
 

 

 

Abstract—Fatigue driving is one of the main causes of 

traffic accidents. The eye features are the important cues of 

fatigue detection. In order to improve the accuracy and 

robustness of detection based on a single eye feature, we 

propose a fatigue detection algorithm based on the eye 

feature (EFV) vector. Firstly, the coordinates of the eye 

region were localized with facial landmarks detector and 

the landmarks geometric relation (LGR) was calculated as 

a feature value. Secondly, a deep transfer learning network 

was designed to classify the driver eye state on a small 

dataset. The probability value of the eyes being open state 

was calculated. Then an eye feature vector was constructed 

to overcome the limitations of a single fixed threshold and a 

support vector machine (SVM) model was trained for eye 

state classification recognition. Finally, the performance of 

the proposed detection model was evaluated by the 

percentage of eyelid closure over time (PERCLOS) 

criterion. The results show that the accuracy of this model 

can reach 91.67% on the test database, which is higher than 

the single-feature-based method. This work lays a 

foundation for the online fatigue detection of train drivers 

and the deployment of the train driving monitoring system. 

 

Keywords—Fatigue detection, face detection, eye feature 

vector, transfer learning, PERCLOS  

I. INTRODUCTION 

N recent decades, as the China Railway Industry 
development, train drivers will be in a state of heavy load, 

high tension, and continuous work for a long time, so that their 
bodies are very easy to be in a state of fatigue [1]. According to 
the accident statistics of the Chinese railway system, fatigue 
driving is an important factor causing train traffic accidents [2]. 
Therefore, it is necessary to monitor the fatigue state of the train 
driver in real-time. When the driver is fatigued, give a timely 
reminder, which can effectively protect the safety of the drivers 
and passengers. At present, most driver fatigue detection mainly 

 
 

adopts objective detection methods, mainly including 
vehicle-information-based technology [3,4], driver- 
physiological-signal-based algorithms [5,6], and 
driver-behavior-based technology [7,8]. 

Vehicle-information-based technology mainly uses image 
recognition and various vehicle sensors to extract some key 
parameters of the vehicle, including steering wheel angle, 
driving speed, the direction of vehicle movement, lane 
information, etc. Then the fatigue state of the driver can be 
comprehensively inferred by these parameters [9, 10, 11]. One 
characteristic of Vehicle-information-based technology is that 
most of the vehicle state can be obtained by detecting the lane 
line of the vehicle and then judging the driver fatigue state. This 
detection method is not suitable for trains because they use a 
track. 

Driver-physiological-signal-based algorithm is to collect 
signals such as EEG (electroencephalogram) [12, 13], HRV 
(heart rate variability) [14], ECG (electrocardiogram) [15], and 
EOG (electrooculogram) [16], and then explore the 
physiological relationship between these signals and driver 
fatigue. This method can identify the driver fatigue in the early 
stage, and the probability of error is small. However, the main 
defect is that it is an invasive detection method, which requires 
the driver to connect some electrodes to his body. Thus, this 
method may affect the driver's normal driving, and they will feel 
unpleasant if used for a long time. 

Driver-behavior-based technology is to identify driver 

fatigue changes by detecting the driver's behavioral reaction. 

Some important facial information can be used to interpret 

levels of fatigue. It has become a more popular detection 

method because it directly focuses on the visual features of the 

drivers rather than external devices. Furthermore, it is 

non-invasive and more practical than the other two methods 

mentioned above. This method usually extracts facial features 

from following sources: eyes [17, 18, 19, 20], mouth [21, 22, 

23], and head [7, 24]. According to relevant research, features 

exhibited in the eye region are the most obvious symptoms of 

fatigue [25]. The fatigue detection model through the extraction 

of driver eye features has many advantages, such as being close 

to people's cognition, non-interference with driving, strong 
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real-time performance, and relatively low cost. However, there 

are still some challenges of extracting eye features, mainly 

including different illumination conditions and large head pose 

variations. To overcome these challenges and improve the 

detection performance, we propose a model using the eye 

feature vector and support vector machine. 

