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ABSTRACT This paper addresses trajectory optimization problems for underwater data muling with
mobile nodes. In the underwater data muling scenario, multiple autonomous underwater vehicles (AUVs)
sample a mission area, and autonomous surface vehicles (ASVs) visit the navigating AUVs to retrieve the
collected data. The optimization objectives are to simultaneouslymaximize fairness in data transmissions and
minimize the travel distance of the surface nodes.We propose an nearest-K reinforcement learning algorithm,
which chooses only from the nearest-K AUVs as candidates for the next node for data transmissions. We use
the distance between AUVs and the ASV as the state, selected AUVs as the action. A reward is designed as
the function of both the data volume transmitted and the ASV travel distance. In the scenario with multiple
ASVs, an AUV association strategy is presented to support the use of multiple surface nodes. We conduct
computer simulations for performance evaluation. The effects from the number of AUVs, the size of the
mission area, and the state number are investigated. The simulation results show that the proposed algorithm
outperforms traditional methods in terms of the fairness and ASV travel distance.

INDEX TERMS Underwater acoustic communications, data muling, autonomous underwater vehicles,
autonomous surface vehicles, trajectory optimization, reinforcement learning.

I. INTRODUCTION
Mobile platforms, such as autonomous underwater vehi-
cles (AUVs) and autonomous surface vehicles (ASVs), have
been used as effective tools in ocean monitoring and explo-
ration [1]. Compared with fixed ocean monitoring net-
works, AUVs and ASVs have clear advantages in terms of
operational costs and mission flexibility [2]. In this paper,
we mainly focus on the underwater data muling using these
mobile nodes, AUVs and ASVs.

Underwater data mulingwithmobile nodes promises a new
way to achieve data collection in oceans [3]. In this scenario,
a mission area is divided into several sub-missions, which are
assigned to individual AUVs. Surface vehicles, ASVs, ferry
data from AUVs using underwater acoustic communications
and then transfer the data to the control center using terrestrial
wireless communications. Due to the limited communication
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range of underwater acoustic communications, it is impossi-
ble for an ASV to cover a large geographic area. The surface
node needs to visit each AUV so that these AUVs can obtain
a reasonable amount of time for data transmission.

The use of ASVs to retrieve the AUV data provides several
benefits. First, a low latency can be achieved. AUV measure-
ments can be accessed before the vehicle recovery. Second,
theAUVenergy is conserved sinceAUVs do not need to be on
the surface for communication with the control center. AUVs
can operate underwater for longer periods of time. Third,
multiple surface vehicles provide the possibility of expediting
data transmission.

The trajectory of ASVs needs to be optimized to minimize
the travel distance. Due to limited energy, ASVs are required
to select the shortest route to approach each AUV. In this way,
energy efficiency is achieved and the ASV mission time is
extended. Access fairness among AUVs needs to be ensured
too. Often AUVs are expected to transmit equal data volumes.
Unfairness among users can cause large package delay [4].
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This requires the surface vehicle to balance the transmitted
data volume among all AUVs.

The requirements of energy-saving and fairness impose
a trade-off in ASVs trajectory planning. On one hand, for
limited energy resources, ASVs need to design a visiting
sequence in an energy-efficient manner. Therefore, ASVs
prefer to move as little as possible to save energy. On the
other hand, for the low-latency requirement, ASVs should
visit each AUV and fetch an equal amount of data among all
AUVs. It requires each AUV not only to be given the same
communication time but also the same visiting frequency. It is
undesirable to approach one AUV for a long time and leave
the rest barely connected. In other words, ASVs are required
to hop among AUVs.

Multiple applications of mobile nodes were reported in
wireless networks [5]–[8]. In [5], mobile sinks were used to
collect the data to bypass the hot-spot problem. In [6], an ant
colony-based path determination algorithm was proposed for
wireless sensor networks. In [7], instead of visiting each
sink node, the mobile sink visited each rendezvous point.
One common characteristic of thesewireless applicationswas
that sensor node locations remained stationary. Therefore, the
developed solutions were not applicable to the problem of
interest in this paper.

One related application of underwater mobile platforms
was theAUV-aided datamuling in underwater acoustic sensor
networks [9]–[14]. The network consisted of a variable num-
ber of fixed sensors that are deployed to perform collaborative
data collection over a wide area. The AUV-aided data muling
was proposed to extend the lifetime of fixed sensors [12].
Survey data were collected by using one or multiple AUVs
rather than being transmitted among fixed nodes.

