
4132 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

A Survey of Spatio-Temporal Big Data Indexing
Methods in Distributed Environment

Ruijie Tian , Huawei Zhai, Weishi Zhang, Fei Wang , and Yao Guan

Abstract—With the widespread use of mobile and sensing de-
vices, and the popularity of online map-based services, such as
navigation services, the volume of spatio-temporal data is growing
rapidly. Conventional big data technologies in existing distributed
systems cannot effectively process spatio-temporal big data with
temporal continuity and spatial proximity. How to construct an
effective index for the application requirements of spatio-temporal
data in a distributed environment has become one of the hotspots of
spatio-temporal big data research. Many spatio-temporal indexing
methods have been proposed to support efficient query processing
of spatio-temporal data. In this article, the various spatio-temporal
big data indexing methods proposed by domestic and foreign re-
searchers from 2010 to 2020 are classified and summarized accord-
ing to the distributed environment and application background,
and the hot issues that need to be paid attention to in the future are
proposed according to the changes in application requirements

Index Terms—Big Data, distributed system, spatio-temporal
index.

I. INTRODUCTION

W ITH the maturity and widespread use of perception tech-
nology, a large number of records containing temporal

and spatial marker information are generated, which are called
spatio-temporal data [1]. Spatio-temporal data present multi-
source, heterogeneous, and multidimensional scale characteris-
tics. Space and time are the basic attributes of spatio-temporal
data and the basic characteristics of spatio-temporal data pro-
cessing. With the rapid development of mobile Internet, location
services and other technologies and the popularization of mobile
devices, e.g., traffic trajectories [2], social media [3], remote
sensing image [4], [5], climate observation [6], and other data
containing spatio-temporal information rapidly accumulate, are
forming a special kind of spatio-temporal big data [7]. In a
general sense, spatio-temporal big data refers to the massive
spatio-temporal data collection that is difficult to carry out data
management, scientific computing, and value discovery within

Manuscript received March 15, 2022; revised April 19, 2022; accepted May
13, 2022. Date of publication May 20, 2022; date of current version June 2,
2022. This work was supported in part by the National Key R&D Program of
China under Grant 2020YFF0410947, in part by the National Natural Science
Foundation of China under Grant 62103072, in part by the China Postdoctoral
Science Foundation under Grant 2021M690502, and in part by the Shipping
Joint Fund of Department of Science and Technology of Liaoning under Grant
2020-HYLH-50. (Corresponding authors: Huawei Zhai; Weishi Zhang.)

The authors are with the Information Science and Technology College,
Dalian Maritime University, Dalian 12421, China (e-mail: trj@dlmu.edu.cn;
zhw@dlmu.edu.cn; teesiv@dlmu.edu.cn; feiwang@dlmu.edu.cn; 1961842416
@qq.com).

Digital Object Identifier 10.1109/JSTARS.2022.3175657

an acceptable time frame by using existing theories, methods,
technologies, and tools.

Spatio-temporal big data contains fund of knowledge value.
However, due to the large volume of spatio-temporal data,
high computational complexity, and the large amount of time
spent in complex spatio-temporal queries, it becomes impor-
tant to support high-performance queries on spatio-temporal
data. Distributed spatio-temporal databases provide a variety
of spatio-temporal indexes and queries to achieve fast data
retrieval, but the “weak” scalability of index schemas and the
“strong” limitations of strict database specifications make them
unsuitable for processing spatio-temporal big data. Distributed
computing technology achieves high scalability and excellent
performance through its computing power, and it has spawned
the development of modern parallel processing systems, e.g.,
Hadoop, HBase, and Cassandra, based on MapReduce. They
offer excellent scalability and high-performance computing ca-
pabilities compared with traditional centralized systems that pro-
cess large amounts of data. Recently, distributed computing sys-
tems and NoSQL databases have been widely used for indexing
of structured, semistructured, and unstructured spatio-temporal
data.

Although the distributed system solves the storage manage-
ment problem of spatio-temporal big data to a certain extent,
however, the input data are not organized by spatio-temporal
associations, which means that spatio-temporal properties are
not considered when deciding where each record is physically
stored. This results in poor retrieval performance for applications
that are sensitive to spatio-temporal correlations. Therefore, es-
tablishing a spatio-temporal index is an effective way to improve
the access efficiency of spatio-temporal big data. In recent years,
some surveys have been published on the research progress of
spatio-temporal data indexing [8], [9], But it is mainly aimed
at the analysis of spatio-temporal indexes under centralized
systems, e.g., based on main memory [10]–[15], based on flash
extended cache [16], based on disk [17]–[20], based on multi-
core multithreading [21], [22], and GPU-based spatio-temporal
indexing [23], [24]. The spatio-temporal index structure mainly
includes B-tree, grid [25], quadtree [26], R-tree [27], and some
variants of R-trees [20], [25]. The index structure is simple and
easy to maintain, which can meet the high-efficiency retrieval re-
quirements of conventional spatio-temporal applications. How-
ever, due to the limitation of single-machine resources, it can-
not support the application requirements of low-latency access
and high concurrent access to spatio-temporal big data. In a
distributed system, because the data storage architecture, data

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8913-9057
https://orcid.org/0000-0002-3973-6037
mailto:trj@dlmu.edu.cn
mailto:zhw@dlmu.edu.cn
mailto:teesiv@dlmu.edu.cn
mailto:feiwang@dlmu.edu.cn
mailto:1961842416@qq.com
mailto:1961842416@qq.com

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4133

Fig. 1. Spatio-temporal indexing method (2010–2020). The cross lines represent the relationship between a new spatio-temporal index structure and the original
index structure it has evolved from.

management model, and data processing method are very differ-
ent from the centralized system, the indexing technology cannot
be easily transplanted into the distributed system. Therefore, the
distributed elasticity for spatio-temporal big data. The indexing
method has become the main research hotspot at present.

The research scope of this article consists the papers about
spatio-temporal big data indexing published between 2010 and
2020. The main literatures come from VLDB, TKDE, ICDE,
SIGMOD, CIKM, MDM, and other journals and conferences
(including but not limited to SCI and EI). According to the
research content, the evolution process of different index modes
is classified and summarized. As shown in Fig. 1, the lines
represent the relationship between an original index structure
evolving into a spatio-temporal index structure.

The batch processing system is suitable for application sce-
narios, where the storage is first and then the calculation is
performed, the real-time requirements are not high, and the
accuracy and comprehensiveness of the data are more impor-
tant. The spatio-temporal index structure often chooses R-tree,
3DR-tree, and Quadtree to form a global–local index struc-
ture. Streaming data processing systems no longer store data,
but directly perform computations in memory after streaming
data are accessed, which is suitable for high real-time and
low-precision application scenarios. The spatio-temporal index
structure often chooses B+-trees and grids. The hybrid process-
ing system can meet the data calculation requirements of various
application scenarios at different stages, and the spatio-temporal

index structure often chooses Quadtree, Kd-tree, and R-tree.
The spatio-temporal index based on NoSQL database focuses
on the RowKey design, and the method adopted is mainly a
one-dimensional (1-D) linear expression, e.g., GeoHash [28],
Z-Curve [29], and H-Curve [30]. Independent distributed sys-
tems are based on peer-to-peer (P2P) network architecture, and
octrees and R-trees are often selected as local indexes. In recent
years, the number of studies related to spatio-temporal big data
indexing has been increasing year by year, and the research
on spatio-temporal big data indexing has become one of the
research hotspots in the field of spatio-temporal big data.

This article takes the spatio-temporal big data indexing
method as the core, systematically sorts out and analyzes the cur-
rent research and development status of spatio-temporal big data
indexing methods, and according to the existing spatio-temporal
big data index construction platform, the spatio-temporal big
data-oriented spatio-temporal index can be divided into three
categories:

1) spatio-temporal index based on distributed computing sys-
tem;

2) spatio-temporal index based on NoSQL database;
3) spatio-temporal index based on standalone distributed sys-

tem.
The rest of this article is organized as follows. Section II

provides an overview of existing spatio-temporal indexes
based on distributed computing systems. Section III outlines
spatio-temporal indexes based on NoSQL databases. Section IV

4134 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE I
OVERVIEW OF SPATIO-TEMPORAL INDEXING BASED ON DISTRIBUTED COMPUTING SYSTEM

outlines spatio-temporal indexes based on independent dis-
tributed systems. Finally, Section V concludes this article and
outlooks a preliminary discussion on future research directions
worthy of attention.

II. SPATIO-TEMPORAL INDEX BASED ON DISTRIBUTED

COMPUTING SYSTEM

This type of spatio-temporal index is built on the existing
distributed computing system, and the main advantage of this
method is to inherit the scalability and fault tolerance of the
underlying big data processing system. Distributed computing
systems mainly include batch processing systems, stream data
processing systems, and hybrid processing systems [31]. Batch
processing systems (e.g., Hadoop [32]) are mainly used to
process static spatio-temporal data and return the results after the
calculation is completed. The calculation process takes several
minutes or even hours, so it is not suitable for processing

tasks that require high real-time performance. Streaming data
processing systems (e.g., Storm [33] and S4 [34]) perform calcu-
lations on spatio-temporal stream data and process the data with
minimal delay. Hybrid processing systems (e.g., Spark [35] and
Flink [36]) can handle both batch and stream processing work-
loads. This section will focus on the related research results of
extending these three types of systems to build spatio-temporal
indexes. Table I provides an overview of spatio-temporal indexes
based on distributed computing systems.

A. Spatio-Temporal Indexing for Extended Batch System

The big data batch processing system is suitable for ap-
plication scenarios with low real-time requirements and high
requirements for data accuracy and comprehensiveness. The
typical representative system is Hadoop. As the basic platform of
big data, Hadoop is widely used in the storage and processing of
spatio-temporal big data. Extending Hadoop’s spatio-temporal

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4135

Fig. 2. Spatio-temporal index structure under the Hadoop framework.

Fig. 3. General index flowchart over batch system.

index is mainly used to index static spatio-temporal objects (e.g.,
STQuery [6], ST-Hadoop [38], QaDR-tree [39], and CloST [40])
and moving object history track index (e.g., HadoopTrajectory
(HT) [41]). It can satisfy high throughput while requiring low
latency of query response. Use batch index creation method.
Data import and index creation use two MapReduce tasks,
respectively. The MapReduce program is simple and easy to
implement, but the program running time is expensive. The
spatio-temporal index structure under the Hadoop framework is
shown in Fig. 2. There are two types of global indexes: multilevel
index (ML index) A and multidimensional index (ML index) B.
ML indexes usually take the time dimension as the first level,
select the appropriate time granularity to process the dataset
slices, and the spatial dimension as the second level. Spatial
indexing technology mainly includes grid, quadtree, Kd-tree,
R-tree, and some variant structures of R-tree. Local indexes are
mainly based on 3DR-tree [46] and BR-tree. In this section,
we will focus on the main spatio-temporal indexes that scale
Hadoop. The general index flowchart over batch system is shown
in Fig. 3.

ST-Hadoop [38] is a spatio-temporal big data management
framework that extends SpatialHadoop [47], [48]. It is used to
store, index, and query spatio-temporal big data. ST-Hadoop ex-
tends the Hadoop system by injecting spatio-temporal awareness

in the spatio-temporal query language layer and spatio-temporal
indexing layer. ST-Hadoop is designed as a static hierarchical
index structure with time slicing and then spatial indexing. The
creation of the spatio-temporal index executes the following
stages:

1) sampling;
2) time slice;
3) spatial index;
4) physical write.
During the sampling phase, MapReduce scans the spatio-

temporal data, takes random samples, and stores them in main
memory. In the time slicing phase, the random sample is divided
into multiple time slices by applying the time partition slicing
or data partition slicing algorithm. Time partition slicing is to
divide a random sample into multiple nonoverlapping slices
according to a given time granularity (year, month, week, and
day), the time range of the slices is fixed, and the number of
data points contained in the slices is not exactly the same. A
data partition slice is where each slice contains roughly the
same number of data points, while the time ranges of the slices
may not be the same. In the spatial indexing stage, a spatial
index is built for each time slice using traditional spatial indexes
already existing in SpatialHadoop (e.g., grid, R-tree, Quadtree,
and Kd-tree). The spatio-temporal boundary is stored on the
ST-Hadoop master node as metadata, and the metadata format
is 〈id,MBR, interval, level〉. During the physical write phase,
data records are allocated to overlapping partitions according
to the spatio-temporal boundaries stored on the master. When
doing a spatio-temporal query, the operator first filters by time,
obtains the corresponding time slice, and then performs spatial
filtering.

HT [41] is a spatio-temporal big data processing system with
built-in spatio-temporal data types and spatio-temporal opera-
tions on Hadoop, and supports storage, indexing, and querying
of moving objects and their trajectory data. HT supports two

4136 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

index structures: space-based indexing and data-driven index-
ing. In space-driven indexing, the selection grid divides the
3-D extent of the input data into cubes, each of which maps
to one or more files. The grid structure divides a trajectory into
multiple consecutive grid cells. In the data-driven index, select
3DR-tree to partition the large data file of the moving object
into multiple blocks, and the block size is set to 4 M, which not
only preserves the movement Object Semantics and Structure
(for example, a moving object must not be split into multiple
partitions) and unnessary to traverse multiple objects in a block
file. The spatio-temporal bounding box of the trajectory is stored
in the 3DR-tree, and the index information is stored in the master
node. When creating an index, you need to specify whether the
index type is a track or a moving object. In the track type, the
3-D minimum bounding rectangle (3-D MBR) of each track is
stored in the index, whereas in the moving object type, the 3-D
MBRs of all trajectories belonging to the same moving object are
merged into one 3-D MBR and stored in the index. HT supports
single query window, multiple query windows, specific moving
objects, or specific trajectories for query.