II. SYSTEM ARCHITECTURE 

The overall architecture of the fatigue detection system based 

on eye feature vector visual analysis, as illustrated in Figure 1, 

has four major steps. (1) The deep learning method with strong 

feature learning ability is used to detect the train driver's face 

image from a video and localize the train driver's facial 

landmarks. (2) Two types of eye state recognition algorithms 

are designed to extract the driver eye state features. (3) A SVM 

information fusion strategy based on eye feature vector EFV is 

proposed. The robust estimation of the open and closed state of 

the driver's eyes is obtained by using the SVM classifier. (4) An 

experimental method using PERCLOS is designed to judge the 

driver fatigue state. 

 
Figure 1. The overall architecture of train driver fatigue detection 

 

III. METHODS 

A. Face detection and facial landmarks localization  

At present, the majority of fatigue detection methods are 

based on Viola-Jones [26] algorithm to locate the face region. 

Viola-Jones is a fast face detection algorithm based on a simple 

Haar-like feature cascaded Adaboost. Viola-Jones face 

detection algorithm has a better detection effect on the frontal 

face image, but the detection accuracy for the profile face image 

is not very high. In the application scenario of the railway, 

although the position between the seat and the driver is 

constrained, the driver’s head posture will change at any time to 

complete the driving task. The dlib face detection algorithm 

based on HOG feature descriptor can quickly complete face 

region search and can achieve better detection performance for 

both front and profile face. Then a Practical Facial Landmark 

Detector (PFLD) [30] is employed to extract the fine features of 

facial landmarks from the detected face images, which contains 

the 106 facial landmarks coordinate information. These facial 

landmarks are used as the key basis for the extraction of driver 

eye fatigue features. 

 

1)  Face detection 

The dlib face detection algorithm extracts the HOG feature 

from the positive sample (including the image of the face) 

dataset and obtains the HOG feature descriptor. HOG feature is 

extracted from negative sample (image without face) dataset to 

obtain HOG descriptor. The model is obtained by training 

positive and negative samples with an SVM algorithm. Finally, 

the SVM model is used to mine the difficult samples to improve 

the model classification ability. 

 

2)  Facial landmarks localization based on PFLD 

The facial landmarks localization task feeds the face images 
to the detector, and outputs feature points such as nose tip, 
mouth, eyes, and eyebrows through the localization detector. At 
present, most of the facial landmarks localization algorithms 
used for fatigue detection are based on dlib toolkits. However, 
this method can only localize 68 facial landmarks, and the 
accuracy and robustness of the detection model can be further 
improved. PFLD can localize 106 facial landmarks, and obtain 
higher accuracy in complex scenes (including unconstrained 
posture, expression, illumination, occlusion, etc.). Considering 
the geometric constraints and data imbalance, PFLD designed a 
new loss function: 
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   is the weight factor that plays a 

key role in network training, g  designates a certain metric to 

measure the distance of the n-th landmark of the m-th input. 
A video image is fed into the face detection algorithm to 

obtain face image I. Where [ , , , ]f x y w h  denotes the face 

image region, ( , )x y represents the top-left coordinate of the face 

rectangular region, ,w h  represents the width and height of the 
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face rectangular region respectively. The facial landmarks 
coordinate set 

1 2{ , ,..., }NP p p p  can be obtained using the 

facial landmarks localization algorithm. Where 106N  , 
2

ip  ΅  is the ( , )x y  coordinate of the i-th facial landmark in 

the face image. The result of facial landmarks localization and 

coordinate index is shown in Figure 2. 

         
Figure 2. Result of facial landmarks localization  

B. Eye state features extraction  

The key to train driver fatigue detection using eye feature 

vector (EFV) is to design accurate and efficient eye feature 

extraction algorithms. 

 

1) Eye state feature extraction using facial landmarks 

According to the localization of face key points, LGR 
(Landmarks Geometric Relation) can describe the geometric 
relationship between eye region landmarks. Therefore, LGR can 
be regarded as an important factor in eye state recognition. 