Multiple schemes were proposed in the AUV-aided under-
water data muling [13], [15]–[21]. Early research focused on
hardware design and simple path planning algorithms [13].
Several energy-efficient protocols were proposed to address
this problem. These protocols reduced the AUV energy used
by either designing the trajectory of the AUV [15]–[19] or
grouping the underwater acoustic sensors into several clusters
[20], [21]. None of the efforts in the literature used the
multiple AUVs cooperation or the mobile sensor problem in
the data muling protocol.

The data muling was formulated as the traveling salesman
problem (TSP) [22]. As one of the most widely studied
optimization problems [23], the objective of the TSP was
to find the shortest route from a list of cities. There were
two types of algorithms: exact algorithms and heuristic algo-
rithms [24]. However, exact algorithms were impractical for
a large number of cities. Heuristic algorithms, such as the
nearest neighbor algorithm and the ant colony algorithm,
were able to find a sub-optimal solution for large-scale prob-
lems within a fair time expense and acceptable accuracy
(97%−98%) [25]. Multiple objectives TSP optimization was
explored in [12], [26]. These research only considered the
scenario with static nodes. Research onmobile TSP problems
mainly assumed that the target moves along a straight line in

a two-dimensional space [27]. Mobile TSP problems focus
only on a single optimization objective, that is the shortest
route [28], [29].

Recent successes in the application of the reinforce-
ment learning to optimization problems created interest in
many areas [30]. In the area of underwater wireless sensor
networks (UWSNs), reinforcement learning-based methods
were widely used in oceanographic data collection. Energy
efficiency [31]–[37] and end-to-end delay [38], [39] were
two main concerns in UWSNs protocol design. In [40],
a reinforcement learning-based congestion-avoided rout-
ing (RCAR) protocol was designed to reduce the end-to-end
delay and energy consumption. In [38], the Q-learning based
energy-efficient and balanced data gathering routing protocol
(QL-EEBDG) was proposed to enhance the network lifespan.

Unmanned aerial vehicles (UAVs) play a similar role in
terrestrial communications to ASVs in underwater environ-
ments. Reinforcement learning-based algorithms were pro-
posed for UAV-aided terrestrial communications [41]–[44].
Current applications of the reinforcement learning often
focus on a single optimization objective, such as minimizing
energy consumption, minimizing delay and maximizing cov-
erage area. The roles of UAVs in the protocol, the character-
istics of the communication channel, the speed of AUVs and
ASVs are different. These algorithms cannot be applied to the
underwater environment. The reinforcement learning-based
trajectory optimization for ASVs has not been investigated
yet.

In this paper, we propose a nearest-K reinforcement
learning-based trajectory optimization for the data muling
with underwater mobile nodes. TheASV tracks are optimized
for the surface vehicles to visit AUVs in a certain sequence.
We use the distance between ASVs and AUVs as states; and
the selected AUVs as actions. We design the reward as a
function of the ASV travel distance and the data volume of
AUVs. In this way, we achieve a balanced optimization objec-
tive: maximizing fairness among AUVs and minimizing the
ASV travel distance. The reinforcement learning algorithm is
simplified by limiting only the nearestK AUVs as candidates,
which are selected as the next target AUV to be approached.
We also design a user association algorithm such that multiple
AUVs can be assigned to different ASVs. Multiple ASVs can
work together to serve a group of AUVs.

The major contributions of this paper are summarized
as follows. First, we propose a nearest-K reinforcement
learning-based trajectory optimization for data muling with
a single ASV. Second, we design an AUVs association strat-
egy for a multiple ASVs scenarios. Third, we demonstrate
the performance advantage of the proposed algorithm in a
multi-AUVs and ASVs cooperation scenario with four and
eight AUVs. The proposed algorithm is able to design an
optimized track for ASVs, achieve a balanced optimization
objective: minimizing the ASV travel distance and maximiz-
ing the fairness.

The paper is organized as follows. In Section 2, we describe
the underwater data muling scenario and related problem
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statements. In Section 3, we introduce the nearest-K rein-
forcement learning-based trajectory optimization algorithm.
In Section 4, we demonstrate the performance of the proposed
algorithm. In Section 5, we provide concluding remarks.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. SCENARIO DESCRIPTION
We consider an oceanographic mission with multiple ASVs.
The environmental characteristics of a mission area such as
temperature, water depth, and salinity need to be collected.
These measurements are required to send to a control center
onshore. A group of AUVs and ASVs are operated to execute
this mission, as illustrated in Fig. 1.