QaDTree&TGrid [39] are distributed indexing method for
querying historical spatio-temporal data. It is designed to per-
form spatio-temporal range queries on different distributed
spatio-temporal data under HDFS. QaDR-Tree is an ML in-
dex structure for nonuniformly distributed spatio-temporal data,
which consists of a global index and a local index. The global
index is built based on octrees [49]. It splits the spatio-temporal
data into blocks, and the block size is set to 60 MB, which
is smaller than the default size of 64 MB for Hadoop data
blocks, and the purpose is to allocate additional storage space
for local indexes to be stored in Hadoop data blocks along
with the spatio-temporal data. A local index is a 3DR-tree,
and a 3DR-tree is an R-tree with a time dimension added. The
leaf node points to the local index tree. When performing a
spatio-temporal range query, the 3-D quadtree quickly finds the
node position of the data block intersecting the spatio-temporal
window; then, the 3DR-tree in each data block is used to filter the
final query result. TGrid is an MD index structure for uniformly
distributed spatio-temporal data. It adds time dimension to the
traditional grid index (the grid is represented as the MBR) to
construct the TGrid (the grid is represented as the minimum
bounding cube MBC). TGrid first sets a fixed time granularity
in the time dimension and then divides the space dimension
uniformly. In the local index stage, a 1-D time index is created
for the spatio-temporal data of different MBCs, and the local
index results are aggregated on the master node to build a global
index.

STQuery [6] is a spatio-temporal indexing method that uses
mapreduce to efficiently retrieve and process array climate data,
and supports storage in HDFS in the form of raw files. STQuery
uses a grid to map the logical multidimensional array data
model of a file into a MapReduce key-value pair structure.
The spatio-temporal index information is stored in a relational
database. The index structure is designed as a relational database
table structure, contains gridId, startByte, endByte, nodeList,
and fileId. StartByt and endByte record the starting and ending
positions of the grid where gridId is stored on HDFS, nodeList

represents the node location of grid storage, and fileId records
the file to which the grid belongs and the file compression type.
Based on the index, a grid allocation and grid combination
strategy is proposed to reduce data transmission across nodes
and balance the workload of nodes to optimize MapReduce
computing performance. However, 1) when the array file is
uploaded to HDFS in the form of a byte stream, the logical
grid data will be divided into two blocks due to the default
block size limit, and the data will be transmitted across nodes
during the query process, which will affect the performance of
MapReduce; 2) the amount of data contained in each grid under
the high resolution of space and time will be very large, and a
large amount of space and time data will still be scanned when
performing range query, and the query efficiency will not be very
high.

CloST [40] is a spatio-temporal big data system based on
Hadoop. CloST supports single-object Q(I, S, T) queries and
full-object Q(S, T) queries, where I represents the object id,
S represents the spatial range and T represents the time range.
CloST is designed as a hierarchical partition structure, and the
original table data are divided into three layers: the first layer
roughly divides the data into buckets according to the data oid
hash value and rough time range, the second layer divides the
buckets into regions according to the fine-grained spatial index,
and the third layer uses 1-D time range division to divide the
regions into HDFS slice. For hierarchical partitioning, CloST
is designed as an ML index structure. The first-level index
uses a hash table structure to filter oid and time coarsely, the
second-level index uses a Quadtree to divide spatial data, and
the third-level index uses a 1-D index structure B+-tree, etc.
CloST designs a file format for HDFS blocks that supports
storage management on Hadoop (e.g., RCFile, Parquet). The file
format supports intrablock indexing to further optimize search
performance and space utilization.

ATLAS [50] is a distributed file system for storing, indexing,
and querying spatio-temporal data that extend Hadoop HDFS.
ATLAS utilizes the idea of data file partitioning to improve
data access efficiency. When a block of data is written to the
file system, the GeoHash value of the spatio-temporal objects
within the block is calculated, and the spatio-temporal objects
are rearranged to match the spatio-temporal boundaries. The
spatial index based on radix tree [51] is constructed according
to the GeoHash value of the data block. Each node in the
tree maintains a list containing a block ID, offset, and length
tuple representing the data belonging to the corresponding node
GeoHash. Queries on spatial indexes return a superset of the
requested data to ensure full coverage. For instance, a query
on data with a GeoHash value of “8bce” will return data with
an index of “8b.” ATLAS maintains a temporal index using a
B+-tree, which has each the start and end timestamps of the
block.

To sum up, as shown in Fig. 5, in an MD index, space and time
are treated as dimensions in multidimensional space, and there
is no difference in the order of processing space and time. In ML
index, the processing of space dimension and time dimension
is different, and the idea behind this type of index is to build
a separate spatial index for each time instance. In addition, for

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4137

Fig. 4. Global data partition.

Fig. 5. General index flowchart over stream processing system.

different types of spatio-temporal queries, the data are actually
stored in multiple copies, which speeds up the query efficiency,
but results in redundancy of multiple copies storage.

B. Spatio-Temporal Indexing for Scaling Streaming Data
Processing System

With the continuous generation of spatio-temporal data by
intelligent positioning devices, the demand for ingestion and re-
trieval of streaming data is also growing rapidly. Traditional big
data streaming computing no longer stores data but when stream-
ing data arrives. After that, real-time processing is performed
directly in memory. The spatio-temporal flow data present the
characteristics of real-time, volatile, sudden, disordered, un-
bounded, and spatio-temporal correlation, which puts forward
many new and higher requirements for the system [52]. In 2010,
Yahoo launched the S4 streaming system with a symmetric
architecture. In 2011, twitter launched the Storm streaming
system with a master–slave architecture. These promote the
development of big data streaming data processing technology
to a certain extent, and also provide the possibility for processing
spatio-temporal data streams. The general index flowchart over
stream processing system is shown in Fig. 5.

DITIR [53] is a distributed index structure for high-throughput
trajectory insertion and real-time trajectory data query. It is
built on the distributed data flow system Apache Storm. DITIR
assumes that all data tuples are incoming in timestamp order.
DITIR uses transceivers to transmit data. The spatial information
x and y of the incoming data tuple 〈x, y, t, e〉 are transformed
into 〈z, t, e〉 by Morton encoding [54], and each data tuple is
divided into the insertion server according to the z value of
the spatial range. Each insertion server stores its input data
tuple in the memory B+-tree. The key value of the B+-tree

node is the z value of the data tuple. When the capacity of
the B+-tree reaches a predetermined threshold, the insert server
persists the B+-tree as a data block to distributed file system.
In order to avoid the huge overhead of node splitting caused by
inserting a large amount of data into theB+-tree, DITIR uses the
template-based B+-tree insertion mode [55]. In template-based
index construction, it is assumed that the spatial distribution
of the data (i.e., the distribution of z-values) does not change
significantly over time. DITIR uses the B+-tree structure (all
leaf nodes are empty) of the previous data block as a template for
the next data block to use. The query server maintains metadata
about blocks in a distributed file system to improve DITIR
search performance. The metadata server uses R-trees to store
spatial extent information for HDFS data blocks, and the query
coordinator converts user queries into independent subqueries
that are executed in parallel on the insertion server and query
server.

Zhang et al. [56] aimed at the real-time spatial query under
the high dynamic data update of single moving object and
multiple moving objects, and reduced the time complexity of
data update by modifying the traditional spatial index. Single
moving object query first groups spatial data into Storm bolts
by the FieldsGrouping method according to the moving object
ID; second, builds distributed indexes (e.g., R-tree and grid) in
each bolt instance, and obtains local results through the main
memory spatial query algorithm; and finally, aggregate the local
results to get the global results. Single moving object query
distributes update messages of spatial information to executors
based on point ID, thereby reducing the pressure of frequent
updates and real-time calculation and analysis of a large number
of moving objects. Multimoving object index is a distributed
hierarchical index structure. The spatial range is divided into
uniform grids, which is used as the main index. Two sets of
secondary indexes (e.g., R-trees, hash tables, and quadtrees)
are maintained for each grid to organize spatial data from the
two datasets, respectively, and a result table to store spatial join
results.

There is also a special real-time moving object query, that
is, the k-NN query of real-time moving objects. This query
only needs to maintain a list of moving objects, and there is
no throughput constraint caused by index structure and data
insertion, but it will involve the problem of throughput between
nodes: mass communication and transfer of information. Since
the moving objects are constantly updated, the spatio-temporal
flow is an unbounded flow type, and the number of moving
objects is theoretically infinite, but in the actual environment, the
value is approximately unchanged, only a limited list of moving
objects and index queries need to be maintained.

When implementing k-NN query of real-time moving objects
in a master–slave architecture, the master node is responsible for
storing, maintaining index information, and distributing query
requirements, but it will face the following problems.

1) For master–slave architecture, nodes may be distributed to
different servers, resulting in frequent interaction between
master and slave servers, increasing the communication
burden.

4138 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

2) The master node is responsible for distributing queries to
the slave nodes; however, the frequent movement of ob-
jects can easily make the master node into a performance
bottleneck.

DSI [57] is a distributed index structure based on the Apache
S4 system, which supports k-NN queries for real-time moving
objects. DSI divides the 2-D space into two sets of nonover-
lapping strips (vertical strips and horizontal strips). The index
structure is designed as {idi, lbi, ubi,Γi}, idi is the unique
identification of the strip, lbi and ubi are the upper and lower
boundaries of the strip, and Γi is the list of moving objects.
The number of objects in a strip has a lower threshold ξ and
an upper threshold θ. When the number of objects in a strip
exceeds the upper threshold θ, the strip is split into two strips.
Conversely, when the stripe has fewer objects than the lower
threshold ξ, stripes will attempt to merge with adjacent strips.
DSI indexing tasks on S4 involve two types of PEs, EntrancePE
and IndexPE. EntrancePE stores the list of moving objects
LV and LH . IndexPEs are assigned to different nodes in the
cluster through a hash function, and each IndexPE manages a
stripe. Using DSI for k-NN query, first identify candidate strips
according to the spatial constraints of query q to calculate the
local k-NN result set; then, aggregate all local k-NN result sets
into a global k-NN result set.

Most existing grid-based k-NN search methods iteratively
expand the search area to identify k-NN, when adopted in a
master–slave architecture, let the master node maintain partition
information (e.g., cell boundaries) and the slave nodes maintain
the index of each cell. In this case, each iteration requires a round
of communication between the master and slave nodes holding
the relevant cells, which is an expensive operation compared
to other costs. When adopted in a symmetric architecture, the
abovementioned problems can be avoided, but the required
number of iterations cannot be guaranteed, resulting in unpre-
dictable query performance. Tree-based indexes (e.g., R-trees,
Kd-trees, B+-trees, and TPR-trees) involve frequent splitting
and merging of nodes, have high maintenance costs, and are
not suitable for processing queries of real-time moving objects,
and many previous studies [58], [59] had paid attention to this
problem.

“Strong” real-time requirements for k-NN queries for real-
time moving objects are as follows:

1) indexes can be easily partitioned and distributed to differ-
ent servers in the cluster;

2) the index can be efficiently updated with the continuous
movement of the object;

3) the index supports an efficient k-NN search algorithm with
fewer iterations.

DSI can meet this requirement better than existing grid-based
and tree-based indexes, but 1) a set of data needs to maintain
two sets of indexes. When updating a moving object, two sets
of indexes will be updated at the same time, and the index
maintenance cost is high. 2) When executing k-NN query, the
same dk-NN operation needs to be performed for each two
indexes respectively, although iterative. The number of queries
can be set in advance, but the computational complexity is high.

For the ingestion of spatio-temporal stream data, real-world
applications usually require extremely high tuple insertion
throughput and real-time response to range queries on a spec-
ified domain. Therefore, real-time indexing of spatio-temporal
stream data is performed in the traditional streaming computing
mode, and range query processing faces the following two main
challenges.

1) How to efficiently maintain real-time data range queries
while also supporting efficient insertion of spatio-temporal
stream data?

2) How to efficiently index data tuples on both the temporal
and spatial domains while keeping new incoming tuples
immediately visible to queries as they arrive?

The usual solution is to use a global data partitioning model,
assuming that the streaming data arrives approximately in order.
Specifically, the spatio-temporal space is divided into cubes,
which are called data regions, and the incoming data tuples are
stored in their corresponding data regions when they arrive. For
intuitive display, Fig. 4 shows a 2-D schematic diagram of the
spatio-temporal space. Given any query with a specific query
region, this partitioning mode can effectively speed up query
execution by skipping data regions that do not have any overlap
with the query region. More importantly, since data tuples arrive
at the system roughly in the order of their timestamps, newly
arrived tuples are always inserted into the data region with
the latest timestamp, i.e., the rightmost data region (shaded) in
Fig. 4, while not a historical data area. Therefore, the physical
partitioning between recent and historical data in the global data
partition mode avoids costly global data merging, enabling high-
throughput data insertion, compared to other data structures (for
example LSM tree [60]) that mix historical and new data.