 
Fig. 3 Eye region landmarks 

As shown in Figure 3, 
1 8,...,e e  are the eight feature points 

corresponding to the eye contour obtained through the facial 

landmarks detection. Therefore, eight ( , )x y coordinates can 

delineate the contour of each eye. The eye region landmarks 
geometric relation (LGR) can be calculated in the following 
form: 

6 2 7 3 8 4 1 5A e e B e e C e e D e e                (2) 

3

A B C
LGR

D

 



                       (3) 

Where A, B, and C are respectively the longitudinal Euclidean 
distance corresponding to eye contour landmarks. D denotes the 
transverse Euclidean distance between the two corners of the 
eye contour. LGR represents the aspect ratio of the eye contour.  

The LGR changes very little when eyes are open and is a very 

small value while closing eyes.  

 

2) Eye state feature extraction using deep transfer learning 

Deep Convolutional neural networks (Resnet [28], VGG nets 

[29], etc.) have achieved excellent performance for visual 

recognition tasks. Evidence reveals that training data amount is 

of crucial importance for model performance. At present, 

gaining a rich supply of eye state datasets that directly meet a 

deep neural network training for driver fatigue detection is 

difficult. If we train the deep neural network model with a small 

sample dataset, it is likely to occur overfitting. Therefore, it will 

seriously affect the extraction result of eye state features. In 

contrast, deep transfer learning (DTL) has a strong ability to 

automatically extract features. It can overcome the disadvantage 

of overfitting and meet the end-to-end requirements in practical 

applications. 

DTL takes advantage of a deep neural network to transfer the 

existing knowledge from the source domain to the target 

domain. In this study, we use the model transfer approach to 

seek the shared parameter information from the source domain 

and the target domain. A data domain is made up of feature 

space X  and a probability distribution P( )X . For a given 

source domain 
sD  and target domain

tD , it can be expressed as 

{ , ( )}s s sPD X X  and { , ( )}t t tPD X X  { , }s s sT f Y , { , }t t tT f Y  where 

sT indicates domain task, 
sY  represents source domain class 

space, and 
tY  is target domain class space. sf  and tf  represent 

mapping functions for source and target domains, respectively. 

The objective of DTL is to utilize the tagged data sD  to learn a 

target prediction function :t t tf x ya . Finally, we can predict the 

target domain tD  belongs to which class t ty Y . 

We present comprehensive experiments on Closed Eyes in 
the Wild (CEW) dataset to evaluate the effectiveness of 
different deep convolutional neural networks. We obtain better 
results by the Resnet34 network compared to Resnet18, 
Resnet50, and VGG16 networks. Therefore, we select Resnet34 
as the backbone network in this study. The feature knowledge 
learned by Resnet34 on the ImageNet dataset is used as the 
pre-training model. Finally, the trained deep transfer learning 
network will be utilized for eye state recognition. ResNet, the 
winner of ILSVRC 2015, has the advantage of shortening the 
network model training time while making the network deeper. 
As shown in table 1, it is the resnet34 network structure 
configuration.  

Table 1.  Network structure of ResNet34 

layer name output size parameter settings 

conv1 112 112  7 7 , 64 , stride 2 

conv2.x 56 56  

3 3 , max pool, 

stride 2 

3 3 64
3

3 3 64
 
  

 

conv3.x 28 28  
3 3 128

4
3 3 128
 
  

 

conv4.x 14 14  
3 3 256

6
3 3 256
 
  

 

conv5.x 7 7  
3 3 512

3
3 3 512
 
  

 

FC 1 1  average pool, 

1000-fc, softmax 

Resnet34 is employed as the backbone of eye state feature 
extraction and pre-trained on the ImageNet-2012 dataset with 
more than 1.2 million images by the supervised learning 
method. Then, using the idea of transfer learning, the learned 
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parameters of the pre-trained backbone network are transmitted 
to the target network for extracting eye state features.  

After training the model on the CEW dataset, the transfer 
network model can be employed to extract the eye state features, 
and the DTL network framework is illustrated in Figure 4. 