The mission is often divided into multiple sub-missions,
which are carried out by individual AUVs. Each AUV is
assigned a small area to explore. ASVs are used to collect
the survey data from AUVs via acoustic communications.
Those data are sent to the control center by terrestrial wire-
less communications. In this scenario, AUVs do not need to
surface or to directly transfer the collected data to the control
center. Instead, ASVs approach each AUV and collect data by
using underwater acoustic communications and underwater
optical communications. The AUV mission time underwater
can be extended. If ASVs visit each AUV more frequently,
the control center gets data with less delay.

We first consider a scenario with Nv AUVs supported by
a single ASV. We define an episode as a period of time
in which the ASV visits one or multiple AUVs for data
transmission. Each episode has two phases: capturing and
trailing phases. During the capturing phase, the ASV chases
a selected AUV with a full speed, vt , which is higher than the
AUV speed. To maximize the data volume, the selected AUV
sends data to the ASV in the capturing phase via acoustic
communications. AUVs and ASVs use acoustic communica-
tion with a low data rates. The data rate changes based on
communication distance. The AUV is considered captured
when the ASV-AUV distance reduces to a threshold of, for
example, 50 m. In the trailing phase, the ASV trails the AUV
at a lower speed of vc for data transmissions. The ASV and
ASVs use optical communications with a high data rate. The
ASV can communicate with multiple AUVs to fully utilize
the communication resources within the operating range of
optical communications.

Different from the application in [5], the scenario in this
paper only includes moving nodes such as AUVs and ASVs.
The AUVs in our scenario move along a designed track
to collect data for a target area. Because deploying these
AUVs at different depths does not bring additional benefits,
we assume that AUVs are deployed at the same depth in the
ocean.

B. PROBLEM FORMULATION
We define the equivalent data volume as:

B′i(k) = ωi(k)× bi(k), (1)

FIGURE 1. Data muling with the mobile nodes scenario. Multiple AUVs
collect data from their assigned area. ASVs visit each AUV to ferry the
data.

where bi is successfully received bits from the i-th AUV in
the k-th episode. We define the average data volume as the
average value of the data volume in a time window length of
Tc.
The average equivalent data volume of the i-th user can be

calculated as:

Bi (k) =


(
1−

1
Tc

)
Bi (k − 1)+

1
Tc
B′i (k) i-th user(

1−
1
Tc

)
Bi (k − 1) otherwise.

(2)

In Eq. (2), the average equivalent data volume is initialized
as one for all AUVs, Bi (0) = 1. A weighting factor ωi(k)
is defined to account for the user priority and fairness. It is
the inverse of the equivalent transmitted data volume of the
previous episode,

ωi(k) =
1

Bi (k − 1)
. (3)

The total equivalent data volume is the summation of the
equivalent data volume from all AUVs:

B =
K∑
k=1

Nv∑
i=1

τi(k)Bi (k), (4)

where Nv is the number of AUVs and τi(k) is an indicator
function. When an AUV is selected at k-th episode, τi(k) is
equal to 1, otherwise, τi(k) is equal to 0. Therefore,

τi(k) =

{
1 i− th AUV is selected
0 otherwise.

(5)

The total ASV travel distance can be expressed as:

D =
K∑
k=1

Nv∑
i=1

τi(k)(dc,i (k)+ dt,i (k))

=

K∑
k=1

Nv∑
i=1

τi(k)Di (k), (6)
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where dc,i (k) is the distance that the ASV uses to capture a
target AUV, dt,i (k) is the distance that the ASV trails with the
AUV in k-th episode. In Eq. (6), Di(k) = dc,i (k)+ dt,i (k).
We define a metric R below to represents that how much

data volume can be transmitted when an ASV travels one unit
of distance,

R =
B
D
=

K∑
k=1

∑Nv
i=1 τi (k)×ωi (k)× bi (k)∑Nv

i=1 τi (k)×Di (k)
(7)

The optimization objective is to minimize R, which is equiv-
alent to maximizing the equivalent data volume while mini-
mizing the travel distance. Therefore, the optimization objec-
tive becomes to select suitable AUVs at all episodes such that
the value of R is minimized.