An index server is maintained for each unique key in the
spatial domain, so that newly arriving tuples of different keys
can be injected into the system in parallel. To implement time
partitioning, each index server accumulates received data tuples
in memory and flushes them to the file system as immutable data
blocks when the size of in-memory tuples reaches a predeter-
mined threshold (e.g., 16 MB). Refresh operations on different
index servers are asynchronous, so the time boundaries between
different key intervals are not aligned, as shown in Fig. 4. In
order to further improve the query efficiency, it is necessary to
index the data tuples according to the key and time domain in
each data area. Based on the following two considerations, it is
often chosen to build a B+-tree on the key domain.

1) Spatio-temporal application queries usually involve low
selectivity in the key domain and high selectivity in the
time domain.

2) The cost of inserting data into other 1-D index structures
is significantly higher than that of B+-trees.

If the query is selective in both fields, a technique, e.g.,
Z-order, can be applied to convert the two fields to 1-D integers
before building a B+-tree index. For the problem that the newly
incoming tuple is immediately visible, the real-time incremental
index construction method can be adopted. When new data
arrives, the B+ tree is used to find the storage location of the data.
The index is modified while writing the data, so that the index

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4139

Fig. 6. General index flowchart over hybrid processing system.

can reflect in time. Current latest data status. By delaying disk
write operations by caching, the efficiency of data processing
can further be improved.

To sum up, from the perspective of maintaining the spatial
location information of moving objects, the maintenance cost
of tree-based indexes is high in the case of frequent updates,
especially when deployed in streaming data processing systems.
Grid indexing usually involves iteratively expanding the search
area to identify the set of cells contained in the grid. In general,
the number of such iterations is indeterminate. More impor-
tantly, in streaming data processing systems, grid indexing can
lead to excessive communication between nodes in the cluster,
thereby reducing the performance of query processing. Con-
sidering the communication cost, maintenance cost, and index
performance, whether it is a tree-based index or a grid index,
the two existing main index types for real-time spatio-temporal
stream range query and k-NN query cannot be directly used for
stream processing system.

C. Spatio-Temporal Indexing for Extended Hybrid Processing
System

The hybrid processing system is another mode of real-time
spatio-temporal stream processing, and the typical representa-
tive systems are Apache Spark and Apache Flink. Apache Spark
uses distributed memory for data computing to quickly respond
to queries and return analysis results in real time. Spark provides
a higher level API than Hadoop, and the same algorithm runs
10 to 100 times faster in Spark than Hadoop [61]. Apache Flink
is a scalable platform for batch and streaming data processing.
Flink itself does not support the efficient processing of spatial
data streams. In view of this, Flink-based spatio-temporal index
research is roughly divided into two categories: building spatio-
temporal indexes on Flink (e.g., QBS-Tree [62]) and extending
Flink’s spatio-temporal indexes (e.g., GeoFlink [63]), both of
which support continuous queries on real-time spatio-temporal
streams. The general index flowchart over hybrid processing
system is shown in Fig. 6.

1) Apache Spark-Based Spatio-Temporal Index: In specific
application scenarios with high real-time requirements (e.g.,
real-time location recommendation and moving object behav-
ior analysis), the system is required to provide second-level
real-time data stream processing capabilities. Obviously, the

disk-based Hadoop cannot satisfy real-time requirements. The
Spark-based streaming framework Spark Streaming can solve
such problems. The principle is as follows: the continuous
stream data are represented as a highly abstract discrete stream
packaged into RDDs, and then the RDD is operated in a batch-
like manner. Spark Streaming is still a batch method in essence,
but due to the characteristics of Spark’s in-memory computing, it
has a faster processing speed and, thus, achieves quasi-real-time
performance. Spark runs on the Hadoop cluster and accesses the
distributed file system HDFS, and can also process structured
data in Hive and streaming data in Flume and Kafka. Spark
RDD provides the possibility of explicitly cache data between
iterations to improve computational fault tolerance.

Distributed trajectory R-tree (DTR-tree) [64] is an R-tree
index implemented on Apache Spark. It is widely used for
trajectory and active trajectory query, e.g., DMTR-tree [65],
which supports skyline query of active trajectories with the help
of DTR-tree and inverted list. DTR-tree index’s trajectories and
active trajectories are using a distributed R-tree based on the
spatial properties of trajectories. DTR-tree is a global index
and a local index structure. The global index adopts an R-tree
to provide partitioning of the index track data. The leaf nodes
of the R-tree represent the sub-R-trees stored in the distributed
nodes. The dataset D is divided into N partitions using a balanced
partition strategy, and an R-tree local index is built on each
worker node. During range query, the 2-D R-tree index track is
used in DTR-tree according to the spatial position information
of the track. First, the partition id that overlaps with the query
point q is found, and the spatial information is trimmed in the
local index corresponding to the partition id to obtain the final
result set. The DTR-tree index is established in memory, and
when the task is executed, it will be released with the memory,
and the cost of indexing each time is very high.

ST-Joins [66] is an extension of the spatio-temporal connec-
tion under Apache Spark, and the spatio-temporal connection
methods, Broadcast join and Bin join, are designed to adapt to
the connection query of datasets of different sizes. The index
construction order is space first and then time. Broadcast join
is suitable for at least one dataset that can be completely stored
in Spark executor memory, the remaining data are distributed to
each executor, a local quadtree is established in each executor
memory, and all local quadtrees are assembled to form a global
quadtree. Bin join performs regular grid or adaptive grid (based
on quadtree) division according to the spatial distribution of the
dataset to generate grid cell bins, group the data in the same bin
together, and construct a quadtree index for the grouped data to
further filter the spatial information. Since the data skew leads
to the partition bin load, the time dimension is introduced to
distribute the spatially dense regions uniformly in time. Adaptive
grid division is performed on the dataset, although the grid data
distribution is guaranteed to be balanced, but the time complexity
of the calculation is increased.

DITA [67] is a research prototype for extending Spark for
memory trajectory analysis. DITA uses global/local indexes
and proposes a pivot point-based approximate representation
technique for trajectories. The STR algorithm is used to divide
the data, and the selected trajectory points are operated, that is,

4140 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the starting and ending points of each trajectory. Trajectories
are grouped based on their first point, and then subgroups are
created based on the grouping of the last point. Then, the global
indexing system consists of two R-trees, one based on the first
point of the MBR and the other based on the last point of the
MBR. The local index is a variant of the trie-based index, which
is built on the pivot of the trajectory above the point. At the
algorithm/processing level, DITA adopts a filter-optimization
paradigm in order to efficiently handle similarity search and
similarity connection.

STARK [68] is a framework for processing connection query,
k-NN query, and range query based on Spark’s support for
spatio-temporal data. STARK supports fixed grid partitioning
and binary space partitioning. The fixed grid partition divides the
data space dimension into multiple intervals to form a grid cell
with equal dimensions, then calculates the partition boundary,
traverses the entire dataset, and calculates the grid cell to which
each piece of data belongs according to the spatio-temporal
information. STARK supports real-time indexing. When exe-
cuting a partition query, an R-tree index is established for the
partitioned data, and finally, the index is used to find the query
object. The live indexing method takes a preorder traversal of
the tree and an optional partition type as parameters. STARK
supports three spatio-temporal operators: contains, is contained,
and intersects. DBSCAN clustering based on spatial partition-
ing is also supported. Back up the points within the distance
partition boundary ε to adjacent partitions, perform local clus-
tering on each partition in parallel, and merge the local clusters
using the backup points in the merge operation. When using
real-time R-tree-based indexing and binary space partitioning,
when configured, STARK outperforms GeoSpark [69], [70] and
SpatialSpark [71].

OceanST [72] is a Spark-based spatio-temporal mobile broad-
band data (MBB) exact and approximate spatio-temporal aggre-
gation query framework. OceanST adopts a three-level hierar-
chical partitioning strategy. First, the MBB data are divided into
multiple first-level partition buckets according to the hash value
of the user id and the coarse-grained time range; second, each
first-level partition is divided into multiple; finally, each sec-
ondary partition is divided into multiple tertiary partition blocks
according to the fine-grained time range, and each bucket can
perform data recording and storage optimization. OceanST sup-
ports intrablock indexing and inverted indexing. The block file
data are grouped according to the user id, the data in each group
are sorted by time, and the B+-tree block index is established
for the user id. Select the octree associated with the attribute of
interest in the block file to create an inverted index. OceanST’s
hierarchical partition design and index structure design enable
it to meet precise and approximate spatio-temporal aggregation
queries in different application scenarios. Exact query calculates
all leaf nodes covered by the spatio-temporal query range. Ap-
proximate query randomly selects B leaf nodes from the leaf
nodes covered by the spatio-temporal query range to replace by
setting a random sampling threshold B. The approximate single
spatio-temporal aggregation query executes a single random in-
dex sampling algorithm RIS. The approximate multitime-space
aggregation query concurrent random index sampling algorithm
performs hierarchical sampling and overlapping sample reuse

for concurrent spatio-temporal aggregation, but the OceanST
index’s maintenance cost is high, and the random sampling
calculation of aggregate query results will fall into the local
optimal problem.

Simba [73] is an extension of Spark designed to provide
efficient query and analysis systems for spatial big data. Simba
adopts global indexing and local indexing strategies. Global
indexes have simple index structures that support 1-D data
indexing, e.g., sorted arrays and complex indexing structures,
e.g., R-trees or Kd-trees, that support multidimensional data
indexing. The global index is stored in the master node mem-
ory by default, and also supports persistence to the file sys-
tem. Simba establishes a custom index (e.g., R-tree) on each
partition data as a local index, and introduces IndexedRDD
to support fast random access of spatial data in the partition.
Simba supports range queries, distance queries, k-NN queries,
as well as distance join queries and k-NN join queries. Simba
optimizes spatial queries but does not support spatio-temporal
queries.

Hu et al. [74] proposed a Spark-based geospatial raster big
data processing framework to support indexed queries on raw
geospatial data and designed a three-level hierarchical index:

1) a global index, which builds a Kd-tree at the master node
to see the physical storage locations of all blocks in the
cluster;

2) a local index, which builds a hash table for each variable
at each worker node and index all blocks stored in local
worker nodes and provide block layout information at
byte, block, and file level;

3) RDD index, build Kd-tree to persist and index all memory
blocks in each RDD partition to accelerate spatial queries
of in-memory data and avoids linear scans.

Hierarchical index information is stored in a distributed file
system. The division of global and local indexes reduces the size
of the index to be loaded into memory by each node and avoids
the transfer of block metadata between master and worker nodes.

KDB-tree [75] proposes a spatio-temporal Ripley’s K-
function computation framework based on Apache Spark,
which aims to rapidly analyze spatio-temporal point patterns.
For spatio-temporal data partitioning, a spatio-temporal in-
dex based on KDB-tree [76] is designed to accelerate the
computation of spatio-temporal Ripley’s K function in a dis-
tributed environment. KDB tree construction consists of three
steps:

1) sampling, randomly selecting spatio-temporal points and
sending them to the cluster master node;

2) the master node establishes a spatio-temporal index based
on the KDB tree on the sampling point, and the number
of partitions is determined by the construction parameters
of the tree;

3) the index is sent to the worker node, and the worker queries
the leaf node to which each spatio-temporal point belongs
and constructs key-value pairs, which will have key-value
pairs with the same key value are divided into the same
partition.

For the fast acquisition of spatio-temporal point pairs, it uses
a 3DR-tree to reduce the number of redundant spatio-temporal
points traversed inside the spatio-temporal Ripley’s K function.

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4141

2) Apache Flink-Based Spatio-Temporal Index: Apache
Flink is an open-source system for scalable processing of batch
and streaming data. In this processing system, each input tuple
acts as both retrieval and update, that is, each input tuple issues
a query, gets the result from the data stored in the index, and
then inserts the tuple into the index to for subsequent inquiries.
After a period of time, the expired tuples are removed from the
index to improve query efficiency. In Flink, all tuples with the
same key are processed by a single operator instance. The Keyby
operator logically partitions stream tuples based on their keys.

Streams can transfer data between two operators in one-to-one
(or forwarding) mode or redistribution mode. A pair of first-class
patterns preserves the partitioning and order of elements, while
redistribution changes the partitioning of the stream. Depending
on the selected transformation operator, each operator subtask
sends data to a different target subtask. By default, each operator
preserves both the partitioning and ordering of their previous
operators, thereby preserving source parallelism. However, the
key operation will lead to data reorganization and distribution
overhead, and data forwarding may lead to load imbalance or
even idle CPU cores so that the computing power of the entire
cluster cannot be fully utilized. Therefore, in order to ensure
the efficient execution of queries, it is necessary to find the
right balance between data redistribution and data forwarding.
Furthermore, since parallel instances of an operator cannot
communicate with each other, it must be up to the user to ensure
data locality for each instance.

In the case of frequent updates, tree indexes either need to
adjust the structure of the tree frequently or need to redistribute a
large amount of data. More specifically, for Flink processing sys-
tems, regular tree indexes (e.g., R-tree, Quadtree, and KD-tree)
can only meet the requirements of query efficiency, but it does
not perform well in update efficiency, especially in the case of a
large number of insertions and deletions. Therefore, building a
tree-based spatio-temporal index on the Flink processing system
needs to satisfy the following characteristics.

1) High query efficiency: It is required to build a well-
structured and low-depth balanced tree to achieve max-
imum query speed.

2) High update efficiency: The tree structure is required to
avoid structure adjustment or data redistribution as much
as possible.

