclaves from page-based
controlled side-channel attacks [258, 25, 245, 168, 170] by storing all enclave memory
pages in the enclave memory. The untrusted OS is still in charge of the enclave mem-
ory management, however, on every OS request to modify enclave page tables, a switch
to the SM is performed which verifies the management decisions of the OS to prevent
an overlap between the memory regions of enclaves and the OS. Moreover, to protect
from interrupt-based controlled side-channel attacks [236, 91, 235, 254], CURE enables
user-space enclaves to register interrupt trap handlers at the SM. Whenever an enclave
is interrupted and the interrupt handled by the OS, the SM jumps into the registered
trap handler when re-entering the enclave allowing the enclave to implement their own
defense mechanisms based on heuristics to detect ongoing attacks by an abnormal inter-
rupt behavior. In order to prevent cache side-channel attacks on the core-exclusive cache
structures, the SM performs a flush of the L1 cache, TLB and Branch Target Buffer (BTB)
on all context switches in and out of a user-space enclave.

Lastly, CURE’s security mechanisms can also be used to setup sub-space enclaves which
represent execution contexts isolated on an intra-privilege level. Sub-space enclaves are
especially useful in a scenario in which the SM shares the highest-privileged software
level with other software components, such as platform firmware or software which
emulates missing hardware features. By using CURE’s security mechanisms to run the
SM as an sub-space enclave (Security Monitor in Figure 4), the TCB of the system can
be reduced considerably.

Implementation & Evaluation. We develop a CURE prototype for the open RISC-V
architecture using the Rocket Chip generator [6] in which we include our proposed
hardware-assisted security mechanisms. CURE’s software components mainly comprise
of the SM, which consists of only 3 KLOC, the kernel-space enclave runtime which we
implement based on a minimal Linux kernel, and a kernel-module to enable the OS to
interact with the SM during enclave setup. Moreover, some modifications at the interrupt
and memory management code of the OS, which we also base on a Linux kernel, are
performed to support user-space enclaves.

We evaluate the hardware overhead induced by our prototype in terms of Lookup Tables
(LUTSs), the fundamental programmable logic blocks of FPGA devices, and registers by
synthesizing our hardware model for a Virtex UltraScale FPGA device and by comparing
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the results to an unmodified minimal baseline RISC-V system with 2 Rocket cores. The
hardware-assisted security mechanisms introduced in front of the memory bus cause an
overhead of 8.6% for the LUTs and 3.8% for the registers. Moreover, for the hardware
added to perform access control on memory transactions targeting peripherals, a LUT
and register increase of 0.4% must be accepted for every protected peripheral. For also
controlling DMA-capable devices, 0.2% increase of LUTs and 0.3% increase of registers
must be invested for every DMA-capable device present in the system. The extension
of the bus protocol with the EID signal adds another 0.4% of hardware overhead to the
LUTs and registers. The proposed way-based partitioned LLC results in 1.7% overhead
for the LUTs and 1.8% for the registers, compared to an unmodified LLC. Overall, our
evaluation shows that CURE only introduces small hardware overheads.

Apart from the hardware overhead, we also analyze the performance overhead intro-
duced by CURe. The access control mechanisms added to the system bus introduce no
additional cycle latency since all access control is performed in the same cycle which we
verify using the cycle-accurate system simulator Verilator [221]. Moreover, we use Ver-
ilator to measure the flushing operations on the cache resources performed during all
enclave context switches. For running benchmarks on our CURE prototype, we use the
ISA simulators Spike [177] and QEMU [13] which we enhance by the cycle overheads
introduced by the flushing operations. We then split our performance evaluation into mi-
crobenchmarks and macrobenchmarks. In the microbenchmark evaluation, we measure
the overhead of basic enclave operations and evaluate the difference between user-space
and kernel-space enclaves. In general, our results show that for an enclave setup, most of
the setup time, 91.3% for the user-space enclave and 52.1% for the kernel-space enclave,
is spent on the cryptographic verification of the enclave binary. Moreover, our evaluation
demonstrates the increased boot time of the kernel-space enclave which is caused by its
bigger code base and the enclave runtime boot. During the teardown of the user-space
and kernel-space enclave, 39.9% and 45.7% of the time are spent on zeroing the en-
clave memory, respectively. In our macrobenchmark evaluation, we run the rv8 [42] and
CoreMark [63] benchmarks inside of user- and kernel-space enclaves and compare our
results to an execution outside of an enclave. On average, the kernel-space enclave in-
duces a performance overhead of 15.33%, whereas the user-space enclave causes 19.70%
overhead which shows that kernel-space enclaves quickly compensate the additional
overhead they introduce during the enclave setup since they introduce no performance
overhead on context switches from the user to kernel space since the switches are per-
formed inside of the enclave boundary. In general, our performance evaluation shows
that Cure only introduces a moderate performance overhead on applications encapsu-
lated in enclaves.

3.1.2 Distributed Memory Guard: Enabling Secure Enclave Computing in
NoC-based Architectures

This dissertation contributes to the enclave computing research of Enclave Architecture
Designs (Section 1.2.4) by designing and implementing a novel hardware security com-
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ponent, called the Distributed Memory Guard (DMG), and by designing a DMG-based
enclave architecture for NoC-based platforms. The DMG and the enclave architecture
based on it are described in the following publication that can be found in Appendix D:

[61] Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel
Mark, Ahmad-Reza Sadeghi, Emmanuel Stapf, and Shaza Zeitouni. Distributed
Memory Guard: Enabling Secure Enclave Computing in NoC-based Architec-
tures. In ACM Design Automation Conference (DAC), pages 985-990, 2021. CORE
Rank A. Appendix D.

Distributed Memory Guard. On NoC-based platforms, security mechanisms are typ-
ically proposed to be implemented in the Network Interfaces (NIs), which connect the
computing and memory nodes to a network of routers, since the NIs observe every
transaction entering or leaving the network like gatekeepers. Thus, an NI can intervene
in the network communication by rerouting or blocking transactions. When an NI is
used to perform access control on memory transactions, an important question is on
which granularity access policies must be defined to provide a practical security mech-
anism. In this publication, we answer this question by analyzing the degree of physical
memory fragmentation on NoC-based platforms. For this, we execute the long-running
cloud service benchmark suite CloudSuite [182] on an Intel server which represents a
typical usage scenario for NoC architectures since cloud servers tend to comprise a large
number of processor cores. Our results show that even when only utilizing up to 70% of
the server’s available memory, a high memory fragmentation occurs. After running the
benchmarks for 60 minutes, the biggest free contiguous memory region on the system is
only 32 KB in size. Moreover, defragementation of the system cannot be achieved suffi-
ciently by killing single benchmarks. Instead, the complete server has to be rebooted. On
an NoC-based platform, the fragmented memory regions are additionally distributed
among the memory nodes. Our evaluation demonstrates that to support the memory
consumption behavior of commodity cloud services, access control mechanisms must
provide fine-grained policies at least at a per-page (4 KB) granularity.

One approach to provide fine-grained access control is to integrate MMU-like hardware
components working on page table hierarchies into each NI. However, MMUs introduce
a large hardware overhead and traversing multiple levels of page tables upon a TLB miss
adds a significant performance overhead to memory requests. Thus, for the Distributed
Memory Guard (DMG), which we locate between the computing node and NI, we follow
another approach to provide a per-page access control mechanism with low hardware
and performance overhead. In particular, we propose to perform access control based
on rules inspired by Wash-Hadamard Transforms (WHT) which decompose a discrete
binary vector into a superposition of basis functions called Walsh functions. We use this
mechanism to construct access control rules which match a pattern of free pages in the
physical memory. By combining multiple rules, a set of memory pages in a fragmented
memory space can be covered. The DMG uses these pattern-based access rules, stored in
a rule table protected in secure memory, to assign memory regions to execution contexts
on a per-page basis. In hardware, the DMG consists of a rule cache which caches the
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Figure 5: Enclave architecture design based on the Distributed Memory Guard. Modified hard-
ware components are marked in , whereby for the L1 and L2 caches only a 1-bit
tag is added for each cache line and for the TLB, a tag with the EID of the enclave
which requested the address translation is added to each entry.

most frequently used rules, access control logic to compare the rules with the observed
memory transactions, and a rule table walker which searches the (single-level) rule table
when no fitting rule is found in the rule cache. On a rule hit in the cache or rule table,
the memory transaction is allowed to enter the network, whereas on a rule miss in the
cache and rule table, the transaction is rejected and an interrupt triggered by the DMG
to inform the software about the access violation.

DMG-based Enclave Architecture. Based on the Distributed Memory Guard, we de-
sign the first enclave architecture, shown in Figure 5, which targets NoC-based plat-
forms. Introducing a DMG in front of every NI allows to connect also unmodifiable and
potentially untrusted IP-blocks from third-party providers to the network. However, it
is not enough to build an enclave architecture since the DMG cannot perform access
control inside of a computing node and thus cannot protect sensitive applications from
a potentially malicious or compromised OS running on the same node, which is a basic
characteristic of an enclave architecture (Section 1.1).

In order to create a functioning enclave architecture, we adopt the multi-enclave con-
cept from CURE [9] and adapt it to the NoC scenario. We introduce a new hardware
enclave ID (EID) register at the highest-privileged software layer which tracks the cur-
rently running enclave and which is only accessible for the Security Monitor (SM), the
trusted software of the platform. The SM is responsible for creating the pattern-based
access rules and configuring all DMGs, so that memory regions are exclusively assigned
to enclaves running across the computing nodes. Since the DMGs observe all mem-
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ory transactions on the network, whether they target memory addresses in the main
memory, MMIO regions of peripherals or DMA regions, the SM can set up secure com-
munication channels between enclaves and peripherals without relying on encrypted
communication streams. Moreover, as shown in Figure 5, we add hardware logic, called
the DMG sanitizer, at all processor cores of the modifiable computing nodes which is
identical to the access control logic implemented in the DMG. On every memory access,
after the address translation from virtual to physical address, the MMU uses the DMG
sanitizer to check the memory request against the pattern-based rules in the rule cache.
Analog to the DMG, on a cache miss, a page table walk is performed to find a fitting rule
in the rule table. The verified translations stored in the TLB are then tagged with the EID
of the requesting enclave. If no rule is found, an interrupt is triggered which is handled
by the SM. By performing access control directly in the MMU, memory requests hitting
the cache can be verified. Nevertheless, a 1-bit tag must be introduced at every cache
line to indicate whether a cache line is occupied by enclave data. This is required since
a malicious OS might be able to disable address translation completely which would
allow the adversary to directly access data in the cache.

In combination, the DMGs in front of the NIs and the hardware modifications at the
processor cores allow to construct an enclave architecture which on the one hand enables
fine-grained enclaves inside of the computing nodes, and, on the other hand prevents
illegal accesses from untrusted third-party IP blocks connected to the network.

3.2 Related Work

In the following, we summarize research related to Cure and DMG, and compare it
to our work. For CURrg, we discuss enclave architectures across computing platforms.
For DMG, we summarize security research focusing on heterogeneous computing plat-
forms.

3.2.1  Enclave Architectures Across Platforms

We categorize enclave architectures depending on the type of enclaves that the architec-
ture provides, namely enclaves comprising a process (or part of a process) in user-space,
enclaves which comprise a complete VM or self-sustained kernel-space enclaves which
run privileged software and do not depend on the system software for management
functionalities. We choose this categorization since the provided enclave type defines
many of the capabilities and limitations of an enclave architecture.

User-space Enclaves

One of the pioneer works which provides enclave-like execution environments running
in user space is AEGIS [225]. In AEGIS, a concept for a security-enhanced single proces-
sor is introduced which allows to run sensitive applications either in Tamper-Evident
(TE) or Private and authenticated Tamper-Resistant (PTR) execution environments. The
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TE provides integrity for the sensitive application by verifying its initial program state,
the program code and data in caches and off-chip memory, and by preserving the pro-
gram register state over interrupts. The PTR additionally provides privacy for the pro-
gram code and data by clearing the processor registers during context switches and by
encrypting all off-chip memory using a hardware encryption engine.

Many works propose to use virtualization technologies to isolate a piece of sensitive soft-
ware from an untrusted OS. Overshadow [35] modifies the VMware Virtual Machine
Monitor (VMM) to create mappings of one guest physical memory page to multiple
host physical memory pages, called multi-shadowing, whereby one of the host physical
memory pages is encrypted and integrity protected. In contrast to AEGIS [225], the
cryptographic operations are performed by the VMM instead of a hardware engine.
Overshadow then isolates sensitive applications, called cloaked applications, from an
untrusted guest OS by presenting the OS an encrypted view on the physical memory
pages assigned to the cloaked applications, whereas a normal unencrypted view is pre-
sented to the cloaked application. Each cloaked application is wrapped by a shim layer
which interposes all communication between the application and the OS. SP3 [260] and
InkTag[95] follow an approach similar to Overshadow [35] and modify the Xen [228]
and KVM [132] hypervisors respectively, in this way intercepting memory accesses to
encrypt or decrypt memory pages depending on the permissions of the requesting
execution context. AppSec [198] also utilizes a VMM to protect sensitive applications
from an untrusted OS via nested page tables. However, in contrast to Overshadow [35],
SP3 [260] and InkTag[95], AppSec uses a small custom hypervisor instead of a modi-
fied commodity hypervisor and does not encrypt the memory pages of the sensitive
applications. Instead, AppSec interposes every memory access of the OS on sensitive
application memory, e.g. when returning from a system call, and verifies if the memory
access is aligned with the sensitive application’s access rules defined by the parameters
of the issued system call. Another work utilizing virtualization technologies is TrustVi-
sor [166]. In TrustVisor, the authors propose an enclave architecture design based on a
small trusted hypervisor to overcome the performance problems of their earlier work
Flicker [165] which suspends the OS while running sensitive code. TrustVisor separates
the sensitive code, called Pieces of Application Logic (PAL), from the OS during run-time
using nested page tables. Thus, the OS does not need to be suspended. A Root of Trust
for Measurement (RTM) is provided on the platform by combining a hardware TPM
to measure the TrustVisor component with software-based TPMs, included in TrustVi-
sor, to measure every booted PAL. Minibox [144] builds on TrustVisor but includes a
service runtime in the isolated PAL to handle some system calls, e.g. for dynamic mem-
ory management, directly in the PAL. To protect the OS from a potentially malicious or
compromised PAL, Minibox utilizes the sandboxing solution NaCl [262].

Inspired by the research on security architectures, Intel developed the Software Guard
Extensions (SGX) [45, 167, 94] which provide isolated execution environments for sen-
sitive applications for which Intel coined the term enclaves. In SGX, each enclave comes
bundled with a non-sensitive application that invokes the enclave as one of its child
processes. Thus, enclave and host process share the same virtual address space. The en-
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clave code and data is protected from an unauthorized access by the system software
through hardware-assisted security mechanisms. SGX is mostly implemented through
microcode inside of the processor, e.g., by introducing a new set of instructions to com-
municate with the enclaves and control them. Additionally, hardware changes are made
at the Page Table Walker (PTW). Whenever a TLB miss causes a page fault, the SGX
microcode performs access control upon the virtual address by checking whether the
address points to enclave memory and whether the current execution context is allowed
to access the enclave memory. Only when the access is permitted, the address translation
is performed and the physical address loaded into the TLB. In a recent work, Park et
al. [183] show how the access control mechanism of SGX can also be extended to provide
a hierarchy of enclaves where multiple inner enclaves share one outer enclave. SGX also
provides a remote attestation mechanism for enclaves which is implemented in a set of
enclaves provided by Intel, e.g. the Quoting Enclave which computes attestation signa-
tures. In SGX, the untrusted OS performs the enclave memory management, handles the
enclave exceptions and provides I/O services to the enclaves. All enclave code or data
leaving the processor is encrypted by a hardware component called the Memory En-
cryption Engine (MEE), comparable to the hardware engine proposed in AEGIS [225],
which allows SGX to protect enclaves from simple hardware attacks [89, 169]. The re-
search proposal Iso-X [66], implemented on the OpenRISC platform, aims to overcome
SGX’s limitation that the enclave memory can only be allocated in a small memory re-
gion exclusively carved out for enclave usage during boot time. To achieve this, the au-
thors introduce a new set of processor instructions and extend a commodity MMU by a
new PTW which allows to flexibly assign memory regions to enclaves using per-enclave
page tables. Another work which resembles SGX’s and Iso-X's [66] high-level concept is
Sanctum [51]. One key goal of Sanctum, which was implemented on the open RISC-V
architecture, is to protect enclaves from a range of side-channel attacks SGX was shown
to be vulnerable to. In Sanctum, the untrusted OS still manages the enclave memory and
provides OS services to the enclaves, e.g. I/O services or interrupt handling. However,
Sanctum stores the enclave page tables in the enclave memory to prevent controlled
side-channel attacks which target page tables [258, 25, 245, 168]. Moreover, enclaves
in Sanctum are interrupt-aware which allows them to implement security policies that
can detect ongoing controlled side-channel attacks targeting interrupts [236, 91, 235].
Additionally, Sanctum implements memory page coloring as a defense against cache
side-channel attacks [19, 88, 83, 53, 210] which allows to assign cache sets of the shared
LLC exclusively to enclaves. Sanctum enforces the isolation of the enclave code and data
by introducing small hardware changes at the PTW of the processor. Comparable to
SGX, the circuitry added around the PTW prevents a successful address translation of
virtual memory addresses which would map to physical memory addresses that the cur-
rent execution context is not allowed to access. In contrast to SGX, the security critical
functionalities of Sanctum are not implemented in microcode but mainly in a software
component running in the most privileged software level of a RISC-V processor, the
machine level. MI6 [16] extends the isolation guarantees of Sanctum [51] to speculative
out-of-order processors. One key goal of MI6 is to provide enclaves resilient against
transient-execution attacks [137, 67, 102, 26, 33, 127, 211, 238, 239, 195] which is mainly
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achieved with speculation barriers and a purge instruction which on context switches
scrubs all microarchitectural resources that might leak information of an enclave’s state.
Moreover, MI6 prevents also minor leakages between execution contexts running on sep-
arate cores which share the LLC microarchitectural structures, e.g., by partitioning the
Miss Status Handling Registers (MSHR) or by adding a round-robin arbiter in front of
the cache-access pipeline.

Other works which provide enclaves in user space focus on resource-constraint micro-
controllers. One of the first works, TyTAN [18] introduces a new exception engine and
extends the execution-aware Memory Protection Unit (MPU), introduced in the pre-
decessor work TrustLite [126], to isolate sensitive tasks in enclaves from an untrusted
real-time OS. In contrast to TrustLite which focuses on remote attestation, TyTAN al-
lows the dynamic loading of enclaves during run-time, whereas the execution-aware
MPU configuration is only static for the TCB of the system. Moreover, TyTAN which
was implemented on the Intel Siskiyou Peak embedded platform, provides secure com-
munication between enclaves and real-time guarantees. The authors of TIMBER-V [253]
present another enclave architecture targeting microcontrollers. In TIMBER-V, which
was implemented on the open RISC-V architecture, memory tagging is combined with
an extended MPU to provide intra-privilege-level isolation in the user level and super-
visor (kernel) level. In the user level, TIMBER-V provides a fine-grained separation of
tasks into a sensitive and a non-sensitive part, whereby the sensitive parts (enclaves)
can only be entered over a fixed set of entry points. In the supervisor level, TIMBER-
V uses the same mechanism to isolate a software component called the TagRoot from
the rest of the untrusted OS. The TagRoot is responsible for configuring the memory
tags of the enclaves in the user level, using newly introduced tagging instructions, and
provides OS functionalities to them, e.g., interrupt handling. AION [4], which builds
on previous security architectures for microcontrollers [175], combines real-time guar-
antees with availability guarantees by introducing a new hardware exception engine. In
contrast, RT-TEE [244] provides real-time guarantees for TrustZone-based security ar-
chitectures on microcontrollers by introducing a policy-based event driven hierarchical
scheduler.

Virtual Machine Enclaves

Using the hypervisor (or VMM) for isolating sensitive applications from an untrusted
OS is proposed by multiple research works [35, 260, 95, 198, 166, 144]. In all these pro-
posals, the hypervisor is misused in the sense that it is not utilized to abstract hardware
resources for multiple OS but for separating and protecting user-space enclaves from a
single untrusted OS. In another line of research [116, 264, 227, 257], enclave architectures
are proposed in which the hypervisor is used for its intended usage, namely hardware
virtualization. By introducing new hardware-assisted security mechanisms, these pro-
posals provide enclaves, in the form of complete VMs, protected from a potentially mali-
cious or compromised hypervisor. The authors of H-SVM [116] propose to protect sensi-
tive VMs from a compromised hypervisor by extracting the security-sensitive operation
of modifying the nested page tables from the hypervisor. In H-SVM, every modification

35



36

Flexible Enclaves Across Platforms

of the page tables by the hypervisor is verified causing the memory pages of a sensitive
VM to remain isolated. For this, the page tables are stored in a protected memory region
which is only accessible for the H-SVM component, which can either be implemented
as a separate controller in the processor chip or in microcode. When a physical mem-
ory page of a sensitive VM is deallocated, H-SVM is responsible for cleaning the page
before it is assigned to another VM. In addition to that, H-SVM is in control of the I/O
page tables used by the IOMMU to protect a sensitive VM also from malicious DMA
accesses. Apart from memory isolation, H-SVM allows to authenticate sensitive VMs
prior to boot and also provides a mechanism to migrate VMs between multiple H-SVM
platforms. CloudVisor [264] follows the same goal. However, in contrast to H-SVM [116],
the security-sensitive hypervisor functions are offloaded to an additional software layer
by making use of nested virtualization. In vTZ [97], which targets the ARM platform
and which we discussed in more detail in Section 2.2.1, TrustZone is used to outsource
the sensitive mapping operations. HyperWall [227], another approach which provides
enclaves in the form of VMs, introduces a new set of access control tables, called Confi-
dentiality and Integrity Protection (CIP) tables, which are used to assign memory pages
to enclaves. On every memory access, the MMU (or IOMMU) checks in the CIP tables
if the access is valid, whereby the CIP tables are stored in a protected memory region
inaccessible to system software. In a predecessor work of HyperWall [227], called Bas-
tion [28], all security sensitive tasks are performed by the hypervisor, thus the strict sep-
aration between system software and trusted software typical for enclave architectures is
not given. However, in contrast to the others works, Bastion protects VMs from physical
attacks by introducing a hardware engine at the SoC which encrypts and integrity pro-
tects all VM data leaving the processor. In another predecessor work of HyperWall [227],
called NoHype [119], the authors propose to drastically reduce the hypervisor size by
only providing a static assignment of hardware resources which is kept fixed during VM
run-time. Providing protection from physical attacks, as in Bastion [28], in combination
with an untrusted hypervisor, as in CloudVisor [264], H-SVM [116] or HyperWall [227],
is then achieved in HyperCoffer [257].

Inspired by the academic research on VM enclaves, AMD developed the Secure En-
crypted Virtualization (SEV) [105] technology which follows a similar goal. SEV is based
on the AMD Secure Memory Encryption (SME) technology and isolates VMs from each
other and the untrusted hypervisor by encrypting VM code and data in memory. Thus,
the high-level design of SEV is comparable to the design of HyperCoffer [257], how-
ever, SEV uses an individual encryption key for each VM. The encryption keys are
created in hardware, inaccessible to system software, and are managed by the AMD
Secure Processor (SP) which interacts with the hardware encryption engine to encrypt
or decrypt all VM data leaving or entering the processor. When VM data is loaded
into the processor cache, it is protected by an access control mechanism relying on Ad-
dress Space Identifiers (ASIDs). Moreover, a VM owner can verify the initial state of
his VM through remote attestation based on an identification key embedded into the
firmware. In the initial release of SEV [105], the encryption mechanism only covered the
VM code and data. The processor register state remained visible over the Virtual Ma-
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chine Control Block (VMCB) structure which was exploited in controlled side-channel at-
tacks [93]. In the next SEV release, called SEV-ES (Encrypted State) [106], the encryption
mechanism was extended to the processor register state to prevent information leakage
over the VMCB structure. SEV-ES does not guarantee integrity for the encrypted VM
memory pages which was shown to be exploitable in further controlled side-channel
attacks [139, 256, 170]. In the newest release of SEV, called SEV-SNP (Secure Nested
Paging) [107], an additional address translation table, the Reverse Map Table (RMT),
is introduced to restrict the hypervisor’s access to pages belonging to VM enclaves.
IBM PEF [98] also provides enclaves in the form of VMs. For this, PEF introduces a
new highly privileged software component, called the Ultravisor, which consists of 39
KLOC and controls the setup of the enclaves. In contrast to SEV, PEF does not provide
a hardware memory encryption engine to date. However, PEF can prevent controlled
side-channel attacks on enclave page table since they are protected and verified by the
trusted Ultravisor component.

Enabling confidential cloud computing by protecting sensitive VMs was only recently
also addressed by Intel and ARM with new enclave architectures which are not yet
publicly available in hardware. Comparable to AMD SEV or IBM PEF, Intel TDX [49]
uses a hardware encryption engine, based on the Multi-Key Total-Memory Encryption
(MKTME) [48] engine, to encrypt sensitive VMs in memory, whereby an unique key
is used for each VM. In contrast to SEV, the encryption engine used in TDX also pro-
vides integrity protection. Moreover, the pages tables of the VMs are not stored in the
memory of the untrusted hypervisor. TDX introduces a new processor mode, called
Secure-Arbitration Mode (SEAM), which hosts a trusted software, the Intel TDX mod-
ule. The TDX module has exclusive access to a memory region in which all the sensitive
VM page tables are stored. When the boot of a VM is triggered, the hypervisor prepares
the page tables and hands them over to the TDX module, which verifies that the mem-
ory regions of the sensitive VMs do not overlap before passing control to the VM. Also
the recently introduced ARM CCA [152] provides enclaves in the form of VMs, called
realms. At its core, CCA introduces a new realm processor mode which is orthogonal to
the normal and secure modes introduced with ARM TrustZone. Accompanied with the
new processor mode, the MMU is extended by an additional translation level which is
used to search a newly introduced memory structure, called Granular Protection Table
(GPT), which is stored in protected memory. With the GPT, fine-grained access rules,
e.g. on a per-page basis, can be defined to isolate realms from each other and the system
software. Thus, in contrast to TDX, CCA can use access control mechanisms instead of
memory encryption to prevent illegal accesses to sensitive VM data. In order to protect
against physical attacks, CCA-enabled systems can also include a hardware encryption
and authentication engine in front of the memory controller called Memory Protection
Engine (MPE).

Kernel-space Enclaves

We use the term kernel-space enclave to describe a type of enclave which also runs
code, typically a runtime, in the privileged kernel space. In contrast to VM enclaves,
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kernel-space enclaves do not rely on management functionalities provided by a hyper-
visor. One early work on enclave architectures which provide kernel-space enclaves is
Flicker [165] which is based on the AMD Secure Virtual Machine (SVM) technology.
AMD SVM was developed to allow, together with a TPM, a late boot of security criti-
cal code, e.g. a security kernel or secure VMM. Flicker uses SVM and a TPM to verify
and load a small enclave-like execution environment called Secure Loader Block (SLB)
which wraps a piece of sensitive application code, called Pieces of Application Logic
(PAL). To protect the SLB and PAL during run-time, Flicker suspends the untrusted OS
before executing the SLB. The SLB provides a runtime for the PAL and also implements
OS functionalities like memory management or peripheral handling, whereby the PAL
is executed in ring 3 (user space). After the PAL execution is finished, the SLB is respon-
sible for cleaning the processor state and memory from sensitive data before the OS gets
restored. In Flicker, the TPM is used to measure the SLB code before boot for a later
remote attestation. Furthermore, it can be used for a sealed storage functionality which
is needed when a context switch to the OS is performed since this requires to securely
store the PAL state. SICE [7] achieves a similar separation of the system in a commodity
OS and kernel-space enclaves. However, instead of relying on AMD SVM, SICE uses the
highly privileged System Management Mode (SMM) on Intel processors for hosting the
trusted software which performs the secure context switch between the OS and an en-
clave. Keystone [135], developed for the open RISC-V architecture, does not suffer from
Flicker’s [165] main limitation that the commodity OS must be suspended while an en-
clave is executed. Keystone solves this problem by making use of the Physical Memory
Protection (PMP) unit provided on RISC-V processors which allows to perform access
control on physical memory addresses. Keystone isolates kernel-space enclaves, consist-
ing of a sensitive application and a runtime, on physical processor cores by configuring
the PMP’s of all cores simultaneously so that only the core executing the enclave code
has access to the memory region dedicated to the enclave. In contrast to Flicker, this
allows to run enclaves in parallel with the commodity OS. The trusted software which
manages the enclaves and configures the PMPs is called Security Monitor (SM) and runs
in the highest-privileged software level of the processor, the machine level. Moreover,
Keystone provides cache side-channel resilience for enclaves by providing a way-based
partitioned LLC.

One of the first enclave architectures were based on the ARM TrustZone [151] technol-
ogy. The core idea of TrustZone is to separate a system into two worlds, the normal world
and the secure world. The normal world contains the commodity untrusted OS and all
non-sensitive applications. The secure world comprises the sensitive applications, called
Trusted Apps (TAs), which run in the secure-world user space and the Trusted OS (TOS)
which runs in the secure-world privileged level. TAs can either be standalone or come
bundled with a non-sensitive application running in normal-world user space. The TOS
provides isolation for the TAs based on virtual address spaces. Moreover, the TOS pro-
vides all system services to the TAs. The separation of the normal and secure world is
achieved in hardware by a set of security enhancements of the processor, the system
bus, the cache, and additional components on the SoC like the memory controller. On
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TrustZone-enabled systems, the processor can either run in normal or secure mode, de-
pending on which world code the processor is currently executing. The processor mode
is indicated by a bit flag, called the None-Secure (NS) bit, which is propagated on the
system bus, e.g. when the processor is performing a memory access. The memory con-
troller can then perform access control on the NS-bit. All SoC components that want to
interact with the secure world, e.g. a fingerprint sensor, need to be NS-bit aware. The
configuration of the processor NS-bit is done by a software component, called Trusted
Firmware (TF), which runs on the most privileged level of an ARM processor. Because
of the various functionality requirements of the TAs, the code base of the TOS deployed
on commercial devices grew to a large size which offers a large attack surface for ma-
licious or compromised TAs [27]. Thus, given our definition of enclave architectures
in Section 1.1, all TrustZone-based architectures that use a TOS to manage TAs must
be viewed as providing only a single kernel-space enclave controlled by the device ven-
dor which comprises the complete secure world code, including the TF. Most of the
academic proposals which are based on TrustZone, and which we describe in detail
in Section 2.2.1, also provide kernel-space enclaves [265, 267, 22, 226, 143, 133, 40, 114],
only vIZ [97] provides VM enclaves.

Comparison

CURE, in contrast to its related work, is the only enclave architecture which does not fol-
low a one-size-fits-all enclave paradigm and instead provides multiple types of enclaves
on one platform. As a result, CURE can support a wider range of enclave use cases
and provide enclaves fitting to the requirements of sensitive applications which makes
workarounds that aim to extend enclave functionality obsolete [11, 30, 5, 217, 215, 99, 86].
In the following, we focus on a comparison of CURE to enclave architectures which pro-
vide either user-space, VM, or kernel-space enclaves.

In contrast to Overshadow [35], InkTag [95], SP3 [260], AppSec [198] and TrustzVi-
sor [166], the user-space enclaves of CURE do not rely on virtualization technologies.
One disadvantage of virtualization-based enclave architectures is that the second-level
address translation introduces a permanent performance overhead. Moreover, all mem-
ory accesses from the untrusted OS must be interposed and checked which further de-
grades system performance. Lastly, using the privileged hypervisor layer as the trusted
software component blocks its usage for hardware virtualization. In addition, when a
commodity hypervisors is used, this results in a large TCB [35, 260, 95]. The user-space
enclaves provided by Intel SGX [45], Iso-X [66], Sanctum [51] and MI6 [16] are protected
by performing access control at the virtual-to-physical address translation in the MMU,
whereas TyTAN [18] and TrustLite [126] rely on a modified MPU and TIMBER-V [253]
on a combination of MPU and memory tagging hardware. CURE, in contrast, does not
require invasive hardware modifications at the complex processor cores. Instead, CURE’s
main access control mechanism is integrated in the much simpler system bus. None of
the related works, except Sanctum [51] and MI6 [16], consider controlled side-channel
attacks performed from a compromised OS. CURE protects against page-table based at-
tacks [258, 25, 245, 168, 170] by including the enclave page tables in the enclave memory
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and against interrupt-based attacks [236, 91, 235, 254] by allowing the enclave to register
trap handlers that are called on every re-entrance of an enclave which allows the enclave
to detect an abnormal interrupt behavior. The attack class of cache side-channel attacks
are also only considered by Sanctum, MI6 and CURrE. Sanctum and MI6 provide a page-
coloring scheme which assigns cache sets to enclaves but requires to adapt the physical
memory layout of the complete software stack which is impractical for commodity sys-
tem software and hinders a dynamic modification of the cache resource assignment
during run-time. CURE does not impose any restrictions on the physical memory layout
of the system software and implements a way-based cache partitioning in which cache
ways can be exclusively assigned to enclaves. In contrast to MI6, CURE does not focus
on out-of-order processors and thus does not provide partitioning for microarchitec-
tural structures which can cause minor information leaks, e.g. the MSHR. Instead, CURE
proposes to prevent transient execution attacks and also side-channel attacks on core-
exclusive caches by flushing all microarchitectural resources, which are shared between
execution contexts, when entering or leaving an enclave.

The kernel-space enclave provided by Cure allows a comparison with another set of
enclave architectures. The main difference to traditional TrustZone-based enclave archi-
tectures and approaches which rely on the same software-based isolation [265, 267], is
that CURE provides an arbitrary number of enclaves instead of a single (secure world)
enclave. In contrast to TEEv [143] and PrOS [133], CURE does not rely on intra-privilege-
level isolation techniques which are cumbersome and require to check all enclave bi-
naries for forbidden privileged instructions. OSP [40] and PrivateZone [114] rely on a
hypervisor level for the enclave isolation leading to the disadvantages already discussed
in Section 2.2.1. TrustICE [226] and Flicker [165] provide multiple enclaves and do not
occupy the hypervisor level. However, in contrast to CURE, both approaches suffer from
the inherent limitation that the commodity OS must be suspended while an enclave is
being executed which largely limits their practicality. SICE [7] blocks the System Man-
agement Mode (SMM) of x86 processors and is limited to the memory region which
hosts the SMM code. In contrast to SANCTUARY [22], CURE provides side-channel re-
silience for its kernel-space enclaves using cache partitioning, whereas SANCTUARY must
completely exclude the enclave memory from the shared cache. Moreover, SANCTUARY
requires the secure world to manage all secure connections from enclaves to peripherals,
whereas CURE allows to assign peripherals directly and exclusively to single enclaves.
Cure’s hardware-assisted security mechanisms at the system bus can securely connect
enclaves to MMIO peripherals and DMA-capable peripherals. This enclave-to-peripheral
binding is one main difference between CURE’s kernel-space enclaves and the Keystone
enclave architecture [135]. To defend against cache side-channel attacks, Keystone and
Cure both provide way-based cache partitioning. Keystone assigns cache ways to pro-
cessor cores to which enclaves are pinned, whereas CURE assigns cache ways directly to
enclaves using their enclave IDs.

Cure’s hardware-assisted security mechanisms also allow to extend CURE’s design with
VM enclaves as provided by other enclave architectures [116, 264, 227, 257, 97, 105, 49,
152]. In CURg, the VM page tables would be protected from a rogue hypervisor inside



3.2 Related Work

the enclave memory, aligned to the user-space enclave design. Moreover, CURE’s access
control mechanisms would be used to prevent a rogue hypervisor from accessing en-
clave memory, comparable to H-SVM [116], CloudVisor [264], vIZ [97], HyperWall [227]
and ARM CCA [152], whereas CURE would not need to rely on nested-virtualization as
CloudVisor [264] and would not require to check the hypervisor binaries for forbid-
den instructions as vIZ [97]. Using access control mechanisms marks a difference to
approaches which rely on memory encryption (and authentication) engines that trans-
parently encrypt (and integrity protect) all enclave data in memory [257, 105, 49]. In
these designs, a malicious hypervisor might be able to access the enclave data but will
only read junk data, whereby rogue data modifications break the data integrity and are
therefore detectable. In contrast to CURE, none of the enclave architectures providing
VM enclaves consider cache side-channel attacks in their design.

3.2.2 Security Research on Heterogeneous Computing Platforms

We divide the related security research that focuses on heterogeneous computing plat-
forms into works which provide enclaves in general for platforms that comprise differ-
ent computing nodes, e.g., processors, GPUs or hardware accelerators, and works which
provide security mechanisms specifically for platforms that contain a Network-on-Chip
(NoC) architecture.

Enclave Architectures for Heterogeneous Computing

Graviton [242] and HIX [113] focus on the Intel SGX enclave architecture and aim to ex-
tend its functionalities in a way that SGX enclaves can communicate securely with GPUs.
In Gravition [242], this is achieved by customizing the GPU. The core idea of Graviton
is to extend the Command Processor (CP) of the GPU by an encryption engine and new
instructions so that the GPU memory management, which is performed by the GPU
driver, can be verified by the CP. Moreover, cryptographic key material is provisioned
to the CP which can be used to establish secure channels to multiple enclaves. This
enables Graviton to share a GPU between enclaves. In Graviton, enclaves can send com-
mands, ML algorithms and sensitive data to a GPU over their secure channel, encrypted
and integrity protected. The encryption engine in the CP is only used to decrypt and
verify the GPU commands, bigger data blocks are encrypted from the compute engine
of the GPU to reduce the performance overhead. HIX [113] follows another approach
to extend the protection of SGX to GPUs. The core idea of HIX is to provide a central
enclave, called GPU enclave, which can claim exclusive access to a GPU. All customer
enclaves that want to shift workloads to a GPU can establish a secure channel to the
GPU over the GPU enclave. In contrast to Graviton, the authors of HIX do not change
the GPU hardware. However, the authors need to change three components of a com-
modity SGX system. i) The authors remove (most of) the GPU driver from the OS and
run it in the GPU enclave. ii) New SGX instructions and structures are added allowing
the page fault handler to also check virtual addresses that target MMIO memory. iii)
The Peripheral Component Interconnect Express (PCle) root tree is slightly modified so
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that the routing configuration can be locked which prevents an adversary from routing
data to devices under his control. All data send between the user enclave, GPU enclave
and GPU is encrypted and integrity protected. As in Graviton, the compute engine of
the GPU is utilized to encrypt and verify large data blocks. The GPU enclave acts as the
central gatekeeper to the GPU which allows to divide the GPU between multiple user
enclaves. This, however, objects the design goal of SGX to isolate all enclaves from each
other. An exploitable vulnerability in the GPU enclave could be used from an adversary
to compromise all enclaves relying on it.

HETEE [270] focuses on rack-scale heterogeneous computing in cloud environments
and proposes a tamper-resistant chassis, called the HETEE box, which comprises mi-
croservers, called proxy nodes, and hardware accelerators, e.g., GPUs or FPGAs, con-
nected over PCle fabric. The proxy nodes run the necessary software stacks, e.g. ML
frameworks and drivers to communicate with the accelerators and to offload computing
workloads. HETEE enables a confidential computing scenario by connecting a trusted
custom hardware module, called Security Controller (SC), to the PCle fabric. When a
cloud customer wants to deploy sensitive computing workloads to the cloud, the SC
allocates a proxy node and hardware accelerators for the customer and configures the
PCle fabric in a way that the communication between the node and accelerators cannot
be intercepted. Then, the cloud customer can send his encrypted sensitive workloads
to the SC which will decrypt it and deploy it on the proxy node. After execution of
the sensitive workloads, the SC sanitizes the proxy nodes and restores their initial state
which requires a reboot. In contrast to Graviton [242] and HIX [113], HETEE does not
provide fine-grained enclave-like compartments on the proxy nodes but always assigns
a complete proxy node to a cloud customer.

Security Mechanisms for NoC-Based Platforms

Another line of security research focuses on computing systems where the heteroge-
neous computing nodes, e.g. processors or accelerators, are connected over an NI to an
on-chip architecture consisting of a network of routers. In HERMES [122], each com-
puting node gets a security level assigned (highly trusted, trusted, untrusted, unknown)
and depending on the security level, the nodes are clustered. Sensitive and non-sensitive
applications are then distributed on the nodes depending on their security level. One
designated node in each cluster, called the anchor node, is responsible for the commu-
nication with other clusters of the same security level, whereas all communication is
encrypted. Since only the anchor nodes perform an encrypted communication, the per-
formance and key management overheads are reduced. In HERMES, physical memory
is assumed to be distributed among all nodes. When one node sends a memory request
to the physical memory of another node, it is routed through the network and then
checked by the NI of the target node. Only if the source node has the correct security
level to access the requested memory, the access is permitted.

Instead of encrypting the communication between the nodes to prevent malicious or
compromised nodes from extracting sensitive application data, other approaches pro-
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pose to use the NI as a firewall to individually control the access of every node to the
network. In SEMA [164], a trusted node is introduced as a central TCB which runs a
security kernel that distributes applications among the nodes and configures the NIs
which contain LUTSs to perform access control on physical memory addresses. Porquet
et al. [186], Fernandes et al. [69] and Fiorin et al. [72] follow a similar approach by
introducing table-based access control mechanisms at the NIs which allow to define
permission rules in granularities ranging from single bytes to full pages.

In order to prevent the overhead induced by access control mechanisms in the NIs,
Fernandes et al. [70] propose to mitigate the leakage of sensitive application data by
routing data around potentially malicious nodes in the network. The authors assume a
setup in which the nodes are divided into different security zones and provide a rout-
ing algorithm which prioritizes communication along paths considered secure while
still guaranteeing a deadlock free packet routing. Besides protecting from a direct data
access of malicious nodes, novel routing algorithms were also proposed to mitigate side-
channel attacks performed on the network level, whereby Wang et al. [246] propose
to always prioritize low-security traffic so that it is never affected by the demands of
high-security traffic which would leak sensitive side-channel information. To prevent a
denial of service, low-security traffic is bounded by a certain static bandwidth limit. In
contrast, Gossip NoC [197] aims to mitigate ongoing side-channel attacks by altering
routing paths when an abnormal network traffic behavior is detected through band-
width monitoring.