The data volume at the i-th AUV for all K episodes can be
calculated as

b′i =
K∑
k=1

τi(k)bi (k). (8)

The total transmitted data volume from all AUVs during
all K episodes is

b′ =
K∑
k=1

Nv∑
i=1

τi(k)bi (k). (9)

C. ENERGY CONSUMPTION MODEL
In this paper, we focus on designing an ASV track with
considerations of energy savings and communication connec-
tivity. The energy consumption of the ASVs originates two
aspects. The first part is related to vehicle movement. Let fc
and ft be the resistant forces for the capture and trailing phase.
The energy consumption for the ASV to capture and trail the
i-th underwater node during the k-th episode is expressed as:

Em,i(k) = fcdc,i(k)+ ftdt,i(k), (10)

which increases linearly with the travel distance. In the cap-
turing phase, the ASV moves at a high speed to catch up with
an AUV. We consider the fc = 300 N for the speed of 10 kn
based on [45]. In the trailing phase, the ASVmoves at a lower
speed. We consider ft = 50 N at a speed of 2 kn and f = 100
N at a speed of 4 kn.
The other part of the energy consumption comes from

the data transmission. We assume a constant power level for
acoustic transmission, Pc. The associated energy consump-
tion can be expressed as:

Ec = Pc × Tc, (11)

where the value of Pc is set up as 10W .
Combining (10) and (11), the total energy consumption of

the ASV is:

E =
K∑
k=1

Nv∑
i=1

(τi(k)Em,i(k)+ Ec). (12)

III. Q-LEARNING BASED ALGORITHM FOR THE ASV
TRAJECTORY OPTIMIZATION
A. PROPOSED ALGORITHM
We adopt the Q-learning algorithm to optimize the trajectory
of the ASV. The Q-learning algorithm includes an agent, a set
of state, actions, and a reward. The agent executes an action
and gets a reward, while the state of the agent transits from
one to another. The Q-learning algorithm selects actions to
maximize the total reward. The following parameters need to
be defined based on our scenario:

1) State: The state is defined as the distance that the ASV
needs to move in the capturing and trailing phases.
Therefore, the state in the k-th episode is defined as a
vector D(k):

D(k) =
[
D1(k) D2(k) · · · DNv (k)

]
, (13)

whereDi(k) is the distance that the ASV needs to travel
when the k-thAUV is selected.Di(k) is the distance that
the ASV needs to travel when the i-th AUV is selected.
The value Di(k) includes two parts, the ASV distance
in the capturing phase (dc,i(k)) and the distance in the
trailing phase (dt,i(k)).
The process of the ASV capturing AUVs is formulated
as a differential equation. The location of the ASV
is set as the coordinate origin. We assume the i-th
AUV is located at ai(k) = (ai,1(k), ai,2(k)) in the k-th
episode. The AUV moves along the y axis at the speed
of v. At time1t , this AUV arrives at (ai,1(k), ai,2(k)+
v1t ). At the same time, the ASV moves to the point
(x(1t ), y(1t )), traveling at the direction towards to the
AUV. Therefore, the differential equation model can be
express as,

dy
dx
=
y(1t )− ai,2(k)− v1t

x(1t )− ai,1(k)
. (14)

The ASV travel distance in the capturing phase dc,i(k)
is calculated by the ASV track ((x(t), y(t))) determined
in this differential equation. The ASV travel distance
in the trailing phase dt,i(k) is calculated by using data
transmission and the ASV-AUV trailing speed.

2) Reward: The reward is defined as:

R′ =
K∑
k=1

γ k
∑Nv

i=1 τi (k)×ωi (k)× bi (k)∑Nv
i=1 τi (k)×Di (k)

, (15)

where 0 < γ < 1 is the discount rate.
To compare the proposed algorithm with single-
objective optimizations, we define another reward
function to minimize the ASV travel distance,

D′ =
K∑
k=1

γ k
Nv∑
i=1

τi (k)×(−Di (k)). (16)

3) Action: The ASV captures different AUVs to fetch
the data in k-th episode. Therefore, the action here
is defined as the selection of AUVs. Here we set the
maximum number that the ASV can transmit data
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simultaneously as two. Thus, the action candidates are
AUV1,AUV2, . . . ,AUVNv ,AUV1+AUV2,. . . ,AUVNv−1+
AUVNv .

B. NEAREST-K MODIFICATION
To implement the Q-learning algorithm, we need to discretize
the vector D(k) as the state. In the later implementation, the
Di(k) values are discretized in the step size of 1d = 80 m.
Even with this quantization step, there are a large number of
states when the number of AUVs is moderate number. With
eight AUVs in a medium mission area, for example, 3 km ×
3 km, the number of possible states is 388. This is impractical
for implementation.

We solve this issue by integrating a nearest-K algorithm.
Instead of using the distance between the ASV and all AUVs,
we use the distance between the ASV and the nearest-K
AUVs as the state:

D(k) =
[
D1(k) D2(k) · · · DK (k)

]
. (17)

The number of states can be drastically decreased for a small
number for K .