In addition, grid-based indexes can achieve fast updates. How-
ever, query efficiency is much lower than tree-based indexes.

QBS-Tree [62] is an efficient spatial index based on the Flink
processing system, inherits and extends B-tree and R-tree, and
supports node insertion and deletion operations. QBS-Tree is a
self-balancing tree that is equally efficient in the face of spatially
unbalanced index objects. QBS-Tree draws on the idea of R-tree
to aggregate data points with similar distances, and represents
the index objects of these data points as the center point of a
2-D rectangle to reduce the overlapping area between the MBR
of different index objects. When a new index object is inserted,
if the number of leaf node index items exceeds the threshold
M, the node executes the splitting algorithm of the improved
STR, the leaf node is divided into four child nodes, and the
QBS-Tree is adjusted to be a balanced tree. When the index

object is deleted from the leaf node, when the number of index
items of the leaf node is less than the threshold M, the subnodes
of this layer are merged to form a new leaf node, and the QBS-
Tree is readjusted to a balanced tree. QBS-Tree novelly proposes
a delayed update mechanism, which can optimize the update
operation and avoid unnecessary structural adjustment of the
QBS tree. Due to the rapid arrival and termination of streaming
data, the cost of maintaining QBS-Tree to complete query and
update tasks is high.

GeoFlink [63] is a streaming computing framework that ex-
tends Flink to support continuous queries on spatio-temporal
data streams. GeoFlink introduces a grid-based spatial index.
The grid G is constructed by dividing a 2-D rectangular space
into grid cells of length l, where cx,y represents a grid. GeoFlink
assigns each stream tuples a unique key according to the grid
cell to which s.x and s.y belong. We aim to assign all tuples with
the same key to the same partition while optimizing the spatial
distribution of objects evenly in a distributed system. Quickly
filter query objects by key when performing spatial queries.
GeoFlink’s special spatial index mode makes it unnecessary to
maintain an additional data structure to store index information.
Therefore, when the stream tuple expires or a new data object
is received, the index structure does not need to be updated,
resulting in fast indexing and high memory efficiency.

D. Summary

This article mainly discusses extending spatio-temporal in-
dexes under existing distributed computing systems. These in-
dexing methods not only inherit the fault-tolerant and highly
scalable characteristics of big data processing systems but also
make full use of the computing power of the system to sat-
isfy spatio-temporal queries in different scenarios. However,
as the spatio-temporal application scenarios gradually become
real-time, the traditional single index structure is difficult to
effectively support the actual demand. Therefore, in the face
of spatio-temporal big data, the spatio-temporal indexing tech-
nology based on distributed computing systems can summarize
three development trends.

1) Specialization of index technology: In order to reduce
query cost and improve response efficiency, spatio-
temporal indexes need to get rid of the traditional cen-
tralized index system and tend to specialized index tech-
nology.

2) The index structure is diversified: Mature centralized in-
dexing technology has been gradually integrated into dis-
tributed computing systems. However, the uniqueness of
the distributed architecture and the rich query operations
of spatio-temporal big data have unique requirements for
index structure design. ML index, MD index, and com-
bined index structure have gradually become the main-
stream technologies of spatio-temporal big data indexing.

3) Real-time index query: In the context of spatio-temporal
big data and practical application requirements, as a
spatio-temporal index supplement for the extended batch
system, it aims to shorten the query response time of
PB-level data to seconds and real-time indexes that can

4142 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE II
OVERVIEW OF SPATIO-TEMPORAL INDEXING BASED ON NOSQL DATABASE

aST mean spatio-temporal data support. bMD mean multidimensional data support. cGeneric represent a novel 1-D mapping approach. dIn the case of skewed data, identify
the most appropriate 1D mapping for the dataset. eAims to find the best mapping for a given query task.

Fig. 7. Spatio-temporal MD index.

perform continuous queries are receiving increasing at-
tention.

III. SPATIO-TEMPORAL INDEX BASED ON NOSQL DATABASE

In order to solve the problems of the traditional relational
databases in spatio-temporal big data management, high concur-
rent reading and writing, and expansion. NoSQL database tech-
nology has become the technical support for spatio-temporal big
data storage management. At present, NoSQL databases usually
use the key–value data model to store data. Divided into three
data models: key–column, key–value, and key–document [77].
A NoSQL database accesses data based on the key–value model.
After the data table is sharded, it is distributed and stored on the
server cluster.

There are two structures for existing spatio-temporal indexes
based on NoSQL databases. 1) The spatio-temporal multidi-
mensional index, as shown in Fig. 7, is an extension of spatial
multidimensional indexes, which regard time as an additional
dimension and jointly encode spatio-temporal information into
1-D data. Establish the mapping relationship between RowKey
and the node where the data block is located, which is suit-
able for three data models. 2) Joint index, mainly used for

Fig. 8. General index flowchart over NoSQL database.

key–column data model. The essence of joint index is also an
extension of spatial multidimensional index. GeoHash, Z-order,
H-Curve, and other technologies are encoded into 1-D data, and
the 1-D data are organized in a tree structure to speed up the
positioning of spatial data. Second, the mapping relationship
between 1-D data and data nodes is established by using the
Hash algorithm. The last 1-D data are jointly encoded with time
information and other attributes as RowKey as the only access
entry for data rows in the NoSQL database. The joint index is
designed to quickly locate spatial data blocks, and does not do
special processing for time information. In order to improve the
query efficiency of spatio-temporal big data, some have built a
secondary index [78]. Table II provides an overview of different
spatio-temporal indexes under NoSQL databases. The general
index flowchart over NOSQL database is shown in Fig. 8.

A. Key–Column Database

The key–column data model is mainly from Google’s
BigTable. The typical representatives are Cassandra [79],
HBase [80], and Accumulo [81]. The key–column data model
can be understood as a multidimensional mapping, mainly in-
cluding concepts, e.g., RowKey, ColumnFamily, and Column.
In the key–column data model, a column is the smallest element

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4143

stored in the database. It is a triplet of key, value, and timestamp.
Any row is organized based on the primary key RowKey. In
short, the key–column data model simulates the storage format
of traditional tables through multilayer mapping. In fact, it is
similar to the key–value data model, which needs to be searched
by key.

1) Spatio-Temporal Index Based on Cassandra Database:
Cassandra is a distributed nonrelational key–value columnar
store that can use the gossip protocol to store massive amounts
of data on a large number of servers without a single point of
failure. Cassandra is a partitioned data store, and data rows are
organized based on primary keys. One part is the partition key,
which identifies the uniqueness of records in the database and
determines where the data are stored. Within a partition, rows
are organized together by the rest of the primary keys (e.g.,
the clustering key or sort key): Cassandra-specific partitioning
keys and clustering keys. The cluster key structure can realize
multigranularity and multilevel spatio-temporal indexing [82],
which effectively promotes the search mechanism.

PSTQ [78] is a Cassandra-based spatio-temporal trajectory
query framework. Each row in the track table consists of the
partition key Rid, the clustering key 〈tstart, tend〉, and the track
segment Segmeta. Rid is the unique identifier of the trajectory,
and the clustering key ensures that the sequence of trajectories
on a node is stored in chronological order. It assigns trajectory
segments to Cassandra nodes according to the MurmurHash
(Rid) function. PSTQ designs a grid-based secondary index for
the spatio-temporal information of the trajectory data, divides
the time dimension based on a given time step, and uses the
Morton curve to represent the spatial information. For 1-D data,
the table partition key consists of three parts:

1) a random number from 0 to 9, which aims to eliminate
index hotspots by randomizing the partition fragmentation
of each entry;

2) a Z-order value;
3) long time partitions with fixed time step.
Each index entry stores a list of track segment references.
MLS3 [82] is an adaptive spatio-temporal hierarchical index-

ing method that supports querying of different spatio-temporal
feature data. The main ideas are as follows.

1) Spatio-temporal partitioning, which is divided according
to time granularity and spatial hierarchy.

2) Information encoding, which jointly encodes spatio-
temporal information and stores it in the primary key. The
partition key is identified by a larger temporal granularity
and a parent spatial grid to ensure that data with spatio-
temporal proximity is distributed in the same or adjacent
logical partitions. Clustering key is identified by a smaller
time granularity and subspace cell.

3) Index is established, and an ML index tree MLS3 with
adaptive hierarchical division is proposed.

MLS3 is a global index structure, and the index is stored
in Cassandra metadata as an array. The first level is coarse-
grained time information, corresponding to the encoding of
time information in the partition key; the second level is spa-
tial information, encoded using H-Curve, corresponding to the
encoding of spatial information in the partition key; and the third

level is fine-grained time information, corresponding to the time
information encoding of the cluster key. The first three layers
are the initial hierarchical structure, and other layers can be
adaptively divided according to the spatio-temporal distribution
characteristics of the data.

2) Spatio-Temporal Index Based on HBase Database: The
HBase database usually organizes and manages data in the form
of key–value pairs. Due to the lack of an effective auxiliary
indexing mechanism, it cannot natively support multidimen-
sional queries. For spatio-temporal queries, HBase databases
usually perform full table scans on the data, resulting in low
efficiency. In recent years, a lot of research work using HBase
database to support multidimensional data query has emerged,
mainly focusing on the design of rowkey keys, and a small part
of supporting data index query in the region. Summarize the
spatio-temporal index structure under HBase.

1) Linear index: The spatio-temporal data are converted into
one dimension, the Z-order value is used as a rowkey to or-
ganize the data, and each region represents an independent
spatio-temporal cube region.

2) ML index: The time dimension is used as the first layer
of the index, which reduces the length and complexity
of the rowkey and improves the retrieval efficiency. The
spatial dimension is the second level, and the spatial unit
information is represented by linearization technology or
tree structure.

UQE-Index [83] is an index framework based on HBase
database that supports high insertion throughput and efficient
multidimensional query, and builds a local R-tree index that
supports efficient retrieval of data within a region. First, divide
the data into nonoverlapping time intervals and organize and
manage them using B+-trees; then, use quadtrees to predivide
the sampling space under each time interval into multiple sub-
spaces, each subspace is a region, with the data Insert, when the
capacity of the subspace exceeds the threshold, the region is split
again; second, use the R-tree to organize all subspaces under the
management time interval, and add the R-tree to the leaf node
of the B+-tree; finally, establish a local index for each region
(R-tree and grid), designed to improve the query performance
inside the region. When querying from a region, first get the
rowkey by querying the corresponding local index, and then use
the rowkey to get the actual data from HBase.

MD-HBase [84] is a multidimensional data management sys-
tem that supports multidimensional range queries and nearest
neighbor queries. The basic idea is: divide the multidimensional
space into grids, use the space-filling Z curve to encode the
2-D grid into 1-D data, and take the longest common prefix
of the 1-D data as the primary key. MD-HBase only provides
spatial indexes in the META surface layer, the time attribute is
not considered, so time-related queries and filtering of data in
blocks still perform full scan operations, and the query efficiency
is low.

STCode [85] adopts a MD index mode, encodes latitude,
longitude, and time as Base64-bit string as HBase’s RowKey.
For each dimension, STCode recursively performs binary par-
titioning, dividing the dimension into two equal parts, with 0
on the left and 1 on the right. Each character in the string

4144 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

is represented by a 6-bit sequence interleaved in longitude,
latitude, and time order, e.g., longitude 1001, latitude 0111,
time 1001, bit sequence 101010010111, and Base64 string is
fM. Spatio-temporal adjacent points share the STCode prefix.
When executing a query, only the RowKey with the same prefix
as the area needs to be scanned, reducing the delay of search and
calculation, reducing the I/O load between client and server.

HBase-STR [86] is an AIS big data index structure built on
HBase. RowKey consists of five parts:

1) Geohash: divide the geographic space into equal sub-
spaces and perform GeoHash encoding, and use R-tree
to construct spatial indexes on the subspaces, aiming to
accelerate the matching of RowKey and GeoHash prefixes;

2) coarse-grained time information;
3) other AIS attributes;
4) fine-grained time information;
5) GeoHash suffix.
The META table establishes a mapping relationship with

the RegionServer through the GeoHash prefix. When querying,
match the RowKey in HBase with the GeoHash prefix to get the
data, and it is sorted by year. The date of month and day is filtered
to narrow the query scope. Then, the specific ship is found by
traversing the MMSI, and the query scope is further narrowed
by means of hours, minutes, and seconds. Finally, the GeoHash
suffix matches the RowKey to obtain the final query result.

HSTI [87] is a multilevel spatio-temporal indexing method
based on the HBase database, which is mainly used to support
spatio-temporal k-NN queries. First divide the entire space into
grid cells of equal size and nonoverlapping, and use Z-order
technology to map 2-D values into 1-D values Zn, and Zn is
used as the row key in the META table. Then for each grid
cell, the octree is used to divide the spatio-temporal data. When
the subspace contains more than the threshold ξ, the subspace is
divided. Finally, the Morton code of the octree node is calculated,
and the cross layer is performed. Z-order curve filling is designed
to quickly retrieve adjacent spaces. Given a spatio-temporal data
point p, perform a k-NN query q, first computing the spatial
Z-order value Zn, query the regionserver in the META table
according to the Zn value, use the Z-Octree in the RegionServer
to retrieve data points, and calculate the adjacent subspace of
Zn and maintain a priority Queue Q, where the priority metric
is the distance from the query point q to the point or adjacent
subspace, sorted from small to large, and elements in the queue
are continuously dequeued until the k-NN are found.