Comparison

The enclave architectures Graviton [242] and HIX [113] target heterogeneous comput-
ing platforms equipped with general purpose processors and GPUs. Both approaches
rely on the availability of Intel SGX on all processor cores of the system. Moreover,
HIX requires modifications at the SGX hardware, whereas Graviton modifies the GPU
hardware. In both approaches, all communication between enclaves and a GPU must
be encrypted. Graviton and HIX are not well-suited for NoC-based architectures with
a large number of diverse computing nodes since some of the computing nodes will
present unmodifiable IP-blocks from third-party vendors. For these cases, it cannot be
assumed that a trusted enclave architecture is implemented on the node. With a direct
access to the network, these computing nodes would be able to access the sensitive
enclave data distributed over the memory nodes of the system. Our proposed enclave
architecture [61], which specifically targets NoC-based architectures, implements all se-
curity mechanisms in the Distributed Memory Guard (DMG) outside of the computing
nodes in front of the NI. Thus, also unmodifiable computing nodes can be included in
the system design without risking that a malicious or compromised node accesses the
sensitive enclave data. Moreover, the DMG allows to create secure communication chan-
nels between computing nodes without relying on encrypted communication streams.
HETEE [270] is focusing on rack-scale heterogeneous computing platforms comprising
many different computing nodes. In contrast to the DMG-based architecture, HETEE
focuses on off-chip heterogeneity where a PCle fabric is used to connect general pur-
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pose (micro)-servers with hardware accelerators. Our DMG-based architecture focuses
on on-chip heterogeneity where computing nodes are connected using a Network-on-
Chip (NoC) architecture. In contrast to Graviton, HIX and the DMG-based architecture,
HETEE cannot provide enclaves on a (micro)-server but only isolates complete servers
and assigns hardware accelerators to them.

The main difference between our work DMG and other works which also explicitly focus
on NoC-based architectures [122, 164, 186, 69, 72, 70, 246, 197] is that these proposals do
not provide isolated execution environments in the form of enclaves that are protected
from the system software. Instead, these works provide very coarse-grained security do-
mains which either compromise a complete computing node or even a set of computing
nodes, no matter whether the proposals’ security relies on encrypted network communi-
cation streams [122], access control mechanisms in the NI [164, 186, 69, 72] comparable
to the DMG, or a modified network routing behavior [70, 246, 197]. In all these cases,
the security challenges arising inside of a computing node are not considered.



New Cache Designs enabling
Side-Channel Resilient Enclaves

Since two decades, cache side-channel attacks performed from software have been one
of the most active fields of security research. Over the years, researchers successfully
showed, across software privilege levels, cache levels and processor architectures, that
caches leak information over their microarchitecture. This information leakage can be
exploited by an adversary to infer the internal state of a victim process which ultimately
allows to leak sensitive data, e.g. cryptographic key material, from a victim. The root
cause of these side-channel attacks is that caches, which were introduced as an optimiza-
tion technique in modern processors to keep frequently used data in fast-access memory,
are typically shared among all processes running on a system. The sharing of cache re-
sources leads to a competition between all processes in which processes evict cached
data from each other to store their own data in the cache. Thus, the processes influence
each others run-time behavior which is what the adversary exploits to infer the internal
victim state. Academic research discovered various different attack types, whereby the
most investigated ones can be broadly categorized in access-based attacks [87, 261, 112],
conflict-based attacks [180, 111, 155] and occupancy-based attacks [218]. In the access-
based attacks, the adversary provokes cache contention by evicting the victim data from
the cache using flush instructions. In the conflict-based attacks, the adversary provokes
contention by filling cache lines used by the victim with its own data. In the occupancy-
based attacks, the adversary observes evictions on cache lines occupied by its own data.
The severity of cache side-channel attacks was also shown on enclave architectures across
platforms [19, 88, 83, 53, 210, 266].

Along with the research that aims to discover new attack vectors on the cache microarchi-
tecture, security researchers also developed a plethora of cache side-channel defenses.
Apart from providing time-constant, and thus side-channel resilient, implementations
of vulnerable cryptographic algorithms [46, 14], researchers proposed several software-
based defenses to prevent successful attacks, e.g., by detecting on-going attacks and
killing suspicious processes using performance counters [39, 184], or by preventing an
adversary from performing precise time measurements [180, 163, 96, 240] which are es-
sential for cache side-channel attacks. However, more promising are approaches which
tackle the side-channel problem directly at its root cause and propose novel cache mi-
croarchitectures which are by design side-channel resilient.
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In this chapter, we describe our contributions to the protection of enclaves from cache
side-channel attacks using side-channel resilient cache designs (Section 4.1), summarize
related research and position our work to it (Section 4.2).

4.1 Contributions

This dissertation contributes to the enclave computing research of Side-Channel Resilient
Caches (Section 1.2.5) by designing, implementing and evaluating a novel side-channel
resilient cache microarchitecture, named CHUNKED-CACHE, which is described in the
following publication that can be found in Appendix E:

[62] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. CHUNKED-CACHE: On-Demand and Scalable Cache
Isolation for Security Architectures. In Symposium on Network and Distributed
System Security (NDSS), 2022. CORE Rank A*. Appendix E.

Microarchitectural Design. In CHUNKED-CACHE’s microarchitectural design, which
targets Last-Level Caches (LLCs) in systems that support enclaves, software is divided
into multiple Isolated-Domains (I-Domains) and a single Non-Isolated Domain (NI-
Domain), whereby each domain is identified system-wide using a Domain-ID (DID).
The I-Domains represent sensitive applications encapsulated in enclaves, whereas the
single NI-Domain, comprises the complete untrusted system software, including all
non-sensitive applications, as depicted in Figure 6. One key aspect of CHUNKED-CACHE's
design it that it provides side-channel resilience for sensitive applications (I-Domains)
through fine-grained cache partitioning on a cache-set basis. Thus, in contrast to coarse-
grained way-based partitioning, CHUNKED-CACHE prevents cache underutilization and
scales to a larger number of protected domains. Moreover, CHUNKED-CACHE also allows
to disable side-channel resilience for I-Domains if the protection is not required.

At its core, CHUNKED-CACHE introduces a new cache set indexing policy which differen-
tiates between I-Domains and the NI-Domain when performing the memory-to-set map-
ping. The NI-Domain always gets a fixed set of cache sets assigned which are called the
mainstream cache and which cannot be allocated to I-Domains, e.g., in Figure 6 the global
sets 0-7 are assigned to the NI-Domain. CHUNKED-CACHE still allows the NI-Domain to
allocate all unused cache sets outside of the mainstream cache with set-associative index-
ing. In the cache controller, this is achieved by accessing sets which map the same mem-
ory addresses as a mainstream cache set, called congruent cache sets, in parallel with
the mainstream cache set (global sets 12-15 in Figure 6). For the I-Domains, the owner
of a domain can decide whether the domain requires side-channel protection. If not, the
I-Domain’s data is cached in the mainstream cache using the same indexing policy as for
the NI-Domain. However, to prevent a direct cache access from a potentially malicious
or compromised NI-Domain, each cache line is tagged with the DID of the I-Domain
which occupies the cache line. CHUNKED-CACHE enforces that only the owner domain
can access the data, whereas the NI-Domain can still evict the I-Domain data from the
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Figure 6: System view on CHUNKED-CACHE which splits the cache sets between the ,
consisting of the system software and all non-sensitive applications, and the isolated
domains I-Domain, and [-Domaing.

cache which is desirable to preserve a conventional cache behavior for the NI-Domain.
When an I-Domain requires cache side-channel protection, CHUNKED-CACHE assigns a
system-defined number of cache sets exclusively to the I-Domain, called the domain’s
cache chunk. In this case, no other I-Domain or the NI-Domain can access or evict cache
lines from the assigned sets. Thus, CHUNKED-CACHE's design provides a strong isolation
of cache resources which also protects from occupancy-based side-channel attacks [218]
since a potential victim I-Domain can also not be tricked into evicting cache lines from
an adversarial domain. In Figure 6, [-Domain, gets the global cache sets 8-9 exclusively
assigned and [-Domaing the sets 10-11. In the cache controller, the indexing for the I-
Domains is achieved by a configurable set indexing mechanism. On every I-Domain
memory access, the cache controller first verifies whether the requesting I-Domain re-
quires side-channel protection. Then, the index bits of the memory address are used to
locate the correct local set in the domain’s cache chunk. Since the number of cache sets
assigned to an I-Domain varies, the indexing bits must be configurable. In a second step,
the local cache set is mapped to the global cache set of the LLC by querying a hardware
table structure. The global cache set is then used to perform the tag comparison in the
tag store and to access the correct cache line.

Apart from a strong isolation of the cache resources, CHUNKED-CACHE allows to as-
sign or remove cache sets to or from an I-Domain dynamically during run-time, which
enables a flexible management of cache resources. In order to prevent the leakage of sen-
sitive data, all reassigned cache sets are cleaned by the cache controller. Since CHUNKED-
CAcHE's set indexing for the mainstream cache is consistent and independent from the
number of cache sets occupied by I-Domains, the NI-Domain does not need to flush its
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own data from the cache when sets are reassigned. Thus, CHUNKED-CACHE minimizes
the performance impact on the NI-Domain. Moreover, CHUNKED-CACHE’s design also
allows side-channel protected I-Domains to define cacheable memory regions which
are explicitly shared with the NI-Domain, e.g. to use OS services. For these regions,
CHUNKED-CACHE guarantees inaccessibility for all other I-Domains by using cache-line
tagging. CHUNKED-CACHE can be used together with commodity replacement policies.
The strict cache resource isolation in CHUNKED-CACHE on a cache-line basis also pre-
vents that meta-data of the replacement policy algorithm leaks between domains which
was shown to be exploitable in cache side-channel attacks [23].

Implementation & Evaluation. We implement the proposed CHUNKED-CACHE design
on the Register-Transfer Level (RTL) and include our prototype into a single-core open-
source RISC-V system which we synthesize for a ZedBoard Zyng-7000 FPGA to per-
form our hardware overhead evaluation. The logic overhead induced by the CHUNKED-
CAcHE microarchitecture adds up to 1,6% of a single-issue single-core RISC-V processor.
The storage overhead of our prototype accumulates to 2.3% compared to an unmodi-
fied 16 MB LLC which results in an approximate area increase of 2.7%. For CHUNKED-
CACHE's power consumption in 22 nm technology, which we evaluate using the CACTI-
6.0 tool [173], we measure an overhead of 12.3% compared to an unmodified 16-way 16
MB LLC with 64 B cache line size. Our evaluation shows that the hardware overheads in-
troduced by CHUNKED-CACHE are reasonable. Apart from the logic, storage and power
consumption overhead, we also use our hardware implementation to infer the cycle
latency that CHUNKED-CACHE incurs on memory accesses. For all accesses to the exclu-
sively assigned cache chunks of I-Domains, an additional latency of 1 cycle is introduced,
whereas for accesses to the mainstream cache 2 cycles latency are added, compared to
an unmodified commodity LLC with an estimated access latency of 8o cycles. Thus,
CHUNKED-CACHE only introduces a small access latency of 1.25%-2.5%.

Besides our RTL prototype, we also implement a C++ model of CHUNKED-CACHE which
we include, together with the computed cycle latencies, into the cycle-accurate gems
system simulator [159] in order to evaluate the performance overhead CHUNKED-CACHE
induces on software in terms of cache miss rates and the Cycles Per Instruction (CPI)
metric. To evaluate CHUNKED-CACHE in a realistic setup, we use gems in full-system
mode and model a multi-core architecture with a 3-level cache hierarchy. Moreover, we
use compute-intensive SPEC CPU2017 benchmarks [50] and I/O-intensive real-world
applications for the evaluation, whereby for each experiment, we simulate at least 1 bil-
lion processor instructions. In a first set of experiments, we demonstrate the correctness
of our prototype by showing the influence of CHUNKED-CACHE’s design on the cache
miss rates and CPI metric when running SPEC benchmarks in I-Domains, whereby we
assign a varying number of cache sets to the domains. Our results show that the cache
miss rates in general heavily depend on the run-time characteristics of the specific bench-
marks but decrease when more cache resources are assigned to an I-Domain, whereby
the opposing behavior can be observed for the CPI metric. Additional experiments show
the same behavior also for real-world applications, namely the nginx webserver [174],
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whereby we run the server in one I-Domain and the HTTP benchmarking tool wrk in
another I-Domain and let them communicate over the network.

In another set of experiments, we evaluate CHUNKED-CACHE’s influence on the NI-
Domain. We demonstrate that even when only 1/8 of the LLC cache resources are as-
signed to the NI-Domain, the cache miss rates decrease compared to an unmodified
LLC. This is possible since CHUNKED-CACHE enables the NI-Domain to allocate unused
cache resources which we verify in an additional experiment. Moreover, we conduct
further experiments to demonstrate the dynamic cache resource allocation functionality
of CHUNKED-CACHE by modifying the size of an I-Domain’s cache chunk during run-
time. Our evaluation shows that the performance of the NI-Domain is not negatively
influenced by the cache set reassignment. The scalability of CHUNKED-CACHE’s design
is verified in another experiment by running 32 I-Domains in parallel, which was the
maximal number of domains our evaluation system was capable of simulating. In a last
set of experiments, we compare CHUNKED-CACHE with way-based partitioning schemes.
Our experiments show the superiority of CHUNKED-CACHE's fine-grained partitioning
scheme which for an equally-sized portion of the cache assigned to an I-Domain, 1 MB
and 2 MB, achieves a 43% and 39% lower cache miss rate than a way-based partitioned
LLC, respectively.

4.2 Related Work

In the following, we summarize research most related to CHUNKED-CACHE, which are
works that propose new side-channel resilient cache architectures, and compare it to
our work. The proposals can be categorized in two broad classes, caches which use
randomization to disguise the mapping between memory addresses and caches sets,
and caches which strictly partition the cache resources.

4.2.1 Randomization-based Cache Architectures

We further categorize the randomization-based approaches depending on the hardware
structures used to define the randomized mappings, namely tables or functions which
depend on some form of key or random seed.

Table-based Randomization

RPCache [248] was one of the first cache designs developed for mitigating software-
based cache side-channel attacks. In RPCache, the authors propose to add permutation
tables in front of the address decoder logic of the cache which introduce a new level of
indirection in the cache by randomly selecting cache sets during cache indexing. When
a cache line is replaced, RPCache selects a random cache set and swaps the indices
of the originally and randomly selected cache sets in the permutation table. To pre-
vent leaking side-channel information, all cache lines in the swapped cache sets must
be invalidated. Newcache [249] follows a similar approach based on random mapping
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tables. However, Newcache introduces a logical direct-mapped cache whose output is
mapped to the physical cache lines using the mapping tables. This allows Newcache to
perform a randomized mapping on a cache line granularity which avoids the cache line
invalidations necessary in RPCache’s [248] design. In Newcache, the mapping tables are
dynamically updated during runtime, whereby each process that requires cache side-
channel protection uses its own logical random mapping table. Random Fill Cache [154]
builds upon the concepts of RPCache [248] and NewCache [249] but introduces a new
cache-fill strategy to prevent collision-based attacks [218] which exploit that the reuse
of already cached data blocks can be observed by an adversary. In Random Fill Cache,
a data block read from memory after a cache miss is not inserted into the cache but
sent directly to the processor. The cache is then filled with randomized fetches from
neighboring memory addresses.

Keyed Function Randomization

The main limitation of randomization schemes based on mapping tables is that they are
only applicable to small core-exclusive L1 caches. On large LLCs, mapping tables cannot
be efficiently deployed since the tables scale linearly which would induce an impractical
hardware overhead. Unfortunately, providing side-channel resilience is especially impor-
tant in LLCs since they are shared among cores and thus simply flushing sensitive data
out of the cache during process context switches is not possible. Hence, more recent
proposals for side-channel resilient cache designs rely on keyed functions for the ran-
domization which allow to deploy the designs also to bigger caches. In TSCache [233],
a simple hardware logic is used together with a random seed to map the tag and index
bits of a memory address to a cache line, whereby each process is assigned its own seed
which must be frequently reset.

In CEASER [193], an encryption function is used to perform the mapping from phys-
ical memory addresses to cache sets. The authors propose low-latency block ciphers
for the encryption function which are cryptographically more secure than the functions
proposed in TSCache [233]. CEASER periodically changes the key used for the encryp-
tion, so that an adversary cannot learn the secret mapping, whereby one key is used
for the mappings of all processes on the system. The re-keying, which per default is
performed after 100 cache accesses, requires a remapping of all data stored in the cache.
In order to reduce the performance impact of the remapping, CEASER implements a
gradual remapping strategy which remaps only a part of the cache at a time. The au-
thors of CEASER select a re-keying rate of 100 cache accesses based on their analysis
of state-of-the-art conflict-based cache attacks which use eviction set construction algo-
rithms of O(E?) complexity, where E is the number of cache lines in the attack pattern.
In subsequent work [194], Qureshi shows in two new attacks that the complexity of
an eviction set construction algorithm can be reduced to O(E) and that the cache re-
placement policy of CEASER [193] can be exploited so that re-keying rates of 35 and 1,
respectively, would be required to keep CEASER's security guarantees. Thus, Qureshi
proposes an improved design called Skewed-CEASER (CEASER-S) [194] which divides
the cache ways into multiple partitions and provides an unique encryption key for each
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of the partitions. The improved design effectively provides a mapping randomization
on a cache-line level which complicates the adversary’s search for an eviction set. With
CEASER-S, the re-keying rate can again be set to 100.

ScatterCache [255] is another approach which relies on keyed mapping functions to
translate memory addresses to cache lines, whereby the authors provide a hash- and
permutation-based variant of their design. Similar to CEASER-S [194], ScatterCache
performs the randomization on a cache-line level. However, ScatterCache also feeds
a software-managed identifier for each process (or security domain) as an input to the
mapping function in order to provide independent mappings for each process.

CEASER [193], CEASER-S [194] and ScatterCache [255] follow a global randomization
strategy in which each memory address can theoretically be mapped to any cache set
which increases the access latency of the cache. The authors of PhantomCache [229]
propose a localized randomization strategy in which each memory address can only be
mapped to a subset of the cache sets using a combination of XOR operations, random
salts and a hash function. The simpler randomization strategy enables a faster cache
access since all sets can be checked in parallel. Unfortunately, the parallel access induces
a large power consumption overhead of 67% compared to an unmodified cache.

In order to withstand even faster eviction set construction algorithms [188], Mirage [201]
follows a different approach to prevent conflict-based cache attacks. Instead of random-
izing the mapping from memory addresses to cache lines, Mirage randomizes the cache
line selection performed during eviction to prevent conflicts that still happen within
CEASER [193, 194], ScatterCache [255] and PhantomCache [229]. Mirage introduces a
novel global eviction strategy in which eviction candidates are selected from all cache
lines in the cache instead of just the current set, while still keeping a practical set-
associative lookup strategy. As a result, Mirage removes set-associative evictions all
together which are required by an adversary to build an eviction set.

4.2.2 Partitioning-based Cache Architectures

One of the earliest works which proposes partitioned caches as a side-channel defense is
PLCache [248]. In PLCache, cache lines are exclusively assigned to processes through a
combination of memory tagging and cache locking. To achieve this, PLCache introduces
a locking bit and process identifier bits at every cache line to store the information if a
cache line was locked and by which process. Only memory of this process tagged with
the locking bit is allowed to evict the cache lines. The memory tagging is performed
with a new set of load and store processor instructions introduced by PLCache.

In SecDCP [247], a more coarse-grained partitioning scheme is proposed in which cache
ways are dynamically assigned to security classes, whereby each process is assigned
a fixed security class. SecDCP adds an identifier to every cache line to indicate which
security class loaded the cache line. This identifier is used to decide during cache-way
reassignment, whether the complete way must be flushed or if the data can be kept in
the cache. Flushing the cache is required when a cache way is reassigned to a higher se-
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curity class to prevent the leakage of sensitive data. DAWG [123] is another work which
proposes a way-based cache partitioning to mitigate side-channel attacks. In contrast to
SecDCP [247] and PLCache [248], DAWG partitions the cache resources and the meta-
data used by the cache replacement policy, which can also leak sensitive information
as shown in the RELOAD+REFRESH attack [23], between sensitive domains. Moreover,
DAWG allows communication between sensitive domains over the shared cache.

The authors of Sharp [259] focus on inclusive cache hierarchies and introduce a new
cache replacement policy to prevent contention-based cache attacks performed across
processor cores. The idea of Sharp is to mitigate an adversarial eviction of victim cache
lines by altering the replacement policy in a way that cache lines which are also cached in
the private cache of a core (potential victim cache lines) are selected last for eviction from
the shared cache. When a potential victim cache line is evicted, a per-core event counter
is incremented which triggers an interrupt once a certain threshold is reached. RIC [118]
also focuses on the protection of inclusive caches. However, in contrast to Sharp [259],
RIC does not modify the replacement policy but the cache coherency protocol by relax-
ing inclusion for all process data that is private (non-shared) or read-only.

HybCache [60] combines aspects from partitioning- and randomization-based cache de-
signs and focuses on systems in which multiple sensitive domains must be protected
from each other and an untrusted non-sensitive domain. Thus, HybCache’s design, in
contrast to the aforementioned works, fits to the typical setup of an enclave architecture
where the non-sensitive domain is represented by the untrusted OS. HybCache parti-
tions the cache and assigns a subset of the cache ways to the sensitive domains, whereas
the rest is assigned to the untrusted domain. One of the key design goals of HybCache
is to reduce the performance impact of a partitioning-based cache design on the OS
(untrusted domain). Thus, when the OS filled all its cache ways during run-time, it can
steal cache ways originally assigned to the sensitive domains. To prevent the leakage of
sensitive data, the cache ways must be flushed before reassignment. Since all sensitive
domains share a set of ways, HybCache implements fully-associative cache indexing
combined with a random replacement policy to prevent information leakage also be-
tween the sensitive domains. Because of the high power consumption overhead caused
by the fully-associative subcache assigned to the sensitive domains, HybCache is only
practical for smaller core-exclusive caches. BCE [202] also focuses on providing cache
side-channel resilient enclaves. BCE enables cache partitioning in a finer granularity than
all way-based partitioning approaches by assigning small groups of contiguous cache
sets, called clusters, to enclaves which allows BCE to scale to a higher number of sensi-
tive domains (or enclaves). The clusters assigned to an enclave can be distributed over
the complete cache. Nevertheless, memory addresses are still mapped uniformly into
the cluster sets. To achieve this, BCE introduces a new cache indexing hardware which
uses a load-balancing hash function to uniformly spread memory addresses across the
logical clusters of a domain which are then mapped to the physical clusters in the cache
using table structures.

Besides the presented approaches which all require hardware modifications to imple-
ment cache partitioning, other works [156, 121, 81], typically summarized under the
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term page coloring, provide a partitioning of cache resources with commodity cache de-
signs. The core idea of page-coloring schemes is to assign physical memory regions to
sensitive domains in such a way that the cache sets to which the regions get mapped to
do not overlap between the sensitive domains. Stealthmem [121] creates page coloring
in a cloud scenario by intercepting all VM accesses to memory addresses which would
result in the eviction of a cache line assigned to another VM. Godfrey et al. [81] also
focus on a cloud scenario and implement page coloring in the Xen hypervisor [228].
CATalyst [156] builds on the Intel Cache Allocation Technology (CAT) [44] to select a
subset of the cache ways for a coloring scheme which is implemented in software by only
assigning memory pages to VMs that have non-conflicting cache line mappings.

4.2.3 Comparison

The research works most related to CHUNKED-CACHE are other cache microarchitectures
which achieve side-channel resilience through a partitioning of the cache resources. In
contrast to PLCache [248] which requires memory tagging hardware and new load and
store processor instructions, CHUNKED-CACHE’s hardware modifications are limited to
the cache architecture and thus are less invasive. However, on some platforms memory
tagging hardware will be added to mainstream processors thus potenially allowing to
build side-channel protection mechanisms with existing hardware at low costs [150].
SecDCP [247] and DAWG [123] propose a way-based cache partitioning in which cache
ways are exclusively assigned to security domains. The main limitation of way-based
partitioning approaches is that the number of ways available in the cache define how
many security domains can be supported. Since even on modern large shared caches
the way-associativity is as low as 16 or 32, the scalability of these approaches is limited.
CHUNKED-CACHE provides a partitioning based on cache sets which scales much better
since shared caches typically have multiple thousands of cache sets. Moreover, when
assigning cache ways instead of cache sets, the assigned cache resources are less equally
used by the security domain since the same memory address range spreads across a
larger number of cache sets. Since unused cache resources can also not be accessed by
other domains because of the partitioning, this leads to cache memory underutilization
on the system. Further, set-based partitioning leads to less cache misses for the security
domains since the associativity provided by the cache is preserved. Sharp [259] and
RIC [118] modify the replacement policy and cache coherency protocol, respectively,
to relax cache inclusion so that sensitive data in the cache cannot be evicted from an
adversary. However, both approaches cannot defend against conflict-based side-channel
attacks [180, 111, 155] and are limited to inclusive cache hierarchies.

HybCache [62], such as CHUNKED-CACHE, focuses on enclave architectures and declares
a low performance impact on the OS as one of the main design goals. The main differ-
ence between both approaches is that HybCache splits the cache only into two partitions,
one partition is assigned to the OS and the other one shared by all enclaves on the system.
CHUNKED-CACHE, in contrast, assigns cache resources exclusively to single enclaves. As a
result, CHUNKED-CACHE can index the enclave cache resources set-associatively, whereas

53



54

New Cache Designs enabling Side-Channel Resilient Enclaves

HybCache must perform fully-associative cache indexing to prevent information leak-
age between the enclaves. The fully-associative indexing leads to a considerably larger
power consumption. Furthermore, since the enclaves still compete over the same cache
resources in HybCache, occupancy-based side-channel attacks [218] between enclaves
cannot be prevented. BCE [202] is a concurrent work which also focuses on enclave ar-
chitectures and assigns cache resources based on cache sets. BCE and CHUNKED-CACHE
both introduce new cache indexing hardware. The main difference between both ap-
proaches is that BCE uses a load-balancing hash function to uniformly spread memory
addresses across the cache sets assigned to an enclave, whereas CHUNKED-CACHE uses
modifiable memory address index bits which are configured depending on the number
of cache sets assigned to an enclave. In both cases, the mapping from the local enclave
cache sets to the global cache sets are performed over table structures.

Page coloring schemes [156, 121, 81] are another set of partitioning-based approaches
related to CHUNKED-CACHE. The main limitation of theses approaches is that the coloring
dictates how the code and data of an execution context must be placed in the physical
memory which is especially impractical in an enclave scenario since also the untrusted
potentially compromised OS must adhere to the coloring scheme. Moreover, with page
coloring, the assignment of cache resources to security domains cannot be efficiently
modified during run-time since this would require to alter the physical memory layout
of the system. Lastly, the number of cache sets that are assigned to a security domain also
automatically defines how much physical memory is available for the security domain
which might not be desired. CHUNKED-CACHE which does not impose any restrictions
on the physical memory layout, allows to modify the number of cache sets assigned to
enclaves during run-time, and assigns cache resources independently from the size of
the physical memory region used by an enclave.

The main difference between CHUNKED-CACHE and randomization-based side-channel
resilient cache architectures [248, 249, 154, 233, 193, 194, 255, 229, 201] is that CHUNKED-
CACHE's strict partitioning of cache resources completely prevents the competition of ex-
ecution contexts over the same cache resources. This competition leaves randomization-
based approaches vulnerable to occupancy-based side-channel attacks [218], even though
the mapping from memory addresses to cache sets and the eviction policies are ran-
domized. Moreover, since randomization-based approaches must rely on cryptographic
primitives to scale to large shared caches [233, 193, 194, 255, 229, 201], there is always a
certain probability for a successful brute-force attack, whereby the probability is deter-
mined by the re-keying frequency. Unfortunately, the discovery of new faster eviction set
construction algorithms can make randomization-based approaches impractical when
the re-keying rate must be increased substantially [194, 188, 189, 17].



Conclusion and Future Research

In this chapter, we summarize the contributions of this dissertation to enclave computing
research (Section 5.1) and propose future research directions (Section 5.2).

5.1 Summary

This dissertation significantly contributes to the research field of enclave computing by
proposing multiple new enclave architectures across processor architectures and plat-
forms. In the following, we summarize the contributions of this dissertation and com-
pare them to the dissertation goals defined in Section 1.3.

Openly-accessible Enclave Computing on ARM-based Devices. We presented Sa-
NCTUARY [22], an enclave architecture which reaches our goal of providing a strong
hardware-assisted separation between enclaves on TrustZone-enabled platforms. Thus,
in contrast to traditional TrustZone-based architectures that only provide a single en-
clave, SANCTUARY offers an ecosystem of mutually distrusted enclaves and an unre-
stricted access to the protection capabilities of TrustZone without security concerns, also
for third-party developers. We implemented SANCTUARY on a multi-core ARM-based
chip set and demonstrated its practicality by thoroughly evaluating our prototype. More-
over, we presented Offline Model Guard (OMG) [12] which is based on SANCTUARY and
which fulfills our goal of investigating how to extend the applicability of enclaves to
sensitive Machine Learning (ML) applications. With OMG, we showcased how enclaves
can be used to implement an offline keyword recognition service, using the TensorFlow
lite for microcontrollers framework, which provides privacy for user data, secrecy for
ML models and integrity for ML algorithms.

Flexible Enclaves Across Platforms. We presented CURE [9], a novel enclave archi-
tecture which provides multiple different types of enclaves on one platform including
enclaves that provide execution contexts isolated on an intra-privilege level, enclaves
comprising an user-space process, and self-sustained enclaves which include a runtime
to perform management tasks independently from the untrusted operating system. With
this multi-enclave design, CURE, in contrast to other enclave architectures, does not need
to make assumptions regarding the protected sensitive applications. Depending on the
requirements of the sensitive applications, the best fitting enclave type is selected. Thus,
Cure reaches our goal of enabling more enclave use cases since a larger set of sensitive
applications can be protected on one platform without workarounds. Moreover, CURE
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proposes a novel access control mechanism on the system bus with which it contributes
to our goal of enabling a secure communication between enclaves and peripherals with-
out requiring to modify the peripherals or to encrypt the communication streams. We
implemented CURE for the open RISC-V architecture and thoroughly evaluated our pro-
totype in terms of hardware and performance overhead on an evaluation setup consist-
ing of ISA simulators, a cycle-accurate system simulator and an FPGA. Moreover, we
presented Distributed Memory Guard (DMG) [61] and an enclave architecture based on
the DMG with which we bring CURE’s multi-enclave concept also to Network-on-Chip
(NoC)-based platforms, thereby fulfilling another goal of this dissertation.

New Cache Designs enabling Side-Channel Resilient Enclaves. ~We presented
CHUNKED-CACHE [62], a side-channel resilient partitioning-based cache microarchitec-
ture design which targets shared caches in enclave architectures. CHUNKED-CACHE ac-
complishes our goal of a scalable cache design which assigns strongly-isolated cache
resources to enclaves on a fine-grained cache-set level without inflicting a large perfor-
mance degradation on the system software. We implemented CHUNKED-CACHE in hard-
ware and on a cycle-accurate cache simulator. We evaluated the hardware and power
consumption overhead of our CHUNKED-CACHE prototype and provided a thorough per-
formance evaluation using standard compute-intensive benchmarks and I/O-intensive
real-world applications. Moreover, we demonstrated that CHUNKED-CACHE scales better
than caches providing partitioning on a cache-way level while inducing considerably
less cache misses.

5.2 Future Research

Enclave computing has been a very active field of research in the last decade. The cur-
rent computing trend of application-specific computing hardware and novel commercial
enclave architectures indicate that enclave computing research will continue to be an im-
portant research field in the future. In the following, we discuss how commercial enclave
architectures and application-specific computing hardware might steer enclave comput-
ing research in the next decade.

The existing enclave attack research, which aims to reveal security vulnerabilities of
enclave architectures, was largely driven by the introduction of Intel SGX [45] since it
provided the security researchers with a commercial product, available in hardware,
to verify the made security claims for enclaves through extensive security analyses. Re-
cently, the enclave architectures Intel TDX [49] and ARM CCA [152] have been proposed
which introduce new hardware-assisted security mechanisms and which claim to be re-
silient against many attacks to which AMD SEV [105], which follows a similar goal, has
been shown vulnerable to [170, 139, 93, 141, 256]. Thus, we believe that the introduction
of Intel TDX and ARM CCA in hardware will spawn a range of research works which
focus on verifying whether the new enclave architectures keep what they promise. As
typical in security research, the discovery of new attack vectors will motivate new defen-
sive research that aims to prevent the newly discovered attacks or that extends the en-
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clave architectures to circumvent design limitations, as we did with SANcTUARY [22] for
TrustZone-based enclave architectures. Moreover, we expect that cache designs which
enable side-channel resilient enclaves, as our proposed CHUNKED-CACHE design [62],
will also be investigated in conjunction with Intel TDX and ARM CCA.

Besides research focusing on new commercial enclave architectures, we envision that fu-
ture research will also aim at bringing enclaves to computing hardware apart from gen-
eral purpose processors, e.g., Graphics Processing Units (GPUs), Tensor Processing Units
(TPUs), or other application-specific hardware, which aligns with the general computing
trend of deploying more specialized hardware as an answer to the initiating slowdown
of Moore’s law. On the one hand, specialized enclave architectures will bring along new
challenges regarding the protection from side-channel attacks. For some hardware, the
challenges will be congruent to those already faced on enclave architectures for general
purpose processors and thus, existing defense mechanisms, e.g. side-channel resilient
caches, might be applicable with little effort. However, other specialized hardware will
introduce new microarchitectural structures with a yet unknown side-channel attack sur-
face which will require novel defense mechanisms. On the other hand, new designs for
emerging heterogeneous computing platforms will be required to enable the combina-
tion of different enclave architectures on one platform and a secure interaction between
all enclaves, which aligns to the challenges of general purpose enclave architectures that
we address in our works CURE [9] and Distributed Memory Guard (DMG) [61].
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Abstract—ARM TrustZone is one of the most widely deployed
security architecture providing Trusted Execution Environments
(TEEs). Unfortunately, its usage and potential benefits for ap-
plication developers and end users are largely limited due
to restricted deployment policies imposed by device vendors.
Restriction is enforced since every Trusted App (TA) increases
the TEE’s attack surface: any vulnerable or malicious TA can
compromise the system’s security. Hence, deploying a TA requires
mutual trust between device vendor and application developer,
incurring high costs for both. Vendors work around this by
offering interfaces to selected TEE functionalities, however, these
are not sufficient to securely implement advanced mobile services
like banking. Extensive discussion of Intel’s SGX technology
in academia and industry has unveiled the demand for an
unrestricted use of TEEs, yet no comparable security architecture
for mobile devices exists to this day.

We propose SANCTUARY, the first security architecture which
allows unconstrained use of TEEs in the TrustZone ecosystem
without relying on virtualization. SANCTUARY enables execution
of security-sensitive apps within strongly isolated compartments
in TrustZone’s normal world comparable to SGX’s user-space
enclaves. In particular, we leverage TrustZone’s versatile Address-
Space Controller available in current ARM System-on-Chip
reference designs, to enforce two-way hardware-level isolation:
(i) security-sensitive apps are shielded against a compromised
normal-world OS, while (ii) the system is also protected from
potentially malicious apps in isolated compartments. Moreover,
moving security-sensitive apps from the TrustZone’s secure world
to isolated compartments minimizes the TEE’s attack surface.
Thus, mutual trust relationships between device vendors and
developers become obsolete: the full potential of TEEs can be
leveraged.

We demonstrate practicality and real-world benefits of SANC-
TUARY by thoroughly evaluating our prototype on a HiKey 960
development board with microbenchmarks and a use case for
one-time password generation in two-factor authentication.

I. INTRODUCTION

Mobile devices have already changed our daily lives in various
ways. Their success can mainly be attributed to the ecosystem
that evolved around them. The increasing computing and stor-
age capabilities, the vast number and variety of apps available
on app stores and markets, as well as the connectivity to
cloud services make mobile devices convenient replacements
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for traditional computing platforms, and the de-facto standard
way of accessing the Internet [40].

Despite all benefits, today’s mobile devices provide a large at-
tack surface imposing many security and privacy challenges on
their system design to be able to protect sensitive applications
such as mobile banking, payments, and eID services.

The TrustZone security architecture was motivated mainly by
the need for secure mobile services [5], when introduced in
2008 as part of an industry effort. TrustZone introduces the
notion of a normal world and a secure world. While the normal
world runs the Legacy OS (LOS) and user-level applications,
security-sensitive applications can be executed (partially or
entirely) within the secure world which represents a Trusted
Execution Environment (TEE) on top of the TrustZone kernel
and hardware.

Problems of TrustZone. Despite TrustZone’s implementa-
tion and wide-spread deployment, TrustZone-based TEEs are
mainly used by the vendors for own purposes, and hence
a flourishing landscape of secure mobile services is largely
missing even more than a decade after TrustZone was initially
released [17]. One root cause for the lack of progress in
TrustZone-based TEEs’ adoption is that each installed Trusted
App (TA) increases the potential for security-critical vulnera-
bilities, allowing attackers to exploit bugs and escalate privi-
leges, exfiltrate private data, or gain complete control over the
entire device. In practice, this means that bugs in TrustZone-
enabled applications expose a large number of devices to real-
world security threats, as continuously demonstrated by secu-
rity researchers across device families and hardware vendors
(e.g. in 2014 [15], [32], in 2015 [19], [47], in 2016 [20], [49],
and in 2017 [52], [44]). Google’s ProjectZero [45] recently
summarized the main flaws of the current design of TrustZone
as follows: it combines (i) weak isolation between TAs in the
TEE, with (ii) Trusted Computing Base (TCB) expansion, and
(iii) highly privileged access to the platform, making TrustZone
a high-value target for attackers. Thus, vendors often aim
to control and restrict access to the TEE. Thorough security
assessments are needed to build a trust relationship between
device vendor and app developer. Furthermore, deploying
TAs to a TEE produces a large management overhead [23].
For smaller developers, the emerging costs pose a significant
investment severely limiting the development of secure mo-
bile services in practice. Device vendors try to circumvent
these problems by offering some TEE functionalities, e.g. key
storage, over interfaces to normal-world apps. However, this
approach does not allow developers to protect own security-
sensitive code and data. Hence, the provided TEE services are
not sufficient to implement feature-rich secure mobile services.



Existing Security Architectures. A number of ARM-based
security architectures have been proposed previously [28],
[10], [18]. However, they rely on virtual memory for isolation,
using the same isolation mechanism proven insufficient for
isolating TAs within ARM TrustZone’s secure world [45].
Approaches that rely solely on femporal isolation — i.e.,
suspending the entire system to provide protection for TA exe-
cution — are not suitable for today’s multi-core platforms [38],
[51], since they effectively disable multitasking and parallel
execution for the entire platform which imposes severe restric-
tions that directly affect user experience.

Goals and Contributions. Our main goal is to tackle the
aforementioned problems and enable the full potential of TEEs
for third-party application developers without requiring any
hardware changes.

To this end, we present SANCTUARY, a novel security ar-
chitecture for Trusted Execution Environments (TEEs) based
on the latest ARM System-on-Chip (SoC) reference designs.
SANCTUARY inherently de-privileges TrustZone-enabled apps
by moving them from the secure-world TEE to an isolated
normal-world compartment, thereby reducing the code base in
the secure world. We call these security-sensitive apps, which
are comparable to SGX’s user-space enclaves, Sanctuary Apps
(SAs). SANCTUARY achieves SA isolation by dynamically
partitioning and re-allocating system resources: CPU cores
and physical memory are temporarily reserved for the isolated
compartments to execute SAs without suspending the rest of
the system. In particular, we leverage TrustZone’s Address-
Space Controller (TZASC) to ensure a hardware-enforced,
two-way isolation between SAs and all other system compo-
nents. This enables an SGX-like usage of TrustZone without
requiring any hardware modifications.

Building SANCTUARY comes with a number of interesting
challenges: first, the Legacy OS normally assumes full control
over all available CPUs. To support dynamic re-allocation of
cores we have to claim, initialize, and boot individual cores
dynamically at run time. Second, enforcing a strict separation
between normal world, SAs, and secure world necessitates
communication channels between them, e.g., to relay I/O
or shared data. Third, SANCTUARY must provide security
services, such as remote attestation and sealing of SAs (similar
to SGX), and provide secure ways for SAs to access them.
Finally, to offer tangible improvements in real-world scenarios,
SANCTUARY must provide adequate performance, e.g., in au-
thentication for mobile banking applications, without affecting
user experience. Our design of SANCTUARY tackles all of
these challenges to support SGX-like usage of TrustZone-
enabled applications.

To summarize, our main contributions are as follows:

e  We present the design of SANCTUARY, a novel se-
curity architecture building on existing TrustZone’s
hardware and software components while enabling
enclave-like usage in the form of de-privileged
normal-world execution environments that are com-
pletely isolated from the rest of the system.

e  Our proof-of-concept implementation of SANCTUARY
uses the HiKey 960 development board, and Linaro’s
open-source software OP-TEE on top of TrustZone.

e We analyze and discuss the security properties of
SANCTUARY in a strong adversary setting that in-
cludes malicious SAs.

e  We extensively evaluate SANCTUARY with respect to
its setup and communication overhead. Additionally,
we demonstrate real-world benefits of SANCTUARY
in a detailed one-time password and key-generation
use case for two-factor authentication, which is highly
relevant for many security-sensitive applications such
as mobile payment. Our results show that SANC-
TUARY supports low latency and does not affect
user experience, hence, offering practical performance
characteristics.

II. BACKGROUND

The core principle of TEEs is isolation of code and data to
protect their integrity and confidentiality.

TEEs have been developed by both, academic community
and industry. First, we present ARM TrustZone [5] which is
available on most ARM-based systems and which is the basis
for our novel security architecture SANCTUARY. Second, we
explain the TrustZone Address Space Controller (TZASC) that
enforces memory access control in TrustZone and plays a key
role for our hardware-based isolation in SANCTUARY.

We discuss TEE research proposals as well as other related
approaches in detail in Section VIII.