C. USER ASSOCIATION FOR MULTIPLE ASVS
When there are a large number of AUVs, multiple ASVs
can be used to reduce the access delay. We propose a
geometry-based association algorithm to divide the AUVs
into subgroups, each of which is associated with a single
ASV. When there are Nv AUVs and M ASVs, the algorithm
separates Nv AUVs into M sub-groups. AUVs with similar
locations are assigned into the same group and associated
with an ASV.

The Nv AUVs have their location vectors: a1, a2, . . . , aN
(ai ∈ A). The M ASVs have the initial locations: c1, c2, . . . ,
cM (ci ∈ C). Each AUV is associated to an ASV based on the
Euclidean distance d (ai, ci),

arg
ci∈C

min d (ci, ai) = arg
ci∈C

min

√√√√√ 2∑
j=1

(
ai,j − ci,j

)2
. (18)

The strategy of the association algorithm is to divide the
AUVs intoM sub-groups Si with pre-determined group sizes,
Nvi = |Si|. Each sub-group has a centroid, which can be
considered as the starting location of an surface vehicle. The
AUVs in a particular sub-group have the shortest distance
to its centroid. The association algorithm uses the following
procedure:

1) Preset the sizes Nvi for subgroups of AUVs so that∑M
i=1 Nvi = Nv. Randomly choose the locations of M

AUVs as the centroids.
2) Calculate the Euclidean distances between each AUV

and the M centroids.
3) Assign each AUV to the closest centroid using the

Euclidean distance calculated in Step 2. If the closest
centroid has associated an adequate number of AUVs
Nvi , assign this AUV to the second closest centroid.

4) Update the centroid location of each sub-group by

ci =
1
|Si|

∑
ai∈Si

ai. (19)

5) Repeat Steps 2 to 4 until the centroids do not change.
Those centroids are the initial locations of ASVs.

Algorithm 1: User Association
Data: number of ASVsM , size number of AUVs in

each group Nvi , the AUVs location vectors: a1, a2,
. . . , aNv (ai ∈ A)

Result:M ASVs locations: c1, c2, . . . , cM (ci ∈ C)
1 Initial c1, c2, . . . , cM (ci ∈ C) at random;
2 while C has not converged do
3 for i← 1 to Nv do
4 if |S| < Nvi then
5 l ← arg

ci∈C
min d (ci, ai);

6 Si = Si ∪ {al};
7 end
8 else
9 w← arg

ci∈C\{cl }
min d (ci, ai);

10 Si = Si ∪ {aw};
11 end
12 end
13 ci = 1

|Si|
∑

ai∈Si ai;
14 end

D. NON-LEARNING BASED ASV TRACK PLANNING
ALGORITHM
For comparison, we implement the ASV trajectory planning
based on the non-learning nearest-K algorithm in the single
ASV scenario. The surface vehicle selects the nearest K
AUVs as the candidates for their next visits. The nearest-K
algorithm is described as follows:

1) Initialization: Select an AUV randomly as the first
target to be visited. This AUV is referred to the current
stop.

2) At the k-th episode: calculate the distance Di(k),
from the currently selected AUV, or the current stop,
to unvisited AUVs.

3) Choose the nearest K AUVs to form an unvisited AUV
pool based on the distance Di(k).

4) Select one, from the unvisited AUV pool, which has a
minimum distance. Mark the selected AUVs as visited.

5) Repeat Steps 2 to 5 until all AUVs are marked as
visited.

6) Mark all AUVs as unvisited. Repeat Steps 2 to 6.
In the single ASV scenario, the algorithm calculates the

distance Di(k). The AUV with the shortest distance is chosen
as the new target AUV, which is expressed in Eq. (20). In the
multiple ASVs scenario, AUVs are associated to a ASV first.
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The ASV visits the associated AUVs by using the nearest-K
algorithm as below:

D =
K∑
k=1

min
(
D1(k), D2(k), · · · , DK (k)

)
. (20)

Algorithm 2: Nearest-K Algorithm
Data: number of ASVM , number of episodes K , Nv

AUVs location vectors: a1, a2, . . . , aN (ai ∈ A)
Result:M ASVs locations: w1, w2, . . . , wK (wi ∈W)

1 Select the j-th AUV arbitrarily. Initial
S = {1, 2, . . . ,Nv} \ {j}, k ← 1;

2 while k <= K episodes do
3 while S 6= ∅ do
4 l ← arg

l∈S
min d

(
aj, al

)
;

5 wk ← l;
6 S← S \ {l};
7 j← l;
8 k ++;
9 end
10 Initial S = {1, 2, . . . ,Nv};
11 Select the j-th AUV arbitrarily. Initial

S = {1, 2, . . . ,Nv} \ {j};
12 k ++;
13 end

Note that we deal with a new application where the ASVs
work with mobile platforms to perform data muling, which
is different from wireless sensor networks [46].No learning-
based algorithms are applicable to this new application.
We use a non-learning-based algorithm for comparison. The
complexity of the non-learning algorithm is lower than that
of the proposed learning-based algorithm.