 
Figure 4. Deep transfer learning network framework for eye state feature extraction 

 
After multiple convolution-pooling operations, the feature 

results learned are expanded into a one-dimensional array and 
feed to the FC layer. After the FC layer, the open or closed 
binary classification result of the eye images can be obtained 

through the softmax classifier. Finally, the 
open

P value is taken as 

a feature value to construct the eye feature vector. Where 
open

P  is 

the probability that the eyes are open. 

C. Eye state recognition based on EFV 

1) Eye feature vector construction 

LGR algorithm is to judge the eye-openness state through the 
geometric relationship between the coordinates of the eye 
contour landmarks. However, the deep transfer learning 
network extracts the facial image features to judge the 
eye-openness state through supervised learning. The common 
idea of these two methods is to use a single feature to judge the 
eye-openness state. However, in real driving scenes, the 
accuracy of a single feature recognition algorithm is more likely 
to be affected by the changes of head posture, light, and other 
conditions than that of multiple features. To achieve higher 
recognition accuracy, EFV (Eye Feature Vector) 
two-dimensional feature vector is constructed based on the LGR 
algorithm and deep transfer learning network model. Two 
features are fused to recognize the driver's final eye state. This 
approach can enhance the accuracy and robustness of detection 
based on a single eye feature. EFV is defined as: 

( , )openEFV P LGR         （4） 

The open
P probability is taken as the X value and the LGR 

result as the Y value. As shown in Figure 5, black dots are the 

open-eye feature vector and red dots represent the closed-eye 

feature vector. Therefore, we can plot the mapping diagram 

between the eye feature values and EFV. 

As shown in Figure 5, we can see that when the driver's eye 

features take different values, the coordinate positions of EFV 

are different (the red dot is the EFV coordinate when the eyes 

are closed, and the black dot is the EFV coordinate when the 

eyes are open). Consequently, EFV can be determined as an 

important parameter to represent the eye state in the driver 

fatigue detection model. 
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Figure 5. Eye feature values and EFV mapping diagram 

 

2) Eye state recognition classifier 

The traditional method is to judge eye-openness state 

according to a single feature and fixed threshold value, which 

will have the problems of weak generalization ability and weak 

adaptability to the environment. Therefore, to overcome these 

problems and improve performance, EFV values are calculated 

through the images provided by the self-built training dataset 

and fed to a machine learning (ML) classifier. In this study, we 

analyzed three types of classifiers: Random Forest (RF), 

Artificial Neural Network (ANN), and Support Vector Machine 

(SVM) [27]. 

Among them, SVM is a machine-learning model that 

creates a mapping function between input vectors and output 

results based on the training dataset. It does not need to consider 

any previous knowledge about the mapping function 
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relationship. The trained SVM model is used as a classifier for 

eye state recognition. The basic model of SVM is defined as a 

classifier with the largest spacing in the feature space. Assume 

that the training dataset in the feature space is T： 

{( , ), 1,2,..., }i iT y i l x        （5） 

Where n

ix  ΅  is the i-th EFV feature vector, { 1, 1}iy     is 

the class labels. When 1iy   , it is a positive example 

(representing the open state of the eye), and when 1iy   is a 

negative example (representing the closed state of the eye). 

The SVM classifier model is to solve the maximum 

partition hyperplane, which can be expressed as a constrained 

optimization problem: 

 , ,
1

1
min

2
. . ( ( ) ) 1 ( 0)

l
T

i
w b

i
T

i i i i

C

s t y b




  



 

    

w w

w x
   （6） 

Where ( )  is the nonlinear mapping function. C > 0 is the 

penalty parameter of the error term. ( , ) ( ) ( )T

i j i jK  x x x x  is 

defined as the kernel function. There are four basic kernel 

functions in SVM, such as linear, polynomial, radial basis 

function (RBF), and sigmoid. 