A. ARM TrustZone

TrustZone represents a set of security enhancements to proces-
sor designs and SoCs that are based on the ARM architecture.
TrustZone enhances the processor, memory (including caches),
and peripherals. A TrustZone-enabled processor can execute
instructions in four different privilege levels (Exception Lev-
els — ELO-EL3) and, additionally, two security modes at any
given time (cf., normal world and secure world in Figure 1).
To facilitate switching between normal and secure world, and
to provide a clean interface, EL3 (also called monitor mode)
runs the ARM Trusted Firmware (TF). On top of the Trusted
Firmware (TF), the secure and normal world both manage their
own address spaces using the remaining privilege levels for
separation: EL2 is optionally used for a hypervisor, EL1 for
the OS kernel, and ELO (lowest execution privilege) is used
for execution of application code.

The processor can switch from normal to secure world via
an instruction called the secure monitor call (smc). When an
smc instruction is invoked from normal world, the processor-
core performs a context switch to the secure world (via the
monitor mode) and freezes its normal-world execution. All
other CPU cores of a multi-core system can independently
remain in normal-world mode.

TrustZone can separate physical memory into two partitions,
with one partition being exclusively accessible by the secure
world. This isolation is enforced by the memory controller
(TZASC), which is discussed in Section II-B. While the normal
world cannot access memory assigned to the secure world, the
secure world can access normal-world memory.

A device running ARM TrustZone boots up in the secure
world. After the secure world finished its initial setup by
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Figure 1: TrustZone software and hardware components. Soft-
ware can be executed in normal world or in secure world.
Isolation between these two worlds is enforced by the memory
controller (TZASC) that checks for each memory access which
world it originates from.

booting the Trusted OS (TOS), it switches to the normal
world and boots the LOS. Most TrustZone-enabled devices
are configured to use secure boot, i.e., the boot loader cryp-
tographically checks the TOS prior to execution [5]. In fact,
many vendors lock their devices against end-user modification
via secure boot, to ensure integrity of the secure world. This
allows them to make the secure world part of their TCB.

B. TrustZone Address Space Controller

With TrustZone, secure-world memory is isolated from the
untrusted normal-world memory through physical memory
partitioning. This is enforced in hardware by the TrustZone
Address Space Controller (TZASC) which resides between
the system bus and the memory chip (see Figure 1). It
supports multiple memory regions and access-control settings
based on several bus transaction characteristics. Originally,
this only included two types of memory accesses: non-secure
access (NS =1), or secure access (NS =0). A CPU core
in secure mode can perform accesses of the type secure
and non-secure, whereas CPU cores in normal mode can
only perform non-secure accesses. The first TZASC reference
implementation from ARM, the TZC-380, was published in
2010 [6]. Its successor, the TZC-400 [8], was introduced 2013
and can utilize additional characteristics of a bus transaction
to separate the protected memory regions — this feature is
called identity-based filtering. Thus, in current ARM reference
designs, every device that can act as a bus master (e.g.,
CPU, GPU, DMA controller) is assigned a bus-master ID in
hardware, which is appended to its memory bus transactions.
This can be used to assign memory regions to specific bus
masters for non-secure accesses. ARM advertises the identity-
based filtering feature in context of their TrustZone Media
Protection Architecture (TZMP) [4], which is used for media
protection by exclusively assigning memory, e.g. the frame
buffer, to the GPU.

III. ADVERSARY MODEL AND REQUIREMENTS
A. Adversary Model

Our threat model adheres to that of TrustZone and makes the
same underlying assumptions [5]. In particular, the attacker can
corrupt all normal-world software, including all privilege levels
up to an optional hypervisor (EL2), via remote or local soft-
ware attacks. Additionally, an adversary can conduct passive
physical attacks. However, the adversary cannot compromise
the secure-world software and the monitor mode.

Invasive physical attacks that tamper with hardware, e.g., to
inject faults at run time are out of scope. Similar to Trust-
Zone, we do not consider Denial-of-Service (DoS) attacks,i.e.,
SANCTUARY does not provide availability guarantees.

Our detailed standard assumptions are derived from the related
work [22], [10], [9], [12], [16], [28]:

e Applications in normal world are considered un-
trusted.

e The Legacy OS (LOS) in the normal world is un-
trusted.

e Isolation between different privilege levels is enforced
by hardware through virtual memory.

e  All existing architectural defenses, such as Execute
Never (XN), Unprivileged Execute Never (UXN),
Privileged Execute Never (PXN), and Privileged Ac-
cess Never (PAN) are deployed and active.

e  Secure and normal world are isolated by the TrustZone
hardware extensions [5].

e  Software in the secure world, including the boot loader
and EL3 firmware (monitor mode), is trusted.

In this setting, SANCTUARY can be used to minimize the
amount of software required in the secure world as it allows
to outsource all Trusted Apps (TAs) to Sanctuary Apps (SAs)
which execute in isolated compartments in the normal world.

B. Requirements Analysis

To enable practical and secure Sanctuary Apps (SAs) on ARM
TrustZone-based platforms, a number of requirements must
be fulfilled. We show that SANCTUARY fulfills these security
requirements in Section VI, and demonstrate that SANCTUARY
meets the functional requirements in Section VII.

1) Code and data integrity. The integrity of the code
and data of an SA must be preserved. This can be
achieved by (i) isolation during SA execution and
(i1) attestation of the SA code when loaded into the
isolated compartment.

2) Data confidentiality. Confidentiality of data pro-
cessed in an SA must be preserved. This can be
achieved by (i) a secure channel for provisioning
the data, (ii) spatial isolation during execution, and
(iii) temporal isolation to prevent that sensitive in-
formation becomes accessible after SA execution has
finished.

3) Secure channel to secure world. An SA needs a
secure channel to utilize security services provided by



the secure world. This can be realized by an exclusive
shared memory, i.e., accessible only by the SA and
the secure world but not by untrusted normal-world
software.

4)  Protection from malicious SAs. To enable unre-
stricted usage models for SAs, malicious SAs must
be tolerated. Protecting the platform from malicious
SAs can be achieved by limiting the access privileges
of SAs to a minimum (i.e., ELO) and preventing them
from accessing normal-world memory.

5) Hardware-enforced resource partitioning. To en-
sure strict isolation spatial and temporal isolation are
needed.

6) Minimal software changes. Leveraging existing in-
terfaces of the secure-world OS and the normal-world
OS prevents extensive modification of the software
stack.

7) Positive user experience. Assigning a single CPU
core for limited time to SA execution leads to low
impact on the overall system performance for most
usage scenarios on todays commonly available multi-
core architectures. Latency can be kept low by min-
imizing the SA run-time environment.

IV. SANCTUARY DESIGN

The goal of the SANCTUARY architecture is to enable secure
and widespread use of Trusted Execution Environments (TEEs)
(e.g., through third-party developers) on ARM based devices.
SANCTUARY allows the creation of multiple parallel isolated
compartments on ARM devices in the normal world which are
strictly isolated from the LOS and Legacy Apps (LAs). The
isolated compartments, which we call SANCTUARY Instances,
run security-sensitive apps called Sanctuary Apps (SAs). Every
SANCTUARY Instance executes only one SA at a time. Since
all SANCTUARY instances are independent and separated from
each other, also the SAs become strongly isolated. Addition-
ally, all SANCTUARY instances are isolated from the existing
TrustZone secure world.

Spatial isolation of a SANCTUARY Instance is achieved by
(i) partitioning the physical memory using the TZC-400 mem-
ory controller, (ii) dedicating a CPU core to the SANCTU-
ARY Instance, and (iii) excluding the SANCTUARY Instance’s
memory from shared caches. Temporal isolation is ensured
by launching the SANCTUARY CPU core from a trustworthy
state (ARM Trusted Firmware (TF)) and erasing all sensitive
information from memory and caches before it exits.

We designed SANCTUARY in such a way that the required
changes to the existing software ecosystem are minimal: in
fact, SANCTUARY can extend existing TEE architectures with-
out affecting the functionality of already deployed software in
both the normal world and the secure world.

Figure 2 shows an abstract view of SANCTUARY’s design.
In the following, we describe SANCTUARY’s isolation mech-
anism, its initialization, and its security services.

A. SANCTUARY Isolation

In addition to the existing security boundary between Trust-
Zone’s secure world and normal world, SANCTUARY enables
isolation within the normal world. A dedicated memory region

¢ Normal World k- Secure World —|

’ Legacy App (LA) ‘ ’ Legacy App (LA) ‘ Sanctuary App (SA) |:|

’ Legacy OS (LOS) ‘

Sanctuary Lib (SL) ’ ‘

]

Normal World RAM

Figure 2: SANCTUARY design overview. Within the normal
world, one core is reserved for SANCTUARY. The TCB,
marked in gray, includes the hardware and the secure-world
software that is involved in the initialization of an SA.

is made exclusively accessible by one CPU core by leveraging
ARM’s new memory access controller TZC-400. Details on
how the controller needs to be configured to achieve this
physical memory partitioning are given in Section V-E. As
a result, all software executing on that CPU core is protected
from untrusted software executing on the remaining CPU cores
of the system. In Figure 2, CPU core 2 running a SANCTUARY
Instance is configured to have exclusive access to the SANCTU-
ARY RAM partition, as depicted by the arrows. The untrusted
normal-world software — executing on CPU cores 0 and 1 — can
only access the normal world memory. Furthermore, the CPU
core assigned to the SANCTUARY Instance is not allowed to
access normal-world memory, achieving a two-way isolation
which allows SANCTUARY to tolerate potentially malicious
SAs. However, SANCTUARY does support shared memory
between normal world and SA for efficient communication
as well as shared memory between secure world and SA to
establish a secure channel. This enables scenarios like secure
UI over TAs. SANCTUARY’s handling of shared memory is
explained in detail in Section V-E.

The secure-world software is trusted and therefore allowed to
access all memory, including normal-world memory, SANC-
TUARY memory, and secure-world memory (black arrows in
Figure 2).

Multi-SA isolation: SANCTUARY instances are either exe-
cuted consecutively on the same CPU core, or execute on sepa-
rate, mutually isolated cores with dedicated memory partitions.
After SA execution finished, the system returns to its original
state (see Section IV-B) and the next SANCTUARY instance
can be launched. This ensures strong isolation between SAs:
all SAs are executed completely independently of each other.

Privilege isolation: SAs are limited to execute in user-mode.
The privileged mode of a CPU core used by SANCTUARY is
occupied by the Sanctuary Library (SL). Important to note is
that the SL is not part of the TCB, but instead is only needed to
provide two main functionalities: (i) initializing an execution
environment for the SA, and (ii) providing service interfaces
to the SA, e.g., for accessing SANCTUARY’’s security services.

B. SANCTUARY Initialization

SANCTUARY'’s isolation does protect the integrity and confi-
dentiality of an SA while it is executing on the dedicated CPU



core. However, since the SA code is loaded by the untrusted
LOS, its integrity must be verified. The initialization process of
SANCTUARY provides the necessary verification mechanism.

For better resource utilization, SANCTUARY does not dedicate
one CPU core for executing SAs permanently. If a new
SANCTUARY instance is created, one CPU core is shut down
and removed from the resources available to the LOS executing
in the normal world. All remaining CPU cores stay under
control of the LOS. Hence, the LOS can continue execution
of normal-world tasks preserving the system’s availability, i.e.,
the user does not notice negative effects from the creation of
a SANCTUARY Instance and the execution of an SA.

Next, the code to be executed on the SANCTUARY core, i.€.,
SL and SA, is loaded into a separate memory section. After
the memory isolation has been activated, the loaded code is
validated using digital signatures. The signature for the SL is
provided by the device vendor, whereas the signature for the
SA is provided by the SA developer. The detailed verification
process is described in Section V. After a successful verifica-
tion, the dedicated CPU core is restarted. The SANCTUARY
core starts from a defined initial state, boots the SL and
executes the SA.

After an SA has finished, the dedicated core removes all
information from the memory, invalidates all cached data, and
shuts down. The isolation for the wiped memory is deactivated,
making the memory available to the LOS again. The CPU core
is restarted and reassigned to the LOS.

C. SANCTUARY Security Services

The initial content of an SA is loaded from unprotected
memory, hence, it can be manipulated and cannot contain
confidential data. Therefore, SANCTUARY needs to provide
a mechanism to provision confidential data to an SA over a
secure channel affer it has been created. However, to ensure
that secret data is not sent to a malicious (or maliciously
modified) SA, the integrity and authenticity of an SA needs to
be verified before provisioning secret data. To enable secure
provisioning of secret data to an SA and secure storage of
secret data, SANCTUARY provides a set of security services
implemented as TAs supplied by the device vendor (called
vendor TAs throughout the remaining paper). These TAs run
within the secure-world Trusted OS (TOS) (see Figure 2).

Remote attestation allows an SA to establish a secure channel
to an external entity. Through the platform identity feature of
TrustZone, the integrity measurement of SANCTUARY can be
authentically reported to a third party. Linking the authentic
integrity report with the establishment of a secure channel to
the SA creates a secure and authenticated channel through
which confidential data can be provisioned.

Sealing allows SAs to store sensitive data such that only
instances of the originating SA can accesses the data. SANC-
TUARY provides each SA with a unique encryption key that
is derived from the hash value computed over the SA binary.
The key can be used to encrypt data, e.g., before writing it to
persistent storage.

Further security services, like monotonic counters, secure
timers, secure randomness, etc. can be provided by TrustZone’s
secure world, as well. Similar security services are commonly

available in commercial TEE implementations, for instance
Intel SGX [31], [39], [25], [2] and can be implemented
similarly in SANCTUARY. In addition, secure user interfaces
for SAs can easily be provided by TAs, as secure I/O is already
provided by TrustZone.

D. SANCTUARY Software Model

With SANCTUARY, every application developer is able to
utilize TEE functionalities, i.e., every developer can deploy
an SA. Each SA belongs to an untrusted LA. This allows
straightforward deployment through existing app markets: SAs
come as part of LAs using the standard installation routine.

Additionally, by coupling each SA with an LA, the functional-
ities of the SL can be minimized. In particular, the LA acts as
a proxy and allows the SA to make use of all functionalities
provided by the LOS, like file system access. The LA and
SA can efficiently exchange information and interact with
each other via shared memory. When an SA wants to provide
sensitive data to the LA, e.g., for persistent storage, the SA
can use the sealing service (see Section IV-C) to encrypt the
data before sending it to the LA.

How to partition an application into security-critical and un-
critical parts is an orthogonal problem.

V. IMPLEMENTATION

System Setup. We implemented SANCTUARY on a HiKey
960 development board, as it provides a recent ARMv8 SoC
design that is commonly used on modern mobile devices.
Moreover, the HiKey 960 is one of the few development
boards which gives developers the possibility to deploy own
software in the secure world. The HiKey 960 is based on an
octa-core ARM big.LITTLE processor architecture with four
ARM Cortex-A73 and four Cortex-A53 cores.

SANCTUARY Software Components. An overview of our
SANCTUARY implementation is shown in Figure 3. For
the secure-world Trusted OS (TOS) we use OP-TEE [1]
which currently is the most developed open-source TOS. The
SANCTUARY design is not limited to a particular TOS and
can also be implemented using a TOS which provides a less
rich feature set. OP-TEE comes bundled with a recent Linux
distribution which we use as the normal-world Legacy OS
(LOS). We implement a custom kernel module (KM) as part of
the LOS which manages the SANCTUARY Instances from the
normal world. In OP-TEE, we implement two vendor Trusted
Apps (TAs), the Proxy TA and the Sealing TA. They provide
the basic security services for SANCTUARY, namely remote
attestation and sealing. A SANCTUARY Instance consists
of the Sanctuary Library (SL) and a SA. In our prototype
implementation, we use the Zircon micro kernel [24] as the
basis for our SL. Besides adding two vendor TAs, we only
make small one-time changes to the Trusted Computing Base
(TCB), i.e. OP-TEE and the ARM TF. The custom Static
Trusted App (STA) which we add to OP-TEE manages the
SANCTUARY Instances from the secure world. The Lines of
Code (LOC) added to the TCB add up to 1313. The two
vendor TAs make up more than half of the added lines. In
total however, the TCB gets reduced because all TAs from
third-party developers are removed from the secure world.
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Figure 3: Implementation overview of SANCTUARY.

Since no source code of third-party TAs used on current
devices is publicly available, we refer to Huang et al. [29] for
average TA sizes. They implemented a mobile payment and
chat TA consisting of 900 LOC and 200 LOC, respectively,
which can be seen as a lower limit for implementing a useful
TA. This shows that removing all third-party TAs from the
secure world outweighs additions made to OP-TEE and the
Trusted Firmware (TF) by an order of magnitude in terms
of LOC. The number of added or modified LOC for all
components are shown in Table I.

SANCTUARY Hardware Components. In SANCTUARY, we
utilize the fact that unique master IDs can be assigned to every
CPU core and therefore also to every memory transaction
performed by a core. These transaction IDs can then be used
to filter memory accesses on a hardware level. As such,
memory regions can be made core-exclusive. The filtering
and permission enforcement is performed by the TZC-400
memory controller. The TZC-400 allows or denies access to
memory regions depending on two properties: (i) the type of
the access transaction performed by the core running the code
(secure or non-secure), and (ii) the bus master ID of the core
which executes the SANCTUARY Instance. Enforced access
permissions are shown in Figure 3 in the Memory Permissions
table, and are described in detail in Section V-E.

SANCTUARY Usage. The high-level SANCTUARY life cycle
works as follows: when a LA wants to execute sensitive code
in form of an SA inside a SANCTUARY Instance, the LA
requests execution of its bundled SA from the KM (1). The KM
initiates the setup of the SANCTUARY Instance by loading the
SANCTUARY binaries (SL and SA). Next, the KM removes one
CPU core from the LOS and hands over control to the STA (2)
to perform all security-related steps, such as the verification of
the SA (3). After successfully setting up of the SANCTUARY

Component World Added LOC  Modified LOC
Kernel Module normal 713 -
Zircon Micro Kernel normal 166 45
OP-TEE secure 56 2
Static Trusted App secure 472 -
ARM Trusted Firmware  secure 92 -
Proxy TA secure 287 -
Sealing TA secure 406 -

Table I: Modifications for Sanctuary Components.

Instance, the KM triggers the SANCTUARY boot (4). When the
boot process is finished the SA can execute the sensitive code,
and communicate with its LA as well as with the TAs in the
secure world (5).

In the following, we explain each component of SANCTUARY
and its life cycle in detail.

A. Legacy OS

With SANCTUARY, the resource management remains in the
LOS. We implement the required functionalities in a custom
loadable kernel module (KM). The KM manages all resources
needed for a SANCTUARY Instance. It is able to remove a
core from the LOS and also to hand the core back to the LOS
after a SANCTUARY Instance finished execution. Since we use
Linux as the LOS in our prototype, we utilize the Linux CPU
hotplug mechanism [11] for that purpose. Furthermore, the
KM dynamically allocates memory for SANCTUARY Instances
and their associated communication channels from SA to LA
and from SA to TAs. Before a SANCTUARY Instance can be



started, the KM has to load the SANCTUARY binaries (SL
and SA) into RAM which will be exclusively assigned to the
SANCTUARY core afterwards. The OP-TEE driver facilitates
the communication between LOS and OP-TEE.

B. Security Services

We keep the traditional structure of the secure world: Trusted
Apps run on SELO (secure-world user space), while OP-TEE
runs on SEL1 (secure-world kernel space). The TAs offer rele-
vant security services. In our proof-of-concept implementation,
we implemented a Proxy TA and a Sealing TA. The Proxy TA
is used to establish a secure communication channel from an
SA to remote servers. All data sent through the Proxy TA is
authenticated with the platform key and bound to the identity
of sender SA, i.e., the Proxy TA provides remote attestation.
The Sealing TA provides sealing functionality which allows to
bind data to a specific SA and to store it permanently on the
device. For each SA an individual key is used.

A Static Trusted App (STA) represents a kernel module in OP-
TEE. In our prototype, the STA verifies the SL using a pre-
configured signature, sets up the SANCTUARY Instances, and
tears them down. Moreover, the STA provides functionalities to
TAs which can be used to, e.g., find out which SA is currently
running in a SANCTUARY Instance, or to compute a hash over
an SA binary.

All aforementioned security services rely on the Trusted
Firmware (TF) as a trust anchor which is responsible for con-
text switches between normal and secure world and low-level
platform services. In our prototype, the TF was extended to
verify several security-relevant steps during the SANCTUARY
life cycle which is explained in detail in Section V-E.

C. Sanctuary

We implemented isolated code execution in SANCTUARY
by running SANCTUARY Instances in the normal world on
dedicated CPU cores. This isolates SANCTUARY Instances
from untrusted LOS and TAs running on the remaining cores.
A SANCTUARY Instance consists of two parts: the SL and an
SA. The SL provides basic process and memory management
functionalities for running an SA. In our implementation, we
chose the Zircon micro kernel [24] as SL due to its small
size (approx. 1MB) and versatility. After Zircon boots, it
prepares the environment for the SA by configuring the CPU
core, setting up the memory mappings and a basic execution
environment. Then, the SA is started as a normal-world user
process by the Zircon micro kernel. During execution, an SA
can communicate with its corresponding LA and also with TAs
in the secure world to utilize their provided security services
(e.g., sealing or remote attestation). To achieve this, we extend
the Zircon micro kernel with new system calls.

As required by SANCTUARY, the STA prevents simultaneous
execution of SAs in one SANCTUARY Instance because this
could lead to sensitive information leakage between SAs.

D. Memory Isolation Unit

In addition to isolating SANCTUARY execution through ded-
icated CPU cores, we protect SANCTUARY memory against
normal-world accesses from other cores by leveraging the
ARM TrustZone Address Space Controller (TZASC). As de-
scribed in Section II, its recent implementation, the ARM

TZC-400, allows setting memory-access permissions based
on bus master IDs. Traditionally on ARMvS8 architectures,
all cores already have uniquely-assigned multi-processor-IDs
(MPID register [3]). For all transactions sent to the system bus,
multi-processor IDs are then translated to bus master IDs by a
dedicated labeling component. Currently, as on the HiKey960
development board, transactions from all cores are labeled with
the same bus master ID. For Sanctuary, only the mapping
policy needs to be changed such that the bus transactions of
cores are labeled with unique bus master IDs. No hardware
modifications have to be made to the processor-core. We
implemented the modified labeling ID-mapping policy using
the ARM Fast Models virtualization tools. From software,
we can now configure the TZC-400 such that memory re-
gions can be exclusively assigned to single cores by filtering
the bus transactions for the buster master ID labels. Details
on how the TZC-400 needs to be configured are given in
Section V-E.The performance overhead for configuring the
TZC-400 is negligible compared to the rest of the Sanctuary
startup, it only consists of a few register writes. It is important
to mention that the assignment of bus master ID labels to
transactions is already performed on all transactions by default.
We only enforce the labeling of unique IDs. This means on
the hardware level, SANCTUARY produces zero performance
overhead. Therefore, evaluation on a Hikey 960 board gives
realistic performance measurements.

If not enough unused bus master IDs are available to

distinguish all core transactions, only a subset of the cores
can run Sanctuary instances. This does not limit the general
applicability of Sanctuary as long as at least two free bus
master IDs are present.
On systems with the TZC-400, no additional hardware com-
ponents are needed to implement SANCTUARY. Some device
vendors already license the TZASC IP from ARM since it pro-
vides an industry-ready solution (e.g. Samsung on the Exynos
chips [13]). Unfortunately, public information regarding the
deployment of the TZC-400 on current platforms is limited.

E. Execution Life Cycle

In our prototype, a typical SANCTUARY life cycle consists
of four phases: (a) Sanctuary Setup, (b) Sanctuary Boot, (c)
SA Execution, and (d) Sanctuary Teardown, which we will
explain in the following. In our prototype, we assume that a
signature of the SL binary is already stored in the secure world.
However, integrity and authenticity of the SL can generally
also be established through certificates. Remote attestation of
the SA can be achieved by leveraging the Proxy TA. However,
alternative schemes, like Intel EPID, could be implemented as
well. The implementation details of such a scheme are out
of scope for this paper, thus, we refer the reader to Intel’s
documentation for a possible outline [36].

Sanctuary Setup. The SANCTUARY setup phase is performed
by the KM in the normal world and the STA in the secure
world. The KM manages system resources, whereas the STA
performs all security relevant steps. The setup of a SANCTU-
ARY Instance is triggered by the LA that requests execution of
its sensitive code in the corresponding SA. Subsequently, the
SL and SA binaries are loaded from the file system and handed
over to the KM using procfs. The SL binary can also be loaded
only once during system boot and remain in memory until
the system is shut down. We implemented the binary loading
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Figure 4: Memory layout after setting up a SANCTUARY. As
before, Core 0 is responsible for initializing and managing the
Sanctuary App, which runs on Core 1 (omitted for clarity).

in the normal world since OP-TEE cannot directly access
the file system. The KM reserves additional memory for the
SANCTUARY Instance which is used for memory allocations
during SA run time. We call this memory area Sanctuary Data.
Additional memory is reserved for the SANCTUARY Instance’s
communication channels. The communication between the LA
and its SA is performed over non-secure (i.e. accessible by
untrusted software) shared memory. In contrast, secure shared
memory is used for communication between SA and TAs. The
final memory layout after the setup is depicted in Figure 4.

After loading the binaries, the KM selects a CPU core to run
the SANCTUARY Instance. The KM always selects the CPU
core with the least load. Next, the Linux hotplug mechanism
is used to shut down the selected core. If successful, the
KM calls the STA and provides the ID of the selected core
as an argument. This call traps into monitor mode where
the TF checks that the selected core is indeed shut down
before performing a world switch and handing over control
to the STA. The STA then locks the SANCTUARY memory by
configuring the TZC-400.

We assume that unique IDs 0-7 are assigned in hardware to
8 CPU cores, and that the selected SANCTUARY core has the
ID 7. Moreover, for the sake of simplicity, we assume that
no other bus master than the CPU needs access to memory.
Then, one of the up to 9 memory regions the TZC-400
can separate is configured to exactly cover the contiguous
memory area in which the SL and SA binaries, the Sanctuary
Data and the secure shared memory resides. We assume
that region 1 is used for that purpose. The lowest address
covered by region 1 is set using the REGION_BASE_LOW_]
and REGION_BASE_HIGH_1 registers. The highest address
covered is set using the REGION_TOP_LOW_I and RE-
GION_TOP_HIGH_1 registers. Subsequently, the configured
memory region 1 is solely assigned to the SANCTUARY core
using the REGION_ID_ACCESS_I register. The bit assign-
ments of the region ID access register is shown in Figure 5.
The upper 16 bits of the register define the non-secure write
access permissions (nsaid_wr_en), the lower 16 bits the non-

31 16 15 0

nsaid_wr_en

nsaid_rd_en

Bit 16 assoc. with ID =0 Bit 0 assoc. with ID =0

Bit 31 assoc. with ID =15 Bit 15 assoc. with ID =15

Figure 5: Region ID Access Register.

secure read access permissions (nsaid_rd_en). Every bit is
associated with one bus master ID. This means, if e.g. bit
0 and bit 16 of REGION_ID_ACCESS 1 are set to 1 and
all other bits to 0, only the bus master with the associated
ID 0 is allowed to perform write or read access on region
1. In our scenario, the SANCTUARY memory is assigned
to the SANCTUARY core by setting REGION_ID_ACCESS_1
to the value 0x800080. Then, non-secure access is only
allowed for the core with ID 7, which is the SANCTUARY
core in our example. For the memory regions that cover all
of the normal-world memory except the non-secure shared
memory, the bits are set to 0x7F007F in the corresponding
REGION_ID_ACCESS registers. Thus, permission to access
the normal-world memory is granted to all cores except the
SANCTUARY core. This is crucial for implementing two-way
isolation. The region covering the non-secure shared memory
is configured with the value OxFFOOFF since the cores
running the normal world and also the SANCTUARY core need
access to it. As a last step, the regions covering the secure-
world memory are configured with the bit value 0x0 such that
no core can perform a non-secure access on the memory.

The resulting memory permissions are listed in Figure 3 for
the different memory regions, core IDs, and execution modes.
In the following verification step, the STA verifies the SL
binary using the stored digital signature. For this purpose, the
STA uses the RSASSA-PKCS1-vl_5 scheme together with
SHA-256 which are provided by OP-TEE. After successful
verification, the ARM TF is informed that the SANCTUARY is
locked, verified, and ready to be booted.

Sanctuary Boot. After successful SANCTUARY setup, the KM
calls the TF to boot the SANCTUARY core. Before starting
the core, the TF checks that the SANCTUARY Instance was
correctly locked and verified. After receiving the boot signal,
the SANCTUARY core first executes the TF in EL3. During
initialization of the TF, exception handlers needed for calling
the TF from the SL are set up. The TF needs to be callable from
the SL to shut the SANCTUARY core down in the teardown
phase. After TF initialization, the core switches to EL1 and
jumps to the entry point of the SL. We slightly modified the
Zircon boot sequence to prevent information leakage from the
SANCTUARY Instance We slightly modified the Zircon boot
sequence to prevent information leakage from the SANCTU-
ARY Instance by excluding all SANCTUARY memory from
being cached in the shared L2 cache. Moreover, the external
interrupts are configured using the core’s CPU interface of the
General Interrupt Controller (GIC) which cannot be accessed
by other cores. This blocks external interrupts triggered by
other cores, while allowing to receive interrupts requested by
the SANCTUARY core, e.g. timer interrupts.

SA execution. While executing sensitive code, the SA may
establish communication channels. The SA is able to commu-



nicate with its corresponding LA over the non-secure shared
memory and with vendor TAs over the secure shared memory
through OP-TEE. All data sent over the non-secure shared
memory is accessible to the normal world, and hence, it is not
part of the SANCTUARY memory partition. Communication
is facilitated by the KM of the LOS in the normal world
and by custom Zircon system calls on the SANCTUARY side.
When the SA requires security services from vendor TAs, it
communicates with the TA over the secure shared memory
channel. On the secure-world side, this communication is
facilitated by the STA. Since all data shared between the SA
and a TA is sensitive, this data is solely exchanged over secure
shared memory which is part of the protected SANCTUARY
memory region assigned to the SANCTUARY core.

SANCTUARY allows two different implementation variants for
SA to TA communication: (i) the OP-TEE driver is included in
Zircon and the world switch to the secure world is performed
by the SANCTUARY core itself, and (ii) the connection to
the secure world is triggered by the SA’s corresponding LA.
This means an SA first has to communicate with the normal
world before it can communicate with a TA. However, the
data exchanged between TA and SA remains unaccessible to
the LA. We implement the second variant in our prototype
since it requires less modifications to the Zircon kernel.

Sanctuary Teardown. The three-step teardown of the SANC-
TUARY is triggered by the LA. The first step is to shut down
the SANCTUARY core when the LA signals to the SA that
its services are not needed anymore. Subsequently, the SA
saves its state (if needed) using e.g. the sealing services. Next,
internal clean up actions bring the Zircon kernel back in its
original state and invalidate the L1 cache to prevent data
leakage. Then, the SL signals the STA that it successfully
performed the clean up action. Subsequently, the TF is used
to shut down the core. The second step is to unlock the
SANCTUARY memory. Analogously to the locking in the setup
phase this is performed by the STA. Again, the modified TF
checks that the SANCTUARY core is indeed shut down before
performing the world switch and handing control over to the
STA. The STA checks if the SA was able to perform its clean
up action. Then, the secure shared memory and Sanctuary Data
memory are zeroed to prevent leakage of SA data. Finally,
the configuration of the TZC-400 is reverted such that the
SANCTUARY memory region and the SANCTUARY core are
freed. In the third step of the teardown process, the KM uses
the Linux hotplug mechanism to reclaim the available core.

VI. SECURITY ANALYSIS

The goal of SANCTUARY is to protect against a strong attacker,
as described by our adversary model (see Section III-A). We
also derived the requirements for our design of SANCTUARY
in Section III-B. For a systematic analysis of SANCTUARY,
we will now look at all possible attack vectors that are
available to an adversary in our threat model. In particular,
we can see from Figure 2 that attacks can originate from three
different locations on the platform: (i) the normal-world user
space, (ii) the normal-world OS, and (iii) a malicious SA.
In all three cases, the goal of the attacker is to compromise
the integrity or data confidentiality of a victim SA or gain
control over the LOS. This can happen at any point in time
during the life-cycle of an SA (i.e., setup, boot, execution,

or tear-down), and hence, we will discuss each case in the
following. In particular, malicious code in the normal world
can aim at either manipulating the SL. and SA binaries before
they are loaded (Section VI-A), overcome the isolation of
SANCTUARY (Section VI-B), manipulate persistently stored
data of an SA (Section VI-C), or extract information from
an SA via the cache (Section VI-D). We discuss the case of
malicious SAs in Section VI-E. As we will show, an adversary
cannot compromise the security of SANCTUARY in any of
those cases, and does not gain any advantage from executing
code inside an SA over regular normal-world execution.

A. Binary Integrity

SL’s and SAs’s binaries are saved unencrypted in normal-
world memory. Nevertheless, SANCTUARY ensures integrity
of these binaries by using local attestation and by providing
functionalities for remote attestation, respectively. SANCTU-
ARY stores a signature of the SL in the secure-world memory.
Before a SANCTUARY Instance is started, the STA performs a
local attestation by measuring the SL binary and by verifying
it against the stored signature. If verification fails, SANC-
TUARY’s setup is aborted and the modified code therefore
never executed. Developers can verify an SA’s integrity using
remote attestation. Whenever an SA connects to a server, TEE
functionalities are used to establish a secure connection to the
server. Moreover, the STA creates a signature of the SA which
is also send to the server. Thus, the server can check if the SA
is in a valid state before provisioning sensitive data to it.
These properties, together with the properties in Section VI-B,
fulfill security requirement 1: Code and data integrity.

B. Code and Data Isolation

The SANCTUARY design provides strong hardware-enforced
isolation of code and data. The SANCTUARY memory isolation
is enforced by TrustZone before the integrity of the SL is
verified. Once the SANCTUARY memory is locked, no core
except the selected SANCTUARY core can perform non-secure
reads or writes on the SANCTUARY memory region. The
selected SANCTUARY core always boots in the TF and then
jumps to an address in the SL which is set as a constant in the
TF. During the boot process of the SANCTUARY Instance, the
SL ensures that all interrupts from the system-wide interrupt
controller, triggered from other cores than the SANCTUARY
core, are disabled. Only a core itself can configure its interface
to the GIC. Therefore, the execution of a SANCTUARY Instance
cannot be interrupted by another core. Moreover, only the
SANCTUARY core can shut itself down. During runtime, the
SANCTUARY design makes sure that sensitive data is only
passed to and received from a locked SANCTUARY Instance.
When performing a world switch to the secure world, the TF
verifies that the call was issued from the SANCTUARY core.
Access from all other cores to the trusted functionalities in
the TEE will be blocked. If the call was issued from the
SANCTUARY core, the vendor TAs in the TEE use the STA
to check if the SANCTUARY Instance is in correct state before
reading or writing any data to the memory shared between
secure world and SA. SANCTUARY also prevents the injection
of data into the free SANCTUARY memory space before a
SANCTUARY Instance is locked and the extraction of data
after a SANCTUARY Instance is unlocked. The secure-world



STA overwrites SANCTUARY memory not reserved for either
SL or SA with a fixed value after a SANCTUARY Instance is
locked and before it is unlocked, including the secure shared
memory. Besides, the SL is reset to its original state during
shutdown, hence, it will not contain last executed SA’s data.
These properties fulfill security requirement 1: Code and
data integrity in combination with the properties in Sec-
tion VI-A. Additionally, in combination with the properties
in Section VI-C, security requirement 2: Data confidentiality
is fulfilled. Moreover, SANCTUARY’s temporal and spatial
hardware-enforced isolation fulfills security requirement 5:
Hardware-enforced resource partitioning (in combination with
the properties in Section VI-D). Finally, the exclusive shared
memory between a SANCTUARY Instance and the secure world
fulfills security requirement 3: Secure channel to secure world.

C. Secure Storage

SANCTUARY allows the secure and persistent storage of SA
data using the STA and security services from the secure
world. SANCTUARY ensures that the data is sealed to a SA
entity using keys that are derived from a hash value computed
over the SA binary. As a result, only an unmodified SA can
successfully decrypt its own data. For the persistent storage of
the sealed data, a SANCTUARY Instance uses the functionalities
provided by the TEE. Depending on the TEE implementation,
this might also allow the SA to bind its data to the device or to
save it in roll-back protected memory. These properties fulfill
security requirement 2: Data confidentiality (in combination
with the properties from Section VI-B).

D. Cache Attack Resilience

As shown by recent Spectre [33] attacks, cache-based attacks
can be very powerful. An attacker could, for instance, try to
mount a software side-channel attack to extract data from
cache lines used by a SANCTUARY Instance. Thus, these
attacks are considered in SANCTUARY’s design and implemen-
tation. As usual on ARMvS platforms, we assume presence of
first-level cache (LL1) and second level cache (L2). On these
platforms, first-level caches (L1) are core-exclusive, while
the L2 cache is shared. This configuration allows two attack
scenarios: direct attacks, and side-channel attacks.

Direct Attacks. A privileged attacker in the normal world
could map the SANCTUARY memory region into an attacker-
controlled memory space. This could potentially give an at-
tacker direct access to the cached data of a SANCTUARY
Instance, even without the permission to read the main memory
for this physical address. For the L1 cache, we prevent this
by running a SANCTUARY Instance on its own core and by
invalidating the L1 cache before a SANCTUARY Instance is
shutdown and unlocked. For the L2 cache, there are two
ways to prevent direct attacks. One way is to configure the
SANCTUARY memory region as outer non-cacheable,
whereas the outer domain is represented by all caches outside
of a particular CPU core. As a result, the SANCTUARY memory
is never cached in the shared L2 cache. In Section VII, we
show that this still gives practical performance. Alternatively,
changes to the caches could be made on the hardware level to
extend the enforcement of identity-based filtering to the L2.
This prevents an attacker from directly accessing cache lines
uses by a SANCTUARY Instance. In both cases, an attacker
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could also not inject own malicious data into the L2 cache. On
ARMVS, data caches are normally either Physically Indexed,
Physically Tagged (PIPT) or Virtually Indexed, Physically
Tagged (VIPT) [3]. This means cache lines are tagged using
physical addresses in both configurations. Since the attacker
cannot write to or read from the physical addresses of the
SANCTUARY memory, the attacker can also not fill the cache
for those addresses.

Side-Channel Attacks. An unprivileged attacker could
mount side-channel attacks like Prime+Probe [43] or
Flush+Reload [53] to leak data from L1 or L2 caches. For
the L1 cache, this is prevented by running a SANCTUARY
Instance on its own core, i.e. the attacker cannot measure
accesses to the SANCTUARY core’s L1 cache while it is run-
ning. To prevent measurements after shutdown, a SANCTUARY
Instance invalidates its L1 cache before it is shut down and
unlocked. For the L2 cache, implementing the identity-based
filtering does not solve the cache-side channel issue. Thus,
cache partitioning (or a similar approach) is needed to prevent
leakage. We prevent side-channel attacks on the L2 cache
by excluding SANCTUARY memory from L2, which yields
practical performance (cf. Section VII).

E. Malicious Sanctuary App

One strength of SANCTUARY is that third-party developers
can easily create and deploy own SAs. This, however, also
allows attackers to create malicious SAs. If an user is tricked
into installing such an SA, it will be executed as a valid SA
in a SANCTUARY Instance. The attacker could then try to
attack the normal world or secure world from such a malicious
SA, hence, SANCTUARY must protect against malicious SAs.
With a malicious SA, an attacker might attack the LOS and
LAs running in the normal world. Yet, an SA only has user
privileges (ELO), EL1 is controlled by the device vendor pro-
viding the SL. If the attacker is able to successfully perform a
privilege-escalation attack and compromise the SL, the secure-
world memory is still not accessible for the attacker since
the SA runs in normal world. In particular, since only the
SANCTUARY memory is assigned to the SANCTUARY core,
remaining normal-world memory could still not be accessed.
Only the non-secure shared memory to the LA (developed by
the attacker anyway) would be affected. An attacker could try
to use a malicious SA to leak data from either other SAs or
from TAs. However, since the SANCTUARY design dedicates
CPU cores to SAs one at a time, unintended information flow
between SAs is prevented. These properties fulfill security
requirement 4: Protection from malicious SAs.

VII. EVALUATION

We evaluate SANCTUARY by implementing a real-world use-
case in our prototype and by thoroughly measuring the per-
formance of all SANCTUARY components. As mentioned in
Section V, the overall implementation minimizes TCB changes
by adding less than 1400 LOC. Thus, SANCTUARY fulfills
functional requirement 6: Minimal software changes from
Section III-B. The evaluation was performed on the HiKey
960 development board. The HiKey 960 provides an ARMv8
SoC design with an ARM big.LITTLE processor architecture
equipped with four ARM Cortex-A73 and four Cortex-AS3
cores. Every Cortex-A73 core has 64KB L1 instruction caches



Measurement  with L2 (us)  without L2 (us)
LA to STA 98 [88]
LA to TA 123 [120]
LA to SA 150 249
SA to TA 310 353

Table II: Performance Sanctuary Communication, square
brackets indicate that deactivating L2 for the SANCTUARY
Instance had no effect.

and 64KB L1 data caches. Moreover, all Cortex-A73 cores
share a unified L2 with a size of 2MB. The energy-efficient
Cortex-AS53 cores share a unified L2 cache of 512KB. Besides,
every Cortex-A53 core has exclusively access to 32KB L1I and
32KB L1D caches.

A. Microbenchmarks

We evaluated the performance of SANCTUARY by measuring
the run time of the individual components and operations of
our prototype. We performed the evaluation for the SANCTU-
ARY configurations with both, active and deactivated L2 cache
for the SANCTUARY core (other cores are unaffected by this).
For an active L2 cache, we consider a weaker attacker model,
that is similar to the one of Intel SGX, i.e., side-channel attacks
are out of scope; orthogonal approaches like cache partitioning
are needed. Furthermore, we assume that the identity-based
filtering is also implemented in shared L2.