IV. SIMULATION AND RESULTS
We conducted computer simulations to evaluate the perfor-
mance of the proposed algorithm. Standard datasets are crit-
ical for performance evaluations [47]. However, no standard
datasets are available for our research problems. Therefore,
to evaluate the algorithm performance, we created multiple
scenarios with different mission areas and different numbers
of AUVs.

The ASV-AUV communication data rates were simulated
based on the transmitter-receiver distance. It was assumed
that the product of the bit rate and distance remained con-
stant. This constant number C was 5 kbps × km. In the
capturing phase, the ASV speed vt was equal to 10 kn.
The data rate decreased with the increase of the ASV-AUV
range. We assumed that the maximum communication dis-
tancewas 1 kmwith the lowest bit rate of 5 kbps. In the trailing
phase, the data rate was 200 kbps within the communication
range of 50 m. The ASV used the same speed as the target
AUVs, vc. The discretization step size1d was 80 m. We cal-
culated the total ASV travel distance D for 100 episodes.

FIGURE 2. Scenario 1: small mission area, 2 km × 0.4 km, with four AUVs.
Four AUVs used the lawn-mowing tracks with a track spacing of 20 m.
Three vehicles, AUV-1, AUV-3 and AUV-4, had a higher speed, 2 kn, while
the remaining one had a lower speed, AUV-2 at 1 kn.

TABLE 1. ASV travel distance D and Energy consumption E under the
single-objective optimization (scenario 1).

A. SCENARIO 1: SMALL MISSION AREA WITH FOUR AUVS
First, we considered a small mission area, 2 km by 0.4 km,
with a small number of AUVs, as shown in Fig. 2. Four AUVs
used the same lawnmower track pattern with a track space
of 20 m. Three vehicles, AUV-1, AUV-3 and AUV-4, had
a higher speed, 2 kn, while the remaining one had a lower
speed, AUV-2 at 1 kn.

To validate the proposed algorithm, we used it to optimize
for a single objective, minimizing the ASV travel distance
D. The reward was set based on Eq. (16). The nearest-K
algorithm was used for comparison.

Two initial ASV locations were tested. The results are
presented in Table 1. With the initial location as ASV#01,
the ASV traveled 81.9 km when using the Q-learning algo-
rithm. The ASV traveled 87.1 km when using the nearest-K
algorithms. The ASV travel distance was shortened by 5.2
km when the proposed algorithm was used. Similar results
were obtained for the initial location of ASV#02. Two ASV
initial locations generated similar ASV travel distance for
each of the two algorithms. The proposed algorithm gener-
ated a shortened distance of 5.8 km. Correspondingly, the
energy consumption decreased 5.1%. The results show that
the proposed algorithm is effective in optimizing the track
distance of the ASV. It performed better than the nearest-K
algorithms.

Next, the Q-learning algorithm was tested with the com-
bined objective of the ASV travel distance and data trans-
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FIGURE 3. AUV data volume b′i in Scenario 1 for two algorithms: (a) Nearest-K algorithm and
(b) Q-learning algorithm. The Nearest-K algorithm used the optimization objective in Eq.(20). The
Q-learning algorithm used the reward in Eq.(15).

FIGURE 4. Effects of the range discretization. Three range steps were tested, including a) 1d = 400m, (b) 1d = 90m, and (c) 1d = 80m.

TABLE 2. AUV data volume under the single-objective optimization
(scenario 1).

mission fairness, which was achieved based on the reward
function Eq.(15). Fig. 3 shows the transmitted data volume
for each AUV. In the nearest-K algorithms, the data volume
of AUV-4 increased the fastest among all AUVs. The data
volume of AUV-1 had the lowest increase. In comparison, the
Q-learning algorithm generated balanced data volumes across
four AUVs.

The two algorithms generated different ASV travel dis-
tances. The nearest-K algorithm produced an ASV travel
distance of 26.4 km. The Q-learning algorithm led to an
ASV travel distance of 30.1 km, 3.7 km increase. The pro-
posed algorithm optimized for balanced data transmission.
Each AUV had fair transmission opportunities. The ASV
visited the AUV with a lower data volume more frequently to
improve the fairness. Therefore the ASV travel distance was
longer compared with the nearest-K algorithm. This confirms
that the proposed algorithm was effective in implementing

FIGURE 5. Scenario 2: Mission with eight AUVs. Eight AUVs had same
lawnmower tracks with a track space of 20 m. AUV-1, AUV-3, AUV-4,
AUV-6, and AUV-8 had the speed of 2 kn. AUV-2, AUV-5, and AUV-7 had
the speed of 1 kn.

the combined objective of the ASV travel distance and data
transmission fairness.