D. Driver fatigue detection algorithm 

PERCLOS, proposed by CMU Research Institute, is 

widely considered the most effective fatigue evaluation rule at 

present. PERCLOS can be described by formula (7) as: 

100%closeT
PERCLOS

T
 

       （7） 

Where T is the detection period (unit: second), closeT  represents 

the time when the driver's eyes are closed in the detection 

period.  

In the video frame sequence of driving fatigue detection, 

although there is no time scale, the video frame speed is fixed 

and the image is continuous. Based on this feature, to simplify 

the computational complexity of PERCLOS, the calculation of 

Formula (7) is converted into Formula (8). 

100%closeF
PERCLOS

F
 

     （8） 

Where F is the total number of frames in a detection period and 

closeF is the number of frames with the eye closed in the detection 

period.  

If
thresholdPERCLOS PER (threshold of PERCLOS), it can be 

determined that the driver is in an awake and normal driving 

state during the detection period. If
thresholdPERCLOS PER , it 

indicates that the driver may have experienced fatigue driving 

during the detection period. The thresholdPER will be determined 

by fatigue detection experiment. 

IV. EXPERIMENT 

A. Deep transfer learning network training 

we select Resnet34 as the backbone network in this study. 

The feature knowledge learned by Resnet34 on the ImageNet 

dataset is used as the pre-training model. We present 

comprehensive experiments on Closed Eyes in the Wild (CEW) 

dataset to evaluate the effectiveness of different deep 

convolutional neural networks. 

 

1) Datasets and environment 

ImageNet-2012 dataset[31]: There are 1,000 image 

categories in ImageNet-2012, among which the training dataset 

contains 1,281,167 images, with data ranging from 732 to 1,300 

for each category, while the verification dataset contains 50,000 

images, with an average of 50 images for each category. 

Closed eyes in the wild（CEW）dataset[32]: A dataset 

constructed by Song et al., Nanjing University of Aeronautics 

and Astronautics for eye state close-up detection in the field 

consisted of 2,423 participants, among which 1,192 participants 

with eyes closed are directly gathered from the Internet, and 

1,231 participants with eyes open are selected from the LFW 

database. 

The training environment of the network model is Baidu 

AIStudio platform. The hardware environment is CPU：

4Cores, RAM：32GB, Disk：100GB, GPU: Tesla V100, 

Video Mem 16GB. The software environment is Python 3.7, 

Baidu open-source deep learning framework PaddlePaddle 

1.8.4. The end-to-end model is adopted in the model training 

process, batchsize=128, epoch_num=50, Adam optimizer, the 

global learning rate is 45 10 , learning rate scheduling method 

is linear_decay. 

 

2) Network training and comparative experiment 

The deep transfer learning (DTL) network for eye state 

feature extraction is trained on Baidu AIStudio platform. The 

CEW dataset used for finetuning has 2,423 images, which is 

divided into training and validation datasets according to the 

ratio of 9:1.  
 To analysis the possible advantage of a deep learning 

network for eye state feature extraction, under the same 
experimental environment, we conducted a group of 
experiments on the CEW dataset by using different deep 
learning networks. First, we make a comparison between VGG 
and Resnet series networks. One representative network of the 
former is the VGG16. About Resnet, according to different 
network depths, we select Resnet18, Resnet 34, and Resnet50 to 

test the performance of the eye state feature extraction. Figure 6 

gives the training and validation results.  
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(b) Training Accuracy 
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(c) Evaluation Loss 

 
10 20 30 40 50

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
v

al
u

at
io

n
 A

cc
u

ra
cy

Steps

    Resnet18

    Resnet34

    Resnet50

    VGG16

 
(d) Evaluation Accuracy 

Figure 6.  Loss and accuracy curves of various deep learning networks 

 
We can see that the training loss value becomes very 

small, near-zero, at the end of training. Correspondingly, the 
training accuracy also reaches a stable value. It can also be 
observed the evaluation loss and accuracy on the CEW dataset 
are consistent with the changing trends in training loss and 
accuracy. Through statistics, the evaluation loss: Resnet34 
(0.0019)<Resnet50(0.0216)<VGG16(0.0345)<Resnet18 
(0.0852), the evaluation accuracy: Resnet34(97.2%)> Resnet18 
(96.2%)>VGG16(94.4%)>Resnet50(89.9%). The Discovery of 
resnet34 has better performance than the other three models by 
experimental results analysis. Therefore, a DTL network for eye 

state feature extraction selected Resnet34 as the backbone 
network. We further train the DTL network on the CEW dataset 
and validate its effectiveness. 
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(b) Evaluation Accuracy 