SGR-tree [88] is an indexing method that supports queries on
moving objects on fixed road networks. First slice in the temporal
dimension and divide the slice space into a fine-grained grid. The
amount of data in a specific time period Ti is calculated through
this grid. Then an R-tree is established for each grid, H-curve
coding is performed on the fine-grained grid, and the coding
value of the leaf node is judged by the center point of the leaf
node, in order to quickly locate the relative position between the
MBRs for query.

JUST [89] is a data management engine for processing
dynamic trajectory big data. Based on the NoSQL database
HBase, the open source project GeoMesa is a spatio-temporal
data indexing tool, and Apache Spark is a spatio-temporal data

processing tool, which supports spatial range query, spatio-
temporal range query, and k-NN query. JUST proposes Z2T and
XZ2T indexing technologies based on GeoMesa’s Z2, XZ2, Z3,
and XZ3 spatio-temporal indexes. The Z2T index first divides
the time dimension into multiple disjoint time segments and
then establishes a separate Z2 index for the data records in
each time segment and the Z2T index key. The combination
is Num(t)::Z2(lng, lat). The XZ2T index strategy first divides
the time dimension into multiple disjoint time periods and then
constructs a separate XZ2 index in each time period. JUST
supports new data insertion and historical data update without
rebuilding the index.

3) Spatio-Temporal Index Based on Accumulo Database:
Accumulo supports storing and managing large datasets across
clusters. It uses HDFS to store data and uses ZooKeeper for
coordination. Accumulo tables exhibit sparsity, ordering, mul-
tidimensional mapping and dynamic scalability. As the amount
of data becomes larger, Accumulo splits the table divided into
smaller parts, called tablets, which can be distributed across
multiple table servers. By default, a table will be split into
tablets on row boundaries, thus guaranteeing that the entire
row is on a single tablet server, and you can set the split point
by addingSplits method to control the cutting position of the
table. Scanner retrieves a single range of data on a single thread
and returns the keys sequentially. BatchScanner uses multiple
threads to retrieve multiple ranges of data, which has higher
performance, but does not guarantee the return key order or-
dered. Iterators allow users to implement custom retrievals in the
tablet server, so iterators can be used to perform spatio-temporal
predicate queries.

DBZ [90] is a globally distributed spatio-temporal index that
extends BZ-trees [91], aiming to optimize search performance
and space utilization. DBZ supports static indexes and dynamic
indexes, and the index mode needs to be specified when creating
an index. Static indexes are suitable for initial batch loading
of spatio-temporal data. MapReduce jobs are used to scan
spatio-temporal data to obtain the spatio-temporal dimension
information of each row of ST objects. The spatio-temporal
information Zkey is cross encoded using the Z3 index [46], [49],
and aggregates a certain number of spatio-temporal points in
the spatio-temporal interval Z as the leaf nodes of the DBZ
tree. The internal nodes are created according to the Zkey value
distribution. The dynamic index is maintained by Accumulo,
which can adapt to the addition and deletion operations. The
data distribution changes to ensure the best search efficiency.
When executing a query, extract the time range and space
range according to the spatio-temporal query window, convert
them into Zkey values through the NoSQL interface layer, and
retrieves all servers in the cluster that contain query results by
querying index tables.

Fox et al. [92] propose a spatio-temporal index based on a
sorted distributed storage structure, which aims to query geo-
temporal data of spatial geometry composed of single points.
The spatial index information is represented as a 35-bit Geo-
Hash, and the time information is encoded as “yyyyMMdd.”
A part of the GeoHash string is interleaved with part of the
datetime string to build the index key. The column family of the

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4145

index key contains more fine-grained spatial ranges, e.g., 〈01m〉,
a finer-grained spatial range encoding, the column qualifier
contains the identifier of the data element and a finer-grained
spatio-temporal boundary, e.g., 〈ident.two0722〉, where ident.
and two represent the data element id and finer-grained spatial
range, respectively, and 0722 represents time information dd:hh.

Park et al. [93] establish a dynamic multilevel grid index in
Accumulo, which can improve the parallelism and adapt to the
skew of spatio-temporal data. The main idea is as follows: first
use H-Curve technology to map the spatial characteristics of
spatio-temporal data stream timestamp, id, location, Record to
1-D data cellID, convert the data into timestamp, id, cellID,
location, record. The ingest manager then stores the transformed
data in a data buffer consisting of a hash table. The index manager
creates a Kd-tree index on the hash table records and stores the
index in the index buffer. The two buffer data reach their respec-
tive buffer size thresholds Refresh the data table and index table
in Accumulo, respectively. Data table key = ID + timestamp,
index table key = cellID + timestamp.

GeoMesa [94] is a commercial spatio-temporal database
based on distributed systems. It is used for storage, query, and
analysis of large-scale spatio-temporal data. It is built on the
Apache Accumulo database. The main idea of GeoMesa is to use
space-filling curves to reduce multidimensional data into 1-D
linear values, and records that are similar in the spatio-temporal
dimension are transformed. These data can be efficiently stored
and loaded in batches into lexicographically close keys. Ge-
oMesa uses geohashes and timestamps to organize data. A key
is a combination of a geohash and a timestamp. It is primarily
used for point data Access; line and area data must be broken
up into multiple disjoint geohashes. For each indexing strategy,
GeoMesa adds a random prefix to the generated key, which
distributes the records across region servers and achieves load
balancing. When querying data, based on the geohash value,
only data items that intersect the query area are considered.
GeoMesa uses 3-D Z-order curves to index spatio-temporal point
data, and XZ-ordering [95] to index spatio-temporal line/surface
data.

So far, for key–column type databases, the research on spatio-
temporal indexes has mainly focused on the design of rowkeys.
These indexes follow the traditional strategy of generating
spatio-temporal joint encoded values to achieve the fastest re-
trieval speed. But only quickly locate the data block. Physical
nodes cannot quickly filter the data in the block.

B. Key–Value Database

The key–value pair data model is actually a mapping. The key
is the unique key to find each data address, and the value is the
actual stored content of the data. Typically, a hash function is
used to realize the mapping from key to value. When querying,
the data row is directly located based on the hash value of the
key to achieve fast query.

The key–value database that currently supports spatio-
temporal data indexing is Redis [96]. Redis is a memory-based
database with large data throughput, efficient read and write

capabilities, and supports horizontal expansion and high con-
current queries. However, it is mainly aimed at efficient query
of single-key values and there are limitations in storage perfor-
mance, and as the amount of data increases, its storage speed
gradually decreases. Therefore, add the “Field” field as the
auxiliary filter information of the key. Redis usually provides
millisecond-level real-time query, and data persistence tasks are
often submitted to other databases, e.g., HBase.

Redis-Geo [86] is an index structure that supports efficient
spatio-temporal query of AIS big data. It uses the “Field” field
feature of Redis to build a spatial index. When AIS data are
written to Redis, the time and MMSI of the AIS data are extracted
as the key of the table, the latitude and longitude information is
extracted, and the geoadd method is used to add the latitude
and longitude to the specified key, and use the entire data as
the value. The Redis database can provide millisecond-level
real-time response speed, but there are serious limitations in
storage performance. When it comes to spatio-temporal big data,
it seems stretched.

C. Key–Document Database

MongoDB is a high-performance NoSQL database with built-
in support for spatio-temporal indexes [97]. MongoDB uses
sharding for horizontal scaling. The user chooses a shard key,
which determines how the data in the collection will be dis-
tributed. Data are divided into ranges (based on the shard key)
and distributed across multiple shards. MongoDB can run on
multiple servers, balancing load and/or replicating data to keep
systems running in the event of hardware failures.

STIG [23] is an MD index structure of extended Kd-tree,
which aims to support complex interactive spatio-temporal range
query for static data requiring point-in-polygon (PIP) test. A
single index is used to filter spatio-temporal data simultaneously
on multiple dimensions to reduce the number of PIP operations.
STIG utilizes parallel processors in the GPU to execute multiple
independent PIP tests in parallel. STIG tree k = 2 × s + m,
where s represents spatial dimension and m represents other
attributes, such as time dimension. The index is designed for
data with multiple spatio-temporal attributes, such as taxi log
data with pickup and drop-off location and time. The tree nodes
are divided into internal nodes and leaf nodes, and each leaf
node points to a leaf disk block. The internal node of the STIG
tree with depth d stores the median of the (d%k) coordinates
of the coverage point and pointers to the left and right child
nodes. Among them, the leaf node stores pointers to the leaf
disk block and k-dimensional borders that define all records in
the block. Leaf disk blocks store the property values for which
the index was created and pointers to the actual record locations.
STIG aggregates points along k dimensions to speedup query
processing and maximize utilization of the underlying GPU.
STIG does not support dynamic updates, and indexes must be
rebuilt periodically when new records are added to the database.

Guan et al. [98] propose an ST-Hash for the query processing
of spatio-temporal trajectory under frequently updated trajectory
data. It first divides the spatio-temporal dimension into half, the
range of the child node is equal to half of the parent node interval,

4146 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the left node is marked with 0, and the right node is marked with
1, until the desired spatio-temporal granularity is divided. Then,
the trajectory point latitude and longitude and time information
are mixed and encoded into a 1-D string. For example, (-140,
20, 2015-6-1 00:00:00) is converted to 2015-Re+BP, which
shortens the length of the string, reduces the memory space of the
index, and improves the index efficiency. The object ID and time
information are used as the primary key, and ST-Hash encodes
values as new attributes. In addition, B-tree indexes are created
on ST-Hash fields to speed up spatio-temporal queries. ST-Hash
supports spatio-temporal point queries, spatio-temporal range
queries, and spatio-temporal circle queries.

SPTEJ [99] is an MD index structure designed to accelerate
the join and query different subjects of the Internet of things
under the same spatio-temporal window. The main idea is as
follows: divide the spatio-temporal cube into equal-sized cells
Ci, Ci.I represents the subject id set that generates tuples in Ci

and Ci.N represents the set of subject IDs that generate tuples
adjacent cells in Ci. The spatio-temporal join query is divided
into the following three steps:

1) find the cells and adjacent cells that contain subjects oi;
2) retrieve tuples contained in the cell set;
3) sperform join query on candidate tuples.
HBSTR [100] is a hybrid index structure used for spatio-

temporal range query of trajectory data and target trajectory
search, which consists of spatio-temporal R-tree, hash table, and
B∗-tree. The spatio-temporal R-tree is the main structure of the
index, which is used to realize the spatio-temporal range query,
and the hash table is the auxiliary structure, which is used to
store the latest trajectory nodes of all moving objects, which
is convenient to find the latest trajectory nodes of the moving
objects through the object identifier. B∗-tree is a secondary
structure for fast query of target trajectory. The core idea is that
the latest trajectory sampling points are centrally managed in
groups in the form of trajectory nodes. The trajectory nodes only
store the continuous sampling points of a single object, and the
trajectory nodes are temporarily stored in the hash table. When
a trajectory node is full, it is inserted into the spatio-temporal
R-tree as a leaf node, and a new trajectory node is created
to receive new sampling points. In addition, a B∗-tree is used
to construct a 1-D time index for trajectory nodes to improve
query efficiency. HBSTR uses the “weak” requirement feature
of MongoDB document structure to store track data and index
data in MongoDB independently, thus solving the problem of
data storage with unfixed structure.

S4STRD [101] is a scalable in-memory storage system for
accessing real-time trajectory data. RAM reserves the temporary
storage of field data with high access frequency, and MongoDB
is used as auxiliary storage to persist the original data. Index
construction processes the following. 1) Spatial index, which
divides the geographic space into an n×n uniform grid, and
the coordinates of the grid represent the spatial area location.
Merge adjacent low-density trajectory point grids together to
form a region, reduce the density gap between grids, realize
even distribution of data in space, and establish a one-to-one
mapping relationship between regions and servers. 2) Time
index, sort the writing time of the data, and establish a B-tree

index for the writing time. When a new query is executed, it is
searched in RAM according to the index information. When no
corresponding result is returned, the original MongoDB data are
loaded into the memory according to the index information and
the query is executed again.

ST-Index [102] is a spatio-temporal index based on Mon-
goDB database, which supports spatio-temporal range query
of massive trajectory data. The core idea is ST-index divides
the spatio-temporal cube recursively into 8Level−1 subspaces
according to the target level n. Subspaces (or leaf nodes) are
encoded using 3-D Morton [103]. The encoded value ST-code
is used as the database key, the value is the trajectory point
contained in the subspace, and any trajectory point uniquely
belongs to a subspace. When inserting a new trajectory point,
calculate the decimal values CodeLon, CodeLat and CodeTime

of the longitude, latitude and time of the trajectory point, and
then convert them into n-bit binary sequences LatB , LonB

and TimeB , respectively. Interleave the bits of the three binary
sequences and convert them into Morton codes. According to
the Morton code value, the corresponding key value is found in
the database. When ST-index performs a spatio-temporal range
query, the spatio-temporal query is converted into a 1-D query
of ST-code.

The “weak” requirement feature of MongoDB document
structure can flexibly handle data of different structures, the
automatic sharding mechanism can achieve load balancing,
support the creation of single and composite indexes on specified
attributes, and can combine with external data structures to build
spatio-temporal indexes, but its storage mode mainly suitable for
data models with embedded or reference relationships; there-
fore, it is difficult to efficiently process spatio-temporal data.