When not caching the SANCTUARY memory in L2, we can
consider a stronger adversary that leverages software side-
channel attacks. Square brackets in the results for the con-
figuration without L2 highlight that these measurements are
not influenced by the SANCTUARY L2 cache configuration.
The shown deviations can be attributed to the complexity of
modern processors which causes timing differences between
consecutive runs. We used the generic timer available on
ARM-based architectures to perform all our measurements.
Moreover, we computed the relative standard deviation of our
measurements to assess SANCTUARY s stability. The presented
results are averaged over 100 runs per configuration. Based
on these numbers, we conclude that latency introduced by
SANCTUARY is practical in real-world applications.

1) Sanctuary Communication: Table II contains measurements
for the different communication channels that exist in the
SANCTUARY design. The first two measurements, LA to STA
and LA to TA show how long it takes to perform a call from
an LA to a TA or a STA. These measurements are completely
independent from a SANCTUARY Instance but can be used
to assess the performance of SANCTUARY’s communication
channels. The time required to perform a call from an LA
to its SA with L2 cache is comparable to regular TrustZone
communication. Hence, SANCTUARY does not introduce a
large communication latency. The higher overhead for the
communication between SA and TA is caused by the fact
that the context switch is not performed by the SANCTUARY
core but is triggered by the corresponding LA. This means
the SA first has to communicate with the normal world before
it can communicate with the secure world. As mentioned in
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Measurement with L2 (ms)  without L2 (ms)
Load Sanctuary binaries 7 [7]
Shut down core 113 [109]
Lock & Verify 13 [12]
Start Sanctuary: 59 311
Early core initialization 37 36
Set up kernel space env. 18 130
Set up user space env. 4 145

Table III: Performance Sanctuary Setup.

Section V, the OP-TEE driver could also be included into the
SL. Then, the SANCTUARY core could switch directly to the
secure world. In this case performance similar to that of a
call from LA to TA can be expected. When the L2 cache is
deactivated for SANCTUARY memory, the duration of a call
from LA to SA increases by a factor of 1.66, however the
overall performance is still practical. The relative standard
deviation of the communication measurements is low with
28%-34% for the configuration with L2 activated and 20%-
32% for the configuration with L2 deactivated.

2) Sanctuary Setup: The primary difference in running SANC-
TUARY Instance compared to TAs lies in the setup time needed
to isolate a CPU core. The bare execution speed of SAs
and TAs is the same as they run on the same hardware.
Table III breaks down the single steps performed starting the
LA, requesting a SANCTUARY Instance initialization, up to
execution of the SA. In the Load Sanctuary binaries step, both
the SL and SA binaries are loaded in 7ms. In the next step,
the Linux hotplug mechanism is used to shut down the core.
With L2 cache enabled for this core, this represents the most
expensive step of the SANCTUARY setup process with 113ms.
Next, the SANCTUARY is locked and verified (cf. Section V).
Subsequently, the Zircon kernel is booted (Start Sanctuary
step). We measured the boot process in three phases. The
first phase covers early initialization of the core. In the second
phase, the platform components are initialized and the kernel
environment is set up. In the last phase, the user space
environment is set up, it ends with the execution of the SA. The
results show that the boot overhead is higher if the L2 cache is
not active. In the second boot step, the boot time increases by
a factor of 7, in the third step even by a factor of 36. However,
even without using the L2 cache for the SANCTUARY core, the
complete SANCTUARY setup can still be performed in around
450ms. If the identity-based filtering feature is implemented
in the cache, a setup time around 200ms can be achieved.
Further optimizations could be achieved by reducing the SL.
The relative standard deviation of the measurements with L2
activated range from 27% to 38%. With deactivated L2 the
relative standard deviation values range from 26% to 44%.

3) Sanctuary Teardown: Table IV shows the performance
evaluation of the Sanctuary teardown. In the Sanctuary shut-
down step, the L1 cache is invalidated and the Zircon kernel
brought into its original state. In the Unlock Sanctuary step,
the SANCTUARY memory is zeroed which takes up most of
the time. The complete teardown of the SANCTUARY can be
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Figure 6: GenOTP app protocols for secret key provisioning and OTP generation. A lock symbol indicates TrustZone-protected

communication channels.

Measurement with L2 (ms)  without L2 (ms)
Sanctuary shutdown 1 [1]
Unlock Sanctuary 45 58
Restart core 53 [54]

Table IV: Performance Sanctuary Teardown.

performed very fast in around 100ms with and without L2
cache. For the former case, the relative standard deviation
ranges from 15% to 40% and for the later from 14% to 25%.
The measurements further emphasize the practicability of
SANCTUARY, as setup and teardown induce a total run time
overhead of approximately 340ms with L2, respectively ap-
proximately 600ms without L2.

B. Use-Case: OTP Generation for Two-Factor Authentication

To illustrate the practicability of SANCTUARY in real-world
applications, we implemented a One-time Password (OTP)
generator app on top of our prototype, which we call GenOTP.
The GenOTP app, which we will now describe in more detail,
consists of an LA and an SA. It can be used to seal a secret
key to the SA and restore it at a later point in time to generate
a fresh OTP. With SANCTUARY, every service provider can
develop a custom app that protects the secret key without the
need of an own TA in the TEE.

1) Scenario Description: Two-factor authentication schemes
are often used for authenticating users on websites. The first
factor, the knowledge factor, is usually represented by an user-
name and a password. The second factor, the possession factor,
is represented by a hardware token or a mobile device that
creates fresh OTPs. The OTPs are created from a secret key
shared between the user’s device and the verification server.
In a Time-based One-time Password Algorithm (TOTP) [30],
the secret key is then used together with a fresh timestamp to
generate an OTP. The secret key must be securely stored on
the device and the TOTP code protected during execution.
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In our scenario, an online retailer wants to offer two-factor
authentication for its online shop. We assume that a customer’s
mobile device contains a TEE and supports SANCTUARY. The
online retailer implemented the GenOTP app consisting of non-
sensitive code in an LA and security-sensitive code in an SA.
We further assume that the GenOTP app is already installed
on the user’s device and that the TEE contains an unique
asymmetric key pair (SKjevice, PKdevice ) brought onto the
device during production. During the installation of GenOTP,
PK jevice Was sent to the retailer’s back end. We assume that
Proxy TA and Sealing TA are present on the device.

2) Provision Secret Key: For generating OTPs on the mobile
device, a secret key Krorp needs to be provisioned to it. The
process for receiving the key from the retailer’s back end is
shown in Figure 6. The customer selects the option to provision
a key in the GenOTP LA. A SANCTUARY Instance is started
and executes the GenOTP SA. The SA then hands over the
IP address of the server it wants to communicate with and the
message it wants to send to the Proxy TA. In this case, the
message only contains the information provision_key. The
Proxy TA now calls the STA to get the hash value of the
SA binary running in the SANCTUARY Instance and creates
a signature Sigg4 over the hash value and message using the
device unique private key SK gevice-

After the Proxy TA created the signature Sigsa, it sends
it to the retailer’s back end, together with the hash Hgx
calculated over the SA binary and the message provision_key.
In particular, the signed and thus protected message and Hg 4
is passed to the network stack in the normal world to be
forwarded to the server. The involvement of the normal world
is omitted in Figure 6 for lucidity as it is only providing
non-secure functionalities. The retailer’s back end, which has
PK jevices can now verify if the SA was correctly loaded in
a SANCTUARY Instance, since only then a valid signature is
created by the Proxy TA. If verification succeeds, a secret key
Krorp is created and returned via the Proxy TA to the SA.

The SA now needs to store the received key s.t. fresh OTPs can
be generated anytime, even without Internet connection. For
this, the Sealing TA is used. The SA collects all data it wants
to seal in a state object Sg4 and forwards it to the Sealing TA.



In our scenario, Sg4 only contains the secret key Krorp. In
general, any data that needs to be stored persistently can be
incorporated into Sga4. When the Sealing TA receives Sga,
it calls the STA to get the SA binary hash. From the hash a
symmetric key K g4 unique to the SA is derived. Kg4 is then
used to seal Sg4 to the specific SA, producing the cipher
Ssa_s. Finally, the data is sealed to the Sealing TA using
functionality provided by OP-TEE.

3) Generate OTP: When the customer later wants to generate
a fresh OTP for login into the retailer’s online shop, he selects
the OTP generation option from the LA. After a SANCTUARY
Instance is started, the SA uses get_state of the Sealing TA to
retrieve its saved data. The Sealing TA first restores the sealed
SA state Sg4_s using the functionality provided by OP-TEE.
Next, a hash computed over the SA binary is received from
the STA and used to derive the SA unique key Kg4. The key
is then used to decrypt Ss4_s which results in the state object
Ssa. Ssa, which contains the secret key Krorp, is then
returned to the GenOTP SA. Finally, the SA runs the TOTP
algorithm to compute a fresh OT P; from the key Krorp and
the current timestamp ¢. The generated OTP is returned to the
LA which displays it to the user. The customer can now use
the OTP to perform a two-factor authentication.

4) GenOTP Performance: Besides performing microbench-
marks We also measured performance of the implemented
GenOTP app. Averaging over 100 runs, we measured the
time it takes to perform the Provison key and the Generate
OTP processes shown in Figure 6. The results are listed in
Table V. Provisioning a key onto the device takes around 1s,
whereas the provisioning time increases by factor 1.3 without
L2 cache. Measurements include all steps from SANCTUARY
Instance setup, SA signature computation, encrypting and
storing the secret key, up to the point where the SANCTUARY
Instance is completely teared down. Only the communication
and processing delays introduced by the back end are not
included. We again split the measurement into multiple phases:
(1) SANCTUARY Instance is started and the call to the back end
is issued, (2) the secret key is received and processed by the
SA, and (3) the secret key is stored, the SANCTUARY Instance
teared down and all resources reclaimed by the normal world.
The measurement of generate OTP is divided into two phases:
(1) setup and retrieval of the secret key from the Sealing TA,
and (2) generation of a fresh OTP and SANCTUARY Instance
teardown. Generating a fresh OTP using SANCTUARY takes
around half a second. When the L2 cache is deactivated, the
process time increases by a factor of 1.6. The relative standard
deviation values for the GenOTP measurements range from
11% to 21% for the configuration with L2 activated and from
11% to 22% for the configuration with L2 deactivated.

The results show that the SANCTUARY design is indeed
practical in real-world scenarios, even without the L2 cache.
The setup of the SANCTUARY Instance and the communication
with other normal-world and secure-world components is fast
enough such that the user experience is not influenced. More-
over, since the SANCTUARY Instance runs on an isolated core,
the LOS does not have to be suspended and can run in parallel
with the SANCTUARY Instance. This means the delays intro-
duced by the SANCTUARY setup and teardown never result in a
frozen Ul since the LOS is always fully responsive. Therefore,
SANCTUARY fulfills functional requirement 7: Positive user
experience from Section III-B.

13

Measurement with L2 (ms)  without L2 (ms)
Provision key: 884 1174
Setup & Server call 780 1067
Process server result 10 10
Save state & Teardown 94 97
Generate OTP: 365 630
Setup & Retrieve state 266 514
Generate OTP & Teardown 99 116

Table V: GenOTP App Performance.

VIII. RELATED WORK

In this section we compare SANCTUARY against existing TEE
implementations in hardware and software.

A. Secure Hardware Architectures

Hardware-based security architectures have been developed
by both, academia and industry. Industry solutions like Intel
Software Guard Extensions (SGX) [31] and ARM Trust-
Zone [5] are available in commercial off-the-shelf products.
Intel SGX [31] provides hardware-enforced code and data
isolation, while the TCB consists of the CPU and its microcode
only. So-called enclaves run security-sensitive code that can be
can be verified via local and remote attestation. However, SGX
is tailored to Intel x86 desktop/server chips, and thus not found
in embedded (or mobile) devices. For mobile devices, ARM
offers a TEE implementation with TrustZone [S]. TrustZone
isolates critical code by dividing physical hardware in virtual
normal-world and secure-world realms. The secure world runs
its own TOS and TAs, but vendors are very strict about
which applications may run in the secure world. SANCTUARY
overcomes this restriction by only having a minimal and fixed
set of functionality in the secure world, while the remaining
sensitive code runs in isolated normal-world enclaves.

Sanctum [14] provides protected enclave execution similar to
Intel’s SGX. Unlike SGX, it extends the open-source RISC-
V platform, and provides additional protection mechanisms
against side-channel attacks by applying cache partitioning
to the last level cache (LLC), while flushing the per-core
L1 cache upon enclave exit. SPM [50] and follow-up works
like Sancus [41], [42] propose an isolation architecture for
low-end embedded systems with a hardware-only TCB. They
extend the openMSP430 CPU architecture with additional
CPU instructions for secure provisioning and protected storage,
as well as an extended memory access logic with isolation
enforcement. TrustLite [34] uses the generalized concept of
an Execution-Aware Memory Protection Unit (EAMPU) to
enforce program counter based memory access policies stored
in tables directly in the SoC and a trusted loader to enable
isolated trusted applications on a low-end embedded processor
architectures. All these approaches are based on CPU archi-
tectures not commonly available in end-user devices, while
SANCTUARY is based on the widely used ARM architecture.



B. Secure Software Architectures

Komodo aims to strengthen software isolation between the
TrustZone applications in the secure world by using a
hardened, formally verified microkernel as the secure-world
OS [18]. Komodo replaces deployed microkernels by solutions
like MobiCore [7] and hence does not support legacy systems.

Hypervisor-based approaches like vTZ [28], AppSec [46],
Terra [21], InkTag [26], TrustVisor [37] or MiniBox [35]
provide isolation using virtualization. This has four main
disadvantages: (i) their TCB contains a relatively large hyper-
visor, (ii) they block usage of virtualization for non-security
purposes, (iii) they require additional hardware to protect
against Direct Memory Access (DMA) attacks, and (iv) they
negatively influence the performance of the OS. SANCTUARY
does not rely on virtualization and can even be used in com-
bination with a hypervisor. Cho et al. [13] try to mitigate the
influence on the OS by activating the hypervisor on-demand.
Therefore, the OS is only influenced when sensitive code is
executed. In SANCTUARY, the performance of the OS is not
influenced when sensitive code is executed in parallel since no
hypervisor is running underneath the normal-world OS.

Other approaches try to minimize the normal-world TCB
by protecting the non-secure kernel. TZ-RKP [10] and
SPROBES [22] both protect the LOS kernel by instrumenting
critical functionality to trap into the secure world, where the
call is filtered. As demonstrated by the Towelroot exploit [27],
such mechanisms can be circumvented. KENALI [48] instead
uses data-flow integrity to enforce policies of the LOS ker-
nel’s access control system, while SKEE [9] aims to detect
attacks against the kernel by providing an isolated execution
environment at the kernel’s privilege level running a kernel
monitor. SANCTUARY does not require the kernel to be trusted
to guarantee isolated execution, moreover, SANCTUARY also
protects the LOS kernel from potentially malicious SAs.

Flicker [38] and TrustICE [51] provide temporal isolation only,
i.e., they cannot provide isolation for systems where TEEs
execute in parallel with untrusted software. Hence, on todays
commonly used multi-core systems the applicability of these
approaches is very limited. With temporal isolation, the entire
system has to be suspended, i.e., hibernation of the LOS and
all applications. Afterwards, the TEE can execute exclusively
on the system and only after the TEE has terminated, the
normal system can be restored and continue execution. Flicker
uses Intel’s Trusted Execution Technology (TXT) to reset the
system at runtime to a trusted execution state. TrustICE is con-
ceptually similar to Flicker: it uses the secure world, rather than
TXT, to reset the normal world to a trusted state. In TrustICE,
TA binaries are stored in TrustZone memory. When a TEE is
started, the LOS is suspended and the binaries are copied to
normal-world memory for execution. After the TEE finished
execution, the LOS has to be restored by the secure world.
During execution, TrustICE provides only one-way isolation
and executes in kernel-mode, this means that malicious TAs
can manipulate normal-world software, e.g., compromise the
LOS. SANCTUARY, in contrast, does provide spacial isolation,
which enables the parallel execution of untrusted code with
one or multiple TEE instances. Furthermore, SANCTUARY
offers hardware-enforced two-way isolation and restricts SAs
to user-mode execution. Hence, SANCTUARY protects systems

from malicious SAs, which is highly relevant for practical
deployment.

IX. CONCLUSION

We presented SANCTUARY, our novel security architecture for
extending the TrustZone software ecosystem with user-space
enclaves. SANCTUARY provides hardware-enforced two-way
isolation obviating the need to trust or vet the code of SAs, as
malicious SAs cannot have more power than normal user-space
applications.

SANCTUARY is based on the bus master identity filtering
introduced with ARM’s latest memory controller design and
allows the parallel isolation of individual CPU cores for
executing security-sensitive code, i.e., SANCTUARY does not
affect the user experience negatively. Furthermore, our per-
formance evaluations for our proof-of-concept implementation
shows low latencies for typical use cases, all of which makes
SANCTUARY highly practical.
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Abstract—Performing machine learning tasks in mobile appli-
cations yields a challenging conflict of interest: highly sensitive
client information (e.g., speech data) should remain private while
also the intellectual property of service providers (e.g., model
parameters) must be protected. Cryptographic techniques offer
secure solutions for this, but have an unacceptable overhead and
moreover require frequent network interaction.

In this work, we design a practically efficient hardware-based
solution. Specifically, we build OFFLINE MODEL GUARD (OMG)
to enable privacy-preserving machine learning on the pre-
dominant mobile computing platform ARM—even in offline
scenarios. By leveraging a trusted execution environment for
strict hardware-enforced isolation from other system compo-
nents, OMG guarantees privacy of client data, secrecy of
provided models, and integrity of processing algorithms. Our
prototype implementation on an ARM HiKey 960 develop-
ment board performs privacy-preserving keyword recognition
using TensorFlow Lite for Microcontrollers in real time.

Index Terms—TEE, TrustZone, private ML, speech processing

I. INTRODUCTION

An increasing number of applications running on mobile
devices like smartphones and tablets relies on machine learn-
ing (ML) services to enhance the user experience, e.g., to give
an estimate on battery life based on user behavior, improve
image quality, or perform speech recognition.

Many of these ML services require frequent cloud inter-
action, resulting in severe privacy risks for billions of users due
to the highly sensitive nature of such remotely processed data.
Besides potentially confidential and intimate content, voice
recordings, for example, contain unique biometric informa-
tion that can be abused, e.g., for impersonation attacks and
distributing fake recordings.

Privacy breaches in this domain are not fiction: in 2018, a
customer requested his recording archive from Amazon, but
accidentally got access to 1,700 audio files from a stranger [1].
Furthermore, state authorities ordered Amazon to hand out
recordings as they might contain evidence of crime [2]. Media
reports also revealed that Apple, among others, sent voice
recordings to third party companies in order to improve their
service with manual transcriptions. The employees of those
companies got to listen to private discussions between doctors
and patients, business deals, criminal dealings, and sexual en-
counters [3]. Moreover, biometric data used for identification
was recently leaked at a large scale: the database of a UK
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government contractor with more than a million fingerprints
and facial recognition information was publicly accessible [4].

When relying on online services for mobile ML applica-
tions, there are also usability issues to consider: high latency
and, therefore, a bad user experience occurs if the user has
an unreliable or low-bandwidth network connection, and high
roaming fees may apply if the user is abroad.

A trivial solution for all these issues is to process all sensi-
tive user data on the client’s device. Previously, this approach
was severely limited by the storage space constraints on mobile
devices and the storage space requirements of ML models used
in practice. Recently, though, Google lifted this limitation by
training a recurrent neural network (RNN) model for character-
level speech recognition and compressing it to only 80 MB,
while delivering the same accuracy as former cloud-based
production models with a size of multiple gigabytes [5], [6].

However, deploying such a model in unencrypted form is
often not in the interest of the service provider. A production-
level model constitutes intellectual property as the underlying
training data is usually hard to obtain and creating an ac-
curate while compact model requires extensive expertise [7].
Furthermore, if attackers have unrestricted model access, the
privacy of people represented in the training data is even
more threatened by, e.g., membership inference attacks [8]
and unintended memorization [9].

Cryptographic techniques like homomorphic encryp-
tion (HE) and secure multi-party computation (SMPC) provide
solutions for this conflict of interest: with HE, private inputs
can be securely processed under encryption by the client or the
service provider, whereas with SMPC, client and server can
jointly compute any function on private inputs in a provably
secure protocol. Unfortunately, the computational overhead
for HE when performing complex ML tasks is impractical
for the given mobile scenario, whereas the amount and the
frequency of required network communication is the bottle-
neck for SMPC protocols. Thus, we explore hardware-assisted
solutions to deliver secure and private ML on mobile devices
in offline scenarios while providing practical efficiency.

Our Contributions. In this work, we build OFFLINE
MODEL GUARD (OMG), a generic architecture that effi-
ciently protects machine learning tasks on mobile devices like
smartphones and tablets, and demonstrate its practicality using
offline keyword recognition as an example application.
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OMG leverages unprivileged (normal-world) user-space en-
claves on ARM platforms to execute ML tasks in a hardware-
protected environment that is two-way isolated from all other
system components to minimize the attack surface. Utiliz-
ing TrustZone functionality, OMG can securely access periph-
erals like the microphone to protect sensitive information di-
rectly from the source. As a result, OMG guarantees complete
privacy of client data, secrecy of the provided ML models, and
integrity of processing algorithms.

We provide a fully functional prototype implementation
of OMG on an ARM HiKey 960 development board for
offline keyword recognition based on TensorFlow Lite for
Microcontrollers [10]. As TrustZone on ARM does not provide
user-space enclaves, we leverage SANCTUARY [11] for our
implementation. Our performance evaluation demonstrates that
secure and private offline speech processing is possible in
real time even with strong protection guarantees. As we
developed our prototype with TensorFlow compatibility in
mind, our implementation can easily be extended to network
architectures used for other related tasks such as end-to-
end continuous speech recognition, speaker verification, and
emotion recognition.

II. RELATED WORK

In the following, we review existing works that preserve
privacy in machine learning. The goal there is usually to train
a model on the server side without allowing the server to
see training data in the clear, or to obliviously classify input
data without leaking the model (inference). Proposed solutions
either rely entirely on cryptography or build on TEEs.

For protecting only the IP of ML models there also exist
orthogonal works for model watermarking [12] and finger-
printing [13] that do not consider the privacy of client inputs.

A. Cryptography

The cryptographic techniques used for privacy-preserving
machine learning are homomorphic encryption (HE) and se-
cure multi-party computation (SMPC). Also, combinations of
these techniques are being studied. HE allows to perform
operations directly on encrypted data, but generally incurs a
high computational overhead. SMPC allows multiple parties
to jointly perform secure computations on shared data. This
works by obliviously evaluating a Boolean or arithmetic circuit
representation of the desired functionality, but results in a
high communication overhead and for some protocols requires
interaction for each layer of the circuit.

For cryptographic protocols it is possible to formally prove
security with respect to input privacy. However, many pro-
tocols and corresponding implementations assume that both
client and server honestly follow the protocol description.
This assumption is unrealistic in real-world scenarios since
mobile clients might run modified applications. Securing such
protocols against malicious parties comes at additional cost.

Privacy-preserving neural network inference via HE
and SMPC was studied in [14]-[16]. Thereafter, many frame-
works for privacy-preserving machine learning have been
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developed, e.g., [17]-[22]. They allow at least for secure
deep/convolutional neural network inference and are usually
benchmarked with standard image classification tasks.

Using such cryptographic frameworks requires expert
knowledge and thus they are hardly accessible for ML ex-
perts. However, recently there are efforts to integrate cryp-
tographic protocols into standard ML tools: for TensorFlow
there are HE [23] and SMPC [24] implementations, and
for Intel’s ngraph compiler there exists HE support [25].

Unfortunately, the current performance results discourage
from actual deployment and scaling them to more involved
speech processing tasks seems unrealistic [26]. Addressing all
outlined disadvantages, with OMG we propose a computation-
and communication-efficient hardware-assisted design for se-
cure and private ML on mobile devices that enforces correct
execution of the algorithms and can easily be used by ML ex-
perts due to TensorFlow Lite compatibility.

B. Trusted Execution Environments (TEEs)

Compared to cryptographic techniques, trusted execution
environment (TEE) architectures provide several orders of
magnitude better performance for protecting ML services [27].
Most of the existing works rely on Intel SGX as the dedi-
cated TEE architecture to protect ML services.

Ohrimenko et al. [28] protect ML algorithms and models
in SGX enclaves. They consider a scenario where sensitive
data from multiple data providers is aggregated on a remote
server while SGX enclaves are used to protect the training
process. However, the enclaves might leak information to the
untrusted software on the server through data-dependent access
patterns, which can be exploited in controlled-channel at-
tacks [29], [30]. Therefore, the authors develop data-oblivious
variants of standard ML techniques, e.g., support vector ma-
chines, neural networks, and decision trees, which guarantee
that all memory accesses do not depend on secret data.

In Chiron [31], an ML-as-a-Service (MLaaS) scenario is
considered where sensitive data is collected from customers
and used for training without revealing the data to the MLaaS
provider. This is achieved by performing the training process
in a Ryoan [32] sandbox (based on SGX), which protects
sensitive customer data but still offers the service provider the
possibility to freely select, configure, and train the models.

Myelin [33] provides security guarantees similar to [28]
as it relies on data-oblivious deep learning algorithms: every
model owner compiles its deep learning model into a privacy-
preserving model graph, which is then trained on a remote
server (inside an SGX enclave) on sensitive data.

In [34], the authors introduce an alternative protection
mechanism against controlled-channel attacks that is more
efficient and suitable for real-time data processing. The authors
propose to add noise to memory traces by accessing dummy
data instead of enforcing data-oblivious memory accesses.

VoiceGuard [35] targets the use case of privacy-preserving
speech processing. For this, sensitive voice recordings are col-
lected from user devices, e.g., smart home devices like Ama-
zon Echo, Google Home, and Apple HomePod, and are sent
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via secure channels to a service provider. The service provider
performs speech recognition using proprietary models pro-
vided by ML specialists in an SGX enclave, thereby protecting
the user data as well the proprietary models. The inference
results are then securely sent back to the user device. Very
recent work [36] also enables efficient private online speech
recognition but uses obfuscation techniques and the notion of
differential privacy, which significantly degrades accuracy.

In contrast, MLCapsule [37] considers an offline MLaaS
scenario where the trained model is used on the client side for
inference while being protected using an SGX enclave.

None of the previous works considers the challenge of
how user data can be securely collected on the user device.
Intel SGX, which is mostly used as the dedicated TEE archi-
tecture, is not able to provide a secure communication channel
from enclaves to system peripherals, e.g., the microphone or
camera [38]. Thus, sensitive user data is endangered as it
could be exfiltrated by malicious software running on the client
device. With OMG, we present the first TEE architecture that
provides protection for proprietary ML models and privacy-
sensitive user input at the same time. Furthermore, while In-
tel SGX is a TEE widely available in recent Intel CPUs, most
mobile devices like smartphones and tablets come with CPUs
based on the ARM platform. This prevents using the previ-
ously proposed SGX-based solutions for securing relevant use
cases on mobile devices, e.g., offline speech recognition. Thus,
in this work, we present OMG for ARM-based devices and as
an example application demonstrate privacy-preserving offline
keyword recognition in real time.

III. BACKGROUND

In the following, we introduce relevant details regarding
the ARM TrustZone TEE implementation and the SANCTU-
ARY security architecture [11] for user-space enclaves.

A. ARM TrustZone

Trusted execution environments (TEEs) combine memory
isolation techniques [39]-[41] and attestation [42] with iso-
lated execution to provide protected execution of security-
critical code. For mobile devices, the predominant computing
platform is ARM, which provides a TEE implementation
called ARM TrustZone [43]. A chip with TrustZone capabili-
ties simultaneously runs two security contexts (or “worlds”) as
virtual processors: a “normal world” and an isolated “secure
world” (cf. Fig. 1). While the normal world executes a
commodity OS (e.g., Android) and ordinary applications, the
secure world forms a TEE for running security-critical code
on a trusted OS.

A major assumption of TrustZone is that an attacker cannot
compromise code running in the secure world. Unfortunately,
the TrustZone design is flawed in this aspect: the isolation
between applications in the secure world is rather weak and
the attack surface is massively increased the more applications
run therein [44]. Thus, the secure world with its privileged
platform access is an attractive target for adversaries.
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Fig. 1: ARM TrustZone architecture overview.

B. SANCTUARY

SANCTUARY [11] is a security architecture that circum-
vents the previously explained flaws of ARM TrustZone
without requiring hardware extensions, heavy modifications of
existing code bases, or major changes in the commodity OS. In
particular, it allows to run security-critical code in user-space
enclaves or so-called SANCTUARY Apps (SAs). SAs are exe-
cuted in a normal-world environment that is protected via strict
hardware-enforced two-way isolation from all other system
components to minimize the attack surface. This is achieved
by leveraging TrustZone’s address space controller (TZASC)
to exclusively bind memory to a (temporarily) dedicated CPU
core running an SA.

The life cycle when running an SA is as follows:

1) Setup: Memory for the SA instance is prepared by loading
the SANCTUARY library (SL), which is implemented us-
ing the Zircon microkernel [45], and the SA. The TZASC
is securely configured to isolate this memory region and
the least busy CPU core is shut down. Besides the isolated
memory, additional memory regions are shared with the
commodity OS and the secure world, which allows the SA
to access the secure world and (untrusted) OS services.

2) Boot: The memory is attested and the CPU core is booted
with the SL providing a basic execution environment.

3) Execution: The SA runs as a normal-world user process,
potentially using services provided by the commodity OS
or secure world code.

4) Teardown: The CPU core is shut down, data in the first
level cache (L1) is invalidated, the SA memory is cleaned
and unlocked, and finally the CPU core is handed back to
the commodity OS.

SANCTUARY provides code and data integrity as well as
data confidentiality, is secure against malicious SAs, and has
no negative impact on the user experience due to the wide
availability of multicore chips for mobile devices. Further-
more, side-channel attacks that extract secrets from caches can
be prevented easily since the L1 cache is core exclusive and the
shared second level cache (L2) can be excluded from SANC-
TUARY memory without severe performance impact [11].

SANCTUARY extends TrustZone to provide an arbitrary
number of user-space enclaves. Additionally, SANCTUARY
inherits many useful features from TrustZone like secure boot
or DMA attack protection. Moreover, TrustZone allows to
assign sensitive peripherals exclusively to the secure world.
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An SA can use this feature by sending communication requests
to the secure world code. After checking the permission rights
of the SA, the secure world reads from the sensitive data and
directly stores it in the memory region shared with the SA.
Thus, performance overhead is only produced by the additional
world switches between the SA and the secure world.

IV. SECURITY MODEL AND ASSUMPTIONS

In this paper, we consider two parties collaborating to
perform ML tasks on sensitive data provided by one party
while protecting the intellectual property of the other party.

The user U provides input data to be processed. She is con-
cerned about the privacy of the content to be processed (i.e.,
her inputs as well as outputs) and biometric characteristics
potentially used throughout processing. Lastly, the user does
not want to be traceable across multiple sessions.

The vendor V (who might act as the service provider)
provides ML algorithms including corresponding models. The
models constitute the vendor’s intellectual property, hence the
user must not be able to reverse engineer, share, or break the
license check of these models.

Adversary Model. The adversary’s goal is to extract sen-
sitive information, i.e., the intellectual property of the vendor,
the input and output of the user, or data that allows the
adversary to identify or track the user. We assume that the
adversary is in control of the user’s device. The adversary has
full control over the software running in the normal world
of the user’s device, including privileged software like the
commodity OS. We assume that the adversary cannot perform
hardware attacks, e.g., a physical side channel to extract secret
keys. For the enclave we assume that all of SANCTUARY’s
defense mechanisms are in place, including hardware cache
partitioning (for a detailed discussion see [11]).

V. OMG DESIGN

OMG enables privacy-preserving and efficient offline exe-
cution of ML algorithms on untrusted ARM-based systems.
For the sake of simplicity, we explain our solution based on
the speech recognition scenario visualized in Fig. 2.

The vendor V’s private input consists of a ML model. The
user U’s private input consists of voice recordings. In this
example, the ML model is the vendor’s intellectual property
and any information about its architecture or trained weights
must never be disclosed. The only output is the transcription,
which is sent to the user.

OMG works in three phases: (I.) preparation, (II.) initial-
ization, and (III.) operation. In the preparation phase, the
enclave (containing the SL and SA) is loaded and attested
to user U and vendor V. Then, V provides the encrypted ML
model to the enclave. In the initialization phase, V sends the
decryption key for the ML model so that the enclave can
decrypt the model. Finally, in the operation phase, the enclave
is ready to perform offline speech recognition. U sends her
voice recordings to the enclave and receives respective textual
output (which can be further processed into an action, as with
virtual assistants). Next, we detail the individual phases:
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Fig. 2: OMG overview. Once the encrypted model is stored
locally, steps in gray are optional until a model update.

I. Preparation Phase. First, the enclave needs to be run
on U’s device. The enclave contains the environment required
to apply the ML model to input data. The enclave code can be
open source, since it does not contain any vendor secrets (e.g.,
it may just consist of a TensorFlow environment), and can
be distributed by the device manufacturer via regular distri-
bution channels. To load the enclave, its code is first copied
to memory and locked to a dedicated SANCTUARY CPU
core so it cannot be changed anymore by the commod-
ity OS (cf. § III-B). Then, the enclave is attested (“mea-
sured”) by SANCTUARY, i.e., a cryptographic hash of the
initial memory content of the enclave is created and stored
securely. If the enclave code is manipulated before the creation
process, the measurement will produce a different result and
the manipulation will be detected.

SANCTUARY then assigns an unique asymmetric key pair
to this enclave, e.g., by using RSA [46] (the public key PK is
shown in Fig. 2). This key pair is derived from the platform
certificate issued by the device vendor, effectively creating
a certificate hierarchy similar to SSL certificates. To assure
to U that the correct enclave code has been loaded, an
attestation report is generated (i.e., the cryptographic hash of
the initial memory content is signed using the secret key SK
corresponding to PK) and sent to U using the secure output
functionality of SANCTUARY (D. Such an attestation report
is also sent to V using a secure connection (e.g., via TLS)
directly from the enclave Q.

Note that the attestation report includes the enclave’s public
key PK. V uses PK and a nonce n to derive a symmetric
encryption key K used only for this respective enclave and
version of the model. V encrypts the ML model using Ky,
and securely provisions the model to the enclave ().

The enclave then stores the model locally in unprotected
storage @. As the model can be loaded from untrusted local
storage, after running the preparation phase once, steps Q)
and @ can be omitted until the vendor’s model is updated.

II. Inmitialization Phase. Thanks to never making the de-
crypted model directly accessible to U, the initialization phase
can be kept simple while providing strong guarantees to V.
V can actively manage the access of U to the model by
either sending or not sending the symmetric key Ky . In case
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of, e.g., an expired license, V can stop sending Ky to the
enclave, making it fail to decrypt the locally stored model.
If V decides that U should be allowed to use the model, V
securely sends Kyy 3 to the enclave and the enclave decrypts
the model (®. As the key Ky depends on the nonce n, this
also prevents rollback attacks for U’s locally stored model.

III. Operation Phase. In the operation phase, the actual ML
task takes place. U can directly and securely provide voice
recordings to the enclave as SANCTUARY allows secure input
from peripherals like the microphone (7 by utilizing TrustZone
features as described in § III-B. The speech data is then
processed using the model, the output can be presented to
the user or made available to other applications (.

Once in the operation phase, the system can be queried
repetitively, thereby avoiding repeated preparation and initial-
ization costs as well as interaction with V. To do this, after a
query is processed, the SANCTUARY core can be reallocated
to the commodity OS while the memory is still locked such
that no device or core is able to access it. When receiving
a new query, a new SANCTUARY core is allocated and the
locked memory is mapped to it for performing the ML task.

VI. EVALUATION

We demonstrate the practicality of our approach by pro-
viding a fully functional prototype implementation of OMG
on an ARM HiKey 960 development board based on Ten-
sorFlow Lite for Microcontrollers [10] and evaluating our
prototype with an offline keyword recognition application.

The ARM HiKey 960 development board is equipped
with an ARMvVS octa-core SoC (4 cores @ 2.4GHz,
4 cores @ 1.8GHz) with 3GB of RAM, which closely
resembles the specifications of today’s mobile devices. We use
such a development board instead of an off-the-shelf device
since most vendors restrict developer access to TrustZone,
which prevents us from setting up SANCTUARY (cf. § III-B).
As our offline keyword recognition application is just a proof
of concept, following [35], we do not focus on best accuracy,
but study whether accuracy and runtime are affected when
providing strong security guarantees.

The models are trained and evaluated on the Speech Com-
mand dataset [47] consisting of 105,000 WAVE audio files of
people saying 30 different words. The recordings were post-
processed to be a single word per file at a fixed 1s duration.

We follow the TensorFlow Lite example recipe [10]:
Features are computed using a 256 bin fixed point FFT
across 30 ms windows (20 ms shift), averaging 6 neighboring
bins, resulting in 43 values per frame. The 49 frames for
each recording are concatenated, forming a fixed 49 x 43
compressed spectrogram (“fingerprint”) per utterance.

The network architecture resembles [48], but is simplified
to better match embedded requirements. The tiny_conv
architecture feeds the audio fingerprint to a 2D convolutional
layer (8 filters, 8 x 10, x and y stride of 2), followed by ReLU
activation and a regular layer that maps to the output labels.
During training, dropout is applied after the convolution layer.
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TABLE I: Accuracy and runtime results for running the
keyword recognition with and without OMG protection.

Model Accuracy  Runtime
TensorFlow Lite “micro” 75 % 379 ms
TensorFlow Lite “micro” (OMG) 75 % 387 ms

We trained a system for a 12-class problem: silence, un-
known, “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop”, “go”. The model is first trained using TensorFlow
and subsequently converted to a TensorFlow Lite and “micro”
model. The resulting compressed model is about 49 kB in size.

We evaluated the “micro” model on a subset of the pub-
lished test set comprising 10 examples for each class, exclud-
ing the two rejection classes “silence” and “unknown”, since
sensitivity for those would typically be tuned for production.

Inference was run on a 2.4GHz core of the ARM de-
velopment board both with and without OMG protection.
Tab. I shows the overall accuracy for the 10 classes, and the
respective runtimes in milliseconds. The accuracy with and
without OMG protection is 75 %, confirming the correctness
of the setup. The runtimes are very close when executed with
and without OMG protection due to the fact that the hardware-
enforced two-way isolation provided by SANCTUARY adds
no additional overhead during execution. Since the overall
duration of the test set is 100, the real-time factor is 0.004x.

The runtime measurements do not include the overhead for
collecting the input data from the on-device microphone. As
described in § V, OMG uses the capabilities from SANC-
TUARY to securely connect to sensors. Thus, only the world
switch from an SA to the secure world to request the sensor
data and the switch back to the SA introduce some overhead.
As presented in [11], the switch from an SA to the secure
world takes around 0.3 ms. Therefore, even in the short-
running speech processing use case presented in this paper,
the performance overhead introduced by reading sensor data
via the secure world is negligible.

Our evaluation of a keyword recognition task using spectral
fingerprints and a basic CNN lays the groundwork to port
larger and recurrent architectures as well as to study training
tasks. Since our implementation has no inherent memory
limitations, it also allows to securely run more complex end-to-
end systems, such as the recently released TensorFlow-based
dictation model by Google [6], making it highly practical.
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Abstract

Security architectures providing Trusted Execution Envi-

ronments (TEEs) have been an appealing research subject
for a wide range of computer systems, from low-end embed-
ded devices to powerful cloud servers. The goal of these
architectures is to protect sensitive services in isolated ex-
ecution contexts, called enclaves. Unfortunately, existing
TEE solutions suffer from significant design shortcomings.
First, they follow a one-size-fits-all approach offering only
a single enclave type, however, different services need flexi-
ble enclaves that can adjust to their demands. Second, they
cannot efficiently support emerging applications (e.g., Ma-
chine Learning as a Service), which require secure channels
to peripherals (e.g., accelerators), or the computational power
of multiple cores. Third, their protection against cache side-
channel attacks is either an afterthought or impractical, i.e., no
fine-grained mapping between cache resources and individual
enclaves is provided.
In this work, we propose CURE, the first security architecture,
which tackles these design challenges by providing different
types of enclaves: (i) sub-space enclaves provide vertical iso-
lation at all execution privilege levels, (ii) user-space enclaves
provide isolated execution to unprivileged applications, and
(iii) self-contained enclaves allow isolated execution environ-
ments that span multiple privilege levels. Moreover, CURE
enables the exclusive assignment of system resources, e.g.,
peripherals, CPU cores, or cache resources to single enclaves.
CURE requires minimal hardware changes while significantly
improving the state of the art of hardware-assisted security ar-
chitectures. We implemented CURE on a RISC-V-based SoC
and thoroughly evaluated our prototype in terms of hardware
and performance overhead. CURE imposes a geometric mean
performance overhead of 15.33% on standard benchmarks.

1 Introduction

For decades, software attacks on modern computer systems
have been a persisting challenge leading to a continuous arms

race between attacks and defenses. The ongoing discovery
of exploitable bugs in the large code bases of commodity
operating systems have proven them unsuitable for reliable
protection of sensitive services [104, 105]. This motivated
various hardware-assisted security architectures integrating
hardware security primitives tightly into the System-on-Chip
(SoC). Capability-based systems, such as CHERI [100],
CODOMs [95], IMIX [30], or HDFI [82], offer fine-grained
protection through (in-process) sandboxing, however, they
cannot protect against privileged software adversaries (e.g.,
a malicious OS). In contrast, security architectures provid-
ing Trusted Execution Environments (TEE) enable isolated
containers, also called enclaves. Enclaves allow for a coarse-
grained but strong protection against adversaries in privileged
software layers. TEE architectures have been proposed for
a variety of computing platforms', in particular for modern
high-performance computer systems, e.g., industry solutions
like Intel SGX [35], AMD SEV [38], ARM TrustZone [3],
or academic solutions such as Sanctum [22], Sanctuary [10],
Keystone [48], or Komodo [27] to name some.

In this paper, we focus on TEE architectures for modern
high-performance computer systems. We investigate the
shortcomings of existing TEE architectures and propose an en-
hanced and significantly more flexible TEE architecture with
a prototype implementation for the open RISC-V architecture.