Figure 7. Accuracy curves of the DTL network and Resnet34 

 

As shown in Figure 7, experimental results suggest that the 
proposed DTL network provides superior performance and 
achieves higher accuracy than Resnet34. The DTL network 
reaches an evaluation accuracy of 98.3% on the CEW dataset. 

B. Eye state recognition classifier training and test 

In this experiment, we use the extracted eye 

features,
open

P and LGR, to construct EFV as the input of the 

training eye state recognition classifier.  
 

1) classifier training dataset 

Due to the limited resources provided by the public eye 
state recognition dataset, images are manually screened from 
the Dynamic Facial Expression in the Wild (DFEW)[33] 
database to establish the training dataset of the classifier. The 
training dataset divides into two parts, 500 open eye images and 
500 closed respectively. The dataset includes various 
challenging interferences in practical scenarios such as extreme 
illumination, occlusions, and head posture changes. It is 

beneficial to boost the generalization ability of the eye state 
recognition classifier. Using the same method, a test dataset is 
established to test the effectiveness of the trained classifiers 
when predicting unknown images. The sample images are 
shown in Figure. 8.  

 
Figure 8. Sample of the classifier training dataset 

 

2) classifier training and test 

Subsequently, we will compare the performance among 
the three classifiers mentioned in section 3.3.2 with the same 
dataset and input EFV. All codes related to the classifier model 
are developed under the python programming environment. To 
evaluate the performance of the various eye state recognition 
classifiers, we calculate the precision, recall, and accuracy 
according to formulas (9)-(11). 

Pr 100%
TP

ecision
TP FP

 


          (9) 

Re 100%
TP

call
TP FN

 


           (10) 

A 100%
TP TN

ccuracy
TP TN FP FN


 

  
           (11) 

where  
TP = the state correctly identified as the closed state while 

eyes were actually in the closed state. 
TN = the state correctly identified as the open state while eyes 

were actually in the open state. 
FP = the number of incorrectly identified as the open state 

while eyes were actually in the closed state. 
FN = the number of incorrectly identified as the closed state 

while eyes were actually in the open state. 

 

Table 2. Recognition performance of various classifiers 

 Training Test 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Time 
(ms) 

Precision 
(%) 

Recall 
(%) 

Accuracy 
(%) 

Time 
(ms) 

RF optimized 99.60 99.40 99.50 106 93.27 92.33 92.83 0.017 

ANN 

2 layers 

(32,32) 100 99.80 99.90 624 99.65 96.00 97.83 1.17 

(64,64) 100 99.80 99.90 642 99.66 96.33 98.00 1.19 

(128,128) 100 99.80 99.90 710 99.65 95.33 97.50 1.26 

3 layers 

(32,32,32) 100 99.80 99.90 701 99.65 95.33 97.50 1.31 

(64,64,64) 99.80 99.80 99.80 735 99.32 96.69 98.01 1.32 

(128,128,128) 99.80 99.80 99.80 777 99.65 94.00 96.83 1.37 

SVM 

linear 99.60 99.80 99.70 4.0 99.31 96.00 97.67 0.002 

poly 99.80 99.80 99.80 3.8 99.31 95.67 97.50 0.003 

sigmoid 100 99.60 99.80 5.8 98.21 91.67 95.00 0.003 

rbf 99.80 99.80 99.80 4.6 99.66 98.00 98.83 0.002 

Table 2 shows that the RF classifier has an excellent 

performance in training. However, accuracy is the worst in 

testing among three classifiers which implies overfitting on the 

training dataset. ANN classifiers with two or three layers have 

better performance both in training and testing. At the same 

time, we also can see that the time cost of the ANN classifier is 

hundreds of times longer than the SVM classifier, which has a 

great impact on real-time embedded devices. In the SVM 
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classifiers, there are four different kernel functions to choose 