D. Summary

This article mainly discusses spatio-temporal indexes based
on NoSQL databases. As with all databases, fast access to raw
data in NoSQL databases depends on the structural organization
of the stored information and the availability of suitable index-
ing methods. Well-designed data structures facilitate the use
of simple techniques quickly extract the required information
from a collection of data, and sophisticated indexing methods
can be used to quickly locate single or multiple objects in a
database. However, many queries tend to support some specific
application.

The flexible storage mode of the NoSQL database provides
simplicity for the storage and retrieval of spatio-temporal big
data, but the strong encapsulation of the system and the storage
structure of the fixed mode make the spatio-temporal index
research only focus on the design of the RowKey. Therefore,
the spatio-temporal index based on the NoSQL database has
three development trends, which are summarized as follows.

1) Multi-level index mode: Mature linear indexing technol-
ogy has gradually become the main means of manag-
ing spatio-temporal data in NoSQL databases. However,
sufficient spatio-temporal query operations require index
delinearization, which tends to develop in a ML index
mode.

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4147

Fig. 9. MD indexing in standalone distributed system.

2) Single index platform: Redis low scalability and Mon-
goDB “loose” data structure make key–column database
a mainstream NoSQL database for spatio-temporal big
data management.

3) Diversified index structure: The existing rowkey mainly
supports the global index, and the research on supporting
the local index of region data is imminent.

IV. SPATIO-TEMPORAL INDEXING FOR STANDALONE

PARALLEL AND DISTRIBUTED SYSTEMS

There are also some researches devoted to building spatio-
temporal indexes on an independent and scalable distributed
system for efficiently querying target data from spatio-temporal
big data. Such spatio-temporal indexing methods do not de-
pend on existing distributed computing systems and NoSQL
databases, but are built on a distributed system using a P2P node
architecture. The advantages are as follows.

1) Consistent hashing is used to distribute data, which avoids
the data skew problem caused by spatio-temporal indexes.

2) Node decentralization is a good way to avoid the single
point of failure problem in the master–slave architecture.

A. Index Mechanism

At present, the spatio-temporal indexes in independent par-
allel and distributed systems mainly adopt two mechanisms:
ML index and MD index. The general index flowchart over
standalone parallel and distributed systems is shown in Fig. 11.

1) Multidimensional Spatio-Temporal Indexing Schema Un-
der Standalone Distribution: As shown in Fig. 9, first, the
spatio-temporal dimension information is jointly encoded, and
the sharding mechanism is used to store the codes with the same
features in the same data server. Then, in order to speedup the
matching speed of encoding, a local index based on B-tree or
B+-tree is constructed. Finally, the local index of each data
server is published to the peer nodes in the overlay network to
form a global index, and each local index uniquely corresponds
to a node. For each data server in the overlay network, it plays

Fig. 10. ML indexing in standalone distributed system.

Fig. 11. General index flowchart over standalone parallel and distributed
systems.

two roles. The data storage node is also an index node. At the
same time, as an index node, the server node is both a global
index node and a local index node. 1) As a global index node,
the server undertakes the tasks of global routing and positioning
and provides the interface between the global index and the local
index. 2) As a local index node, the data server is responsible for
providing the index of local data and publishes data information
to the global index layer as needed.

Query execution process: Randomly send the query request
proposed by the user to any node in the network, go to the node
to find out whether there are data that satisfy the query, if so,
perform a specific data retrieval operation and return a local
result set. Then, forward the query request to the next node
through routing and perform the same steps; if not, skip the
node and directly forward the query request to the next node.

2) Multilevel Spatio-Temporal Index Mode Under Stan-
dalone Distribution: As shown in Fig. 10, the time information
is firsts divided into small-granularity time ranges, and indexes
are established to speed up the matching of time information.
For each time range, a distributed cluster of P2P architecture
is constructed, and the data are distributed to the node server
through the hash function. The overlay network stores the rout-
ing information and data information of adjacent nodes with
each other to achieve cross-network communication and data
retrieval. Then, a local index is built for the local data on each
node server. Each node server in the overlay network acts as two
role, it is both a data storage node and a local index node.

Query execution process: Extract the time range of the user’s
query request, find the corresponding overlay network through

4148 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

a 1-D time index, send the query to any node in the network,
and execute. 1) Determine whether there are data satisfying the
query under the node search, if there is, perform a specific data
retrieval operation, return the local result set, and then forward
the query request to the next node through routing, and perform
the same steps; if not, skip the node and directly forward the
query request to the next node. 2) Judge whether the adjacent
nodes of this node have data that satisfy the query, if so, perform
a cross-network data retrieval operation, return the adjacent node
result set, and then forward the query request to the next node
through routing, and perform the same steps; if not, skip the
adjacent node and directly forward the query request to the next
node.

B. Individual Prototype and Techniques

Elite [2] is a method that supports parallel update and query
processing of spatio-temporal big data, and supports spatio-
temporal range query (STRQ) and spatio-temporal nearest
neighbor query (STNNQ). The Elite index consists of three
layers: 1) skip list layer, 2) ring layer, and 3) OCT tree layer. The
skip list layer and ring layer constitute a global index, and the
OCT tree layer is a local index and contains an OCT tree and hash
table, the OCT tree stores the trajectory observation positions,
and the hash table maps the unique identifier ID of the trajectory
to the earliest observation position and the latest observation
position of the trajectory. The skip list layer contains a doubly
linked skip list, where each node in the skip list corresponds to a
torus cluster. A node’s key consists of the time interval of the ring
cluster and a pre-allocated segment of consecutive IP addresses.
The ring layer consists of chain rings, in which each ring body
is a cluster of nodes. Each node in the ring maintains a routing
table that contains adjacent node IP addresses and data ranges.
The information in the routing table is used for communication
between nodes within the ring. For communication between two
rings, a ring node randomly selects an IP address from its IP
address segment connecting the rings, and then, the randomly
selected node communicates within the ring to find the target
node. The trajectory query is divided into three stages.

1) Filter: Identify ring nodes that overlap the query area
with a distributed index. All candidate circle nodes run
the corresponding subqueries in parallel. Access the local
index to retrieve candidate trajectories.

2) Node assignment: Assign free circle nodes to each candi-
date node to perform further result set refinement.

3) Refinement: Use a sampling method to generate a set of
possible instances, simulate the uncertainty of the trajec-
tory, calculate the corresponding qualified probability, and
then combine the query results of all nodes to form the final
result.

GeoTrie [104] is a MD index structure based on P2P mode,
which supports efficient spatio-temporal range queries on dis-
tributed hash tables (document PHT [105] addresses the support
of range queries on distributed hash tables). It can add or delete
nodes arbitrarily without destroying the data index structure, and
avoid load balancing problems caused by large data storage and
concurrent queries. The following are the solution steps.

1) Mapping: Convert the latitude, longitude and time to
32-bit binary strings respectively, forming a tuple Tk =
(Tlat, Tlon, Tt).

2) Index: Map all GeoTrie nodes to the DHT structure
through the K = Hash(l) method.

The spatio-temporal data within the node range are stored
according to the hash consistency principle. When executing
the query task, convert the spatio-temporal window into a 32-bit
binary string, calculate the minimum common prefix label for
each binary string (the length of the minimum common prefix
label remains the same), and directly query in the octree accord-
ing to the minimum common prefix label. There is no need to
start the query from the root node of the tree, which shortens the
query time.

A-tree [106] solves the distributed indexing problem of mul-
tidimensional data in cloud computing environment. The basic
idea is: the master node builds a global index through a 1-D
array, and each index on the array is assigned to a node. Each
slave node builds an R-tree and creates a Bloom filter at the same
time. The data are allocated according to the DHT principle to
the node storage. When querying a point, first verify it through
Bloom filter. If the query point is not in it, then do not perform
the R-tree query, otherwise continue to perform the R-tree query.
When querying a range, you cannot use the Bloom filter, you
must do an R-tree query.

Galileo [107] is a high-throughput storage system using
zero-hop DHT peer-to-peer network architecture, supporting
hundreds of millisecond read and write operations. A single
storage node in the system is divided into multiple groups, and
each group is assigned a unique UUID stream. Galileo designs
a two-layer hashing scheme: first, the GeoHash is calculated
from the data space information to determine the target group
of the data. Then, use temporal and characteristic metadata
sets of data compute SHA-1 hashes to determine storage nodes
within a group. Group and storage node hashes can determine
the specific node UUIDs with which to communicate. Galileo
utilizes the host file system to store data on physical media, the
unit of storage is called a block, and each block carries a set of
metadata, which contains both temporal and spatial information.
When queried, it incrementally returns the metadata of matching
blocks to the requester and organizes these metadata blocks into
traversable in-memory metadata set subgraph. Galileo can freely
switch the root node of the dataset subgraph traversal through
redirection to meet the needs of different spatio-temporal appli-
cation queries.

DISTIL+ [108] is a distributed spatio-temporal data process-
ing system for highly updated location data that extends DIS-
TIL [109]. DISTIL+ builds a three-tier distributed in-memory
index by leveraging the asynchronous partitioned global address
space paradigm, aiming to support highly concurrent spatio-
temporal range queries and spatio-temporal k-NN queries. The
location, velocity, orientation, and timestamp records of moving
objects are stored in the location table. The main idea of index
design is to discretize the spatial and temporal dimensions. The
global index (level 1) adopts a spatial domain-based quadtree
partition. The local index (levels 2 and 3) of each node consists
of a spatial index and a partial temporal index (PTIndex). The

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4149

spatial index maintains information about each grid cell in the
spatial domain, and each grid cell has a PTIndex, which is
defined by an interval Table composition, each entry in the
interval table contains a bit vector (Bit-vector) and a hash table
(RIDListMap), the former identifies the moving objects in a
specific grid cell within a given time interval, RIDListMap will
each A moving object is associated with a list of record identifiers
that locates the actual moving record of the moving object in the
location table. When a new location update is received from
the moving object, the location record object LRec is inserted
into the concurrent queue by the coordinator component, and
then use the producer–consumer paradigm to implement parallel
processing.

Toss-it [110] supports indexing the current position of the
moving object. The main idea is to build a new index every
time the location changes, instead of updating the old one, so
that there is no need to maintain a centralized update buffer
to maintain indexes that have not been updated yet, improving
the scalability of the system. ToSS-it uses Voronoi diagrams
distributed over multiple nodes, first distributing all objects on
cloud servers while maintaining their spatial locality, construct-
ing Voronoi diagrams in a first-distribution-then-build fashion.
The initial distribution of data is executed using a centralized
server. Then, a local Voronoi diagram (LVD) is built on each
server, and the LVD decomposes the space into disjoint poly-
gons. The generation of the LVD utilizes all available cores of the
CPU to further expand on each node and divide objects. Build a
hierarchical Voronoi index structure on each server to speedup
query processing. Submit a query q to a node Nq , then nodes
INq that intersect the query area will be found, and the query
will be forwarded to these nodes, Queries are run in parallel in
INq nodes using LVD, and partial results of the query on each
node are sent back to Nq for aggregation. D-ToSS [111] is an
enhanced version of ToSS-it, in which D-ToSS does not partition
data across nodes and a centralized server is required.

The spatio-temporal indexes discussed previously use a va-
riety of indexing techniques to improve spatio-temporal data
processing capabilities without relying on existing distributed
computing systems and NoSQL databases. These indexes satisfy
scalability and fault tolerance, but the disadvantages are as
follows: 1) Consistent hashing is used to distribute data, although
load balancing is achieved, but it weakens the spatio-temporal
relationship between data and destroys data locality, resulting
in indexes that can only satisfy simple spatio-temporal data
point queries, but cannot meet the needs of more complex
spatio-temporal applications; 2) the decentralization of nodes
makes it difficult to directly address the index server whether it is
an ML index or an MD index. When data are inserted frequently,
index updates take a long time.

V. COMPARISON OF INDEXING MECHANISMS

In this section, we summarize three main indexing mech-
anisms and indexing methods from three distributed environ-
ments, and compare and analyze the advantages and disadvan-
tages of these indexing mechanisms from four aspects: adaptive,
data skew, index size, and query efficiency. Finally, the typical

application scenarios of each indexing mechanism are given in
Table III.

In terms of adaptive, this metric can be described as finding
the best match for a given query workload and choosing when
the system should adjust its storage at runtime. Both ML idnex
and Joint index is able to identify changes in query workload.

In dealing with data skew, this metric aims to determine the
most appropriate partitioning technique for a given dataset in
the presence of data skew. ML index select the most suitable
partitioning technology for each level and the partitioning tech-
nology between levels may be different. Therefore, ML index
solve this problem. MD index and joint index typically split the
spatiotemporal dimension into uniform cells and are, therefore,
not suitable for dealing with skewed data.

In terms of query efficiency, ML index has a higher query
efficiency when dealing with range query, k-NN query, and
similarity query. When processing join queries, the data of
each layer need to be processed, so the efficiency is moderate.
MD index can handle fast processing of single-dimensional and
multidimensional queries, ignoring the effect of partition order
on the nature of partitions, so MD index can efficiently handle
range queries. The joint index can accurately and quickly find
the location of the data through the key value, so it has high
efficiency in processing conditional queries, such as range query,
k-NN query, and similarity query.