Deficiencies of existing TEE architectures. So far, existing
TEE architectures have adopted a one-size-fits-all enclave
approach. They provide only one fype of enclave requiring
applications and services to be adapted to these enclaves’ fea-
tures and limitations, e.g., Intel SGX restricts system calls
of its enclaves and thus, applications need to be modified
when being ported to SGX which produces additional costs.
Additional efforts like Microsoft’s Haven framework [5] or
Graphene [87] are needed to deploy unmodified applications
to SGX enclaves. Moreover, today, we are using diverse

ITEE architectures for resource-constrained embedded systems (e.g.,
Sancus [66], TyTAN [8], TrustLite [47] or TIMBER-V [98]) are not the
subject of this paper.
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services that process sensitive data, e.g., payment, biometric
authentication, smart contracts, speech processing, Machine
Learning as a Service (MLaaS), and many more. Each ser-
vice imposes a different set of requirements on the underlying
TEE architecture. One important requirement concerns the
ability to securely connect to devices. For example on mobile
devices, privacy-sensitive data is constantly collected over var-
ious sensors, e.g., audio [9], video [83], or biometric data [19].
On cloud servers, massive amounts of sensitive data are aggre-
gated and used to train proprietary machine learning models,
often outside of the CPU, offloaded to hardware accelera-
tors [84]. However, TEE architectures such as SGX [35],
SEV [38] and Sanctum [22], do not consider secure /O at
all, solutions such as Keystone [48] would require additional
hardware to support DMA-capable peripherals, solutions like
Graviton [96] require hardware changes at the peripheral side.
TrustZone [3], Sanctuary [10] and Komodo [27] cannot bind
peripherals directly to individual enclaves.

Another important requirement imposed on TEE architec-
tures is an adequate and practical protection against side-
channel attacks, e.g., cache [11,50] or controlled side-channel
attacks [65,92,101]. Current TEE architectures either do not
include cache side-channel attacks in their threat model, like
SGX [35], or TrustZone [3], only provide impractical solu-
tions which heavily influence the OS, like Sanctum [22], or do
not consider controlled side-channel attacks, e.g., SEV [38].
We will elaborate on the related work and the problems of
existing TEE architectures in detail in Section 9.

This work. In this paper, we present a TEE architecture,
coined CURE, that tackles the problems of existing solutions
with a cost-effective and architecture-agnostic design.
CURE offers multiple types of enclaves: (i) sub-space
enclaves that isolate only parts of an execution context,
(i1) user-space enclaves, which are tightly integrated into
the operating system, and (iii) self-sustained enclaves,
which can span multiple CPU-cores and privilege levels.
Thus, CURE is the first TEE architecture offering a high
degree of freedom in adjusting enclave boundaries to fulfill
the individual functionality and security requirements of
modern sensitive services such as MLaaS. CURE can bind
peripherals, with and without DMA support, exclusively to
individual enclaves. Further, it provides side-channel pro-
tection via flexible and fine-grained cache resource allocation.

Challenges. Building a TEE architecture with the de-
scribed properties comes with a number of challenges.
(i) New hardware security primitives must be developed
that allow enclaves to adapt to different functionality
and security requirements. (ii) Even though the security
primitives should allow flexible enclaves, they must not
require invasive hardware modification, which would impede
cross-platform adoption. (iii) While the changes in hardware
should remain small, performance overhead for managing
enclaves in software must be minimized. (iv) Protections

against the emerging threat of microarchitectural attacks
in form of side-channel and transient-execution attacks
must be considered in the design for all types of enclaves.
Contributions. Our design of CURE and its implementation
on the RISC-V platform tackles all these challenges. To
summarize, our main contributions are as follows:

e We present CURE, our novel architecture-agnostic de-
sign for a flexible TEE architecture which can protect
unmodified sensitive services in multiple enclave types,
ranging from enclaves in user space, over sub-space en-
claves, to self-contained (multi-core) enclaves which
include privileged software levels and support enclave-
to-peripheral binding.

e We introduce novel hardware security primitives for the
CPU cores, system bus and shared cache, requiring min-
imal and non-invasive hardware modifications.

e We prototype CURE for the open RISC-V platform using
the open-source Rocket Chip generator [4].

o We evaluate CURE’s hardware and software components
in terms of added logic and lines of code, and CURE’s
performance overhead on an FPGA and cycle-accurate
simulator setup using micro- and macrobenchmarks.

2 System Assumptions

CURE targets a modern high-performance multi-core sys-
tem, with common performance optimizations like data and
instruction caches, a Translation Lookaside Buffer (TLB),
shared caches, branch predictors, respective instructions to
flush the core-exclusive resources, and a central system bus
that connects the CPU with the main memory (over a dedi-
cated memory controller) and various peripherals.

System bus and peripherals. The system bus connects the
CPU to a plethora of system peripherals over a fixed set of
hardwired peripheral controllers. The peripherals range from
storage, communication, and input devices to specialized com-
pute units, e.g., hardware accelerators [37]. The CPU interacts
with peripherals using parts of the internal peripheral memory
which are mapped to the address space of the CPU, called
Memory-Mapped I/O (MMIO). We assume that the CPU can
nullify the internal memory of a peripheral to sanitize its state.
Every access from the CPU to a peripheral is decoded in the
system bus and delegated to the corresponding peripheral.
The CPU acts as a parent on the system bus, whereas the
peripherals (and main memory) act as childs that respond to
requests from a parent. However, MMIO is not sufficient
for some peripherals where large amounts of data need to be
shared with the CPU since the CPU needs to copy the data
from the main memory to the peripheral memory. Therefore,
these peripherals are often connected to the system bus as par-
ents over Direct Memory Access (DMA) controllers, allowing
them to directly access the main memory. To cope with re-
source contention in these complex interconnects, system
buses also incorporate arbitration mechanisms to schedule the
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Figure 1: Software privilege levels (PL): user space, kernel
space & dedicated levels for hypervisor & firmware.

establishment of parent-child connections when multiple bus
requests occur simultaneously.

Software privilege levels. We assume the CPU supports the
privilege levels (PLs) as shown in Figure 1. In line with
modern processors (Intel [21], AMD [34] or ARM [55]), we
assume a separation between a user-space layer (PL3) and a
more privileged kernel-space layer (PL2), which is performed
by the MMU (configured by PL2 software) through virtual
address spaces. The CPU may support a distinct layer for
hypervisor software (PL1) to run virtualized OS in Virtual
Machines (VMs), where the separation to PL2 is performed
by a second level of hardware-assisted address translation [73].
Lastly, we assume a highly-privileged layer (PL0O) which
contains firmware that performs specific tasks, e.g., hardware
emulation or power management.

We assume that the system performs secure boot on re-
set, whereas the first bootloader stored in CPU Ready-Only
Memory (ROM), verifies the firmware through a chain of
trust [53]. After verification, the firmware starts execution
from a predefined address in the firmware code and loads
the current firmware state from non-volatile memory (NVM)
where it is stored encrypted, integrity- and rollback-protected.
The cryptographic keys to decrypt and verify the firmware
state are passed by the bootloader which loads the firmware
into Random-access Memory (RAM). Rollback protection
can be achieved, e.g., by making use of non-volatile memory
with Replay Protected Memory Block (RPMB) partitions or
by using eFuses as secure monotonic counters [56]. When a
system shutdown is performed, the firmware stores its state
in the NVM, encrypted and integrity- and rollback-protected.

3 Adversary Model

Our adversary model adheres to the one commonly assumed
for TEE architectures, i.e., a strong software-only adversary
that can compromise all software components, including the
OS, except a small software/microcode Trusted Computing
Base (TCB) which configures the hardware security primi-
tives of the system, manages the enclaves and which is inher-
ently trusted [3, 10,22,27,35,48].

We assume that the goal of the adversary is to leak secret
information from the TCB or from a victim enclave. An
adversary with full control of the system software can inject
own code into the kernel (PL2) and even into the hypervisor

(PL1). This allows the adversary, with full access to the TCB
interface used for setting up enclaves, to spawn malicious
processes and even enclaves. Even though the adversary
cannot change the firmware code (which uses secure boot),
memory corruption vulnerabilities might still be present in the
code and be exploitable by the adversary [24]. In addition, we
assume that an adversary is able to compromise peripherals
from software to perform DMA attacks [63,76].

We assume the underlying hardware to be correct and
trusted, and hence, exclude attacks that exploit hardware
flaws [40, 86]. We also do not assume physical access, and
thus, fault injection attacks [6], physical side-channel at-
tacks [46, 62] or the physical connection of malicious periph-
erals are out of scope. We do not consider Denial-of-Service
(DoS) attacks in which the adversary starves an enclave since
an adversary with control over the OS can shut down the
complete system trivially. As standard for TEE architectures,
CURE does not protect from software-exploitable vulnerabili-
ties in the enclave code but prevents their exploitation from
compromising the complete system.

4 Requirements Analysis

To provide customizable, practical and strongly-isolated en-
claves, CURE must fulfill a number of security and function-
ality requirements. We list them in the following section, and
show in Section 7 how CURE fulfills the security require-
ments. In Section 6 and Section 8, we demonstrate how the
functionality requirements are met.

4.1 Security Requirements (SR)

SR.1: Enclave protection. Enclave code must be integrity-
protected when at rest, and inaccessible for an adversary when
executed. All sensitive enclave data must remain confiden-
tial and integrity-protected at all times. An enclave must
be protected from adversaries on all software layers (PL3-
PLO), other potentially malicious enclaves, and DMA at-
tacks [63,76].

SR.2: Hardware security primitives. The protection of the
enclaves must be enforced by secure hardware components
which can only be configured by the software TCB.

SR.3: Minimal software TCB. The TCB must be protected
from adversaries in all software layers (PL3-PL0) and mini-
mal in size to be formally verifiable, i.e., a few KLOCs [44].
SR.4: Side-channel attack resilience. Mitigations against
the most relevant software side-channel attacks must be avail-
able, namely, side-channel attacks on cache resources [31,
50,70,102], controlled side-channel attacks [65,92,101] and
transient-execution attacks [12, 14,43,45,78,89,90,93].

4.2 Functionality Requirements (FR)

FR.1: Dynamic enclave boundaries. The trust boundaries
of an enclave must be freely configurable such that enclaves
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at different privilege levels can be supported.

FR.2: Enclave-to-peripheral binding. Secure communica-
tion between enclaves and selected system peripherals, e.g.,
when offloading sensitive machine learning tasks to hardware
accelerators [84], must be explicitly supported.

FR.3: Minimal hardware changes. The hardware changes
required to integrate the proposed security primitives into a
commodity SoC (cf. Section 2) must be minimal, no invasive
changes to CPU internals must be required to enable a higher
adoption of CURE in future platforms.

FR.4: Reasonable performance overhead. The perfor-
mance overhead incurred during enclave setup and run time
must be minimized and must not render the computer system
impractical for certain uses cases or degrade user experience.
FR.5: Configurable protection mechanisms. Protection
mechanisms against cache side-channel attacks must be ap-
plicable dynamically at run time and on a per-enclave basis.

5 Design of the CURE Architecture

CURE provides a novel design that addresses the require-
ments described above and provides a TEE architecture with
strongly-isolated and highly customizable enclaves, which
can be adapted to the requirements of the services they protect.
Unlike other TEE architectures, which only provide a single
enclave-type, CURE allows to freely define enclave bound-
aries and thus, different enclaves can be constructed, as shown
in Figure 2. First, in Section 5.1, we describe the ecosystem
around CURE. Then, we elaborate on the different enclave
types in Section 5.2. CURE’s key component enabling this
flexible enclave construction is its enclave ID-based access
control in the system bus which manages all per-enclave re-
source mappings, e.g, peripherals or main memory, indicated
by the different background patterns in Figure 2 and Figure 3.
Our hardware primitives are presented in Section 5.3.

5.1 CURE Ecosystem

The ecosystem around CURE consists of device vendors
which produce the devices implementing CURE, device users
and service providers. Some services contain sensitive data
(from the users and/or the service provider) and thus, must be
protected. In CURE, sensitive services are either split into a
sensitive and a non-sensitive part, which get included into an
enclave and an user-space app (called host app), respectively,
or alternatively, integrated entirely into an enclave, requiring
only minimal modifications at the service. In the later case,
the host app is only needed to trigger the enclave. Initially,
the enclave binary does not contain sensitive data.

For every enclave, the service provider creates a configura-
tion file which contains the enclave’s requirements regarding
system resources (e.g., memory, caches or peripherals), a
version number and an enclave label L,,.;. Enclave binary,
configuration file and host app are bundled and deployed by
the service provider over an app store (e.g., Google Play Store)

|App| | Host App | ﬁinclﬂ |App| PL3
o — TN | | /== 2 T
] 8 8
é Operating System RT | RT § PL2
A Encly )

| |Encl,(SM)]  Firmware | PLO

| CPU Cores |

\ 4 Partitioned
o | | | N |Shared Cache
g System Bus —
g |CURE F|Iter|ng|
T Peripherals 7 3 DRAM
O Eenclave SM: Security Monitor

O Trusted Software Component RT: Runtime

Figure 2: CURE privilege levels and enclave types, namely,
user-space enclaves (Encly), kernel-space enclaves (Encl,,
Encl;) and sub-space enclaves (Encly).

which is operated by a third party (e.g., Google). The label
L, is globally unique in the app store.

Every service provider creates an asymmetric key pair SK),
and PK, and a public key certificate Cert,,, which is signed
by the app store operator. Using the secret key SK,, the ser-
vice provider signs the enclave binary and configuration file
(Sigencr) and attaches it, together with Cert, to the app bun-
dle. Cert, can later be used on the device to verify Sigepe;-
For this, a certificate chain Chain p up to the root certificate
of the app store operator must be present on the device. When
the service provider wants to update an enclave, a new signa-
ture must be created and the version number in the configura-
tion file updated which prevents rollbacks to older (possibly
flawed) versions of an enclave [103].

A device vendor creates a unique asymmetric key pair
SK4 and PK, for each device, which is provisioned to the
device during production, and a public key certificate Certy
signed by the device vendor which can later be used to prove
the legitimacy of the device in a remote attestation scheme.
For this, the service provider must obtain a certificate chain
Chaing up to the root certificate of the device vendor. When
a device was compromised, Cert, can also be revoked.

5.2 Customizable and Resilient Enclaves

CURE supports enclaves that protect user-space processes
(Encly), run in the kernel space (Encl,) or span the kernel and
user space (Enclz). However, an enclave does not necessarily
include all code of a privilege level, e.g., an enclave can only
comprise parts of the firmware code (Encly).
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5.2.1 Enclave Management

Before describing the different enclave types supported by
CURE, we give an overview on CURE’s enclave management.

Security monitor. All CURE enclaves are managed by the
software TCB, called Security Monitor (SM), as in other TEE
architectures [22,48]. As indicated in Figure 2, the SM it-
self represents an enclave which is part of the firmware. As
described in Section 2, we assume a system that performs
a secure boot on reset, verifies the firmware (including the
SM) and then jumps to the entry point of the SM. Further,
we assume that the SM has already loaded its rollback pro-
tected state Sy, into the volatile main memory. The SM state
contains SKy, PKy, Certy, Chain, and a structure D, for
each enclave installed on the device.

Enclave installation. When an enclave is deployed to the
device, the SM first verifies the signature Sige, using Cert,
and Chain b Then, the SM creates a new enclave meta-data
structure Dey; and stores Loy, Sigenc; and Cert, in it. More-
over, the SM creates an enclave state structure S,,,,; which
is used to persistently store all sensitive enclave data. The
SM also creates an authenticated encryption key K,,.; which
is used to protect the enclave state when it is stored to disk
or flash memory. K, and S, are also stored in D,;.
Initially, S,,.; only contains an authenticated encryption key
K, om created by the SM, which is used by the enclave to en-
crypt and integrity protect data communicated to the untrusted
OS, and a monotonic counter. The enclave meta-data struc-
ture D, also contains a monotonic counter used to rollback
protect the enclave state.

Enclave setup & teardown. The setup of an enclave is al-
ways triggered by the corresponding host app. After the OS
loads the enclave binary and configuration file, it performs a
context switch to the SM. The SM identifies the enclave by
the label L,,,.; and begins the enclave setup by (1) configuring
the hardware security primitives (Section 5.3) such that one or
multiple continuous physical memory regions (according to
the configuration file) are exclusively assigned to the enclave
in order to isolate the enclave from the rest of the system soft-
ware. Since the binary and configuration file are loaded from
untrusted software, their integrity must always be verified
using Sigep; and Certp. Assigning physical memory regions
is inevitable when providing enclaves which are able to ex-
ecute privileged software (kernel-space enclave), since this
allows the enclave to control the MMU. Thus, virtual memory
cannot be used to effectively isolate the enclave. (2) After en-
clave verification, the SM configures the hardware primitives
to assign also the rest of the system resources, e.g., cache
or peripherals, to the enclave according to the configuration
file. All assigned resources are also noted in D,,,.;. Moreover,
the SM assigns an identifier to the enclave which is stored in
D, and which is unique for every enclave currently active
on the device. The SM can manage up to N (implementation
defined) enclaves in parallel. We provide more details on the

meaning of the enclave identifier in Section 5.3. (3) In the last
step, the enclave state S,,,; is restored, i.e., loaded from disk
or flash memory, decrypted and verified using K,,,.;, and then
copied to the enclave memory such that it is accessible during
enclave runtime. The SM also checks that the monotonic
counter in S,,.; matches the counter stored in D,,,;.

The SM configures all interrupts to be routed to the SM
while an enclave is running. Thus, the SM fully controls the
context switches into and out of an enclave. While the SM
is executed, all interrupts on the CPU core executing the SM
are disabled. All other cores remain interrupt responsive. In
CURE, hardware-assisted hyperthreading is disabled during
enclave execution to prevent data leakage through resources
shared between the hardware threads. Alternatively, all hard-
ware threads of a CPU core could also be assigned to the
enclave if the enclave code benefits from parallelization. In
the reminder of the paper, we assume that hyperthreading is
disabled during enclave runtime.

After the setup is complete, the SM jumps to the entry
point of the enclave. During the enclave teardown, which
can be triggered by the host app or the enclave itself, the SM
securely stores the enclave state (using K,,;), while incre-
menting the monotonic counters in S,,,.; and D,,,.;, removes
all enclave data from the memory and caches and reconfigures
the hardware primitives.

Enclave execution. At run time, enclaves can access services
provided by the SM over its API, e.g., to dynamically increase
the enclave’s memory or to receive an integrity report which
the SM creates by signing Sig,,.; with SK; and by attaching
Certy. The integrity report is then send to the service provider
by the enclave. Subsequently, using Chaing, the service
provider can perform a remote attestation of the enclave. Only
if the attestation succeeds, the service provider provisions
sensitive data to the enclave. More complex remote attestation
schemes [61] could also be implemented.

Enclaves might use services of the untrusted OS which do
not require access to the plain sensitive enclave data, e.g., file
or network I/O. For those cases, an enclave can utilize K,
which is part of S, to protect its sensitive data. CURE also
allows multiple enclaves to share encrypted sensitive data
over the OS. However, the required key exchange is assumed
to be performed over the back ends of the service providers
and thus, out-of-scope for CURE.

Every enclave which includes a cryptographic library can
also create own keys (apart from K,,,,) and store them in S,,,;-
Thus, enclaves can also implement key rotation, revocation
or recovery schemes which is, however, the responsibility of
the service provider and thus, out-of-scope for CURE.

On every enclave setup/teardown and context switch in and
out of an enclave, the SM flushes all core-exclusive cache
resources, i.e., the data cache, the TLB and the BTB, thereby
preventing information leakage across execution contexts.
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5.2.2 User-space Enclaves

User-space enclaves (Encl; in Figure 2) comprise a complete
user-space process.

OS integration. The key characteristic of a user-space en-
clave is its tight integration into the OS, i.e., it relies on the
OS for memory management, exception/interrupt handling
and other services provided through syscalls (e.g., file system
or network I/0). The OS schedules user-space enclaves like
normal user-spaces processes, only that the context switches
in and out of the enclave are intercepted by the SM. The
OS’s services are used by all user-space enclaves which pre-
vents code duplication. Moreover, user-space enclaves do not
contain management software, leading to smaller binaries.
Controlled side-channel defenses. In controlled side-
channel attacks, the adversary gains information about an
enclave’s execution state by observing usage of resources
managed by the OS, predominantly page tables [65,92, 101].
CURE defends against these attacks by moving the page tables
of user-space enclaves into the enclave memory. More subtle
controlled side-channel attacks exploit the fact that the en-
clave’s interrupt handling is performed by the OS [91]. CURE
also mitigates these attacks by allowing each enclave to reg-
ister trap handlers to observe its own interrupt behavior, and
act accordingly if a suspicious behavior is detected [15,79].
Limitations & usage scenarios. A user-space enclave cannot
run higher-privileged code, e.g., device drivers. Thus, all
sensitive data shared with a peripheral has to be processed
by drivers in the untrusted OS and thus, is unprotected if not
encrypted. Hence, user-space enclaves are unable to protect
sensitive services which interact with devices like sensors
or GPUs. Instead, user-space enclave are beneficial when
protecting short-living services that can rely on encrypted
data transmission, e.g., One Time Password (OTP) generators,
payment services, digital key services and many more.

5.2.3 Kernel-space Enclaves

Kernel-space enclaves can comprise only the kernel space
(Encl,), or the kernel and user space (Encls).

Providing OS services. The key characteristic of a kernel-
space enclave is its capability to run code bare-metal on a
CPU core in the privileged (PL2) software layer or even in
the hypervisor level (PL1) if available. Thus, OS services,
e.g. memory management, can be implemented inside the
enclave in a runtime (RT) component (Figure 2). This results
in less resource sharing with the untrusted OS, and thus, it is
easier to protect against controlled side-channel attacks [91,
92, 101]. Moreover, by including device drivers into the
RT, a secure communication channel to peripherals can be
established. Furthermore, kernel-space enclaves provide more
computational power since CURE allows to run kernel-space
enclaves across multiple cores. In CURE, peripherals can
either be assigned exclusively to a single enclave, by the SM,
at enclave setup or shared between different enclaves and/or

the OS. The peripheral’s internal memory is flushed by the
SM when (re-)assigned to a new entity to prevent information
leakage [49,72,107].

Protecting virtual machines. CURE’s ability to include the
kernel space into the enclave allows the construction of en-
claves that encapsulate complete virtual machines (VMs).
VMs are not self-contained but rely on memory and periph-
eral management services provided by a hypervisor, which
makes the VM enclave vulnerable to controlled side-channel
attacks [38,51]. CURE mitigates this by moving the VM
page tables into the enclave memory and including unmodi-
fied complete drivers into the enclave to avoid dependencies
on the untrusted hypervisor [16, 17]. As for other kernel-
space enclaves, peripherals are temporarily assigned to VM
enclaves by the SM. Again, before a peripheral is reassigned,
its internal memory is sanitized by the SM.

Limitations & usage scenarios. Sensitive services can be
ported to kernel-space enclaves without changing them. How-
ever, in contrast to user-space enclaves, an enclave RT needs
to be added which increases the binary size, adds development
overhead and increases the memory consumption. Moreover,
the CPU cores selected for the enclave first have to be freed
from pending processes, detached from the OS and the RT
booted on them. Nevertheless, kernel-space enclaves are
required when protecting services which heavily rely on pe-
ripheral communication, e.g., authentication services using
biometric sensors, ML services collecting input data over
sensors or offloading computations to accelerators, DRM ser-
vices or in general services which require secure I/O.

5.2.4 Sub-space Enclaves

In CURE, enclave trust boundaries can be freely defined which
allows to construct fine-grained enclaves that only include
parts of the software residing in a privilege level, therefore
called sub-space enclaves.

Shrinking the TCB. Sub-space enclaves are especially ap-
pealing when constructed in the highest privilege level (PLO)
of the system (Encly in Figure 2). In CURE, sub-space en-
claves are used to isolate the SM from the firmware code to
protect against exploitable memory corruption vulnerabilities
that might be present in the firmware code [24]. Moreover,
hardware countermeasures, described in Section 5.3, are used
to prevent the firmware code from accessing the SM data or
hardware primitives. Ultimately, this minimizes the software
TCB in CURE, as opposed to other TEE architectures that rely
on a software TCB containing all code in the highest privilege
level, i.e., EL3 (ARM) or the machine level (RISC-V), e.g.,
TrustZone [3], Sanctuary [10], Sanctum [22], Keystone [48].

5.3 Hardware Security Primitives

To provide CURE’s customizable enclaves, new security prim-
itives (SP) are needed in hardware. Our SPs augment the
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Figure 3: CURE Security Primitives (SPs), added at core

register files (SP1), system bus (SP2) and shared cache (SP3).

register file of each CPU core (SP1), the system bus (SP2)
and the shared cache (SP3). Figure 3 shows where CURE’s
SPs integrate in a modern system as assumed in Section 2.

5.3.1 Defining Enclave Execution Contexts (SP1)

Enclave ID register. In CURE, enclave execution contexts
are defined using IDs, which are saved in a register that is
added to every CPU core of the system (SP1). At any point
in time, the value of this register, called eid (enclave ID)
register, indicates which enclave a core currently executes.
The eid registers are set by the SM during enclave setup,
teardown and any context switch in and out of an enclave,
thus, enabling flexible configuration of enclave boundaries.
Whenever an enclave is set up, the SM assigns it an unused
ID. In contrast to the constant enclave labels L,,. (Sec-
tion 5.2.1) , which are globally unique, an enclave ID is only
valid as long as the enclave is loaded in memory. When an
enclave is torn down, the ID gets freed and can be assigned
to the next enclave. Constant IDs are only assigned to the
SM and all untrusted software. The number of different IDs
(V) that can be stored in eid defines how many enclaves can
run in parallel (Section 5.2.1). However, the total number of
enclaves that can be deployed is not restricted.
Propagating the enclave ID. The enclave ID is propagated
through the entire system and used in the SPs to perform
access control on the system resources. We incorporate the
enclave ID in the bus protocol between the CPU, shared cache
and system bus. In protocols like AMBA AXI4/ACE [54],
the de facto on-chip communication standard, no protocol
extensions are required since the bus channels provide op-
tional user-defined signals which can be utilized to transmit
the enclave ID in bus transactions. In our CURE prototype,
we extend the TileLink protocol [80] by an enclave ID signal,
which we describe in more detail in Section 6.

5.3.2 Access Control on the Bus (SP2)

In order to isolate enclaves and assign peripherals to them,
access control mechanisms need to be implemented in hard-

ware. As described in Section 2, the system bus represents
the central gateway of a computer system that connects bus
parents (CPU or DMA devices) with bus childs (peripherals
or the main memory) and routes all their transactions. CURE
leverages this centralization and further extends it to perform
access control on parent-child transactions (SP2 in Figure 3).
Incorporating carefully crafted access control at the system
bus, with latency and performance in mind, reduces the over-
all hardware costs significantly.

Enclave memory isolation. One key task of a TEE architec-
ture is enforcing strong isolation of the enclave code and data
in the main memory. In CURE, this is achieved by performing
access control in the arbiter logic in front of the main memory
chip, as shown in Figure 3. This requires adding new registers
and control logic to the already existing arbiter, which can
only be configured (over MMIO) by the SM to assign memory
regions to enclaves. Whenever the CPU requests access to a
memory address, the arbiter uses the enclave ID signal, which
is sent within the bus transaction, to verify if the enclave
currently executing is allowed to access the memory region.
At access violation, the memory access is prevented and an
interrupt is triggered by the system bus, which is handled
by the SM. Incorporating the required logic for this access
control at the main memory side, instead of the CPU side,
reduces the additional registers and logic required, which
would otherwise be duplicated for every CPU core, as we
show in Section 8.1.

Assigning peripherals to enclaves. The CPU interacts with
peripherals over peripheral memory mapped to the CPU ad-
dress space (MMIO). In CURE, access control on the MMIO
memory is performed using registers and control logic added
to the arbiter at the peripheral bus. The SM assigns the MMIO
region of every peripheral either to one enclave exclusively or
to multiple enclaves/OS by configuring the arbiter registers.
Access control is then performed in the added hardware logic
based on the enclave ID signal of a bus transaction. Incor-
porating this logic at the CPU side would have increased the
hardware costs because of per-core duplication.

DMA protection. Peripherals which share large amounts of
data with the CPU typically access the main memory directly
over a DMA controller. CURE must protect enclaves from
DMA attacks [63,76] and also allow to assign DMA-capable
peripherals to enclaves. To achieve this, CURE adds registers
and control logic to the decoder in front of every DMA de-
vice. These registers define which memory regions the DMA
device is allowed to access. Whenever a DMA device gets
assigned to an enclave, the SM updates the device registers
accordingly. Adding the required logic at the child arbiters
would increase the hardware costs because enclave IDs would
also need to be assigned to the DMA devices which would
result in additional logic for ID comparison.

By assigning dedicated memory regions to an enclave and a
DMA-capable peripheral, and by assigning the MMIO mem-
ory regions of that peripheral exclusively to the enclave, CURE
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achieves an enclave-to-peripheral binding. Since neither the
OS nor any other enclave can access the memory regions over
which the bound enclave and peripheral communicate, no
encryption or authentication schemes are required.

5.3.3 On-Demand Cache Partitioning (SP3)

CURE’s enclave management (in Section 5.2.1) mitigates side-
channel attacks on core-exclusive resources, such as the L1
cache, by flushing all such structures at every enclave context
switch. Nevertheless, this still leaves enclaves vulnerable to
cross-core attacks on the shared last-level cache [36, 39, 102].
However, vulnerability to these sophisticated attacks depends
on whether the enclave code performs memory accesses de-
pendent on sensitive data. While algorithms and implementa-
tions can be constructed leakage-resilient [2,68], this is not
directly applicable to any given application code, and thus, we
provide on-demand per-enclave cache partitioning in CURE.

Security guarantees for cache side-channel resilience can
be provided in hardware by either enforcing strict partition-
ing of resources across the different enclaves [42,58,97] or
deploying randomization-based cache schemes [59,60]. Nev-
ertheless, these schemes either reduce the cache resources
available for an enclave or incur additional access latency.
This results in an inevitable performance overhead on the
protected as well as unprotected software. The additional
security guarantee, along with its resulting performance cost,
is not usually required for all enclaves and largely depends
on the use case.

Thus, CURE addresses these diverse enclave requirements
and incorporates on-demand way-based partitioning of the
shared cache (SP3 in Figure 3). This allows that cache par-
titioning is enabled and configured individually and dynami-
cally for each enclave at setup and runtime. Each cache way
can be allocated exclusively to an enclave. Access control
on the enclave ID signal of the memory access transaction
is used to permit the enclave to access (read/write or even
evict) a cache way, thus ensuring strict isolation. However,
when this cache isolation is not enabled for an enclave, only
read/write access control on the owner enclave of each cache
line is performed. This defends against a privileged adversary
that can access cached enclave memory by mapping it into its
own address space. As each cache line is owned by a single
enclave at any point in time, access control on cache lines
corresponding to shared memory between enclaves and the
OS is a challenge. To address this, the SM flushes relevant
cache lines at context switches between an enclave and the
OS while managing shared-memory communication.

We deploy way-based partitioning because it is the least ex-
tensive in terms of hardware modifications. However, CURE
provides the necessary infrastructure and mechanisms (by
identifying each enclave and propagating this throughout the
system bus and shared cache) to incorporate more sophisti-
cated side-channel-resilient cache designs [25,74,99].

Main Memory
[ Fw [sm] [Enc,| [Enc, | [Encs| |
0x0 OXFFFF

D Security Monitor (Trusted)
[ Firmware (FW)

[ operating System
[ Isolated Enclave Regions

Figure 4: Physical memory layout of our CURE prototype.
6 Prototyping CURE on RISC-V

While CURE is architecture-agnostic and can be ported to
other ISAs, we prototype it here for a RISC-V system based
on the open-source Rocket Chip generator [4]. We describe
next our CURE instantiation, followed by details on the im-
plemented enclave types and hardware security primitives.

RISC-V System-on-Chip platform. We build a RISC-V
System-on-Chip (SoC) using the Rocket Chip generator [4].
For prototyping, we equipped the SoC with multiple in-order
Rocket cores, in line with prototyping efforts in related work
[22]. Each Rocket core has one hart (representing a hardware
thread), an own MMU, BTB, TLB and L1 cache. The SoC
also contains a system bus which connects the cores to system
peripherals (over the peripheral bus) and system main mem-
ory. We integrate a shared L2 cache [81] between the system
bus and the main memory. A DMA device is connected to the
system bus as a bus parent. As a result, this SoC resembles
our assumed platform shown in Figure 3, except that the L2
cache is integrated as a last-level cache after the system bus.

We implement our prototype on this SoC aiming to main-
tain minimum hardware and no additional latency. We use 4
bits to represent the enclave ID, i.e., our prototype can dis-
tinguish 16 (N) enclaves, where ID 0 is statically assigned
to the OS, ID 0xF to the Security Monitor (SM) and ID 0xE
to the firmware (explained in Section 6.2.2). The remaining
13 IDs can be freely assigned to enclaves. We assign one
continuous physical memory region to each enclave, resulting
in the memory layout shown in Figure 4. We choose to assign
only one region per enclave to simplify our prototype and
minimize the induced hardware overhead. The CURE design,
however, also allows for multiple continuous regions per en-
clave. The SM and firmware memory regions are adjacent
since they are both deployed as part of the bootloader [29].
All regions not assigned to an enclave, SM or the firmware,
belong to the OS. Supporting more enclaves in parallel is
possible if the additional hardware overhead is acceptable.
Software stack. The Rocket core supports three software
privilege levels (user, supervisor and machine). Hypervisor
support is still a work-in-progress [28] and thus, we do not
consider it in our prototype. In the supervisor level, we use
an OS consisting of a modified Linux LTS kernel 4.19 with
a Busybox 1.29.3 environment. We add a custom kernel
module which performs security-uncritical tasks during the
enclave setup. We implement the SM in the machine level as
a sub-space enclave to separate it from the firmware which
runs in the same privilege level.
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Enclave Memory Layout
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Figure 5: CURE enclave memory layout consisting of the
code & data pages, page tables (PT), the enclave state (State)
and the shared memory (Shared).

Cryptographic underpinnings. In the implemented CURE
prototype, we use Ed25519 [71] as the digital signature
scheme for the signing and verification of the enclave sig-
nature Sig,,.; and the integrity report used for remote attes-
tation, as described in Section 5.2.1. Thus, SK;/PK; and
SK,/PK, are Ed25519 key pairs. The public key certifi-
cates Certy and Cert), are implemented in the X.509 format.
In our CURE prototype, the certificate chains Chaing and
Chainy, required to verify Certy and Cert), are, for the sake
of simplicity, represented by two Ed25519 public keys. As
described in Section 5.2.1, Chainp is included in the SM,
whereas Chaing is required at the service provider. The en-
clave state S,,.; and enclave data communicated with the OS
are protected through authenticated encryption, using the keys
Kyl and Ky, respectively. We use AES-GCM from libtom-
crypt 1.18.2. [52] as the authenticated encryption scheme and
include it in the SM. Moreover, we also add it to our imple-
mented enclaves, such that the enclaves can create additional
keys. Consistent with Section 5.2.1, the SM holds a meta-
data structure D,y for each enclave which contains Certp,
Sigencl> Kener and Sepcr, Whereas K,y 1s part of S,

6.1 Software CURE Enclaves

Our CURE prototype implements user-space enclaves, kernel-
space enclaves and sub-space enclaves and thus, fulfills re-
quirement FR. 1 (Section 4.2). In the following, we describe
the enclave memory layout and give implementation details
on each enclave type.

6.1.1 Enclave Memory Layout

In our prototype, each enclave is assigned a continuous physi-
cal memory region which is allocated during enclave setup
using Linux’s Contiguous Memory Allocator (CMA). The
enclave memory layout is shown in Figure 5. At the lowest
address, the enclave code and data pages are loaded by the
OS. The enclave page tables are only stored in the enclave
memory while the memory management is performed by the
untrusted OS. During the enclave setup, the SM loads the
enclave state S, into the enclave memory. The free memory
space is used for dynamic memory allocation. The memory
region at the highest address is used for the communication
between enclave and OS. Since our prototype allows one
continuous memory region per enclave, the shared memory
region is either assigned to the communicating enclave or to

no enclave, which automatically assigns the region to the OS.
When the enclave is set up, the address of the shared memory
region is communicated to the OS via the return value of the
SM call. The enclave is informed by storing the address in-
formation on the stack of the enclave. The size of the enclave
state and shared region can be freely set, we set them to 64
bytes and 4 KB, respectively.

6.1.2 Security Monitor

We implement the SM as a sub-space enclave (Encs in Fig-
ure 2) separated from the firmware in memory (Figure 4),
which is enforced by the hardware security primitives. How-
ever, this leaves the firmware with access to the security-
critical machine level registers eid, which we added, and
mtvec, which holds the base address of the trap vector that
the core jumps to after an interrupt. To prevent the firmware
from configuring these registers, we implement a hardware
mechanism that ensures that the eid and mtvec registers can
only be written to when the eid register is set to the SM ID
(0xF). The eid register is, in turn, set to 0xF by the hardware
when performing a context switch to machine mode that traps
in the SM.

6.1.3 User-space Enclaves

Memory management. Since the memory management of
the user-space enclave (Enc; in Figure 2) is performed by
the untrusted OS, we include the enclave page tables in the
enclave memory, to prevent page table based attacks [65,92,
101]. During enclave setup, the OS creates the page tables
exactly as for a normal process. However, the OS turns off
demand paging and maps all code and data pages to prevent
page faults during enclave execution. The page tables are
then handed to the SM which verifies their validity. Moreover,
the SM verifies that the supverisor address translation and
protection (satp) register, which holds the address of the root
page table, points into the enclave memory. Subsequently,
the page tables are copied to the enclave memory. Once the
enclave is setup, the OS cannot alter the page tables anymore.
When the dynamic allocation of memory leads to a page fault,
the OS creates a new page table entry and passes it to the SM
which includes it into the page tables.

Syscalls. Our prototype provides enclaves which can use OS
services, e.g., file or network I/0, over Linux syscalls which
trap in the SM. We include AES-GCM into the enclaves to
encrypt and integrity-protect sensitive data shared with the
OS, using K,,,- Enclaves are always exited through the SM
which is enforced by clearing the machine exception dele-
gation (medeleg), machine interrupt delegation (mideleg),
supervisor exception delegation (sedeleg) and supervisor
interrupt delegation (sideleg) registers during enclave setup.
During run time, the enclave can register custom trap han-
dlers which are called by the SM before switching to the
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OS after an interrupt. Thus, the enclave can observe its own
interrupt behavior and detect suspicious behavior caused by
interrupt-based side-channel attacks [15,91].

6.1.4 Kernel-space Enclaves

Our CURE prototype supports kernel-space enclaves with and
without user space (Enc; and Enc, in Figure 2). We use an
Linux LTS kernel 4.19, which currently on RISC-V does not
support a suspension mode, as the enclave RT.

Allocating resources. When an enclave is set up, the custom
kernel module unmounts the driver modules of all periph-
erals requested by the enclave. Then, the SM performs the
security-critical tasks of the enclave setup, as described in Sec-
tion 5.2.3. When the enclave binary is successfully verified,
the kernel module shuts down the core(s) reserved for the
enclave using the Linux hotplugging mechanism. Next, a
switch to the SM is performed which jumps to the entry point
of the enclave RT in order to boot the RT on all reserved cores.
At enclave shutdown, the SM performs the cleanup, and all
freed cores are reintegrated into the OS. Then, the kernel
module remounts the driver modules.

Enclave-OS communication. Since our CURE prototype al-
lows one memory region per enclave, access to a shared region
needs to be requested at the SM which then assigns the shared
region to the requesting party (sender). Once the sender is fin-
ished accessing the shared region, the SM assigns the shared
region to the receiver and notifies the receiver about new data
in the shared region using an inter-processor interrupt. In
contrast to the user-space enclave, only external interrupts
are trapped in the SM during kernel-space enclave execution
which is enforced by configuring the medeleg and sedeleg
registers during the enclave setup. All interrupts triggered by
the enclave cores are handled by the RT.

6.2 Hardware Security Primitives

We describe next, how we modify the Rocket Chip to imple-
ment CURE’s hardware security primitives (Section 5.3).

6.2.1 Extending the TileLink Protocol

We modify the Rocket core such that on every memory access,
the eid register value is sent as part of the issued bus transac-
tion. This also includes transactions issued by the PTW (page
table walker) during the page table walk when performing
address translations. Thus, if a malicious enclave modified
its own page tables to point to a memory region outside of
the enclave memory, the PTW transactions are blocked by the
access control mechanisms on the system bus.

TileLink [80] is the default bus protocol used on the Rocket
Chip to connect on-chip components. TileLink specifies five
channels (2 - E). When connecting a parent to the system bus
which contains an internal cache, all five channels are needed
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Figure 6: CURE prototype implementation using Rocket Chip.

to implement the TileLink coherence protocol (TL-C). When
a parent does not require cache coherency, only the A and D
channels are needed (TL-UL/UH). In our RISC-V SoC, the
Rocket cores and the DMA devices are connected over TL-C
since they contain L1 caches.

We extend the TileLink protocol by a 4-bit eid signal to
propagate the enclave ID. The eid signal is only added to
the A and C channels which transport the memory read and
write transactions from the parents (CPU and DMA devices)
to the system bus and childs (peripherals and main memory),
respectively. All other channels remain unmodified.