Table 2 shows individual AUV data volume b′i. In the
nearest-K algorithm, AUV-1 achieved the lowest data vol-
ume, 6,400 kbits. AUV-4 achieved the highest data volume,
22,800 kbits which was 3.56 times the data volume of AUV-
1. In the Q-learning algorithm, AUV-3 transmitted 19,420
kbits data, which was the highest among four AUVs. AUV-
4 achieved the lowest data volume, only 10,920 kbits. And
AUV-3 transmitted 1.7 times more data than AUV-4.
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FIGURE 6. AUV data volume b′i in Scenario 2 for two algorithms: (a) Nearest-K algorithm and
(b) Q-learning algorithm. The Nearest-K algorithm use the optimization objective in Eq. (20). The
Q-learning algorithm used the reward in Eq. (15).

Table 2 also shows the total data volume b′ for all AUVs.
In the nearest-K algorithm, the total data volume was 17,699
kbits. And the total data volume was 16,299 kbits in the
Q-learning algorithm, 1,400 kbits lower than the nearest-K
algorithms.

The results show that the proposed algorithm can main-
tain a more evenly data volume among AUVs. The AUV
which has a longer distance has a lower data volume in the
traditional algorithm. The proposed algorithm assigned more
visiting opportunities to those AUVs so that they have more
opportunities to transmit the data. Because of this, the total
data volume decreased slightly compared to the traditional
algorithm.

Next we investigated the effects of the distance discretiza-
tion. Three step sizes, 1d = 400, 90, and 80 m were
tested. The results are shown in Fig. 4. When 1d = 400 m,
the Q-learning algorithm did not work properly. Only two
AUVs were given opportunities to transmit data. With a
smaller discretization step size, the performance of the algo-
rithm improved. Fairness among AUVs was best ensured
when the discretization step size was 80 m. In the fol-
lowing simulations, the discretization step size was setup
to 80 m.

B. SCENARIO 2: LARGE MISSION AREA WITH EIGHT AUVS
In this subsection, we tested the proposed algorithm with a
large group of eight AUVs in a relatively large mission area.
Scenario 2 had a survey area of 3 km by 1 km, as illustrated
in Fig. 5. The eight AUVs had same lawnmower tracks with
a track space of 20 m. Five AUVs, AUV-1, AUV-3, AUV-4,
AUV-6, and AUV-8, had the speed of 2 kn. The other three,
AUV-2, AUV-5 and AUV-7, had the speed of 1 kn.
We first compared the AUV data volume b′i as the episode

count increased, as shown in Fig. 6. The Q-learning algorithm
used the reward in Eq. (15). In the nearest-K algorithms, the
data volume of AUV-8 increased fastest. The data volume of
AUV-1 had the lowest increasing speed. In the Q-learning
algorithm, the data volume of eachAUV increased at a similar
speed.

FIGURE 7. Scenario 3: Mission with eight AUVs. Eight AUVs had same
lawnmower tracks with a track space of 20 m. AUV-1, AUV-3, AUV-4,
AUV-6, and AUV-8 had the speed of 2 kn. AUV-2, AUV-5, and AUV-7 had
the speed of 1 kn.

Table 3 shows the AUV data volume b′i. In the nearest-K
algorithms, AUV-1 achieved the lowest data volume, 1,680
kbits. AUV-8 achieved the highest data volume, 32,480 kbits
which was 19.3 times more the data volume of AUV-1. In the
Q-learning algorithm, AUV-6 transmitted 11,960 kbits data,
which was the highest number among eight AUVs. AUV-4
achieved the lowest data volume, only 3,200 kbits. And
AUV-3 transmitted 3.73 times the data volume of AUV-6.

Table 3 also shows the total data volume b′. The data
volume of each AUV was added up together. In the nearest-
K algorithm, the total data volume b′ was 134,680 kbits.
The total data volume was 84,038 kbits in the Q-learning
algorithm, 37% lower than the nearest-K algorithm.

The ASV travel distance D differed between the nearest-
K and Q-learning algorithms. The former led to a travel
distance of 84.9 km. The latter 100.1 km. The travel distance
increased 17% when using the Q-learning algorithm. The
energy expense of nearest-K algorithm was 2.5× 104 KJ.
The Q-learning algorithm led to a higher energy expense,
3.0× 104 KJ.