To sum up, ML indexes are suitable for queries focused on
the time or space dimension, built on distributed computing
systems and independent parallel and distributed systems, with
custom index granularity and high throughput requirements. MD
indexes are suitable for processing data evenly distributed, gen-
eral range queries, built on distributed computing systems and
independent parallel and distributed systems, with high through-
put, high real-time, and low latency requirements. Joint index is
suitable for building NoSQL databases, with data update, data
insertion, high real-time, and low latency requirements.

VI. EXPERIMENTAL RESULTS

In this section, we compare and analyze the performance of
spatio-temporal indexing over different distributed systems.

A. Settings

To evaluate the performance of indexing methods, we use a
real spatio-temporal datasets: T-Drive,1 which contains a one-
week trajectories of 10 357 taxis. The total number of points in
this dataset is about 15 million. Table IV lists the softwares and
their versions used in our experiments.

B. Spatio-Temporal Index Performance Over Batch System

In the performance comparison of spatio-temporal indexing
over batch system, we choose ST-Hadoop,2 HT, STQuery, and
CloST3 with open-source code or clear algorithm flow as com-
parison methods, and choose the query time varying with the

1[Online]. Available: https://www.microsoft.com/en-us/research/publication
/t-drive-trajectory-data-sample/

2[Online]. Available: https://github.com/lmarabi/st-hadoop
3[Online]. Available: https://github.com/douglasapeixoto/spark-trajectory-

storage

https://www.microsoft.com/en-us/research/publicationpenalty -@M /t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publicationpenalty -@M /t-drive-trajectory-data-sample/
https://github.com/lmarabi/st-hadoop
https://github.com/douglasapeixoto/spark-trajectory-storage
https://github.com/douglasapeixoto/spark-trajectory-storage

4150 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE III
COMPARISON OF DIFFERENT INDEXING MECHANISMS

aML index. bMD index. cAims to find the best match for a given query task. dIn the case of skewed data, identify the most appropriate partition technique for the dataset.

TABLE IV
SOFTWARES IN THE EXPERIMENTS

size of the data, query time, index time, and index size as the
evaluation indicators for comparison.

We compare the performance of the indexing method for
spatio-temporal range queries with different data sizes, where
the spatio-temporal window remains unchanged by default. As
shown in Fig. 12(a), ST-Hadoop has the fastest query speed,
because 1) ST-Hadoop adopts an ML indexing mechanism,
which can make better use of machine hardware resources, and
2) the global/local index mode of ST-Hadoop can quickly locate
the location of the physical node where the data block is located.

Fig. 12(b) shows the changes in the performance of the
spatio-temporal range query under different spatio-temporal
query windows. We randomly set 100 different query windows
and each query is executed only once, since the cost of dif-
ferent queries can vary widely, we report query times using
5%–95% intervals and the median of these 100 queries. As
shown in Fig. 12(b), ST-Hadoop has led to the best query
time among all index methods. Although CloST also adopts
an ML indexing mechanism, its query performance is lower
than ST-Hadoop. The main reason is that CloST’s indexing
method cannot handle skewed data, which can easily lead to load
imbalance.

As shown in Fig. 12(c), the storage size under different
spatiotemporal indexes is compared with the change of data
volume. The horizontal axis represents the percentage of usage
data in the corresponding dataset. Note that the storage index size
here includes the data itself. We can know from the figure that

Fig. 12. Performance comparison of different indexing methods over the
Hadoop framework. (a) Query time over data size. (b) Query time over index
method. (c) Index size. (d) Index time.

1) as the amount of data increases, the size of all spatiotemporal
indexes increases linearly, and 2) the ST-Hadoop ML index is
larger than the HT index size, because the ML index may copy
data once at each level.

Fig. 12(d) shows how the storage index time varies with the
size of the data. It can be seen from the figure that with the
increase of data volume, for all indexing methods, the storage
indexing time increases exponentially. ST-Hadoop takes more
time than HT, the main reason is that ST-Hadoop needs to
process data hierarchically, under Hadoop architecture, this will
generate more intermediate result storage, which means more
IO operations are required.

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4151

Fig. 13. Performance comparison of different indexing methods over the
stream processing system. (a) Index size. (b) Throughput.

Fig. 14. Performance comparison of different indexing methods over the
hybrid processing system. (a) Index size. (b) Throughput.

C. Spatio-Temporal Index Performance Over Stream
Processing System

In the performance comparison of spatiotemporal indexing
under batch system, we choose DITIR and DSI with clear
algorithm flow as comparison methods, and choose index size
and throughput as the evaluation indicators for comparison.

Fig. 13(a) shows the storage cost of the two methods at
different raw data sizes. Note that the storage cost includes the
index structure and the data. As we can see, with more raw data,
it requires more storage space to store both datasets. Clearly,
DSI takes up more space than DITIR, mainly because DSI build
indexes in the x-axis and y-axis directions, respectively.

Fig. 13(b) shows the throughput of the two methods at differ-
ent raw data sizes. As we can see, as the amount of data increases,
the throughput of both methods decreases, mainly because the
two indexing methods do not consider load balancing.

D. Spatio-Temporal Index Performance Over Hybrid
Processing System

In the performance comparison of spatiotemporal indexing
over batch system, we choose DITA,4 Simba,5 STARK,6 and
GeoFlink7 with open-source code or clear algorithm flow as
comparison methods, and choose index size and throughput as
the evaluation indicators for comparison.

Fig. 14(a) shows the storage cost of the four methods at
different raw data sizes. Note that the storage cost includes the
index structure and the data. As we can see, with more raw

4[Online]. Available: https://github.com/TsinghuaDatabaseGroup/DITA
5[Online]. Available: https://github.com/InitialDLab/Simba
6[Online]. Available: https://github.com/dbis-ilm/stark
7[Online]. Available: https://github.com/aistairc/SpatialFlink

Fig. 15. Performance comparison of different indexing methods over the
HBase database. (a) Query time. (b) Index size.

data, it requires more storage space to store both datasets. For
the dataset, DITA and Simba takes up more space than other
methods, mainly because they use a ML indexing mechanism to
deal with the spatio-temporal dimension separately.

Fig. 14(b) shows the throughput of the four methods at differ-
ent raw data sizes. As we can see, although DITA and Simba take
up more space than other methods, their throughput is higher,
and the global/local index mode can make full use of machine
hardware resources and improve query performance.

E. Spatio-Temporal Index Performance Over HBase Database

In the performance comparison of spatio-temporal indexing
over HBase database, we choose GeoMesa8 and JUST9 with
open-source code as comparison methods, and choose query
time and index size as the evaluation indicators for comparison.

As shown in Fig. 15(a), as the dataset is larger, both methods
require more time to answer the spatiotemporal range query
because more data are scanned and returned. JUST is much faster
than GeoMesa because JUST encodes both temporal and spatial
information into the keys of the NoSQL data store, and encodes
temporal information first and spatial information second, which
allows us to quickly locate eligible records directly.

Fig. 15(b) shows the storage cost of the two methods at
different raw data sizes. Note that the storage cost includes
the index structure (i.e., keys) and the data (i.e., values) itself.
As we can see, with more raw data, it requires more storage
space to store both datasets. JUST takes up more space than
GeoMesa, mainly because JUST applies more space to store
index information.

VII. CHALLENGES AND OUTLOOK

Most of the existing prototypes and systems adopt distributed
indexing, and the basic idea is to adopt a two-level indexing
scheme. At the local indexing layer, indexing structures, e.g.,
R-tree, Quadtree, and grid are usually used. Another way is to use
spatial fill curves map data into 1-D values and use traditional B-
tree for local indexing. NoSQL databases widely adopt the latter
approach. In the case of spatio-temporal data, some indexing
methods consider the temporal dimension first, then the spatial
dimension. In the global index layer, the most common method is

8[Online]. Available: https://github.com/locationtech/geomesa
9[Online]. Available: http://just.urban-computing.com/code/compare_platfo

rm.rar

https://github.com/TsinghuaDatabaseGroup/DITA
https://github.com/InitialDLab/Simba
https://github.com/dbis-ilm/stark
https://github.com/aistairc/SpatialFlink
https://github.com/locationtech/geomesa
http://just.urban-computing.com/code/compare_platfopenalty -@M rm.rar
http://just.urban-computing.com/code/compare_platfopenalty -@M rm.rar

4152 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

to collect summary information from the local indexes of nodes
in order to build a global index and quickly locate queries to data
nodes. The index also brings new challenges and future research
directions.

A. Multimodal Adaptive Indexing Mechanism for
Spatio-Temporal big data in Multicopy Mode

In the conventional big data storage environment, multiple
copies are the basic strategy to ensure data security and reliabil-
ity. A unified index mode cannot support the diverse application
requirements of spatio-temporal big data, and different index
modes are established for different copies of the same data, it
can improve the storage access efficiency of data according to
different application requirements. Therefore, how to design a
multi-modal adaptive spatio-temporal big data indexing mech-
anism is a hot research direction.

B. Spatio-Temporal Index Mode for Low-Latency Queries in
High Real-Time Applications

With the application of 5G network, in real-time applica-
tion fields, e.g., unmanned driving, real-time navigation, and
short-term prediction, the requirements for retrieval efficiency
of spatio-temporal big data is getting higher and higher. Con-
sidering the communication cost, maintenance cost, and index
performance, neither the tree-based index nor the grid index
can be directly applied to the streaming data processing system.
Therefore, how to design a spatio-temporal index mode with
low communication cost, low maintenance cost, and high index
performance on the streaming data processing system, which
can shorten the query response time of petabyte-level data to the
second level, has received more and more attention.

C. Spatio-Temporal Indexing Technology and Theoretical
Specification Based on NoSQL Database

At present, the existing spatio-temporal indexes based on
NoSQL databases are only oriented to specific applications, the
supported queries, and key technologies used are very different,
and a set of systematic normative criteria has not been formed.
Therefore, it is urgent to standardize NoSQL spatio-temporal
indexes and their support theories, which mainly include the
following.

1) Specification technology and supported query operations
for NoSQL spatio-temporal index.

2) The guidelines for application-oriented design of NoSQL
spatio-temporal indexes, the spatio-temporal index struc-
ture for minimizing spatio-temporal granularity, and the
heuristic criteria for minimizing query response time
provide guidelines for the optimal spatio-temporal index
structure.

3) Study the spatio-temporal semantics expressed by the
spatio-temporal index and the correctness verification
rules to provide a certain basis for the rationality and
correctness of the spatio-temporal data organization.

VIII. CONCLUSION

Spatio-temporal indexing is the core content of spatio-
temporal big data management, especially with the introduc-
tion of concepts, e.g., knowledge computing, social computing,
and urban computing [112]. Various parallel and distributed
spatio-temporal indexing methods to improve access efficiency
to spatio-temporal big data. This review covers spatio-temporal
indexing methods proposed from 2010 to 2020, namely:

1) spatio-temporal indexing based on distributed computing
system;

2) spatio-temporal indexing based on NoSQL database;
3) spatio-temporal indexing for standalone parallel and dis-

tribution systems.

ACKNOWLEDGMENT

The authors would like to thank to X. Du, C. Li, G. Peng, and
C. Li, with special thank A. Eldawy, Assistant Professor, with
the University of California Riverside. This article was produced
by the IEEE Publication Technology Group.

REFERENCES

[1] D. Yao, C. Zhang, J. Huang, Y. Chen, and J. Bi, “Semantic understanding
of spatio-temporal data: Technology & application,” J. Softw., vol. 29,
no. 7, pp. 2018–2045, Apr. 2018.

[2] X. Xie, B. Mei, J. Chen, X. Du, and C. Jensen, “Elite: An elastic infras-
tructure for big spatio-temporal trajectories,” Very Large Data Bases J.,
vol. 25, no. 4, pp. 473–493, Aug. 2016.

[3] X. Zhou, D. Qin, L. Chen, and Y. Zhang, “Real-time context-aware
social media recommendation,” Very Large Data Bases J., vol. 28, no. 2,
pp. 197–219, Apr. 2019.

[4] K. Huang, G. Li, and J. Wang, “Rapid retrieval strategy for massive
remote sensing metadata based on GeoHash coding,” Remote Sens. Lett.,
vol. 9, no. 11, pp. 1070–1078, Nov. 2018.

[5] J. Xia, C. Yang, and Q. Li, “Building a spatio-temporal index for Earth
observation Big Data,” Int. J. Appl. Earth Observ. Geoinf., vol. 73,
pp. 245–252, Dec. 2018.

[6] Z. Li et al., “A spatio-temporal indexing approach for efficient processing
of big array-based climate data with MapReduce,” Int. J. Geographical
Inf. Sci., vol. 31, no. 1, pp. 17–35, Jan. 2016.

[7] M. Zhu, C. Liu, and Y. Han, “Approach to discovering companion patterns
based on traffic data stream,” IET Intell. Transp. Syst., vol. 12, no. 10,
pp. 1351–1359, Dec. 2018.

[8] A. Mahmood, S. Punni, and W. Aref, “Spatio-temporal access methods: A
survey (2010-2017),” Geoinformatica, vol. 23, no. 1, pp. 1–36, Jan. 2019.

[9] K. Jitkajornwanich, N. Pant, M. Fouladgar, and R. Elmasri, “A survey
on spatial, temporal, and spatio-temporal database research and an orig-
inal example of relevant applications using SQL ecosystem and deep
learning,” J. Inf. Telecommun., vol. 4, no. 4, pp. 524–559, Sep. 2020.