6.2.2 System Bus Access Control

We implement CURE’s access control mechanisms in the sys-
tem bus by adding registers and control logic at the memory
and peripheral arbiters and the ports connecting DMA devices.
The hardware changes are shown in Figure 6, exemplary for
a system containing two cores, one DMA device and multiple
peripherals. All newly added components are connected to
the control bus of the system and thus, are configurable by
the SM over MMIO. We omit the control bus in Figure 6
for the sake of clarity. Our implementation supports enclave-
to-peripheral binding and thus, fulfills FR. 4. Moreover, in
contrast to related work [20, 23], all access control is per-
formed in parallel to arbitration, thus, guaranteeing execution
in a single clock cycle without incurring additional latency.
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Performing access control. The added registers hold mem-
ory ranges defined by a 32-bit base address (Addr) and a
32-bit mask (Mask), and are used by the control logic to per-
form access control on every memory transaction using the
eid and address signals. Access control is only performed
on channels with a parent-to-child direction (channels A and
C). At access violation, the transaction is redirected (with
all-zero data) to an unused, zero-initialized memory region.
Thus, all forbidden transactions write/read zeros to/from the
unused memory region. An adversary enclave might fill L1
with malicious data which could get flushed with SM priv-
ileges during enclave context switch. To prevent this, we
modify the core such that on every switch to the SM, the L1 is
flushed before the eid register is set. We connect the system
bus to the peripheral and interrupt bus. This allows the SM to
configure the added registers and control logic, and trigger an
interrupt upon access violation which is handled by the SM.
Memory arbiter. We add 15 registers to the memory arbiter,
one for each enclave (13), the SM and the firmware. Each
register defines the memory region assigned to each execu-
tion context. For the enclaves, the control logic verifies that
transactions only target the assigned region. For the SM, no
access control is performed. The OS is allowed to access all
regions except the ones specified in registers of the arbiter.
The firmware is allowed to access its own and the OS regions
which is why a static ID needs to be assigned to the firmware.
Peripheral arbiter. We add two registers per peripheral to the
arbiter of the peripheral bus. One covers the MMIO region of
the peripheral, and the other 32-bit register contains a bitmap
that defines read and write permissions for every enclave.
DMA port. We add a register at every port which connects
a DMA device. In CURE, a DMA device is exclusively as-
signed to a single enclave at one point in time. In our pro-
totype, a DMA device accesses the main memory but not
other peripherals. If specific use cases, e.g. PCI peer-to-
peer transactions [67], must be supported, additional registers
need to be added to specify multiple allowed memory regions.
Together with the peripheral arbiter, this fulfills FR.2.

6.2.3 L2 Cache Partitioning

For cache side-channel resilience, we implement way-based
flexible cache partitioning for the shared L2 (last-level)
cache [81] in our prototype. We leverage the eid-extended
TileLink memory transactions to detect when an enclave is-
sues a cache request.

Configurable partitioning. We implement two modes of
partitioning to allow enclaves to individually enable cache
side-channel resilience. The first mode CP-BASIC performs
rudimentary access control where each enclave is only permit-
ted to access (hit) its own cache lines, but is free to evict cache
lines from other ways. The second mode CP-STRICT provides
more stringent security guarantees by allocating exclusively
one or more ways (across all cache sets) to the pertinent en-

clave. Only these cache ways can be accessed by the enclave
to store or evict cache lines. This provides strict isolation
between the cache resources of the different enclaves, thus,
effectively blocking cache side-channel leakage, but reduces
the cache resources available for the enclave. Depending on
the enclave service requirements, the partitioning mode can
be configured by the SM independently for each enclave at
setup and during the enclave lifetime, thus, fulfilling FR. 5.

Access control. We extend each cache entry metadata with
a 4-bit 1ine-eid register encoding the owner enclave of the
cache line, as shown in in Figure 6. We extend the cache
lookup logic to generate a hit only when both tag as well as
eid match for CP-BASIC, as opposed to usual tag matching.

To support CP-STRICT, the cache ways directory is also
extended with a 1-bit register excl that identifies whether
each way is owned exclusively by an enclave, as well as a
4-bit eid register that identifies the owner enclave. The cache
controller logic is augmented with a register-based lookup
table that is indexed by the eid. It encodes with a single
mode bit whether the corresponding enclave has CP~STRICT
enabled and its allocated cache way indices. In CP-STRICT,
cache hits are only allowed in these cache ways.

Eviction and replacement. The L2 cache we use imple-
ments a pseudo-random replacement policy where any way
is selected pseudo-randomly for eviction. We modify this to
only select a way from the subset of ways allowed for each
enclave. For enclaves with CP-STRICT, only ways exclusively
allocated to it are used. For enclaves with CP-BASIC, all ways
(except ways allocated exclusively to other enclaves) are used.

Per-enclave cache allocation. Unallocated way indices
are maintained in a register vector. If an enclave with
CP-STRICT enabled requests to exclusively own cache ways,
the required ways are allocated if available and below the
allowed maximum per enclave.

An inherent drawback of this partitioning technique is how
the limited number of cache ways directly constrains the num-
ber of simultaneous enclaves that can have CP-STRICT en-
abled. However, this is only an implementation decision
for our particular prototype, where more sophisticated cache
designs [25,74,99] can be integrated into CURE.

7 Security Considerations

To protect from a strong software adversary, our instantiation
of CURE must fulfill the security requirements introduced
in Section 4.1. In the following section, we discuss how
our prototype meets the requirements SR. 1, SR.2, and SR. 4,
whereas we show the fulfillment of SR. 3 in Section 8.

7.1 Hardware Security Primitives (SR. 2)

The enclave protection is enforced by hardware SPs at the
system bus and L2 cache which are configured over MMIO.
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After the system is powered on and on every switch to the ma-
chine level, the CPU jumps to the trap vector whose address
is stored in the mtvec register. The trap vector is included
into the SM such that the boot process and context switches
are overlooked by the SM. The mtvec register is assigned to
the SM by coupling the access permission to the SM enclave
ID (stored in the eid register) which is also assigned to the
SM. The eid register is set by hardware during the context
switch into the machine level. During boot, the SM assigns
the SP MMIO regions exclusively to its own enclave ID.

7.2 Enclave Protection (SR.1)

Atrest, the enclave binaries are stored unencrypted in memory.
However, during enclave setup, the SM verifies the binaries
using digital signatures. Moreover, the L1 is flushed during
setup/teardown to remove malicious or sensitive data from
the cache. The communication between enclaves and the OS
is controlled by the SM, so is the delegation of the shared
memory address. Hardware-assisted hyperthreading is dis-
abled during enclave execution. The enclave state, which is
loaded during the setup process, is persistently stored by the
SM using authenticated encryption, either in RAM as part of
the SM state or evicted to flash/disk, and additionally rollback
protected. During teardown, the SM removes all enclave data
from the memory.

The SPs in hardware perform access control on physical
addresses at the system bus. Thus, CURE protects from ad-
versaries in privileged software levels (PL2 - PL0) and from
off-core adversaries, e.g. peripherals performing DMA. The
enclave data cached in the L1 during run time is protected
by flushing it on all context switches. Data in the L2 cache
is protected by assigning cache lines exclusively to enclaves.
Since no enclave (except the SM), has elevated rights on the
system, CURE also protects from malicious enclaves.

7.3 Side-channel Attack Resilience (SR. 4)

Cache side-channel attacks. Side-channel attacks which tar-
get data in core-exclusive cache resources, i.e., in the L1 [11],
the BTB [50] or the TLB [31], are prevented by the SM by
flushing the resources on all context switches. Side-channel
attacks targeting data in the shared L2 cache [36,39, 102] are
prevented through strict way-based cache partitioning.
Controlled side-channel attacks. Side-channel attacks on
user-space enclaves which target page tables [65, 92, 101]
are prevented by including the page tables into the enclave
memory and by mapping all enclave code and data pages
before execution. The SM verifies the page tables and the
base address of the root page table stored in the satp register.
The hardware SPs prevent the page table walker (PTW) from
performing forbidden memory access during the page table
walk. Side-channel attacks exploiting interrupts [91] can be
mitigated using trap handlers (Section 5.2.2).

CURE provides cryptographic primitives in the user-space
enclaves to encrypt and integrity-protect data shared with
the OS. However, using OS services over syscalls always
comprises a remaining risk of leaking meta data informa-
tion [2,77] or of receiving malicious return values from the
OS [13]. In user-space enclaves, these attacks must be mit-
igated on the application level inside the enclave, e.g., by
using data-oblivious algorithms [2, 68] or by verifying the
return values [13]. None of these attacks pose a threat to
kernel-space enclave since all resources are handled by the
enclave RT. However, on VM enclaves, the second level
page tables need to be protected, as with user-space enclaves.
Interrupt-based attacks can again be mitigated with custom
trap handlers. No additional countermeasures are needed to
protect the SM since the SM does not use a virtual address
space or OS services and handles its own interrupts.
Transient execution attacks. The discovered transient exe-
cution attacks either mistrain the branch predictor [14,43,45],
rely on information leakage [89] or malicious injections [90]
on the L1 cache, or rely on resources shared when using
hardware-assisted hyperthreading [12, 78, 90, 93, 94]. By
disabling hyperthreading during enclave execution (or alter-
natively assigning all threads to the enclave) and flushing
core-exclusive caches, CURE protects enclaves against the
known transient execution attacks.

8 Evaluation

In the following section, we systematically evaluate our CURE
prototype. First, we quantify the software and hardware mod-
ifications required to implement CURE. Next, we evaluate
the performance of CURE’s enclaves using microbenchmarks,
and the overall performance overhead of CURE using generic
RISC-V benchmark suites.

8.1 System Modifications

Component LOC
Linux Kernel 375 (modified)
Custom Kernel Module 200
Security Monitor 544
SM Crypto-Library 2586

Table 1: Lines of code required to implement CURE. SM
Crypto-Library refers to the crypto library (part of tomcrypt)
included in the Security Monitor.

Software changes and TCB. Our implementation of CURE
on RISC-V comprises of a slightly modified Linux LTS kernel
4.19, a custom kernel module, and our software TCB (SM).
In Table 1, the lines of code (LOC) are shown for each of
the components, which indicate that the software changes
required to implement CURE are minimal. Moreover, the
SM only consists of around 3KLOC of code, whereas most
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(82.62%) of the SM code consists of cryptographic primi-
tives. Because of its minimal size, formal verification of the
SM is possible [44], thus, fulfilling SR.3. Note that since
CURE isolates the SM in an own sub-space enclave, CURE
can achieve a smaller TCB size than other RISC-V security ar-
chitectures [22,48,98] which include all code in the machine
level, i.e., the firmware code, in the TCB. In our implemen-
tation, the firmware code consists of 3286 LOCs. Thus, by
isolating the SM in a sub-space enclave, we managed to cut
the software TCB in half, where the actual management code
is even less (15.56%).

Protecting a sensitive service in a user-space enclave re-
quires to add a small custom library (10KB) to the service
binary. For the kernel-space enclaves, management code (the
enclave RT) must be added in addition. In our prototype, we
use the Linux LTS kernel 4.19 as the RT which increases the
size of the service binary by 3MB. Custom RTs can further
decrease this kernel-space enclave overhead. However, kernel-
space enclaves will always have an increased binary size and
memory consumption compared to user-space enclaves.
Hardware overhead. We evaluate the hardware overhead of
our changes by synthesizing the generated Verilog descrip-
tions using Xilinx Vivado tools targeting a Virtex UltraScale
FPGA device. Table 2 shows a breakdown of the individ-
ual area overhead of the different modifications required to
implement CURE. Overhead is represented in look-up ta-
bles (LUTs), the fundamental programmable logic blocks of
FPGA devices, and registers.

Configuration LUTs Registers
g Overhead (+%) | Overhead (+%)
Baseline 61,097 28,012

+211 (0.4%)
Access control extensions
+5,276 (8.6%)

TileLink extension +110 (0.4%)

Main memory +1,055 (3.8%)

1 MMIO peripheral +248 (0.4%) +107 (0.4%)

1 DMA device +112 (0.2%) +72 (0.3%)
On-demand cache partitioning

w/ L2 cache (baseline) +30,232 +11,549

w/ L2 cache partitioned | +516 (1.7%") +214 (1.8%*)

Table 2: Hardware overhead breakdown in LUTS and registers.
Baseline setup consists of 2 Rocket cores without L2 cache.
*Overhead relative to the L2 cache (baseline).

We compare in Table 2 with a baseline configuration of 2
in-order Rocket cores (each with L1 cache). Extending the
TileLink protocol throughout the system bus incurs a minimal
overhead of 105 LUTSs per core relative to the baseline (211
LUTs for 2 cores). This overhead includes propagating the
eid in tandem with memory access transactions through the
MMU of every core, and is thus replicated for every additional
core in the system.

In contrast, the rest of our modifications for performing ac-
cess control at the system bus, including enclave-to-peripheral

Normal User-Space  Kernel-Space

Measurement Process Enclave Enclave
Setup: 0.741 23918 413.726
Binary Verification - 21.824 218.975
Others 0.741 2.094 194.750
Teardown: 0.065 23.531 103.517
Memory Cleaning - 9.384 50.206
Others 0.065 14.147 53.311
Context switch to OS 0.008 0.025 53.308
Context switch from OS 0.078 0.084 194.747
Dynamic memory allocation 0.003 0.020 0.005
OS communication - 0.020 0.049

Table 3: CURE performance overhead compared to a normal
process on microbenchmarks in milliseconds.

binding, are independent of the number of cores. Incorpo-
rating logic to perform access control for every MMIO pe-
ripheral utilizes an additional 248 LUTs, and 112 LUTSs per
DMA device. Each represent below 0.5% overhead relative
to a dual-core baseline SoC. Integrating an L2 cache into our
baseline setup utilizes an additional 30,232 LUTs. Applying
our on-demand way-based partitioning to this cache costs only
516 LUTs and 214 registers, which is 1.8% overhead relative
to the L2 cache logic utilization itself, and 0.5% relative to the
entire SoC. Our area overhead evaluation results demonstrate
that the hardware modifications required to achieve our fine-
grained and customized enclave protection in CURE indeed
incur minimal area overhead on both single- and multi-core
architectures, thus fulfilling FR.3.

8.2 Performance Evaluation

We evaluate the performance of CURE using our FPGA-based
setup coupled with cycle-accurate simulators. We conduct
our experiments using micro and macro benchmarks for user-
space and kernel-space enclaves, and compare them to un-
modified user-space processes. We conduct 10 runs for each
of the experiments.

8.2.1 Microbenchmarks

For microbenchmarks (Table 3), we measured important key
aspects individually: setting up and tearing down an enclave,
context switching with the OS, dynamic memory allocation,
and communication via shared memory. We implement an
application which performs the required tasks (without any
additional logic) and run it as a normal Linux process, a user-
space enclave and a kernel-space enclave (single core). The
enclave setup is triggered by a host app in Linux which is the
only purpose of the app. The enclave binary sizes therefore
mainly correspond to the overhead produced by the enclave
types, i.e., 10KB for the user-space enclave and around 3MB
for the kernel-space enclave.

For the enclave setup, our results show that most of the
time (91.3% for user-space, 52.1% for kernel-space enclaves)
is spent on binary verification. The Others measurement
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Figure 7: CURE performance overhead (in percent) on macro
benchmarks rv8 and CoreMark relative to a normal process.

contains all remaining steps of the setup process, e.g., loading
of the enclave binary, enclave configuration, flushing of the
TLB and L1 cache and jumping into the enclave. During our
evaluation, we use 32KB 8-way set associative L1 data and
instructions caches and a TLB with 32 entries. The setup
of the kernel-space enclave is more complex and includes
additional setup steps, namely, freeing the core from pending
processes, detaching the core from the OS, and booting the RT.
In the teardown phase, zeroing the memory produces 39.9%
of the overhead for the user-space and 45,7% of the overhead
for the kernel-space enclave). The cleaning is more time
consuming for the kernel-space enclave because of the larger
enclave memory region. The Others measurement contains
additional steps, e.g., exiting the enclave and flushing the
TLB and L1 cache. In the kernel-space enclave case, the core
must additionally be rebooted.

As the RT in our prototype does not support a suspen-
sion mode (keeping the enclave in memory), we emulate the
context switch to the OS by performing a teardown without
zeroing memory, and the context switch from the OS by per-
forming a setup phase without verifying the enclave binary.
Suspending the enclave and restoring it should be faster than a
regular shutdown and boot, thus, this represents a worst-case
approximation. The context switching measurements also
contain the overhead for flushing the TLB and L1 cache, for
which we measure 28 cycles and 3141 cycles, respectively.

As new entries to the page tables need to be verified by the
SM, user-space enclaves have a higher overhead for dynamic
memory allocation. In the kernel-space enclave case, all
page tables are included in the enclave memory and thus, do
not need to be verified. During communication, the OS can
directly access a process’s memory, whereas the user-space
enclave needs to copy the data to be shared to the shared
memory region. The kernel-space enclave additionally has to
request the shared memory from the SM, and the OS needs
to be notified by the SM using an inter-process interrupt.

8.2.2 Macrobenchmarks

To evaluate the performance overhead in realistic scenarios,
we used three different benchmarking suites that stress single
cores, multi-core setups with two cores under test, and how
the enclaves influence an OS under load. Furthermore, we

measure the performance impact of our L2 cache partitioning
by assigning 1/16 of the L2 cache to the enclave under test.

Single-core benchmarks. For single-core performance, we
evaluated CURE with the RISC-V benchmark suites rv8 [75]
and CoreMark [26], which are commonly used for TEE ar-
chitectures [22,48]. The results depicted in Figure 7 are
normalized to a normal user-space process. We measured
a geometric mean of 19.70% for user-space enclaves and
15.33% for kernel-space enclaves for the performance over-
head. As shown in Table 3, kernels-space enclaves have an
increased setup time which however, amortizes with longer
enclave run times. Outliers like aes, norx and gsort are
memory-intensive workloads that perform a large number
of context switches to the OS, mainly for dynamic memory
allocation. Performing context switches and dynamic mem-
ory allocation is more expensive for the user-space enclave
since the SM must verify newly created page table entries
and copy them to the enclave memory. During one run, we
count 24,601 syscalls for aes, 24,602 syscalls for norx and
48,846 syscalls for gsort. We also measure the overhead
for flushing the TLB and L1 on every context switch which
is, however, only necessary for the user-space enclave. The
flushing induces only a small overhead which makes up for
1.03%, 1.48% and 1.21% of the overall overhead for aes,
norx and gsort, respectively.

Load/Cores Normal Kernel-Space
Process Enclave

30/1 1.49 1.49 (+-0.00%)
30/2 0.75 0.78 (+4.00%)
500/1 27.65 28.82 (+4.23%)
50072 14.42 14.60 (+1.25%)
1000/1 56.00 55.28 (-1.29%)
1000/2 27.64 27.81 (+0.62%)
1500/1 83.62 83.64 (+0.02%)
1500/2 41.82 42.62 (+1.91%)
2000/1 111.70  111.99 (+0.26%)
2000/2 56.00 57.62 (+2.89%)
GeoMean - +0.9%

Table 4: Kernel-space enclave performance on multi-core
stress-ng benchmark in seconds.

Multi-core benchmarks. Since CURE allows to assign mul-
tiple core to a kernel-space enclave, we evaluated CURE also
on the dedicated multi-core benchmark stress-ng [41]. The
results in Table 4 show that multi-core kernel-space enclaves
are practical by achieving almost the same performance as
normal processes.

Influence on OS. We stress the OS by running CoreMark,
while starting an enclave in parallel. For the user-space en-
clave we use a single core, while two cores are needed for the
kernel-space enclave, for which we simulate the suspension
mode as in the microbenchmarks. For one core, the CoreMark
running on the OS is slowed down by 0.519s (1.56%). For
two cores with only one call after setting up the kernel-space
enclave, the OS is slowed down by 0.792s (4.23%), showing
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Cycles # for 16/16 | Cycles # for 1/16 | Overhead

Benchmark .
ways (baseline) ways (worst-case) (+%)
rv8.aes 29,754,631,670 32,175,733,155 8.1%
rv8.miniz 42,040,536,353 45,063,752,315 7.2%
rv8.norx 30,899,386,564 32,702,249,193 5.8%
rv8.primes 21,731,621,683 21,770,731,965 0.18%
rv8.qsort 24,355,792,115 25,280,228,818 3.8%
rv8.dhrystone 19,865,586,529 20,289,555,571 2.1%
rv8.bigint 65,512,466,917 71,487,944,568 9.1%
CoreMark 394,664,199 402,293,814 1.9%
GeoMean - - 3.09%

Table 5: Performance impact of L2 cache strict way-based par-
titioning for kernel-space enclaves on different benchmarks.

that the kernel-space enclave has a higher performance impact
on the OS than the user-space enclave. Based on these results,
we demonstrate that CURE also fulfills FR.4 and achieves a
moderate performance overhead.

L2 cache partitioning. We evaluate the performance impact
of partitioning the L2 cache (CP-STRICT mode) for kernel-
space enclaves and show our results in Table 5. For our
cycle-accurate experiments, we configure the core with 64KB
8-way set-associative L1 data and instructions caches and
2048KB 16-way set-associative shared L2 cache. The im-
pact of way-based cache partitioning on performance is very
application-dependent (besides the caches configuration and
caches and main memory access latencies), as demonstrated
by our experiments where the performance overhead ranges
from a little under 0.2%, as for the prime benchmark, to a
little over 9% for the bigint benchmark, for example. We
measure a geometric mean of 3.09%. We note that the over-
heads reported are performance hits where the baseline is a
best-case scenario where the only workload utilizing the cache
resources (all 16 ways of the L2 cache) is the kernel-space
enclave under test. Furthermore, we observe that performance
significantly improves once more than 1 way is allocated per
enclave, which is the likely scenario for enclaves that run
applications with larger working sets and can benefit more
from increased L2 cache resources.

9 Related Work

The existing works mostly related to CURE are TEE archi-
tectures which focus on modern high-performance computer
systems. In contrast to capability systems or memory tagging
extensions [30, 82, 88, 95, 100], TEE architectures protect
sensitive services in security contexts (enclaves) against priv-
ileged software adversaries. We do not further discuss TEE
architectures focusing on embedded systems [8,47,66,98].

We compare CURE to other TEE architectures in Table 6.
All presented architectures provide a single type of enclave
which, on an abstract level, resemble either the user-space or
kernel-space enclaves provided by CURE.

Intel SGX [64] offers user-space enclaves on Intel proces-
sors. The untrusted OS provides memory management and

other OS services, e.g. exception handling, to the enclaves.
SGX does not protect against cache side-channel [11,50] and
controlled side-channel attacks [91,92, 101]. Many exten-
sions to SGX were proposed in order to mitigate side-channel
attacks [1,2,7, 15,69, 79], however, these solutions are all
ad-hoc approaches that do not fix the underlying design short-
comings of SGX, but instead leverage costly data-oblivious
algorithms [1,2,7], or exploit not commonly available hard-
ware in an unintended way [15,79].

Sanctum [22], which also provides user-space enclaves, ad-
dresses both, cache side-channels through page coloring, and
controlled side-channels by storing the enclave page tables in
the enclave memory, like CURE. However, page coloring is
not practical as it influences the whole OS memory layout and
cannot be efficiently changed at run time. CURE’s cache par-
titioning instead allows dynamic assignment of cache ways,
and also mechanisms to mitigate interrupt-based side-channel
attacks. Sanctum and SGX only provide user-space enclaves
which are inherently limited as they cannot provide secure
I/O, but only protect from simple DMA attacks.

Similar to SGX, AMD SEV [38], which isolates complete
VMs in the form of kernel-space enclaves, does not consider
any side-channel attacks. VM data in the CPU cache is pro-
tected by an access control mechanism relying on Address
Space Identifiers which, however, does not protect against
cache side-channel attacks. As the memory management and
I/O services are provided by the untrusted hypervisor, SEV
is also vulnerable to controlled side-channel attacks [65] and
cannot provide secure peripheral binding [51].

ARM TrustZone [3] separates the system into normal and
secure world, a single kernel-space enclave which does not
rely on the OS and thus, is protected from controlled side-
channel attacks. TrustZone does not provide cache side-
channels protection, only by using additional hardware [106].
Further, TrustZone’s major design shortcoming is provid-
ing only a single enclave, thus, sensitive services cannot be
strongly isolated with TrustZone, hence, access to TrustZone
is highly limited in practice by device vendors. Extensions
building upon TrustZone mostly tried to enable multi-enclave
support for TrustZone [10, 18,33, 85] with workarounds that
either rely on ARM IP [10], block the hypervisor [18,33], or
massively impact performance [85]. Since multiple enclaves
were not considered in the TrustZone design from the begin-
ning, even the proposed extensions cannot provide binding
peripherals directly and exclusively to single enclaves.

Keystone [48] provides kernel-space enclaves on RISC-
V. Moreover, Keystone uses a cache-way based partition-
ing against cache side-channel attacks, comparable to CURE.
However, Keystone provides a coarse-grained cache ways
assignment per CPU core, whereas CURE assigns cache ways
to enclaves with freely configurable boundaries. Thus, the
Keystone design is limited to a single enclave type which
prevents Keystone from isolating the firmware from the ac-
tual TCB and demands adapting the sensitive services to the
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Enclave Type Dynamic Cache Controlled Side- Enclave-to-Peripheral

Name Extensions User-Space Kernel-Space Sub-Space | Side-Channel Resilience | Channel Resilience Binding
SGX [64] [1,2,7,15,69,79] [ ] () (@) D O O
Sanctum [22] R [ ] O (@) [)) [ ] O
SEV(-ES) [38] - ©) [ ©) ©) @) o
TrustZone [3] | [10,18,27,32,33,57,85,106] o) [ ] (@] D [ ()}
Keystone [48] - O [ ] O [ ] [ ] @)
CURE D D D ° D °

Table 6: Comparison of major TEE architectures with respect to provided enclave types, dyn. cache-side channel and controlled-
side channel resilience, and enclave-to-peripheral binding, i.e., MMIO/DMA protection with exclusive enclave assignment.
@ indicates full support, © for support with limitations, O for no support, * if resilience can only be achieved through extensions.

predefined enclave. Moreover, in contrast to CURE, Keystone
does not support enclave-to-peripheral binding.

10 Conclusion

We presented CURE, a novel TEE architecture which provides
strongly-isolated enclaves that can be adapted to the function-
ality and security requirements of the sensitive services which
they protect. CURE offers different types of enclaves, rang-
ing from sub-space enclaves, over user-space enclaves, to
self-sustained kernel-space enclaves which can execute priv-
ileged software. CURE’s protection mechanisms are based
on new hardware security primitives on the system bus, the
shared cache and the CPU. We instantiate CURE on a RISC-V
system. The evaluation of our prototype indicates minimal
hardware overhead for the security primitives and a moderate
overall performance overhead.
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Abstract—Emerging applications, like cloud services, are demanding
more computational power, while also giving rise to various security
and privacy challenges. Current multi-'many-core chip designs boost
performance by using Networks-on-Chip (NoC) based architectures.
Although NoC-based architectures significantly improve communication
concurrency, they have thus far lack adequate security mechanisms
such as enforceable process isolation. On the other hand, new security-
aware architectures that protect applications and sensitive services in
isolated execution environments, i.e., enclaves, have not been extended
to provide comprehensive protection for NoC platforms. These enclave-
based architectures (i) lack secure enclave-device interaction, (ii) cannot
include unmodifiable third-party IP, or (iii) provide flexible enclave
memory management.

To address these design challenges, we introduce a new hardware
security primitive, the Distributed Memory Guard, and design the first
security architecture that protects sensitive services in NoC-based en-
claves. We provide evaluation of this reference architecture and highlight
the fact that one can design a scalable (i.e., NoC-based) and secure
(i.e., enclave-based) architecture with minimal hardware complexity and
system performance overhead.

Index Terms—Secure Processor Design, Enclave, Network-on-Chip,
Memory Protection

I. INTRODUCTION

Today, around 60% of the global internet traffic is caused by cloud
streaming services [1]. In order to cope with the high demand for
computational power, chip vendors incorporate increasing numbers
of processors on a single chip. When connecting a large number
of heterogeneous processing units, e.g., CPUs, GPUs or specialized
hardware accelerators, traditional bus architectures typically deployed
on System-on-Chips (SoC) become impractical. Thus, new chip
designs use scalable bus architectures to connect processing units,
memory and devices. These Network-on-Chip (NoC) designs are
deployed by processor manufacturers such as Intel and AMD, as
well as by e.g., companies licensing the ARM Neoverse designs.

Many cloud services process sensitive data, such as, privacy-
sensitive user data, intellectual property of companies, or even
sensitive governmental data. Therefore, adequate security measures
are required to protect the sensitive data and computations. One
prominent approach is to use enclave security architectures. In en-
clave architectures, hardware security mechanisms, either controlled
by microcode or a small software component, are used to isolate
sensitive applications in secure execution contexts, called enclaves.
In contrast to sandboxing approaches (e.g., [2], [3]), enclave archi-
tectures provide strong isolation capabilities that even protect from
compromised system software, e.g., the operating system kernel or
hypervisor. The high demand for such security solutions led to the
development of AMD’s Secure Encrypted Virtualization (SEV) [4]
and Intel’s Software Guard Extensions (SGX) [5]. On RISC-V and
ARM, several proposed solutions exist, most notably, Sanctum [6],
Sanctuary [7], Keystone [8] and CURE [9].

However, currently deployed enclave security architectures cannot
protect real-world sensitive services in a comprehensive way since
they either i) do not enable a secure interaction between enclaves
and devices (secure 1/O) which is required in use cases such as
Machine Learning as a Service where computations are offloaded to
ML accelerators, ii) do not support the integration of unmodifiable
hardware IP blocks from third-party vendors (which is common
practice on ARM and RISC-V systems) into the chip design since
they are not compatible with the enclave architecture, or iii) do not
provide a flexible management of enclave memory comparable to
what operating systems offer, which prevents supporting a larger
number of enclaves in parallel.

Recent enclave security architectures [8], [9] tackle the afore-
mentioned challenges i) and ii) by moving their hardware secu-
rity mechanisms out of the processing units, in contrast to other
solutions [4], [5], [6]. This enables enclaves to execute privileged
software and to isolate complete processing units from the rest of the
system. However, both approaches only provide modest management
capabilities for the enclave memory and thus, require allocating
contiguous memory regions at runtime. As we show in Section II,
this is very difficult since physical memory quickly becomes heavily
fragmented. Reserving a large memory region at boot time is also not
practical since this requires prior knowledge about the enclave mem-
ory requirements. Furthermore, for multi-enclave systems, even the
reserved region of memory will become fragmented. In summary, the
existing approaches cannot be efficiently used to protect unmodified
memory-intensive and security-sensitive services.

Our goal and contributions. In this paper, we present a novel
hardware security component, called the Distributed Memory Guard
(DMGQG), designed to bring enclave computing capabilities to NoC-
based platforms. The DMG is placed between every processing unit
and router in the NoC and performs access control on memory
transactions using a set of rules maintained by a trusted software
component. Since the rules apply to physical memory addresses,
privileged software execution in enclaves (and thus secure 1/0) can
be supported. In order to tackle high memory fragmentation, we
design rules that can specify non-contiguous memory regions. When
allocating memory for an enclave, this flexible rule design is used to
assign a subset of the free memory pages to the enclave. By having
the flexibility to allocate enclave memory within the fragmented free
memory instead of clearing out large contiguous regions, we can i)
improve enclave performance since we decrease the added latency
of enclave memory allocations, ii) use the same physical memory
zone for both enclaves and non-sensitive applications by providing
a strong separation in physical memory. As a result, when using the
DMG as the underlying security mechanism, enclave architectures
can be designed, which, in contrast to related work, facilitate the
protection of service workloads in strongly-isolated enclaves, even in
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the presence of a highly fragmented memory space.
In summary, our contributions are as following:

o We analyze the cloud service benchmark CloudSuite [10], its
sources of fragmentation, and show that memory fragmentation
is essentially unavoidable on long-running systems.

o« We design and implement the Distributed Memory Guard
(DMG), a novel hardware security component which performs
NoC-level access control on outgoing memory requests. We
evaluate the DMG’s novel rule design and compare against the
RISC-V Physical Memory Protection (PMP) unit.

o We design a novel secure enclave architecture for NoC-based
computing platforms based on the DMG security component.

II. THE PROBLEM OF PHYSICAL MEMORY FRAGMENTATION

Physical memory fragmentation occurs when free memory is parti-
tioned into many small separate sections, and the system is unable to
satisfy large contiguous allocations, even though a large percentage
of memory is in fact unused. We next describe our investigation of
physical memory fragmentation on systems which run realistic cloud
services, and highlight why this is an often overlooked but non-trivial
problem for enclave security architectures.

Memory allocation fundamentals. Typically, main memory is
split into several zones dedicated to e.g., the kernel and user-space
applications. Each zone has an allocator that maintains a logical tree-
like data structure that maintains the state (used / free) of each page of
physical memory. In Linux, this structure is the buddy allocator [11],
which maintains 11 linked lists of pages of different sizes, with the
order-0 list containing pointers to 4KiB pages, while order-n lists
contain pointers to pages of size 2" x4KiB. When an allocation
of 4KiB is requested by a process, the buddy allocator checks for
available order-O pages. If not found, it will progressively check
the larger order lists. If an order-1 page is available, it will split
the order-1 page into two order-0 pages, and allocate one of them
to the process, while keeping the second page for later use. The
largest available order that the buddy allocator keeps is order-10,
corresponding to 4MiB of contiguous physical memory, hence why
the Linux kmalloc can allocate at most 4MiB of memory.

Physical memory fragmentation. To investigate how memory
fragmentation impacts enclave memory management, we run an
experiment where we monitor the memory fragmentation of a freshly
restarted Linux server over the course of several hours. The system
has 2 Intel Xeon E5645 processors and 32GiB of RAM and runs
Ubuntu 20.04 and the 5.4.0-54 kernel. We run realistic cloud service
workloads on the system using the CloudSuite [10] benchmarks that
represent real-world cloud services. We keep the server at low to
medium load, and make sure that the system never utilizes more than
70% of available RAM. As our experiments show, fragmentation will
still occur even on moderately utilized systems.

In Figure la, we show a series of distributions of available pages
collected by periodically reading /proc/pagetypeinfo. His-
tograms were collected at 2-minute intervals, where each histogram
shows the fragmentation of physical memory. The total area under
the histogram represents all free memory, and each bar shows what
percentage of free memory resides in pages of the specified size. We
observe that after booting (blue histograms at top of figure), most of
free memory resides in order-10 pages, which correspond to 4MiB-
large contiguous memory regions. As the system gets warmed up and
memory gets more fragmented, it runs out of order-10 and order-9
pages, despite still having plenty of available free memory.

We also evaluate how killing applications affects fragmentation,
where at the 28-minute mark, we synchronously kill and restart
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Fig. 1: Progressive fragmentation of a system (left) and the physical
memory organization of a system over time (right).

all of the benchmark applications. We evaluate whether enough
memory will be reclaimed by the OS such that the buddy allocator
groups together the smaller fragmented pages and builds a large
number of order-10 pages. While this does happen, the system is
still more fragmented when compared to the ‘cold’ system. This
is because other running applications keep allocating memory in
parallel which is scattered throughout the fragmented memory space.
This illustrates that even best-case scenarios are insufficient to revert
physical memory fragmentation, and thus physical memory will
always remain extremely fragmented on any long-running system.

Insights into memory fragmentation. To get more insight into
memory fragmentation, we collect memory access traces of several
applications, as seen by the kernel, to reconstruct the full state of the
buddy allocator when scheduling a set of different applications. We
explore CloudSuite benchmarks as well as a set of simple handcrafted
applications that exhibit similar fragmentation, but with minimal
program complexity. Different handcrafted applications have different
behaviors, where some applications can only free the most recently
allocated memory (like a stack) or can free at random any previously
allocated memory (like a heap). We schedule these applications and
feed their allocations to our buddy allocator simulator, from which
we reconstruct the state of physical memory at every timestep. In
Figure 1b, we show an example configuration of 8 crafted applica-
tions allocating and freeing memory using a buddy allocator. Every
cell of the figure represents the occupancy of a 4KiB page at a
given timestep, where a white cell represents that the page is free,
and other colors each correspond to a different application. We can
see that initially, memory is mostly free and not fragmented, but as
applications progress memory quickly gets fragmented, despite never
being fully utilized.

Through experimentation with our simulator we conclude that:
i) heap-like programs cause significantly more fragmentation than
stack-like programs, since freeing memory from ‘the middle’ prevents
the buddy allocator from grouping the free memory with subsequent
regions, and ii) if the running programs only allocate pages of one size
(e.g., order-3 pages), fragmentation will be kept low. Only through
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interaction of programs that have significantly different allocation
sizes will memory become fragmented.

Fragmentation in enclave computing. The problem of memory
fragmentation is not new. On commodity systems, memory fragmen-
tation is countered by using a Memory Management Unit (MMU).
This introduces a level of abstraction through virtual memory, thus
hiding the fragmented physical memory space and presenting a con-
tiguous virtual memory space to user-space applications. Therefore,
several enclave architectures [4], [5], [6] perform access control at the
MMU-level within the processing units, i.e. at the virtual-to-physical
memory address translation. However, these architectures cannot
integrate unmodifiable IP blocks and accelerators whose processors
are not also similarly modified internally with compatible access
control mechanisms. Moreover, since physical memory addresses are
not protected, privileged software components, such as device drivers,
cannot be executed within these enclaves. On the contrary, more
recent architectures [9], [8] overcome these limitations by integrating
their hardware security mechanisms out of the processing units and by
applying access control mechanisms on physical memory addresses.
However, this requires that enclaves allocate a limited number of large
contiguous physical memory regions. As we demonstrate above, in
practice, memory fragmentation makes it almost impossible for mul-
tiple enclaves to allocate large contiguous memory regions along with
other running applications. While compaction (a process where the
OS relocates allocated pages and updates page table entries [12]) may
help mitigate memory fragmentation, this is not practical for memory-
intensive applications since it requires copying large amounts of
memory which incurs large performance overheads.

We consider this to be one of the most significant challenges
of such enclave architectures that has not been sufficiently and
practically addressed. Moreover, it is an even more prominent chal-
lenge when scaling enclave computing to heterogeneous NoC-based
architectures, thus motivating our work.

III. SYSTEM ASSUMPTIONS & ADVERSARIAL MODEL

In the following section, we describe our system assumptions and
the underlying adversary model.

System assumptions. The Distributed Memory Guard (DMG)
was designed for heterogeneous computing platforms which connect
a multitude of computing nodes on a single chip over a mesh
network, thereby forming a Network-on-Chip (NoC) infrastructure.
As illustrated in Figure 2, a computing node can be an on-chip
processing unit, e.g., a CPU or specialized processor or accelerator, or
a controller which connects to off-chip memory, devices or external
processing units, e.g., a graphics card. All computing nodes are
connected to the network infrastructure (consisting of routers) over
network interface (NI) components. We assume that the vendor of
the computing platform combines IP blocks from various third-party
vendors on the NoC chip, where some IP blocks cannot be modified
by the platform vendor (e.g., the ML processor in Figure 2). However,
we assume that at least one of the processing units can be modified
and adequate security mechanisms implemented such that a small
inherently trusted software component can be provided (comparable
to the trusted firmware on ARM) which has exclusive access to
the network infrastructure (routers and NIs) over Memory Mapped
IO registers. Furthermore, we assume that a memory encryption
engine [13], which is out of this paper’s scope, can be deployed
on the network interface connecting to a memory controller in order
to transparently encrypt and authenticate all data leaving the NoC.

Adversary model. The main goal of our assumed adversary is to
get access to data processed by a security-sensitive service running

on the computing platform. We assume an adversary that is able to
compromise the complete software stack on the third-party IP blocks
since they do not provide adequate security mechanisms. On the
vendor IP blocks, the adversary is able to compromise all system
software, e.g., the operating system kernel or hypervisor, except
the trusted software component. As a result, our assumed strong
adversary is able to freely start malicious privileged processes or
to issue memory transactions on the physical address level. Aligned
with related work on enclave computing [7], [9], [8], [6], we do
not consider physical attacks on the on-chip components, such as,
physical side-channel attacks [14] or fault injection attacks [15].
Moreover, we consider all hardware of the platform to be correct
and thus, exclude attacks that exploit hardware flaws [16]. We do
not consider Denial-of-Service attacks, whether performed on the
computing nodes or the network infrastructure since such attacks do
not leak sensitive data. Moreover, we stress that side-channel attacks
on the bus architecture [17] as well as on cache structures inside of
a processing unit [18], [19] are not in scope of this paper. These
problems have been addressed in several works such as [20], [21].

DRAM Device Graphic
Ctrl. Ctrl. Card

[ Computing Node

[0 Network Interface

i ML . Router
:Processor :

Third-party IP block

Fig. 2: Heterogeneous computing platform connecting multiple com-
puting nodes over network interfaces with a mesh network of routers.

IV. THE DISTRIBUTED MEMORY GUARD

Protecting physical memory on NoC platforms requires rethinking
where protection boundaries should be drawn since not all processing
units on the NoC can be extended with adequate security mechanisms.
Thus, we propose that the NoC should incorporate the responsibility
of preventing illegal memory accesses. In this work, we present
a design where the NoC fabric is equipped with a new security
primitive, called the Distributed Memory Guard (DMG), which
enforces physical memory protection on every node in the network.
This secure NoC validates communication entering and leaving the
network, allowing designers to incorporate unmodifiable IP blocks
without sacrificing security. In the remainder of this section, we
discuss why the existing access control mechanisms are not flexible
enough and present our design of the pattern-based DMG rules. In
sections V-B and V-C we provide details on the DMG architecture
and how the trusted computing base configures its rules.

A. The Challenge of NoC-level Access Control

One of the main challenges when performing access control on
the NoC level is providing a flexible mechanism to assign physical
memory regions to enclaves in the presence of memory fragmenta-
tion. As we show in Figure 1b, even if a warm system has plenty
of available memory, when an enclave requests an allocation, the OS
cannot provide it with a contiguous region of memory. Approaches
that rely on the RISC-V Physical Memory Protection (PMP) provide
a control mechanism where one PMP rule specifies one contiguous
memory region. When used while assigning memory regions from
fragmented physical memory to enclaves, multiple PMP rules need
to be created. This does not scale, and our experiments show that even
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Fig. 3: DMG rule architecture (a) high-level and (b) hardware level.

small programs require thousands of PMP rules, while the RISC-V
standard prescribes a maximum of 64 PMP registers.

Defining large contiguous enclave memory zones at boot time is
also not practical. While isolating enclave memory into a separate
zone can prevent user-space programs from fragmenting the enclave
zone, this approach only works when the system has one active en-
clave. With multiple enclaves sharing a memory zone, fragmentation
once again becomes an issue. Moreover, choosing the right size for
the enclave memory zone would require knowledge about the number
of enclaves that will run in parallel on the system and their memory
consumption, which is unrealistic in practice. Therefore, in this work,
we propose a new type of flexible access rules that do not necessarily
specify contiguous memory regions, but can ‘fit in’ and protect a
subset of free pages in a heavily fragmented memory space.