The results show that the proposed algorithm was effective
for a larger group of eight AUVs. The ASV visited farther
underwater nodes more often to achieve the fairness in the
data volume. Therefore, the ASV traveled a longer distance
than in the nearest-K algorithm. The nearest-K modification
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TABLE 3. AUV data volume b′i under the combined objective optimization (scenario 2).

FIGURE 8. AUV data volume b′i in Scenario 3 for two algorithms: (a) Nearest-K algorithm and
(b) Q-learning algorithm. The Nearest-K algorithm use the optimization objective in Eq. (20). The
Q-learning algorithm used the reward in Eq. (15).

TABLE 4. The AUV data volume b′i under the combined objective optimization (scenario 3).

decreased the number of states while not bringing visible
negative impacts on the algorithm performance.

Compared to the performance in Scenario 1, the data vol-
ume becamemore uneven among theAUVs. Thewas because
that the Q-learning algorithm only considered the nearest
four AUVs in each episode to plan the track of the ASV.
This increased the discrepancies in data volumes among the
AUVs.

C. SCENARIO 3: LARGE MISSION AREA WITH TWO ASVS
In this subsection, we tested the proposed AUVs associa-
tion strategy in the scenario of two ASVs and eight AUVs,
as shown in Fig. 7. AUVs tracks and the optimization objec-
tive remained the same as Scenario 2. The node number,
track spacing, and vehicle speed were kept the same with
Scenario 2.

The AUV data volumes are shown in Fig. 8. In the nearest-
K algorithms, the data volume of eight AUVs had a similar
trend with that for a single ASV. In the Q-learning algorithm,
the data volume of four AUVs increased more evenly than
that for a single ASV.

Table 4 shows the AUV data volume b′i and the total
data volume b′. In the nearest-K algorithm, AUV-1 achieved
the lowest data volume, 7,660 kbits. AUV-4 achieved the
highest data volume, 30,080 kbits, which was 3.9 times the
data volume of AUV-1. In the Q-learning algorithm, AUV-3
transmitted 21,060 kbits data, which was the highest number
among eight AUVs. AUV-7 achieved the lowest data volume,

only 6,799 kbits. And AUV-3 transmitted 3.09 times the data
volume of AUV-6.

The total data volume b′ of two algorithms showed a minor
differences. The nearest-K algorithm led of total data volume
of 134,740 kbits. In comparison, theQ-learning algorithm had
126,399 kbits, only 6.1% percent lower than the nearest-K
algorithms.

The ASV travel distance D had a significant difference.
The ASV travel distance was 73.4 km in the nearest-K algo-
rithm. The two ASVs traveled 124.1 km in the Q-learning
algorithm. The distance increased by 69% when using the
Q-learning algorithm. The energy expense of the nearest-
K algorithm is 2.1× 104 KJ. The energy expense of the
Q-learning algorithm was 3.7× 104 KJ.

The ASVs visited AUVs with lower data volume more so
that the data volume of each AUV increased more evenly. The
ASV moved a longer distance than the nearest-K algorithm.
This indicates that the proposed algorithm assigned more
opportunities to the AUV which has a longer distance from
the ASV. Same as before, the results show that each AUV
had more fairly transmission opportunities in this scenario.
Compared to the performance in one ASV scenarios, the
AUV data volumes were more evenly distributed among the
AUVs.

The usage of two ASVs brought two benefits with the
Q-learning algorithm. First, the total data volume increased
from 84,038 kbits to 126,399 kbits, which is a 50.4% increase
with onemore ASV introduced. Second, the ratio between the
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highest and lowest data volumes decreased from 3.73 to 3.09.
This meant the data volumes among eight AUVs became
more evenly. The introduction of multiple ASVs made each
ASV serving fewer AUVs than in Scenario2. The AUVs had
more communication opportunities.

V. CONCLUSION
In this paper, we proposed a nearest-K reinforcement
learning-based trajectory optimization for underwater data
muling with mobile nodes. The main idea was to use a
reinforcement learning algorithm to optimize the track of
ASVs. ASVs approached each AUVs along its track and
collected data from the underwater nodes. This optimized
track maximized the fairness among AUVs and simultane-
ously minimized the ASV travel distance. We simplified
the reinforcement learning algorithm by limiting only the
nearest-K AUVs as candidates when the learning algorithm
calculated optimized ASV trajectories. We also designed a
user association strategy, which supported multiple ASVs
works together.
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