from parameter c in the training. Through comparison, it is 

found that there is little difference in the training and testing 

accuracy of the three SVM classifiers. This indicates that the 

SVM classifier has good generalization ability. However, the 

RBF-based SVM model is superior to the other three SVM 

classifiers in terms of precision, recall rate, and accuracy, which 

has an accuracy rate of 98.8% for driver eye state recognition on 

the test dataset. 

C. Driver fatigue detection 

1) DROZY database 

The public “Ulg multimodality drowsiness database” 
(short name “DROZY”) provided by Massoz [34] et al. contains 
multiple modalities of drowsiness-related data (videos, 
polysomnography signals, etc.). It can help researchers to carry 
out various types of drowsiness-related developments and 

experiments (fatigue, cognitive distraction detection, etc.). 
Therefore, the test and performance validation of fatigue 
detection was performed with the DROZY database in this 
study. 

In the DROZY database, 14 healthy subjects performed 
three psychomotor vigilance tests (PVTs) over two consecutive 
days. The data collection schedule is shown in Figure 9.DAY 1. 
It is required to install test equipment after arriving at the 
laboratory at 8:30. At the beginning of PVT data collection, 
subjects were asked to evaluate his/her level of fatigue 
according to the Karolinska Sleepiness Scale (KSS)[35] 
and fulfill a form. Between 10:00 and 11:00, subject 
completed the PVT1 test. Once a subject started the first PVT, 
he/she can not rest until the third PVT was finished, the total 
sleep deprivation was about 28-30 hours. DAY 2. Subject 
completed PVT2 and PVT3 tests 3:30 - 4:00 and 12:00 - 12:30, 
respectively. 

 
Figure 9. PVT data collection schedule 

 

In traditional mental fatigue detection methods, KSS is a 
subjective means to evaluate one’s level of fatigue, which is 
sensitive and usually used for estimating the overall fatigue. The 
KSS level is shown in Table 3 

 
Table 3. KSS level for self-estimation of fatigue 

Karolinska Sleepiness Scale (KSS)  

1 Extremely Alert  

2 Very Alert 

3 Alert 

4 Rather Alert 

5 Neither Alert nor Sleepy 

6 Some Signs of Sleepiness 

7 Sleepy, But No Effort to Keep Awake 

8 Sleepy, some Effort to Keep Awake 

9 Very Sleepy, Fighting Sleep 

2) Fatigue detection subjects and parameter setting 

Since KSS is a subjective self-estimation method, it is also 
sensitive. According to Table 3, this study divides KSS levels 
into two categories – Normal ( 3KSS  ) and Fatigue ( 7KSS  )- 

to reduce possible inconsistency in consideration of the subject 
is difficult to determine the thresholds between adjacent KSS 
levels. The literature [15] and [36] also adopt 3KSS   for 

alertness and 7KSS  drowsiness. According to this 

classification method and the PVT data provided by the 
DROZY database, eight subjects experienced both alert and 
drowsy states during the experiment. At the same time, eye state 
was recognized for these subjects. Generally speaking, higher 
KSS levels represent a greater percentage of eye closure. 
Finally, according to this principle, three subjects for which 
the fatigue level was detected. Table 4 summarizes the KSS 
levels of each subject and the percentage of eyelid closure 
(PEC). 