B. The Pattern-based DMG Rules

To protect a set of pages, memory protection rules are required to
specify that set. RISC-V PMP rules protect memory by specifying the
start of a protected memory region and its power-of-two length. We
seek, however, a method for specifying rules that is more flexible
and allows ‘gaps’, such that it can accommodate the fragmented
physical memory space. At the finest granularity, bitmaps can be
used to indicate protected / unprotected pages. Although this provides
ultimate flexibility, it scales linearly with the number of pages we
want to protect. Instead, we seek a trade-off approach that may be
less flexible but more memory-friendly.

We draw inspiration from Walsh-Hadamard Transforms (WHT),
which decompose a discrete sequence into a superposition of basis
functions called Walsh functions. The WHT can decompose a 2" bit
long binary sequence into a weighted sum of 2" binary basis vectors,
and thus can be used to specify every free page in a region of memory.
However, the WHT still do not provide a simpler representation
compared to bitmaps. Our insight is that we do not need to represent
and allocate every free page in a given region. Instead, we select to
represent only a subset of the free pages, thus allowing us to allocate
memory from a fragmented memory space while still ensuring rule
sizes scale sub-linearly with the number of pages.

In Figure 3a, we show the high-level idea of our DMG rule
architecture. At design time, we choose a number of basis functions
(matrix on the left). Then at run time, when an enclave wants to
allocate memory, the trusted software component (being the only
component with privileges to configure these rules) searches for a
code (column vector in the middle) that can specify a subset of
available free pages, while including the least amount of already
allocated pages. Any already allocated page that the code specifies

® DMG, 60% free ® PMP, 60% free
DMG, 70% free  ® PMP, 70% free
® DMG, 80% free ® PMP, 80% free
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Fig. 4: Number of allocations and compactions DMG and PMP rules
can achieve when allocating memory from a uniformly sparse array of
pages (left) and from different-sized regions of memory, with memory
50% utilized (right).

will need to be compacted. The set of pages that the code will
allocate is the matrix-vector product of the basis function matrix and
the code, where all elements larger than a code-specific threshold
(second from right column vector) are allocated. The combination of
code and threshold represent a rule which is stored in the DMG’s
rule cache (Figure 5). In Figure 3b, we show how existing rules are
enforced in hardware. When a memory request is entering the NoC,
it passes through the DMG. The DMG contains a separate circuit for
each basis function, and these circuits return a 0 or 1, depending on
whether they ‘match’ the requested address. The DMG then performs
an inner product between the code and the circuit outputs, and if
the sum is greater than the code-specific threshold, then the address
belongs to the rule and the memory request permitted.

The optimal choice of basis functions (in terms of flexibility
in specifying memory regions and hardware complexity) and the
algorithm for finding efficient codes are a topic for future work.
In this paper, we focus on evaluating whether such a memory
protection scheme is feasible. Thus, we evaluate uniformly random
basis functions, because otherwise the space of all possible binary
functions is very large. We also hypothesize that basis functions
may work well because large-enough random vectors are orthogonal,
which should increase flexibility.

In Figure 4, we show a set of experiments where we create a
uniformly random bitmap of free and used pages, and try to allocate
the largest amount of free pages possible while also compacting
the least amount of used pages. To find these rules, we use a hill
climbing algorithm that iteratively modifies the code, optimizing for
the two objectives. We report only the Pareto optimal configurations
of allocated / compacted pages that the algorithm arrives at for the
DMG and PMP rules. As we can see from Figure 4 (left), while
DMG rules are unable to find configurations that do not overlap
used pages, they require significantly less compaction, especially
when memory is more utilized and less free pages are available.
In Figure 4 (right), we see that by looking at larger regions (e.g.,
1024 consecutive pages of physical memory) we are able to find
larger rules that match these regions, albeit with a linear increase in
the number of pages that need to be compacted.

V. ENCLAVE COMPUTING IN NOC-BASED ARCHITECTURES

To enable secure enclaves on NoCs, we modify the NoC interfaces
by adding the DMG modules, and build a security-enhanced core
that in cooperation with the DMG can protect the secure execution
of enclaves. Next, we explain the architecture of both components.
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Fig. 5: High-level overview of the DMG and the enclave architecture
based on it which provides the enclaves A and B on the security-
enhanced processor and enclave C on the unmodified processor.

A. Architectural Overview

The location of the DMG on a NoC platform and its basic logic
blocks are shown in Figure 5. The main purpose of the DMG,
which is placed between each computing node and its corresponding
network interface (NI), is to control the node access to the network
using rules that specify a set of allowed memory regions. Using the
DMG as the underlying security primitive, an enclave architecture
can be setup. For this, aligned with our system assumptions detailed
in Section III, at least one of the cores must be extended with
security mechanisms (we give more details in Section V-D) that allow
to strongly isolate a trusted software component from the rest of
the system software. We call this trusted component the Security
Monitor (SM) and the extended cores security-enhanced. In contrast
to related work [4], [5], [6], the enclave architecture also supports
the integration of unmodified third-party cores in the same NoC since
the security primitive is moved out of the processor logic.

B. DMG Security Monitor (SM) and architecture

The SM represents the software Trusted Computing Base of the
system and is the only component that can configure the DMG. At
boot time, the SM performs a sequence of steps. Before loading
the OS, the SM creates a rule table in memory, which is initially
unprotected. The location of the rule table is decided at design time
and is inserted into the device tree and the DMG RTL. Then, the
SM creates the first rule that protects the contents of the rule table,
such that no other process can create, modify or delete DMG rules.

The SM creates enclaves on the system by generating DMG rules,
which assign memory regions exclusively to execution environments.
For the unmodified processor shown in Figure 5, the SM creates a
single coarse-grained enclave (Enclave C), which comprises the soft-
ware running on the processor. On the security-enhanced processor,
which includes the security extensions (Section V-D), the SM can
create fine-grained enclaves which can comprise all software pinned
to one processor core (comparable to enclaves in Sanctuary [7] or
Keystone [8]), shown as Enclave A & B in Figure 5, or enclaves
comprising a single process (comparable to enclave in SGX [5] or
Sanctum [6], not shown in Figure 5 for the sake of clarity). Whenever
an enclave is created by the SM, a unique enclave ID (EID) is
assigned to the enclave. EID is sent as part of all enclave memory
requests. Moreover, the SM creates the DMG rules to specify the
memory regions the enclave is allowed to use. Access control is
enforced by the DMGs by matching rules with the physical address
and the EID specified in the memory requests received by a DMG.
When one of the last used rules (stored in the rule cache) is matched
(rule hit), the request is permitted to enter the network. If no matching
rule is found in the cache (rule miss), the rule walker logic searches
for a fitting rule in the rule table stored in SM memory. If again

no matching rule is found, the request is rejected and an interrupt
is triggered. This interrupt is handled by the SM, which executes a
predefined access violation policy, e.g., killing the violating process.

C. DMG architecture

We show the architecture of a security-enhanced core, it’s cache,
and the NoC interface in Figure 6. All of the security-related
modifications we implement on a baseline design are shown in blue.

The first modification of the baseline design is the addition of the
DMG module, which sits between the L2 cache and the network
interface. The DMG consists of an access controller, a rule table
walker, and a rule cache. At any time, the cache feeds N most
recently matched rules into the access controller. Each rule consists
of the code, offset, threshold, rule EID, and a valid bit. The access
controller (or DMG rule checker in general) evaluates whether
outgoing memory requests match any of the cached rules, and if so,
permits these requests to enter the network interface. The rule table
walker is triggered if a match is not found. It is equipped with a CSR
register that specifies where the complete rule table is stored in SM
memory. Overall, the DMG is capable of preventing unauthorized
requests from entering the NoC. However, there is still the problem
of securing (possibly private) memory stored in the caches.

The DMG is designed to allow low-latency evaluation of rules that
are present in the rule cache. The DMG critical path contains a basis
function circuit and a threshold function, which is implemented as
a single cycle operation. When a rule miss happens (i.e., a request
does not find a match in the rule cache), the request waits until the
rule table walker walks the full rule table. If a request is found, it is
placed in the rule cache, otherwise an interrupt is raised.

D. Security-enhanced Processors

To prevent a malicious OS or process from avoiding the DMG
and reading cache memory, similarly to SGX [5] we rely on the
translation lookaside buffers (TLB). We tag TLB entries with extra
EID bits, so that processes and enclaves can only use translations
that were created specifically for them. An added benefit of tagging
the TLB is that the TLB does not need to be flushed on context
switches. However, since we rely on the OS to perform memory
management, a malicious OS could map the enclave into its own
memory space and directly read information stored in the caches. To
prevent this, we validate the TLB entries using the DMG sanitizer.
This module is identical to the access controller, with one important
distinction: instead of checking whether addresses match any of the
rules, the DMG sanitizer checks the values of the page table entries
(PTE). With this modification, if an OS attempts to create a PTE
with an address that points to enclave memory, the DMG sanitizer
will trigger an interrupt. The final modification is tagging cache lines
with a single Enclave/Non-enclave bit. This modification prevents
the OS from bypassing the TLB and directly reading cached data by
operating on the physical address space. The caches are modified so
that when the TLB is off, cache hits can occur only on cache lines
tagged as containing non-enclave data.

VI. RELATED WORK

Enclave security architectures. We group existing enclave ar-
chitectures depending on whether some of the underlying security
mechanisms must be implemented in the processor logic or not.
In the former group, Intel SGX [5] provides user-space enclaves
managed by the OS based on security mechanisms mainly imple-
mented through processor microcode and a set of hardware changes
at the page table walker which perform enclave access control during
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Fig. 6: Modifications at the DMG and security-enhanced cores.

the virtual-to-physical address translation. Academic extensions of
SGX (e.g., [22], [23]) also do not change the basic principle of how
access control is achieved in SGX. Sanctum [6], which shares many
design goals with SGX, also performs access control on the virtual
address translation, implemented with additional circuitry around the
page table walker. AMD SEV [4] extends the memory controller
by an encryption engine to transparently encrypt all data stored in
the DRAM, whereas each enclave (comprising of a virtual machine)
gets an Address Space ID (ASID) linked to a unique encryption key.
Inside the processor, access control is performed by (unmodifiable)
microcode to prevent a malicious assignment of ASIDs to enclaves.
ARM TrustZone introduces a new processor mode (secure mode)
to separate the enclave from the non-enclave data in the processor
registers and caches. Proposals based on TrustZone (e.g., [7], [24])
require the same on-core hardware extensions. Since all presented
approaches implement enclave security mechanisms in the processor
logic, unmodifiable third-party processors cannot be supported in a
NoC scenario since they would pose a security threat to the system.

In the latter group, Keystone [8] uses the PMP to perform access
control on physical memory addresses outside of the processor logic
without requiring additional on-core modifications. CURE [9], which
targets SoC-based platforms, moves access control to the system
bus which, in contrast to Keystone, enables a secure unencrypted
communication between enclaves and devices. Both approaches use
a simple rule design for access control which demands the allocation
of contiguous memory chunks which, as we show in Section 1V,
requires to move many memory pages during memory allocation.

Network-on-Chip security. NoCs security has been an active field
of research, however, many of the works focus on NoC side-channel
attacks and defenses, e.g., [20], [17], and thus have a different focus
than our work. When designing security architectures for NoC plat-
forms, some authors propose to deploy encryption engines to the NoC
to encrypt the communication between all computing nodes [25].
This is orthogonal to our work since encryption is only justifiable
when physical hardware attacks on the NoC bus are considered. The
NoC security research most related performs access control directly
at the network interface, e.g., [26]. However, all these approaches
have a coarse-grained view on the NoC platform and define complete
computing nodes as either secure or non-secure entities. Moreover,
IOMMU-like hardware components are integrated into the network
interfaces which induces a large hardware overhead on large-scale
NoC platforms. In this work, we design a more lightweight access
control component (DMG) which allows, for the first time, to enable
scalable enclave computing NoC platforms.

VII. CONCLUSION

In this work, we tackle the problem of enabling secure execution of
enclaves on NoC-based architectures. We show that physical memory
fragmentation makes executing enclaves in the same memory zone as
the rest of the system infeasible. We propose a solution that allows
enclaves to protect fragmented physical memory through flexible
non-contiguous rules. We introduce a new hardware primitive for
designing isolation-based secure architectures. This primitive, called
the Distributed Memory Guard (DMG), enables rule-based, hardware-
rooted, fragmentation-aware memory region access controls.
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Abstract— Shared cache resources in multi-core processors
are vulnerable to cache side-channel attacks. Recently proposed
defenses such as randomized mapping of addresses to cache
lines or well-known cache partitioning have their own caveats:
Randomization-based defenses have been shown vulnerable to
newer attack algorithms besides relying on weak cryptographic
primitives. They do not fundamentally address the root cause for
cache side-channel attacks, namely, mutually distrusting codes
sharing cache resources. Cache partitioning defenses provide
the strict resource partitioning required to effectively block all
side-channel threats. However, they usually rely on way-based
partitioning which is not fine-grained and cannot scale to support
a larger number of protection domains, e.g., in trusted execution
environment (TEE) security architectures, besides degrading
performance and often resulting in cache underutilization.

To overcome the shortcomings of both approaches, we present
a novel and flexible set-associative cache partitioning design for
TEE architectures, called CHUNKED-CACHE. The core idea of
CHUNKED-CACHE is to enable an execution context to “carve”
out an exclusive configurable chunk of the cache if the execu-
tion requires side-channel resilience. If side-channel resilience
is not required, mainstream cache resources can be freely
utilized. Hence, our proposed cache design addresses the security-
performance trade-off practically by enabling efficient selec-
tive and on-demand utilization of side-channel-resilient caches,
while providing well-grounded future-proof security guarantees.
We show that CHUNKED-CACHE provides side-channel-resilient
cache utilization for sensitive code execution, with small hardware
overhead, while incurring no performance overhead on the OS.
We also show that it outperforms conventional way-based cache
partitioning by 43%, while scaling significantly better to support
a larger number of protection domains.

I. INTRODUCTION

The outbreak of micro-architectural attacks has demon-
strated the crucial implications of performance-boosting pro-
cessor optimizations on the security of our computing plat-
forms [54], [1], [60], [56], [52], [65], [100], [31], [28], [27],
[58], [4], [3], [88], [68], [90], [92], [16], [17], [81], [15]. One
of the most popular features, and also the subject of many
recent attacks, are shared resources such as caches. Caches
provide orders-of-magnitude faster memory accesses and large
last-level-caches (LLCs) are usually shared across multiple
processor cores to maximize utilization.

The Problem with Caches. When a sensitive (victim)
and malicious (adversary) application run simultaneously on
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different cores and share the LLC, cache side channels can
be exploited by the adversary to leak sensitive information,
such as private keys. The timing difference between a cache
hit and miss — which is why caches are used in the first place
— is the most commonly exploited side channel to infer the
memory access patterns of a victim application [38], [99], [35],
[44], [34], [43], [46], [64], [32], [71], [36], [37], [98], [91].
In typical side-channel attacks [71], [43], [46], [64], [38], [99]
the adversary deduces the victim’s memory access patterns
by exploiting that both the victim and adversary compete for
shared set-associative cache resources, which are designed in
such a way that a larger number of memory lines are mapped
to a smaller number of cache ways/entries in each cache set.

Besides compromising cryptographic implementations [7],
[64], [71], [99], more recent attacks have had even stealthier
impact such as bypassing address space layout randomization
(ASLR) or leaking privacy-sensitive human genome index-
ing computation [34], [32], [14], [35], [36], leaving millions
of platforms vulnerable. Even trusted execution environment
(TEE) security architectures which aim to protect sensitive
services by compartmentalizing them in isolated execution
contexts, called enclaves, e.g., Intel SGX [41], [21] or ARM
TrustZone [5], have been shown vulnerable to these attacks,
thereby undermining their acclaimed privacy and isolation
guarantees [14], [83], [69], [30], [59], [101]. This is alarming
since TEE architectures are now widely deployed by major
cloud providers, e.g., Microsoft Azure, Google Cloud, Alibaba
Cloud and IBM Cloud, to offer confidential computing, where
sensitive workloads are protected in enclaves.

The Problem with Recent Cache Defenses. To mitigate
cache side-channel attacks, various approaches have been
proposed over the years. These solutions range from time-
constant cryptographic implementations [26], [25], [55] to
software- and hardware-based approaches that modify the
cache organization itself. The latter can be broadly classified
into either cache partitioning [29], [94], [51], [61], [23], [51]
or randomization-based techniques [63], [89], [77], [78], [96],
[87] that attempt to obfuscate the relationship between the
memory address and the cache location to which it is mapped.

More recently, various schemes for a randomized memory-
to-LLC mapping, such as CEASER, ScatterCache, and
Phantom-Cache [89], [77], [78], [96], [87] have been proposed
to mitigate these attacks by obfuscating the adversary’s view of
which cache lines actually get evicted. However, such defenses
continue to evict cache lines from a small number of locations
in a shared cache, thus cache set-based conflicts essentially
still occur. While these defenses were shown effective against
the eviction set construction algorithms and techniques at
the time, subsequent more efficient eviction set construction
algorithms [78] were able to undermine them. Consequently,



enhancements to these defenses were proposed [78], only to
be rendered ineffective again by yet another attack vector, e.g.,
weak low-latency cryptographic primitives [74], [10], or alter-
native attack techniques that exploited design/implementation
flaws in the proposed defenses [86].

Caught in an arms race, randomization-based defenses
remain as good as the best known attack technique at the time
and are constructed to mitigate very specific side channels
and attack strategies [12], with no future-proof and well-
grounded security guarantees. They only make the attacks
computationally more difficult, but do not address their fun-
damental root cause, i.e., sharing set-associative caches across
mutually distrusting processes. These schemes also assume that
all execution contexts require side-channel resilience without
providing mechanisms for a selective configuration of side-
channel-resilience, thus, taxing the entire system with the
resulting performance impact. In practice, however, only a
small portion of the workload is usually security-/privacy-
sensitive and requires this sophisticated security guarantee.

On the other hand, strict partitioning approaches promise
well-grounded security guarantees due to their cache isolation
across different execution contexts. However, these approaches
usually rely on conventional way-based partitioning [6], [57],
[94], [51], [23], and thus, are not fine-grained, cannot scale
with an increasing number of execution contexts and large
LLCs, or do not provide support for shared memory.

With these limitations in mind, we argue that a more
future-proof and practical approach for side-channel resilient
cache computing is to address the root cause of these at-
tacks, namely, sharing set-associative cache structures across
mutually distrusting execution contexts. Meanwhile, perfor-
mance, usability, flexibility and scalability should still be
preserved. We further observe that, in practice, cache side-
channel resilience is most prominently a concern in dedicated
security architectures, e.g., TEE security architectures. Thus,
it is crucial to develop side-channel-resilient cache designs
that cater for the security/functionality requirements of these
architectures, e.g., with integrated support for enabling the
side-channel resilience (and the performance cost) only for
specific execution contexts that require it.

Our Goals. In this work, we aim to selectively enforce
clean partitioning of the cache resources across mutually dis-
trusting execution contexts that require side-channel resilience,
such that all side channels are blocked (including stealthy
cache occupancy channels [84] which are not mitigated by
recent works [96], [23]), while maintaining the desired perfor-
mance requirements.

To address this performance-security trade-off, we propose
a new cache design for TEE security architectures, which we
call CHUNKED-CACHE, that enables each execution context or
domain to “carve” out its exclusive cache sets, if desired. These
sets essentially constitute an independent set-associative cache,
which we call the domain’s cache chunk, that this domain can
utilize exclusively but fully and efficiently, unlike in cache
partitioning, e.g., way-based partitioning. A domain can flexi-
bly request and configure 1.) whether it requires side-channel-
resilient cache utilization, 2.) for which memory regions, and
3.) the required capacity of this exclusive side-channel-resilient
cache chunk. Memory accesses by a domain that requires side-

channel-resilient cache utilization are mapped exclusively to
its cache chunk, while mainstream cache resources are freely
and conventionally utilized whenever side-channel-resilience is
not required. Enabling this on-demand flexibility per domain
practically requires addressing multiple key challenges. Firstly,
efficient design mechanisms are required to configure the
memory-to-set mapping at runtime for each domain depending
on its chunk capacity, while preserving conventional cache
behavior for the rest of the execution. Secondly, it must be
ensured that the operating system performance is not degraded
as cache sets get allocated exclusively to domains. Finally,
seamless support must be provided for shared memory between
domains to meet the security and functionality requirements of
different sensitive applications.

Our Contributions. Our main contributions are as follows:

o We present CHUNKED-CACHE, a novel cache architecture
for TEE security architectures, which enables a selec-
tive, flexible and scalable configuration of side-channel
resilient caches for execution domains, without degrading
the OS performance.

e We address the performance-security trade-off by enforc-
ing clean cache partitioning that blocks all cache side
channels by allocating exclusive cache chunks for differ-
ent domains. In doing so, future-proof and solid security
assurances are guaranteed, while still preserving perfor-
mance, functionality and compatibility requirements.

e We extensively evaluate the cycle-accurate performance
overhead of CHUNKED-CACHE for compute-intensive
SPEC CPU2017 workloads and I/O-intensive real-world
applications. We show that it outperforms shared cache
utilization in some cases, that the OS performance even
improves owing to CHUNKED-CACHE’s flexible cache
utilization, and that CHUNKED-CACHE outperforms par-
titioning (way-based) by 43% while also scaling better to
support a larger number of protection domains.

e We implement and evaluate a hardware prototype of
CHUNKED-CACHE. We show that it incurs a minimal
2.3% memory overhead relative to a 16 MB LLC, 1.6%
logic overhead relative to a single-core RISC-V processor,
and 12.3% LLC power consumption overhead.

II. CACHE ATTACKS & DEFENSES

Next, we briefly introduce recent cache side-channel at-
tacks that are relevant for our work and a summary of the
shortcomings of recent defenses that our work overcomes.

A. Cache Side-Channel Attacks

Cache side-channel attacks have been shown to consti-
tute a profound threat that underlies popular attacks such as
Spectre [54] and Meltdown [60], besides threatening a wide
spectrum of platforms and architectures [59], [64], [43], [102],
and even TEE architectures [14], [83], [69], [30], [59], [101].
The attacks usually work by provoking controlled evictions
of the victim’s cache line, such that the inherent information
leakage from the access-timing difference between cache hits
and misses can be exploited by the adversary. This can be
achieved using three main approaches:

e Access-based approaches where the target address is
explicitly accessed and flushed [38], [99], [35], [44], [34].



e Conflict-based approaches where the adversary triggers
a controlled cache contention in the same cache set of
the target address to evict the corresponding victim cache
lines [71], [43], [46], [99], [64], [98], [24], [32], [71],
(371, [91], [7], [11].

e Occupancy-based approaches [84] where the adversary
observes an eviction of its own cache lines and uses this
information to infer the size of the victim’s working set.

B. Recent Defenses and their Shortcomings

Various defenses against side-channel attacks have been
proposed, focusing on access-based and conflict-based attacks.

Side-channel Resilient Implementation. This aims at
implementing algorithms, e.g. cryptographic algorithms, in
a time-constant (thus side-channel-resilient) fashion [42],
[8]. Time-constant algorithms vary between hardware plat-
forms [19] and require considerable effort that is not general-
izable and scalable for all software.

Attack Detection. Other approaches aim to detect attacks
in progress by observing hardware performance counters (e.g.,
on cache miss rates) [18], [72] and Kkilling the suspicious
process. However, being based on heuristics, attacks can only
be discovered with a certain probability and no guaranteed
protection is provided. Moreover, some attacks have been
shown to not cause an abnormal cache behavior [35].

Noisy Measurements. Another group of defenses aims to
impede a successful attack by preventing the adversary from
performing precise time measurements, €.g., by restricting the
access to timers [71], [73], [66], by injecting noise into the
system [93], [40] or deliberately slowing down the system
clock [39], [67]. However, workarounds have been found to
create timers [82] or to perform attacks without relying on
timers [24]. Moreover, such defenses cannot protect TEE
architectures since they assume a strong adversary that can
compromise the OS kernel and circumvent such restrictions.

Cache-level Defenses. Other approaches tackle the side-
channel problem directly where it originates, i.e., at the cache
level. These defenses fall under one of two paradigms: 1.) ran-
domized cache line mapping to make the attacks computation-
ally impractical [89], [77], [78], [96], [87], [95], [63], [62]
or 2.) cache partitioning to provide strict isolation [29], [50],
[101], [61], [22], [33], [103], [47], [97], [57], [6], [94], [51],
[95], [23]. We discuss the works most related to CHUNKED-
CACHE in more detail in Section VII.

Randomization-based defenses cannot provide comprehen-
sive future-proof security guarantees, e.g., advances in attack
strategies and minimal eviction set construction techniques,
besides alternative attack techniques have been shown to
undermine such defenses [78], [12], [75], [74], [86]. Moreover,
many rely on cryptographic primitives which have been shown
vulnerable to cryptanalysis, while deploying more secure prim-
itives would further degrade performance [10], [74].

Cache partitioning defenses provide strict resource isola-
tion which allows to give solid security guarantees on side-
channel protection. However, existing partitioning defenses
suffer from high performance penalties, restrictive and in-
flexible cache utilization [95] and their inability to scale
with a larger number of protection domains [94], [51], [33].

Several approaches do not directly cater for the use of shared
libraries [29], [94], are architecture-specific [47], [97] or do
not defend against occupancy-based attacks. Memory page
coloring approaches [22], [50], [29] are impractical since they
require invasive modifications of the memory management of
commodity software and cannot sufficiently support Direct
Memory Access (DMA). Most importantly, existing partition-
ing defenses to date apply their side-channel cache protection
for the entire execution workload, impacting overall system
performance, which is not even required in most scenarios.

To fundamentally address all these shortcomings, we
propose a modified cache microarchitecture, which we call
CHUNKED-CACHE, that provides strict, yet configurable par-
titioning across the mutually distrusting execution domains.
For each domain, CHUNKED-CACHE carves out and iso-
lates an exclusive cache share only as the domain requires.
This effectively mitigates all interference across domains,
thus, defending against even stealthy cache occupancy attacks
unlike recent cache defenses, while activating side-channel
resilience only for sensitive execution domains that require
it. All other execution domains can freely utilize mainstream
cache resources at the same performance or even improved
performance than conventional non-secure cache sharing.

III. SYSTEM & ADVERSARY MODEL

In the following section, we describe our assumptions
regarding the system and adversary model.

A. System Model

CHUNKED-CACHE targets computing systems which im-
plement a TEE security architecture and contain a set-
associative cache architecture. In the following, we first present
our standard assumptions regarding the cache architecture,
followed by our assumptions on the TEE security architecture
which are aligned with existing academic [22], [57], [13], [6]
and industry solutions [41], [45], [5].

Cache Architecture. In CHUNKED-CACHE, we assume a
typical modern set-associative cache architecture with multiple
cache levels, where some cache levels are core exclusive
(typically L1 and L2) and others shared between multiple cores
(L3), whereby the L3 can be a sliced cache, e.g., sliced Intel
LLCs. While CHUNKED-CACHE can be deployed to provide
partitioning for smaller L1 and L2 caches in principle, we
assume, however, that core-exclusive caches are flushed at
context switching (similar to most recent TEE architectures [6],
[22], [57]), and thus, that CHUNKED-CACHE is deployed
for the last-level L3 cache. Moreover, we assume that the
cache controller can be configured via dedicated configuration
registers, in line with typical platforms.

TEE Architecture. We assume that the computing systems
which deploy CHUNKED-CACHE implement a TEE architec-
ture. TEE architectures already have established mechanisms
for protecting sensitive code in compartmentalized execution
contexts called enclaves or Isolated Domains (I-Domain), as
we refer to them in this work. All non-sensitive code which
does not require enhanced protection is consolidated in a
Non-Isolated Domain (NI-Domain). The domains are also
each assigned a unique identifier (domain ID). The separation
between the I-Domains and the NI-Domain is enforced by



access control mechanisms already implemented in the TEE
architectures, e.g., at the MMU in Intel SGX [41] or Sanc-
tum [41], at the system bus in CURE [6] or by the Physical
Memory Protection (PMP) unit in Keystone [57]. The access
control mechanisms are either configured by microcode [41],
[45] or by a small software component which consists only
of a few thousand lines of code (to be formally verifiable)
and which runs in the highest software privilege level of the
system [22], [57], [13], [6], [5]. We refer to this component as
a trusted software component. The trusted software component
is also responsible for all other security-sensitive operations,
e.g., assigning the domain IDs, and, in the case of CHUNKED-
CACHE, configuring our novel protection mechanisms in the
cache controller which we describe in detail in Section IV.

Although I-Domains are security-sensitive, they might still
require to share data with another domain, e.g., to enable com-
munication with the operating system. Thus, TEE architectures
typically provide the possibility to mark parts of an I-Domain’s
memory as shared, whereby this information is again managed
by the trusted software component. In many TEE architectures,
e.g., TrustZone [5], CURE [6] or AMD SEV [45], security-
relevant metadata, which is required to perform access control,
is sent as part of every memory request. For CHUNKED-
CACHE we assume the same, namely, that the domain ID of the
domain issuing a memory access request and the information
whether the requested memory address is shared or non-
shared, are sent within the memory request.

B. Adversary Model

Since we focus on the deployment of CHUNKED-CACHE
on systems with TEE architectures, we assume the same
strong adversary model where the operating system kernel and
hypervisor are untrusted [22], [57], [13], [6], [41], [45], [5].

With regard to cache side-channel attacks, we assume the
adversary has access to the CHUNKED-CACHE specification
and is able to mount access-based and conflict-based side-
channel attacks, which are the most sophisticated and applica-
ble cache attacks (cf. Section II-A), to leak information about
a sensitive execution domain (I-Domain). Since the adversary
is also able to control the OS kernel, we assume a worst-case
scenario where an adversary can easily mount the described at-
tacks, i.e., has knowledge about the CHUNKED-CACHE design
and specs, and knows the virtual to physical address mapping
of the victim domain. Moreover, the adversary can mount
attacks from all privilege levels (except the highest privilege
level that contains the trusted software component), has access
to precise timing measurements and eviction instructions (e.g.,
clflush), can attack from the same CPU core executing
the victim domain or a different core (cross-core), freely
interrupt the victim domain and even keep the system noise to
a minimum. In contrast to related work [89], [77], [78], [96],
[87], we also consider the stealthier cache occupancy-based
attacks (cf. Section II-A). Collision-based attacks [11], which
exploit cache collisions at the victim caused by the victim’s
own cache utilization, are, aligned with related work, kept out
of scope. Collision-based attacks have not been widely shown
and are very specific to particular software implementations
(e.g., table-based).

Apart from cache side-channel attacks, an adversary who
compromises the OS kernel has full control over the memory

management and thus, can easily map physical memory pages
of a victim domain into its own memory. This allows an
adversary to perform rogue cache accesses to sensitive data
directly without the need of a cache side channel.

In line with related work [29], [94], [51], [61], [23], [95],
[63], [89], [77], [78], [96], [87], we do not consider physical
attacks on caches, e.g., physical side-channel attacks [53],
fault injection attacks [9], and attacks that exploit hardware
flaws [88], [48], [76]. We do not consider denial-of-service
attacks from a security point of view. However, to avoid the
performance impact on the OS, CHUNKED-CACHE ensures
that a certain amount of cache resources are always available
to the OS (described in Section IV). Based on our system
model (Section III-A) , we assume that the adversary cannot
compromise the trusted software component.

IV. CHUNKED-CACHE DESIGN

We first describe the high-level idea of CHUNKED-CACHE,
a novel cache microarchitecture that provides flexible and on-
demand assignment of cache resources to execution domains
(Section [V-A). We follow with a detailed explanation of our
design (Section IV-B) and the required cache tag store and
cache controller modifications (Section [V-C).
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Fig. 1. Computing system with TEE architecture and CHUNKED-

CACHE as the shared last-level cache.

A. High-Level Design

In Figure 1, we show how CHUNKED-CACHE is inte-
grated as the last-level cache in a computing system which
implements a TEE architecture, aligned with our system
model detailed in Section III-A. Figure 2 steers the focus
to the design of CHUNKED-CACHE itself and illustrates its
architecture abstractly. As described in Section II1-A, all TEE
architectures provide built-in mechanisms to protect sensitive
code in Isolated Domains (I-Domains), whereas non-sensitive
code is running in a Non-Isolated Domain (NI-Domain).

Each active domain (NI-Domain and I-Domains) is
uniquely identified by an ID: DID. The operating system
(OS) and all workloads which do not require protection (and
are combined in the NI-Domain) are assigned the DID O by
default. Every I-Domain can request exclusive cache resources
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exclusive cache chunk allocated on-demand.

of desirable capacity, forming the domain’s exclusive cache
chunk, that is only utilized by the owner domain. The NI-
Domain utilizes the cache sets which are not exclusively
allocated to I-Domains, which we call mainstream cache sets.

Each I-Domain requests its dedicated cache chunk con-
sisting of the required number of cache sets, e.g., I-Domain 1
in Figure 2 requested 4 sets. Thus, at I-Domain 1 setup, 4 avail-
able (unallocated) sets are located in the cache (sets with global
IDs 8-11 here) and allocated to I-Domain 1 such that they form
its cache chunk. The allocated sets are mapped to I-Domain 1’s
chunk set IDs 0-3, and they are used to exclusively cache all
and only memory accesses issued by I-Domain 1. Enabling
each I-Domain to request its desired cache chunk capacity
exclusively provides strict partitioning and completely isolates
its cache utilization on-demand. Besides enabling selective
cache-based side-channel resilience, this also allows that each
[-Domain acquires the performance that corresponds to the
cache capacity it has requested, without any competition from
other workload. In contrast to partitioning schemes [61], [57],
[6], [94], [51] that provide each domain with only 1 or 2 ways
within each set of the full cache structure, CHUNKED-CACHE
also partitions the cache but more efficiently. CHUNKED-
CACHE carves out a full cache chunk (with all its ways per
set) of configurable capacity for the I-Domain and configures
all its memory accesses to be mapped to the cache chunk, thus
promising maximum and unshared utilization of the allocated
cache chunk. We show in Section VI that CHUNKED-CACHE
provides better performance and enhanced scalability than
partitioning schemes.

By allowing each I-Domain a custom and configurable
cache chunk capacity on-demand, in contrast to fixed al-
location, CHUNKED-CACHE enables an adaptive security-
performance trade-off in the cache microarchitecture. On one
hand, non-sensitive workload can be allowed to freely utilize
the shared mainstream cache resources. On the other hand,
if side-channel resilience is a concern, a cache chunk with
default capacity can be allocated to each I-Domain without any
further intervention from the developer. Only if the developer
requires to further optimize the performance of the workload

in a particular I-Domain, then the cache chunk capacity (its
number of sets) can be accordingly calibrated, i.e., assigning
an I-Domain more cache resources if affordable/available.

B. Design Details of CHUNKED-CACHE

In the following, we discuss the key design goals and
challenges of CHUNKED-CACHE, and the mechanisms we
propose to achieve them.

Configurable Per-Domain Isolation Modes. One of our
key design goals for CHUNKED-CACHE is to support config-
urable cache isolation modes that provide different security
guarantees, thus catering for different use cases and their
requirements. In line with the design paradigm of TEEs, it
is not reasonable to assume that all workloads require cache
isolation and side-channel resilience. Thus, in CHUNKED-
CACHE, we provide 2 different ISOLATION MODES that each
I-Domain can selectively configure for the workload it protects:
1.) MAINSTREAM-CACHE MODE: where cache isolation and
side-channel resilience is not a security requirement, and thus,
the I-Domain can utilize the mainstream cache. However,
the cached [-Domain data must still be protected from ma-
licious OS accesses. 2.) EXCLUSIVE-CACHE MODE: where
cache isolation is required since side-channel resilience is a
security requirement and thus, an exclusive cache chunk is
required by this I-Domain. The latter mode is configured for
[-Domain 1 and I-Domain 2 shown in Figure 2. In addition
to the ISOLATION MODE, the I-Domain can also configure its
SHARED MEMORY settings, i.e., if it requires to share memory
regions (and thus cache lines) with the OS, e.g., when using
OS services. To cache shared memory, the mainstream cache
that the OS uses is utilized. Typically, the developer of the
workload decides which ISOLATION MODE an I-Domain uses
and identifies which memory regions need to be shared, which
is on par with the requirement in TEE architectures where the
developer must identify the security-sensitive parts of the over-
all workload [41], [5], [22]. If a developer is not sure whether
cache side-channel attacks are a threat, the EXCLUSIVE-
CACHE MODE should be selected out of caution. At setup,
an I-Domain configures: 1.) the desired ISOLATION MODE for
its cache utilization and 2.) its SHARED MEMORY regions if
required. This metadata is securely configured by the trusted
component (as shown in Figure 1). The ISOLATION MODE
is communicated to the cache controller at domain setup,
whereas the SHARED MEMORY information is transmitted at
every memory request, aligned with our assumed system model
(Section III-A).

Mainstream Cache vs. Shared Memory Support. When
an I-Domain is in MAINSTREAM-CACHE MODE, it uses the
mainstream cache sets also used by the OS (DID 0). To prevent
a malicious OS from mapping the memory of an [-Domain in
its own memory space and accessing it directly in the cache,
CHUNKED-CACHE requires that cache lines are tagged with
the domain ID DID. The hardware mechanisms integrated into
the CHUNKED-CACHE controller enforce this tagging when
caching the data, and that only the owner domain which cached
the data can access it. Being hardware managed, the OS has
no means to modify the DID stored in the cache lines.

When an [-Domain is also sharing memory with the OS, the
corresponding cache lines for the defined SHARED MEMORY



regions are cached in the mainstream cache sets, and are to be
accessed by both the owner domain and the OS. To support
that, cache lines need to be tagged with an additional SHARED
flag that indicates whether the cache line is shared with the OS.
For typical TEE architectures, the developer of the workload
protected in the I-Domain configures which of its memory
regions are to be shared.

EXCLUSIVE-CACHE MODE Chunk Set Indexing. The
index bits of a memory address are used to locate the cache set
to which it is mapped. In a conventional cache, the number of
index bits is fixed and depends on the number of sets the cache
supports. However, for CHUNKED-CACHE to support cache
chunks of different sizes for different domains, configurable
set indexing is required.

When an I-Domain is in EXCLUSIVE-CACHE MODE and
requests a number of cache sets for its cache chunk, the number
of set index bits that will be used to map its memory lines has
to be computed individually for this domain. Therefore, the
cache controller keeps track of the global IDs of sets which
constitute the cache chunk (Figure 2), and the index bits for
each domain. When a memory access is issued by a domain,
this metadata is looked up, and the pertinent cache chunk
sets correctly indexed. Moreover, when an [-Domain is torn
down and its sets are de-allocated, the relevant metadata needs
to be updated accordingly, besides flushing and invalidating
the cache lines. CHUNKED-CACHE also enables support for
dynamic cache allocation, i.e., allocating additional cache sets
to an I-Domain’s cache chunk at runtime and reconfiguring the
index bits accordingly. In Section IV-C, we describe how the
cache microarchitecture and controller are modified to enable
this configurability efficiently.

NI-Domain Chunk Set Indexing. Another design chal-
lenge in CHUNKED-CACHE is managing the sets allocated to
the OS, which represents the NI-Domain with DID 0, such
that both flexibility as well as maximum utilization (as in
an unmodified insecure cache architecture) are preserved. At
bootup, when no domains are set up yet besides the OS, the OS
should ideally be able to utilize all the available cache capacity,
i.e., all cache sets are allocated to the OS by default. We refer
to these as the mainstream cache sets. Then, once domains are
set up and request exclusive cache sets, these get “torn away”
from the OS’s cache and are allocated to the domains. This
would, however, incur an impractical performance degradation
for the OS since every time some of the OS’s cache resources
are allocated to another domain, its own capacity is changed,
and so would its set indexing. This renders all memory lines
already cached by the OS inaccessible unless complicated
remapping is performed. Essentially, the OS would need to
cache these memory addresses once again, thus suffering a
high number of cold misses every time a new domain is set
up and subjecting the OS to an unreasonably high performance
overhead.

To avoid this performance penalty on the OS, the OS is
allocated a fixed (sufficiently large) number of the cache sets
in CHUNKED-CACHE which remain always dedicated to the
OS, while still allowing it to utilize the other cache sets so long
as they remain unallocated. We demonstrate this in Figure 3
where the OS is always allocated a fixed number of 8§ sets
(0-7) which form its principal cache chunk. Since the 8 sets
are always available for the OS, the memory address indexing

Tsolated unallocated sets belong
to DID 0 by default
Domain 1 .
(mainstream sets)
[ \f 11
Shared Last-Level Cache (LLC)

8 ways within each set

Each memory access by DID 0 (OS Domain) is mapped to a set in the OS principal
cache chunk as well as congruent sets if unallocated (mainstream cache sets)

Fig. 3. CHUNKED-CACHE OS-specific chunk set indexing.

and the number of index bits do not change at runtime. In
other words, no OS memory lines cached in this principal
cache chunk must ever be flushed out when any other domain
requests to allocate additional cache sets, since the OS cache
chunk sets are never torn away from the OS. However, the OS
can still utilize unallocated sets (sets 12-15) in parallel until
they get allocated to another domain, thus also guaranteeing
maximum utilization of the available cache resources. This
works by indexing cache sets in parallel which are congruent
to the set to which a memory address is mapped. In Figure 3, 3
index bits are required to map a memory address to the correct
set for a cache chunk of size 8 sets. Thus, if the index bits,
e.g., map to set 4, then set 12 can also be utilized by the OS
(set ID + OS cache chunk size) to cache that memory line. The
same applies for memory lines that are mapped to sets 5, 6 and
7; they also map to sets 13, 14 and 15, respectively. However,
memory lines mapped to sets 0-3 cannot utilize the congruent
sets 8-11 because these are already allocated to I-Domain 1.

C. Cache Tag Store & Cache Controller

Cache lines need to be additionally tagged with the domain
ID (DID) bits as well as a 1-bit SHARED flag bit to enforce
access control and moderate sharing with the NI-Domain. For
instance, to support 16 parallel active domains, we require to
extend the cache tag store with 4 bits to represent the DID.
We emphasize that the CHUNKED-CACHE design does not
limit the number of parallel domains to 16; a larger number is
possible but increases the hardware overhead of CHUNKED-
CACHE (but only linearly). Moreover, the number of domains
only limits how many domains can be simultaneously active
on the system. It does not limit how many applications can be
protected in I-Domains on the system in general.

To support the configurable set indexing, the allocation/de-
allocation of cache sets to different I-Domains and to differ-
entiate between OS (NI-Domain) cache accesses vs. I-Domain
accesses, 2 table structures are required by the CHUNKED-
CACHE controller which are shown in Figure 5. The CACHE
SET STATUS TABLE (CST) is a 1-bit vector that is indexed by
the global set ID (SID) and that stores the status of each set,
i.e., whether it is allocated to a domain. The CST is used to
query the status of a set when searching for free cache sets to
allocate to an I-Domain.
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Fig. 5. CHUNKED-CACHE table structures.

The DOMAIN CACHE ALLOCATION TABLE (DCAT) is
indexed by the domain ID DID. It maintains whether this
domain is configured by the cache controller (ALLOC), a
vector of the global set IDs that form its cache chunk (SID-
VECQC), and the corresponding number of index bits (INDEX)
required to map a memory line to the correct set (logs(number
of sets in the cache chunk)), as shown in Figure 5.

We describe next how the CHUNKED-CACHE controller
performs these cache management operations, i.e., allocation,
de-allocation and access control and represent this in Figure 4.
The description in Figure 4 only represents the sequence of
operations for understanding, but does not reflect the temporal
nature of the operations, i.e., whether they occur sequentially
or in parallel.

Cache Allocation & De-allocation. When an I-Domain
requests to allocate exclusive cache sets, this request (DID, the
number of sets (CH-NUM) requested, and the corresponding
number of INDEX bits (log, CH-NUM) is securely commu-
nicated from the trusted component to the cache controller via
configuration registers of the cache controller (Section III-A).
The DID is looked up in the DCAT to check if it is already
allocated and that the maximum sets number allowed per I-
Domain is not exceeded. The maximum/minimum limits for
I-Domains are configured by the trusted software component,
while ensuring that each I-Domain is always assigned at least
a minimum cache chunk size.

The CST is queried to locate free sets and to allocate
them to the I-Domain by flipping the ALLOC bit, until CH-
NUM sets are allocated. If CST runs out of free sets, this is
communicated back to the trusted component to modify the
cache request. Next, the DCAT is indexed with the DID and
its metadata updated by updating the INDEX bits and the
SID-VEC with the global IDs of the allocated sets.

If a domain requests to de-allocate its cache sets, DCAT is
indexed with DID, ALLOC reset and the SID-VEC read out.
Next, the CST is indexed with each set ID in SID-VEC and
de-allocated. For both allocation and de-allocation, the cached
memory lines in the relevant sets are invalidated and flushed
(if dirty) to remove potentially malicious data in the allocation
case and prevent information leakage in the de-allocation case.

The number of cache sets which are always assigned to the
NI-Domain are hardwired, since the circuitry for the parallel
tag lookup (described below) must be hardwired.

Cache Access Management. The DID of an incoming
cache access request indicates whether it is an access by the
NI-Domain (OS domain with DID 0) or an I-Domain. If it is
an OS access, then the index bits are fixed, since its number of
cache sets are hardwired (no need to look its INDEX bits up
in the DCAT). The OS domain is assigned the least significant
cache sets by default, thus the SID-VEC is also not needed.
The correct set index in the principal chunk is computed from
the memory address in the request. Because it is an OS access,
congruent cache sets that are not allocated can also be utilized
(see Section IV-A). Thus, they are also computed and their
ALLOC status queried in the CST to locate the unallocated
sets. The tag store of the ways in the principal as well as
the congruent sets are looked up in parallel to locate a tag
bit match (cache hit), thus, neither impacting performance nor
routing delay especially since a large number of principal sets
are usually allocated to the NI-Domain which minimizes the
number of congruent sets that are looked up in parallel (1 or
2 more sets). The DID and SHARED tag bits are also checked
in parallel. If the cache line belongs to a non-zero DID (I-
Domain), the SHARED tag bit should be 1 to allow the OS to
access it.



For an I-Domain (non-zero DID), if access is requested
to a SHARED MEMORY region or if the I-Domain is in
MAINSTREAM-CACHE MODE, then the access is treated by
the controller as a NI-Domain access where the mainstream
and congruent cache sets are accessed. However, at the tag
comparison, the issuing DID is checked against the cache
line DID to verify that only the owner domain accesses it.
If the access is performed in EXCLUSIVE-CACHE MODE, the
exclusive cache chunk of the domain is accessed. The DCAT
is indexed with the DID and the SID-VEC and INDEX bits
are read out. The chunk set index is computed and used to
index into the SID-VEC to map to the correct global set ID.
Then, the tag store is accessed for a tag bits comparison.

CHUNKED-CACHE’s design is independent from the im-
plemented cache replacement policy and thus, does not require
additional modifications to it. On every cache miss experienced
by an I-Domain in EXCLUSIVE-CACHE MODE, a cache line
in the corresponding set in the domain’s exclusive cache chunk
is selected for eviction. On cache misses by an I-Domain
in MAINSTREAM-CACHE MODE or when accessing SHARED
MEMORY, and for all misses by the NI-Domain, a cache line
in the corresponding set from the mainstream cache is selected.

V. SECURITY CONSIDERATIONS

In this section, we discuss how CHUNKED-CACHE protects
from the adversary described in Section III-B. One key aspect
of CHUNKED-CACHE is that its protection capabilities rely
on a strict partitioning of cache resources. Thus, in contrast
to related work, which rely on probabilistic defenses (e.g.,
randomized cache line mappings [89], [77], [78], [96], [87]),
CHUNKED-CACHE provides certainty that the attacker cannot
infer the cache accesses of a victim, if the partitioning is
correctly implemented. The main security goals of CHUNKED-
CACHE are to prevent an adversary from accessing (read/write)
data in the exclusive cache chunk of an I-Domain and to
prevent eviction interference between the adversary and victim
domain. In the following, we show how CHUNKED-CACHE
achieves these goals with strict cache partitioning and we
discuss why CHUNKED-CACHE’s security guarantees even
hold in the event of a strong adversary that compromised the
operating system kernel. Besides these security considerations,
we verified the correctness of our implemented CHUNKED-
CACHE prototype by explicitly issuing memory requests which
try to read, write and evict cached data of I-Domains.

Strict Partitioning of I-Domain Cache Chunks. As
described in Section IV, the trusted software component
communicates the number of chunk sets which should be
assigned to an I-Domain to the CHUNKED-CACHE cache
controller which configures the DCAT and verifies that each
cache chunk set is only assigned to a single I-Domain. At
every cache memory access, the cache controller uses the
domain ID to index the DCAT and to retrieve the list of
assigned sets (SID-VEC). Since the assignment of domain
IDs and configuration of the DCAT can only be performed
by the trusted software component, the indexing logic of the
cache controller will never return a cache set which does
not belong to the issuer of the memory request. Thus, an
adversary is never able to read an I-Domain’s exclusive sets
(cache chunk), write to them or evict them. As a result,
CHUNKED-CACHE protects from access-based attacks, which

require the adversary to flush memory out of the victim’s sets,
and conflict-based attacks, which require to fill the victim’s
sets and thus, evicting its cache lines. Moreover, CHUNKED-
CACHE’s strict cache resource separation prevents an adversary
from observing evictions of its own sets caused by the victim,
which protects from occupancy-based attacks, and also strictly
prevents the sharing of replacement policy metadata, which
has been shown exploitable [51]. In general, the adversary
can only infer how many cache sets are assigned to an I-
Domain but cannot infer which sets (and therefore which
memory addresses) are accessed at which point in time. As
described in Section III-B, collision-based attacks are not
considered. Defending against them architecturally requires
locking the victim cache lines. CHUNKED-CACHE could be
extended to integrate this, though mitigating an attack which is
very specific to particular software implementations and is not
widely shown does not justify the resulting large performance
overhead.

CHUNKED-CACHE allows for a dynamic assignment of
cache sets to I-Domains. Whenever the cache chunk capacity
of an I-Domain is modified, all assigned chunk sets are
invalidated. This prevents leakage of sensitive I-Domain data
when chunk sets are reassigned to another execution domain,
and prevents an adversary from injecting malicious data into
a set, when additional sets are assigned to an I-Domain. The
invalidation is however only required for the I-Domain whose
cache chunk is resized; all other I-Domains do not need to be
modified and thus, their cache lines do not need to be flushed.
The same applies when the cache chunk for an I-Domain is
completely de-allocated. An adversary could also try to trick
an I-Domain into storing sensitive data in a mainstream cache
line that is accessible for the adversary (SHARED flag bit set).
CHUNKED-CACHE prevents this by checking the metadata
on every memory request of an I-Domain to verify that the
memory region was indeed configured as shared.

Protecting from Compromised NI-Domain. As described
in Section III-B, in the adversary model of TEE architectures,
the OS (and therefore the NI-Domain) is not trusted, allowing
an adversary to map physical memory pages of a victim I-
Domain to its own memory space and to directly access it in
the cache. If an I-Domain (represented by an enclave) demands
side-channel protection (EXCLUSIVE-CACHE MODE), all data
is cached in the exclusive cache chunk and thus, not accessible
for the adversary. However, if an I-Domain is not concerned
about cache side channels (MAINSTREAM-CACHE MODE),
the data is cached in the shared mainstream sets and thus, must
still be protected from malicious direct accesses. CHUNKED-
CACHE prevents those attacks with the domain ID tag which
is added to every cache line. On every cache write, the domain
ID tag is set to the ID of the write request issuer. Subsequently,
on every read request, the ID of the issuer is compared to the
stored ID and the request only permitted if both IDs match.
Evictions are permitted for every domain to achieve a perfect
utilization of the shared cache sets. This is, however, not a
security concern since an I-Domain’s data will only be cached
in the shared sets if the I-Domain is in MAINSTREAM-CACHE
MODE or if the data is explicitly shared with the NI-Domain.



VI. IMPLEMENTATION & EVALUATION

To evaluate CHUNKED-CACHE with respect to its hardware
footprint, power consumption overheads, and performance
impact, we implemented our design in hardware and on an
architectural cycle-accurate simulator.

Methodology. We implemented a hardware RTL model
of CHUNKED-CACHE to extend an open-source RISC-V pro-
cessor and synthesized it to evaluate the storage and logic
overhead incurred. We use our hardware implementation to
extract the additional cycle latencies incurred by CHUNKED-
CACHE due to individual cache management and access opera-
tions. Then, to evaluate the performance impact of CHUNKED-
CACHE on large mixed workloads, we extend an architectural
cycle-accurate simulator, the gem5 simulator, with CHUNKED-
CACHE and configure it to model a multi-core architecture
with a 3-level cache hierarchy which matches our system
assumptions (Section [1I-A). We incorporate the cycle latencies
derived from our hardware implementation into our gem5 setup
and use it to collect performance measurements on the standard
SPEC CPU2017 [20] benchmarks suite (aligned with related
work [77], [78], [96], [87]) to evaluate the overall performance
impact of CHUNKED-CACHE. Complementary to the compute-
intensive SPEC benchmarks, we also evaluate CHUNKED-
CACHE on the I/O-intensive web server nginx. In order to
achieve the most realistic results, we conduct our experiments
in the full-system simulation mode of gem5 which simulates
the user- and kernel-space software and also I/O devices.

We describe next our hardware implementation (Sec-
tion VI-A), performance evaluation (Section VI-B), and our
hardware an power overhead evaluation (Section VI-C).

A. Hardware Implementation

In our hardware model, we extended the cache tag store
with a 4-bit DID and a 1-bit SHARED bit to tag the owner
domain of each cache line and whether it is shared with the
NI-Domain (OS), respectively. We also extended the cache
controller with the table structures shown in Figure 5. To
track the status of the 16,384 sets of a 16 MB LLC with 16-
ways, the CST is implemented as a 16,384-bit register that
is indexed by the set ID to read out the corresponding 1-
bit ALLOC flag. To support set allocation for 16 domains
in parallel, the DCAT is implemented as a 16-row DID-
indexed vector structure. We decided for 16 parallel domains in
our hardware implementation since this is also the maximum
number of enclaves supported by multiple TEE architectures
in parallel [57], [6]. We define for our implementation that the
maximum number of sets that can be allocated to any domain is
8,192 sets. Thus, we reserve 4 bits to represent the set INDEX
bits number (to index into one of 8,192 sets), 114,688 bits
(8,192 sets x 14 bits to represent each set’s global ID) for the
SID-VEC, and 1 bit ALLOC flag per domain. We discuss
the storage overheads incurred by the tables in Section VI-C.

We implement the control finite-state-machines (FSMs)
that receive cache allocation and de-allocation requests and
perform the necessary management. For allocation, the FSM
controls cycling through the sets sequentially to allocate free
ones to the requesting I-Domain, updating their status in the
CST and updating the corresponding domain status in the

DCAT. For de-allocation, another FSM controls that the SID-
VEC of the pertinent I-Domain is read from the DCAT, its
ALLOC flag reset, and then, all sets of that I-Domain de-
allocated (by sequentially indexing through the CST with the
respective set IDs from the SID-VEC). Both allocation and de-
allocation occur in powers-of-2 set numbers in our prototype.
This is only an implementation decision in our prototype to
minimize the logic complexity and overhead.

The cache access mechanisms are extended to include
the DCAT lookup required for CHUNKED-CACHE to identify
which global set IDs belong to the issuing domain and to map
the access to the correct set prior to tag lookup. Additionally,
for NI-Domain accesses, after mapping to the correct set ID,
concurrent sets are computed and looked up in the CST in
parallel to identify which ones are unallocated.

B. Performance Evaluation

In this section, we first describe the latencies from our
RTL model which we incorporate into our gem5 implementa-
tion. Next, we provide an evaluation of CHUNKED-CACHE’s
performance impact using the gem5 implementation.

Cycle Latencies. As described in Section [V, CHUNKED-
CACHE introduces a new indexing policy. For I-Domain
memory requests in EXCLUSIVE-CACHE MODE, a lookup
in the DCAT is required. For requests in MAINSTREAM-
CACHE MODE and all NI-Domain (OS) memory requests, the
mainstream sets must be looked up. The comparison of the
stored DID with the requester DID is done in parallel with the
address tag comparison and thus, does not introduce additional
latency. For I-Domain requests in EXCLUSIVE-CACHE MODE,
we measure an additional latency of 1 cycle and for NI-Domain
requests and I-Domain requests in MAINSTREAM-CACHE
MODE of an additional 2 cycles. For the access latencies of
modern LL.Cs on multi-core systems, we estimate a baseline
of 80 cycles in line with vendor multi-core processors [2].

Whenever an I-Domain gets sets allocated, unallocated sets
are looked up and the DCAT updated. At de-allocation, sets
of the I-Domain must be invalidated (and possibly flushed)
and the CST and DCAT updated. For allocation, the overall
latency incurred is variable and is a function of: 1.) how many
sets CH-NUM are requested for allocation, and 2.) how many
sets have to be looked up in the CST. At the worst case,
this incurs a latency of 16,384 cycles and at the best case,
CH-NUM cycles. An additional 1 cycle is incurred to update
the DCAT subsequently. The INDEX is computed and com-
municated already by the trusted component in the allocation
request, thus it does not contribute additional latency.

For de-allocation, we measure an overall latency of CH-
NUM + 2 cycles, where 1 cycle is required to look up the
DCAT, and another cycle to update it, followed by CH-NUM
cycles to de-allocate each set in the CST. At worst case, a
latency of 8,194 cycles is incurred (assuming a maximum of
8,192 sets per domain). However, de-allocating the sets in CST
is done in parallel to invalidating (and possibly flushing if
dirty) the respective cache lines.

We emphasize that allocating new sets to any I-Domain
does not require invalidating or flushing any other sets of



Parameters L1 L2 L3 L3
(I&D) (gem5) | (CHUNKED-CACHE)
B 64 KB
size & 32 KB 512 KB | 16 MB 16 MB
# of sets 128 & 64 512 16,384 16,384
associativity 8-way 16-way 16-way 16-way
access latency 4 14 80 81/82
(in cycles)

TABLE 1. CACHE CONFIGURATION ON OUR GEMS5 EVALUATION
SETUP WITH AN INCLUSIVE 3-LEVEL CACHE HIERARCHY.

the NI-Domain or other I-Domains which would require re-
caching them. This is one key design goal of CHUNKED-
CACHE since it eliminates this performance overhead on other
domains, particularly the NI-Domain. The allocation of sets
either happens only once during the I-Domain setup or occa-
sionally when the number of assigned sets is modified at run-
time which requires a context switch out of the I-Domain. The
CHUNKED-CACHE allocation/de-allocation overheads induced
remain negligible when compared with the general overheads
of TEE architectures [22], [13], [57], [6]. Therefore, we do
not invest in increased logic complexity to optimize the cycle
overheads incurred for allocation and de-allocation, since they
are not in the critical path, i.e., LLC accesses.

Mixed-Workload Cycle-Accurate Evaluation. We im-
plement CHUNKED-CACHE on the cycle-accurate gem5 sim-
ulator and construct a multi-core system which resembles a
modern computing system with an inclusive 3-level cache
hierarchy. Each core has access to a core-exclusive L1 and L2
cache, and an L3 LLC shared among all cores. For the L1 and
L2, we use the unmodified cache implementation provided by
gem5, whereas we use our CHUNKED-CACHE implementation
for the L3 cache. The configuration parameters of each cache
level are shown in Table I. We derive realistic values for the
cache sizes, number of cache sets, associativity and access
latency in line with modern caches. For the CHUNKED-CACHE
L3 cache, we add our induced latencies collected from our
hardware implementation. Constructing a gem5-based multi-
core system with 3-level cache hierarchy in full-system simu-
lation mode to collect representative cycle-accurate traces for
large workloads involved significant engineering challenges, as
also evident by recent works that rely on trace-based simulators
for their evaluation with SPEC workloads [77], [78], [96], [87].

We measure the performance impact of CHUNKED-CACHE
on real-world workloads by using the standard SPEC CPU2017
benchmarks with both the SPECspeed 2017 Integer and SPEC-
speed 2017 Floating Point suites which represent a wide
range of compute-intensive applications such as compilers,
video compression, machine learning or modeling tasks. Since
running all of the benchmarks on our full-system cycle-
accurate gem5S-based simulation setup would be very costly
in terms of memory and time, we selected benchmarks from
the different application domains and different working set
sizes, guided by this memory-centric characterization of the
SPEC CPU2017 benchmarks [85]. Moreover, to also cover
I/O-intensive workloads, we evaluate the impact of CHUNKED-
CACHE on the widely used web server nginx. We run
our experiments for 1 trillion instructions before we start to
collect measurements, in order to boot the system, start the
benchmarks and collect more representative metrics. We run
all our experiments for a total of 1 billion instructions in the
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with baseline (shared L3) in %
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Fig. 6. Cache miss rate impact of CHUNKED-CACHE for SPEC
benchmarks on a 8-domain setup; compared to a shared L3 cache.

full-system mode of gem5 and collect statistics to compute
the Cycles Per Instruction (CPI) metric, in order to capture
the additional latency effect, and the L3 cache miss rates for
the reduced cache capacity effects. If not stated otherwise
for single experiments, the miss rates are calculated as the
geometric mean over the instruction and data miss rates of
the page table walker and core. We compare CHUNKED-
CACHE to 1.) a baseline system with an unmodified insecure
L3 cache and to 2.) an L3 cache which implements a way-
based partitioning scheme in which cache ways are assigned
to [-Domains as provided, e.g., by CATalyst [61] which uses
Intel CAT [49], SecDCP [94], DAWG [51], Keystone [57] or
CURE [6]. We evaluate CHUNKED-CACHE with a set of exper-
iments which investigate different computing scenarios. First,
we show how CHUNKED-CACHE'’s partitioning influences the
performance of mixed workloads when encapsulated in I-
Domains (in EXCLUSIVE-CACHE MODE). Then, we evaluate
CHUNKED-CACHE’s impact on the NI-Domain (OS-domain)
and compare against way-based partitioned cache schemes.
We conclude our evaluation with a set of experiments which
show the scalability of CHUNKED-CACHE. In general, when
comparing to the baseline (unpartitioned L3 cache shared by
the same workload), our experiments show a negative effect of
CHUNKED-CACHE on the performance of a benchmark when
only a small cache chunk size is assigned to it. However, when
increasing the cache chunk size this effect vanishes. At some
point, depending on the specific characteristics of a benchmark,
the exclusive cache chunk assigned by CHUNKED-CACHE
leads to a positive effect on its performance as we show in the
following experiments. This gives the developer some degree
of freedom to calibrate the performance of the workload by
distributing the cache resources accordingly, e.g., to optimize
the performance of a particular benchmark if desired given that
the cache resources are available/affordable. All experiments
were conducted on an x86 platform equipped with an Intel
Xeon Silver 4215 CPU (2.50 GHz) and 186 GB RAM.

I-Domain Performance Impact. In the first set of ex-
periments, we evaluate the performance impact CHUNKED-
CACHE has on mixed workloads when protected in I-Domains
in EXCLUSIVE-CACHE MODE. We run 7 randomly se-
lected SPEC benchmarks in [-Domains and show our re-
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Fig. 7. Cache miss rate impact of CHUNKED-CACHE for SPEC

CPU2017 benchmarks (varying sets); compared to a shared L3 cache.

sults in Figure 6. The NI-Domain (DO) runs Linux (kernel
version 4.19.83) and 2 benchmarks with large working sets
(600.perlbench_s and 602.gcc_s). In this experiment,
we assign 8,192 sets to the NI-Domain and a varying number
of sets to each I-Domain as indicated in the plot. We chose
the number of sets by briefly analyzing the working set size
of the benchmark running in each I-Domain, and assigning
bigger working sets to more cache sets. This is only required
when optimizing for performance, otherwise a default number
of sets can be assigned to each benchmark. We observe in the
experiment that the overall miss rate significantly decreases
for most benchmarks when compared to sharing the L3 cache.
This shows that the assignment of a smaller but exclusive
cache portion can even reduce the cache miss rates of a
workload. Moreover, our results indicate that the number of
cache sets required to reduce or completely avoid the impact
of CHUNKED-CACHE heavily depends on the characteristics of
the workload. In our experiment, the benchmarks 605 .mcf_s
and 620 .omnetpp_s would require more cache sets than the
assigned 512 and 1024 sets to avoid an impact on the cache
miss rates. We investigate this in another experiment where
we customize the number of sets allocated to an I-Domain for
some of the benchmarks and show how the miss rate decreases
significantly when increasing the chunk size (Figure 7). In
another experiment (Figure 8), we show how the varying chunk
sizes also influence the CPI values. As for the miss rates, the
CPI decreases in general. We observe, however, some outliers
with the CPI metrics collected, owing to the complexity of a
full-system multi-core simulation on gem5 which also includes
unpredictable kernel runtime behavior into the statistics.

Additionally, to evaluate the impact of CHUNKED-CACHE
on I/O-intensive workloads, we conduct experiments in which
we run the nginx web server in one I-Domain and the HTTP
benchmarking tool wrk in another [-Domain, whereas we keep
the NI-Domain unmodified. We then use wrk to send HTTP
requests to the web server using 12 threads and 400 open
connections. In Figure 9, the miss rate impact of CHUNKED-
CACHE on nginx and wrk is shown when increasing the
number of sets from 128 to 2048. The results show, in line
with our results on SPEC, how the increase of cache sets
leads to a decrease in the overall miss rate. The decrease is
already noticeable for a relatively small number of sets since
the exclusive assignment of the cache sets prevents nginx
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benchmarks (increasing sets); compared to a shared L3 cache.

and wrk from evicting the sets from one another.
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Fig. 9. Cache miss rate impact of CHUNKED-CACHE for nginx and
wrk (increasing sets); compared to a shared L3 cache.

NI-Domain Performance Impact. In the second set of ex-
periments, we focus on the performance impact of CHUNKED-
CACHE on workloads executing in the NI-Domain. We again
run mixed workloads from the SPEC benchmarks in I-
Domains, while running Linux and the 2 memory-intensive
benchmarks 600.perlbench_s and 602.gcc_s in the
NI-Domain. In Figure 10, we vary the number of sets allocated
to the NI-Domain from 2,084 to 8,192 while keeping the sets
for the other domains unchanged. For these experiments, we
show all 4 miss rate metrics over which we average in the other
experiments, the data and instruction miss rates of the page
table walker (DTB MR and ITB MR, respectively), and the
data and instruction miss rates of the core (Data MR and Instr.
MR, respectively). While in general, all miss rates and CPI
metrics decrease compared to the baseline, we only observe
a slight improvement when increasing the chunk size from
2,084 to 4,096 and 8,192 sets. This is because even when
the number of statically allocated sets to the NI-Domain is
rather small, the unallocated sets in the system (mainstream
sets) remain available for the NI-Domain. Thus, performance
is not significantly impacted for the NI-Domain and maximum
utilization of the available resources (as in an unmodified
insecure cache architecture) is preserved which was one of
the key design goals of CHUNKED-CACHE.

To investigate this, we run experiments (same setup) in
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which we assign 1,024 sets to the NI-Domain and vary the
number of unassigned sets. In the first run, all cache sets are
allocated in our system, while in the second run, 4,096 sets
remain unallocated and available for the NI-Domain. Figure 11
shows how the miss rates significantly decrease when 4,096
sets remain unallocated which demonstrates how CHUNKED-
CACHE enables the NI-Domain to utilize unused cache sets.
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Fig. 11.  Miss rate of CHUNKED-CACHE on the NI-Domain with
varying number of unassigned sets; compared to a shared L3 cache.

Comparison with Partitioning-based Schemes. We com-
pare CHUNKED-CACHE to a cache partitioning scheme which
we implement on gem5, specifically way-based partitioning,
being the only other strict cache partitioning approach. We
run a number of experiments with a 5-domain setup where
we assign the same cache capacity to the same benchmark
in both, the CHUNKED-CACHE and way-partitioned cache —
1,024 or 2,048 sets in CHUNKED-CACHE and equivalently
1 way or 2 ways, respectively, in the way-partitioned setup.
We show in Figure 12 how for the same cache capacity,
CHUNKED-CACHE outperforms way-based partitioning for
randomly selected benchmarks. In fact, for some benchmarks
such as 625.x264_s and 644 .nab_s, allocating 1,024 sets
even outperforms 2 ways (double the cache capacity) on a way-
partitioned cache. We calculate an average decrease of 43% in
the miss rate for CHUNKED-CACHE vs. the way-partitioned
cache for a 1 MB cache capacity (1024 sets) and a 39%
decrease for 2 MB (2048 sets).

Scalability and Dynamic Cache Allocation. In Ap-
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pendix A, we additionally evaluate CHUNKED-CACHE’s abil-
ity to scale and support 32 I-Domains in parallel without
degrading the performance of the NI-Domain (OS) and we also
demonstrate how CHUNKED-CACHE supports the dynamic
allocation of cache sets to an I-Domain during runtime.

100
N
E 75
g
8 50
E
§ 25
e}
0
<) 6 ) ) o)
@ F e O ™ e
W Way-based (1 way) O Chunk-based (1024 sets)
W Way-based (2 ways) B Chunk-based (2048 sets)
Fig. 12.  Overall miss rate for SPEC CPU2017 benchmarks with

CHUNKED-CACHE; compared to a way-partitioned cache.

C. Hardware Footprint and Power Consumption Evaluation

To evaluate the storage and logic overhead incurred by
CHUNKED-CACHE, we synthesize our implementation target-
ing a single-issue single-core RISC-V processor [79] using
Xilinx Vivado tools. While this processor does not provide
an LLC, this is not necessary since we can still extend the
existing simple cache controller to implement CHUNKED-
CACHE, verify its functionality in cycle-accurate RTL-level
simulations and evaluate its overheads.

Storage/Memory Overhead. The main contribution to the
hardware area overhead of CHUNKED-CACHE is the extra
storage required, rather than the logic itself, since that requires
the fabrication of memory which consumes more gates than
hardware logic. The extra storage is needed for the additional
tag bits required per cache line (4-bit DID and 1-bit SHARED
flag), the CST and DCAT. In our current prototype imple-
mentation targeting 16 domains, 16 MB LLC with 16-ways
and 16,384 sets, and an allowed maximum of 8,192 sets per
domain, the CST consumes 2 KB, the DCAT ~ 224 KB,
and the additional tag storage 160 KB, totaling 386 KB.
This amounts to a negligible 2.3% storage overhead relative
to a 16 MB LLC which would consume approximately an
additional 2.7% area in fabrication.

The capacity of these tables and the consequent stor-
age area overheads are directly impacted by how the vari-
ous design/implementation trade-offs involved are configured
in different implementations of CHUNKED-CACHE, namely
1) the number of active parallel domains supported (overhead
increases only linearly) 2.) the total L3 cache capacity and its
number of sets, and 3.) the maximum number of sets that can
be allocated to a domain. For example, to support 32 domains,
one more tag store bit is required costing an additional 0.25KB,
relative to the overhead incurred for 16 domains as described
above. The CST capacity is unaffected, while the DCAT
capacity doubles to 448KB. The power consumption (evaluated
below) would increase proportionally.



Logic Overhead. CHUNKED-CACHE requires extra hard-
ware logic for the FSMs that handle the cache de-/allocation,
and look up the tables prior to cache accesses (Section VI-A).
We synthesize our hardware implementation using Xilinx
Vivado targeting a ZedBoard Zyng-7000 FPGA board, and
estimate a logic overhead of ~ 1.6% relative to the single-
core RISC-V processor that we extend. This would diminish
relative to a significantly more complex multi-billion-transistor
processor with a 3-level cache hierarchy which is the intended
platform for CHUNKED-CACHE. Furthermore, this overhead
does not increase as the number of domains supported by
CHUNKED-CACHE increases.

Power Consumption Overhead. We focus here on the
power consumption overheads incurred by the extended tag
store and CST and DCAT tables, since the extra hardware
added is dominated by them, and they contribute the most
to the additional power consumption (static and dynamic)
overheads. Besides, power consumption by cache memories
is significantly more than logic, and is usually the largest
contributor to the total power consumed by a chip. We estimate
the power consumption overheads of CHUNKED-CACHE in
22nm technology using the CACTI-6.0 tool [70]. For a 16-
way 16 MB cache with 64 B cache line size, the total leakage
power increases from 5056.57 mW (baseline) to 5313.83 mW.
The CST and DCAT incur an additional 365 mW, amounting
to a total of 12.3% increase in the LLC power consumption. To
support OS-specific chunk set indexing, the power consump-
tion increases accordingly. If 2 sets are looked up in parallel
(when 8,192 sets are allocated to the OS), the penalty on
power consumption is negligibly minimal. When 4 or 8 sets
are looked up in parallel, the power consumption overhead
additionally increases by 5.5% and 27.1% relative to the
baseline of 5056.57 mW, respectively. Relative to the overall
chip power consumption of modern multi-core processors (90-
150W), the LLC power consumption increases incurred by
CHUNKED-CACHE remain reasonable.

VII. RELATED WORK

We categorize cache side-channel defenses which tackle
the problem directly in the cache into two broad classes:
partitioning-based and randomization-based. We focus in this
section only on the most relevant works to CHUNKED-CACHE,
which all propose hardware changes at the cache architecture.

A. Partitioning-based Microarchitectures

The partitioning-based defenses most related to
CHUNKED-CACHE propose new cache architectures that
assign cache resources (cache lines or ways) exclusively to
protected domains. The TEE architectures Keystone [57] and
CURE [6] implement way-based partitioning to assign cache
ways exclusively to enclaves. SecDCP [94] forms security
classes of applications with similar security requirements and
assigns cache ways to them. DAWG [51] provides way-based
cache partitioning in the context of speculative execution
attacks. The main limitation of way-based partitioning is its
inability to support a large number of protected domains in
parallel since even large LLCs only comprise a small number
of cache ways (up to 16). Moreover, these defenses lead to
cache underutilization when assigned cache ways are not
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evenly utilized by a protected domain since the unused cache
lines are blocked for all other domains on the system.

CHUNKED-CACHE, besides other approaches [95], [23],
is more flexible since it partitions the cache on a cache-
line basis. PLcache [95] assigns cache lines exclusively to
processes which allows for a strict and fine-grained partitioning
of cache resources. However, PLcache’s strict isolation does
not allow for caching data shared between processes and
strongly impacts the overall system performance and fairness
of the cache utilization. Moreover, PLcache does not protect
against occupancy-based attacks since the adversary can still
infer the victim’s memory accesses by observing that the
victim is unable to access/evict cache lines.

HybCache [23] assigns cache ways to protected domains
(or enclaves) by providing a fully-associative mapping with
random replacement for the ways to overcome the cache
underutilization problem of way-based partitioning schemes.
In contrast to PLcache, HybCache assigns only a subset of
the cache resources to the protected domains which can be
reclaimed by non-sensitive domains and thus, a fairer cache
utilization is achieved which does not heavily degrade the
overall system performance. However, HybCache does not
scale practically with large LLCs since it would incur high
power consumption overheads. Moreover, HybCache does not
provide strong security guarantees against occupancy-based
attacks since it does not enforce a strict partitioning.

In memory page-coloring schemes [29], [50], [101], [61],
[22], the mapping from physical memory addresses to cache
lines is utilized to ensure that the cache lines used from
sensitive applications do not overlap. One problem with page-
coloring is its high impact on the software memory layout. It
cannot fully support DMA and requires modifying the memory
management (OS or hypervisor). Moreover, the assignment of
cache lines is static, i.e., modifying the number of assigned
cache lines during runtime would require to alter the physical
memory layout of the software which is highly impractical.

CHUNKED-CACHE, however, provides flexible cache-line
partitioning that can scale to support a larger number of
protection domains than the number of cache ways. It addition-
ally overcomes the limitations of other cache-line partitioning
techniques by providing support for shared memory and by
scaling to large LLCs while still providing strict isolation. In
contrast to page coloring schemes, CHUNKED-CACHE does
not influence the memory layout, is compatible with com-
modity memory management software, and allows dynamic
modification of the chunk sizes during runtime.

B. Cryptographic Randomization Defenses

These randomization techniques attempt to avoid the stor-
age overhead of large randomized mapping tables that are
deployed by earlier defenses [95], [63], [62] by relying on
cryptographic primitives to reproducibly generate the random-
ized mapping. Time-Secure Cache [89] uses a set-associative
cache indexed with a keyed function using the cache line
address and process ID as its input. However, a weak low-
entropy indexing function is used, thus, frequent re-keying and
cache flushing must be performed which increases complexity
and performance impact.



CEASER [77] also uses a keyed indexing function but
without process ID. It also requires frequent re-keying of its
index derivation function and re-mapping to limit the time
interval available for an attacker to reconstruct the eviction set.
Under a minimal eviction set construction algorithm of O(E?)
complexity, CEASER has been shown able to withstand attacks
with a re-keying rate of 1%. However, under eviction set con-
struction techniques with O(E) complexity [78], the re-keying
rate needs to increase to 35%-100%, which incurs prohibitively
high performance overheads. To resist these improved attacks,
a skewed variant of CEASER, CEASER-S [78] was proposed
that divides the cache ways into multiple partitions (skews),
with different encryption keys used for each partition. A cache
line maps to a different set in each partition, where one of the
partitions is chosen randomly for the line placement, making
the minimal eviction set construction more difficult.

ScatterCache [96] also uses keyed cryptographic indexing
where cache set indexing is different and pseudo-random for
every protected domain but consistent for any given key.
Thus, re-keying is still required at time intervals to hinder the
profiling and minimal eviction set construction efforts.

Phantom-Cache [87] relies on a set of hardware-efficient
hash function and XOR operations to map a cache line to 1 of
8 randomly chosen sets in the cache, each with 16 ways, thus,
increasing the associativity to 128. This requires accessing 128
locations on each cache access to check if an address is cached,
resulting in a high power overhead of 67%.

Defenses based on cryptographic primitives have multiple
weaknesses: 1.) These defenses remain only as secure as
the best/fastest known attack strategy/minimal set eviction
construction algorithm [12], [75] with no solid future-proof
security guarantees. In fact, a recent work [86] has further
shown that other attack techniques and workarounds can be
used to exploit certain flaws in ScatterCache and CEASER-S
to completely undermine them and their security guarantees.
2.) Their promised security guarantees often rely on the
alleged, yet not thoroughly investigated unpredictability of
low-latency cryptographic primitives. The primitives deployed
by CEASER, CEASER-S and ScatterCache have been shown
vulnerable to cryptanalysis which enables the construction
of eviction sets without even accessing memory [74], [10].
Deploying primitives that resist formal cryptanalysis is also not
practical since it would incur increased latency, thus, further
degrading performance in the cache’s critical path. 3.) If the re-
keying rate is increased to mitigate novel attacks, the induced
performance overhead renders these defenses impractical.

Mirage, a concurrent work, attempts to overcome the vul-
nerability to newer faster eviction-set construction algorithms,
by eliminating set-associative eviction altogether [80]. How-
ever, besides still being vulnerable to occupancy-based attacks,
Mirage does not support selectively enabling side-channel
resilience only for execution domains that require it, thus,
incurring a performance slowdown on the entire workload.

CHUNKED-CACHE, in contrast, eliminates the described
unreliability and inflexibility fundamentally by providing strict,
yet perfectly configurable and selective, partitioning across
the execution domains. This enables each domain to allo-
cate the cache capacity it requires and thus, experience the
performance that it has opted to tolerate accordingly. This
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different paradigm provides well-grounded security assurances
that stand the test of advances in cache side-channel attacks
and different attack methodologies and complexities, without
sacrificing performance. Instead, it provides by-design the
possibility to tune the security-performance trade-off for each
domain as desired, without overtaxing the OS either.

VIII. CONCLUSION

In this paper, we presented a novel side-channel-resilient
cache microarchitecture, CHUNKED-CACHE, for TEE archi-
tectures, that enables each execution domain to flexibly and
selectively configure its exclusive cache sets only when
cache isolation and side-channel resilience is required. Un-
like randomization-based cache microarchitectures recently
proposed, CHUNKED-CACHE fundamentally mitigates side-
channel attacks by enforcing strict cache partitioning, thus
providing future-proof and solid security guarantees. It also
outperforms way-based partitioning and scales to support a
larger number of execution domains, without degrading the
performance of the OS. In this work, we show how CHUNKED-
CACHE incorporates this configurable performance-security
trade-off by design in the cache microarchitecture to cater most
optimally for TEE architectures. Through our security analysis
and evaluation, we also show how on-demand sophisticated
side-channel security, as well as performance, functionality and
usability requirements are preserved in CHUNKED-CACHE,
with small hardware and memory costs.
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APPENDIX
A. I-Domain Scalability

We also demonstrate how CHUNKED-CACHE scales for a
larger number of parallel domains. As described in Section IV,
the design of CHUNKED-CACHE allows to support more
domains in parallel than the 16 domains we choose for our
hardware implementation. Thus, we conduct scaling experi-
ments where we run the 619.1bm_s benchmark on every
[-Domain and we increase the number of I-Domains from 4
to 8, 16 and up to 32. Running more I-Domains in parallel
is not possible on our evaluation platform since the gemS5
full-system simulation with 32 [-Domains already consumes
the complete 186 GB of available RAM which unavoidably
imposes certain limitations on our experiments. Given these
constraints, we selected 619 . 1bm_s as a benchmark because
of its relatively small working set. Throughout these experi-
ments, the NI-Domain (which runs the Linux kernel and one
instance of 619. 1bm_s) gets 8,192 sets assigned. The overall
miss rates for the NI-Domain, when scaling from 4 to 32 I-
Domains, are stable, reaching 71.45%, 71.64%, 72.06% and
71.75%, respectively. Thus, with CHUNKED-CACHE, also a
high number of I-Domains can be supported without degrading
the performance of the NI-Domain (OS). Running even more
domains was only limited by the memory constraints of our
evaluation platform.



B. Dynamic Set Allocation

In another experiment, we analyze how the dynamic set
allocation capabilities of CHUNKED-CACHE impact the NI-
Domain and I-Domains during runtime. For this, we select
a SPEC benchmark (631 .deepsjeng_s) which achieves a
relatively small average cache miss rate, when enough cache
sets are available, in order to better demonstrate the behavior
of the dynamic set allocation. We run the benchmark in 4
distinct I-Domains and as part of the NI-Domain. We simulate
24 billion cycles on our evaluation platform which corresponds
to 12s worth of computing (given that we simulate processors
with a clock frequency of 2 GHz). At the beginning of the
experiment, the NI-Domain (DO) gets 8,192 sets assigned, the
I-Domains D1-D3 512 sets each and the I-Domain D4 only 1
set. Then, during runtime, the size of D4’s chunk is modified.
After 3s, the chunk size is increased to 512 sets, after 6s to
2048 sets and after 9s decreased to 1 set. The chunk sizes of
the domains D0, D1, D2 and D3 are kept constant throughout
the duration of the experiment. We collect miss rate statistics
for all domains every 75ms (150,000,000 cycles) and compute
the arithmetic mean over the instruction and data miss rates of
the page table walker and core.

The results of the experiment are shown in Figure 13,
whereby we only show the miss rates for DO, D1 and D4
since the results of D2 and D3 are very similar to those of
D1. The plot clearly shows how the increase and decrease of
the chunks size affects the miss rate of D4. At the beginning,
when only 1 set is assigned to D4, the miss rate fluctuates
heavily around a value of 80%. At the time point 3s, when
511 additional sets are assigned to D4, the miss rate almost
immediately drops to around 60%, thereby catching up with
the miss rates achieved by D1. After another 3s, when D4’s
chunk size is increased to 2048, a low and stable miss rate of
20% is achieved. The fact that DO experiences the same miss
rate with 8,192 sets shows that applications are not always
benefiting from an increased chunk size and thus, available sets
are better redistributed to other benefiting domains to improve
the overall system performance. After 9s, the chunk size is
decreased to 1 set which again leads to a heavily fluctuating
miss rate of around 80%.

Another interesting take-way from Figure 13 is that the
flushing of all chunk sets, which happens after 6s, does not
negatively influence the miss rate of D4, at least not when
collecting the miss rate statistics at intervals of 75ms.
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