100%closed

closed open

E
PEC

E E
 


           (10) 

 

 

 
Table 4.. Summary of three subjects  

Subject PVT KSS level Eye-open image Eye-closed image PEC(%) 

1 

PVT1 3 16,996 869 4.86 

PVT2 6 8,806 691 7.28 

PVT3 7 7,957 909 10.25 

2 

PVT1 3 16,824 1,075 6.01 

PVT3 6 6,554 1,592 19.54 

PVT2 7 3,891 5,510 58.61 

8 
PVT1 2 16,806 1,062 5.94 

PVT2 6 7,646 1,228 13.83 
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PVT3 8 7,697 1,328 14.71 

After the subjects are selected, MissRate and ErrorRate 
are employed to determine the appropriate threshold value 

thresholdPER . MissRate refers to the rate at which the model is 

unsuccessfully recognized as a fatigued state while the driver is 
actually in a fatigue state, and ErrorRate refers to the rate at 
which the model is misjudged as a fatigued state while the driver 
is actually in non-fatigue state. The experimental results of 
MissRate and ErrorRate are presented in Figure 10. We can see 
that the MissRate value decreases with the increase in 
PERCLOS value, and the ErrorRate has the opposite trend. 

When the threshold is 0.20 (
threshold 0.20PER  ), the model 

achieves the best performance. 
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Figure 10/ Relationship between PERCLOS and MissRate 
and ErrorRate 

In addition, considering the fatigue does not fluctuate 
rapidly, only calculating the current output of PERCLOS value 
is not enough to predict fatigue. Hence, the final result is 
extracted from six pre-set slide windows which have lengths of 
{10,20,30,40,50,60} seconds, respectively. If the PERCLOS 
value exceeds the threshold value ( 0.20 ) in three or more 

windows, it is judged that the current state is fatigue.  

 

3) Results 

We test the performance of our model for driver fatigue 
detection on three subjects (i.e., subject ‘1’, ‘2’, and ‘8’) of 
DROZY database. The test data consists of six videos 
performed by three subjects. The final detection results are 
shown in Table 5.  

 
Table 5. Experimental results  

Subject PVT KSS level Video length Driver state 

Accuracy (%) 

Soukupova et al. [33 ] 
(EAR-based) 

Ours  
(EFV + SVM) 

1 
PVT1 3 00:09:55 Normal 76.36 92.73 

PVT3 7 00:09:51 Fatigue 83.64 96.36 

2 
PVT1 3 00:09:56 Normal 89.09 89.09 

PVT2 7 00:10:26 Fatigue 98.28 98.28 

8 
PVT1 2 00:09:55 Normal 76.36 80.00 

PVT3 8 00:10:01 Fatigue 80.39 94.12 

Average 84.02 91.76 

It can be observed from tables 4 and 5 that different 
people have unique understanding and performances related to 
normal and fatigue states. Despite the same KSS level, eye 
performance varies among different drivers. The eye aspect 
ratio (EAR) proposed by Soukupova et al. [37] is a traditional 
and common fatigue detection method, which only extracts a 
single feature of the eye. The detection accuracy of fatigue state 
is 84.02%. The comparison results in Table 5 show that, once 
EFV and SVM are integrated, the detection accuracy 
significantly improves and becomes higher than the EAR-based 
method. The accuracy is up to 91.76%. 

V. CONCLUSION 

This study selects the eye state which can directly reflect 
the fatigue level of the train driver as the feature and uses the 
method of machine learning to detect and analyze the fatigue 
state. 

Two algorithm models of eye state feature extraction are 
designed. The eye state feature vector EFV is constructed to 
represent the fatigue characteristics of eyes from a higher 
dimension, which improves the performance of eye state 
recognition. 

An information fusion strategy based on SVM is proposed 
with EFV vector as input, and the knowledge independently 
learned by SVM on the training dataset is used to guide the 
classification of driver eye state, which overcomes the 
limitation of a single fixed threshold and improves the 
adaptability and robustness of the algorithm model. Finally, We 
carried out the driver fatigue detection experiment based on 
PERCLOS criterion, and the comparison experiments indicate 
that our method has a detection accuracy rate of 91.76%, which 
is higher than the EAR-based method. 

Because driving fatigue is the result of physiological and 
psychological factors, fatigue state will be reflected in many 
visual features such as eyes, mouth, and facial expressions. 
Based on the visual analysis of the state of the eyes, the 
influence of the change of the state of the mouth and the change 
of facial expression will be further considered. 
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