[10] T. Zäschke, C. Zimmerli, and M. Norrie, “The PH-tree: A space-efficient
storage structure and multi-dimensional index,” in Proc. SIGMOD Int.
Conf. Manage. Data, 2014, pp. 397–408.

[11] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: A learned index
structure for spatial data,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2020, pp. 2119–2133.

[12] H. Wang, K. Zheng, X. Zhou, and S. Sadiq, “SharkDB: An in-memory
storage system for massive trajectory data,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015, pp. 1099–1104.

[13] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive
storage system for very large trajectory data sets,” in Proc. Int. Conf.
Data Eng., 2010, pp. 109–120.

[14] S. Ray, “Toward high performance spatio-temporal data management
systems,” in Proc. IEEE 15th Int. Conf. Mobile Data Manage., 2014,
pp. 19–22.

[15] E. Carneiro, A. Carvalho, and M. Oliveira, “I2B+ tree: Interval B+-tree
variant toward fast indexing of time-dependent data,” in Proc. 15th
Iberian Conf. Inf. Syst. Technol., 2020, pp. 1–7.

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4153

[16] D. That, I. Popa, and K. Zeitouni, “TRIFL: A generic trajectory index
for flash storage,” ACM Trans. Spatial Algorithms Syst., vol. 1, no. 2,
pp. 1–44, Jul. 2015.

[17] A. Mahmoo, A. Aly, T. Kuznetsova, S. Basalamah, and A. WG, “Disk-
based indexing of recent trajectories,” ACM Trans. Spatial Algorithms
Syst., vol. 4, no. 3, pp. 1–27, 2018.

[18] M. Singh, Q. Zhu, and H. Jagadish, “SWST: A disk based index for sliding
window spatio-temporal data,” in Proc. IEEE 28th Int. Conf. Data Eng.,
2012, pp. 342–353.

[19] A. Mahmood, W. Aref, A. Aly, and S. Basalamah, “Indexing recent
trajectories of moving objects,” in Proc. SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst., 2014, pp. 393–396.

[20] T. Nguyen, Z. He, and Y. Chen, “SeTPR*-tree: Efficient buffering for
spatiotemporal indexes via shared execution,” Comput. J., vol. 56, no. 1,
pp. 115–137, 2013.

[21] D. šidlauskas, K. Ross, C. Jensen, and S. Šaltenis, “Thread-level parallel
indexing of update intensive moving-object workloads,” in Proc. Int.
Symp. Spatial Temporal Databases, 2011, pp. 186–204.

[22] D. Šidlauskas, S. Šaltenis, and C. Jensen, “Parallel main-memory
indexing for moving-object query and update workloads,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2012, pp. 37–48.

[23] H. Doraiswamy, H. Vo, C. Silva, and J. Freire, “A GPU-based index to
support interactive spatio-temporal queries over historical data,” in Proc.
IEEE 32nd Int. Conf. Data Eng., 2016, pp. 1086–1097.

[24] W. Tang, W. Feng, and M. Jia, “Massively parallel spatial point pat-
tern analysis: Ripley’s K function accelerated using graphics process-
ing units,” Int. J. Geographical Inf. Sci., vol. 29, no. 3, pp. 412–439,
Mar. 2015.

[25] B. Zheng, J. Xu, W.-C. Lee, and L. Lee, “Grid-partition index:
A hybrid method for nearest-neighbor queries in wireless location-
based services,” Very Large Data Bases J., vol. 15, no. 1, pp. 21–39,
Jan. 2006.

[26] Z. Chen, L. Chen, G. Cong, and C. S. Jensen, “Location- and keyword-
based querying of geo-textual data: A survey,” Very Large Data Bases J.,
vol. 30, no. 4, pp. 603–640, Mar. 2021.

[27] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984. pp. 47–57.

[28] Geohash, 2014. [Online]. Available: http://en.wikipedia.org/wiki/
Geohash

[29] K. Lee, W. Lee, B. Zheng, H. Li, and Y. Tian, “Z-SKY: An efficient
skyline query processing framework based on Z-order,” Very Large Data
Bases J., vol. 19, no. 3, pp. 333–362, Jun. 2010.

[30] C. Düntgen, T. Behr, and R. Güting, “BerlinMOD: A benchmark for
moving object databases,” Very Large Data Bases J., vol. 18, no. 6,
pp. 1335–1368, Apr. 2009.

[31] W. Guo, Y. Zhao, G. Wang, and L. Wei, “Efficient fault-tolerant process-
ing technology for Flink iterative computing,” Chin. J. Comput., vol. 43,
no. 11, pp. 2101–2118, Nov. 2020.

[32] Apache Hadoop, 2011. [Online]. Available: https://hadoop.apache.org
[33] Apache Storm, 2017. [Online]. Available: http://storm.apache.org
[34] S4 Apache, 2011. [Online]. Available: https://github.com/apache/

incubator-retired-s4
[35] Apache Spark, 2012. [Online]. Available: http://spark.apache.org
[36] Apache Flink, 2015. [Online]. Available: http://flink.apache.org
[37] A. Zhou, B. Yang, Z. Jin, and Q. MA, “Location-based services: Archi-

tecture and progress,” Chin. J. Comput., vol. 34, no. 7, pp. 1155–1171,
Jul. 2011.

[38] L. Alarabi and M. Mokbel, “A demonstration of ST-hadoop: A mapreduce
framework for big spatio-temporal data,” in Proc. Very Large Data Bases
Endow., 2017, pp. 1961–1964.

[39] L. Han, L. Huang, X. Yang, W. Pan, and K. Wang, “A novel spatio-
temporal data storage and index method for ARM-based hadoop server,”
in Proc. Int. Conf. Cloud Comput. Secur., 2016, pp. 206–216.

[40] H. Tan, W. Luo, and L. Ni, “CloST: A hadoop-based storage system for
big spatio-temporal data analytics,” in Proc. ACM Int. Conf. Inf. Knowl.
Manage., 2012, pp. 2139–2143.

[41] M. Bakli, M. Sakr, and T. Soliman, “HadoopTrajectory: A hadoop spatio-
temporal data processing extension,” J. Geographical Syst., vol. 21,
pp. 211–235, Jun. 2019.

[42] J. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517,
Sep. 1975.

[43] S. Leutenegger, M. Lopez, and J. Edgington, “STR: A simple and efficient
algorithm for R-tree packing,” in Proc. 13th Int. Conf. Data Eng., 1997,
pp. 97–506.

[44] R. Schneider, N. Beckmann, H. P. Kriegel, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1990, pp. 322–331.

[45] Y. Tao, D. Papadias, and J. Sun, “The TPR*-tree: An optimizedspatio-
temporal access method for predictive queries,” in Proc. Very Large Data
Bases Endowment., 2003, pp. 790–801.

[46] Y. Theodoridis, M. Vazirgianni, and T. Sellis, “Spatio-temporal indexing
for large multimedia applications,” in Proc. IEEE Int. Conf. Multimedia
Comput. Syst., 1996, pp. 441–448.

[47] A. Eldawy, L. Alarabi, and M. Mokbel, “Spatial partitioning techniques in
spatial-hadoop,” in Proc. Very Large Data Bases Endow., 2015, pp. 1602–
1605.

[48] A. Eldawy and M. Mokbel, “SpatialHadoop: A MapReduce framework
for spatial data,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015, pp. 1352–
1363.

[49] C. Jackins and S. Tanimoto, “Oct-trees and their use in representing three-
dimensional objects,” Comput. Graph. Image Process., vol. 14, no. 3,
pp. 249–270, Feb. 1980.

[50] D. Rammer, S. Pallickara, and S. Pallickara, “ATLAS: A distributed file
system for spatiotemporal data,” in Proc. 12th IEEE/ACM Int. Conf.
Utility Cloud Comput., 2019, pp. 11–20.

[51] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in Proc. IEEE 31st Int. Conf. Data
Eng., 2013, pp. 38–49.

[52] D. Sun, G. Zhang, and W. Zheng, “Big Data stream computing: Tech-
nologies and instances,” J. Softw., vol. 25, no. 4, pp. 839–862, Jan.
2014.

[53] R. Cai, Z. Lu, L. Wang, Z. Zhang, T. Fur, and M. Winslett, “DITIR:
Distributed index for high throughput trajectory insertion and real-time
temporal range query,” in Proc. Very Large Data Bases Endowment.,
2017, pp. 1865–1868.

[54] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” IBM Ltd., Ottawa, 1966.

[55] P. Mazumdar, L. Wang, M. Winslet, Z. Zhang, and D. Jung, “An index
scheme for fast data stream to distributed append-only store,” in Proc.
Int. Workshop Web Databases, 2016, pp. 1–6.

[56] F. Zhang et al., “Real-time spatial queries for moving objects using storm
topology,” ISPRS Int. J. Geo-Inf., vol. 5, no. 10, Sep. 2016, Art. no. 178.

[57] Z. Yu, Y. Liu, X. Yu, and K. Pu, “Scalable distributed processing of K
nearest neighbor queries over moving objects,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 5, pp. 1383–1396, May 2015.

[58] W. Lu, Y. Shen, S. Chen, and C. Ben, “Efficient processing of k nearest
neighbor joins using MapReduce,” in Proc. Very Large Data Bases
Endowment, 2012, pp. 1016–1027.

[59] W. Kim, Y. Kim, and K. Shim, “Parallel computation of k-nearest
neighbor joins using MapReduce,” in Proc. IEEE Int. Conf. Big Data,
2016, pp. 696–705.

[60] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
Jun. 1996.

[61] X. Cheng, X. Jin, Y. Wang, J. Guo, T. Zhang, and G. Li, “Survey on
Big Data system and analytic technology,” J. Softw., vol. 25, no. 9,
pp. 1240–1252, Jul. 2014.

[62] Z. Zhang, J. Fang, W. Chen, D. Zhang, A. Liu, and Z. Li, “QBS-tree: A
spatial index with high update efficiency for real-time processing system,”
in Proc. 21st Int. Conf. High Perform. Comput. Commun./IEEE 17th Int.
Conf. Smart City/IEEE 5th Int. Conf. Data Sci. Syst., 2019, pp. 1282–
1289.

[63] S. Shaik, K. Mariam, H. Kitagawa, and K. Kim, “GeoFlink: A distributed
and scalable framework for the real-time processing of spatial streams,”
in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., 2020, pp. 3149–3156.

[64] H. Wang and A. Belhassena, “Parallel trajectory search based on dis-
tributed index,” Inf. Sci., vol. 388–389, pp. 62–83, Jan. 2017.

[65] A. Belhassena and H. Wang, “Distributed skyline trajectory query pro-
cessing,” in Proc. ACM Turing 50th Celebration Conf.-China, 2017,
pp. 1–7.

[66] R. Whitman, B. Marsh, M. Park, and E. Hoel, “Distributed spatial and
spatio-temporal join on apache spark,” ACM Trans. Spatial Algorithms
Syst., vol. 5, no. 1, pp. 1–28, Jun. 2019.

[67] Z. Shang, G. Li, and Z. Bao, “DITA: Distributed in-memory trajectory
analytics,” in Proc. SIGMOD Int. Conf. Manage. Data, 2018, pp. 725–
740.

[68] S. Hagedorn and T. Räth, “Efficient spatio-temporal event processing
with STARK,” in Proc. Int. Conf. Extending Database Technol., 2017,
pp. 570–573.

http://en.wikipedia.org/wiki/Geohash
http://en.wikipedia.org/wiki/Geohash
https://hadoop.apache.org
http://storm.apache.org
https://github.com/apache/incubator-retired-s4
https://github.com/apache/incubator-retired-s4
http://spark.apache.org
http://flink.apache.org

4154 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[69] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: A cluster computing framework
for processing large-scale spatial data,” in Proc. SIGSPATIAL Int. Conf.
Adv. Geographic Inf. Syst., 2015, pp. 1–4.

[70] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in apache
spark: The GeoSpark perspective and beyond,” Geoinformatica, vol. 23,
no. 1, pp. 37–78, Jan. 2019.

[71] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in Proc. IEEE 31st Int. Conf. Data Eng. Workshops,
2015, pp. 34–41.

[72] M. Yuan et al., “OceanST: A distributed analytic system for large-scale
spatio-temporal mobile broadband data,” in Proc. Very Large Data Bases
Endowment, 2014, pp. 1561–1564.

[73] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proc. SIGMOD Int. Conf. Manage. Data,
2016, pp. 1071–1085.

[74] F. Hu et al., “A hierarchical indexing strategy for optimizing apache spark
with HDFS to efficiently query big geospatial raster data,” Int. J. Digit.
Earth, vol. 13, no. 3, pp. 410–428, Mar. 2020.

[75] Y. Wang, Z. Gui, H. Wu, D. Peng, J. Wu, and Z. Cui, “Optimizing and
accelerating spatio-temporal Ripley’s K function based on apache spark
for distributed spatio-temporal point pattern analysis,” Futur. Gener.
Comp. Syst., vol. 105, pp. 96–118, Apr. 2020.

[76] J. Robinson, “The K-D-B-tree: A search structure for large multidimen-
sional dynamic indexes,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 1981, pp. 10–18.

[77] D. Shen, G. Yu, X. Wang, T. Nie, and Y. Kou, “Survey on NoSQL
for management of Big Data,” J. Softw., vol. 24, no. 8, pp. 1786–1803,
May 2013.

[78] V. Akkineni, B. Aydin, S. Naduvil-Vadukootu, and R. Angryk, “Predic-
tive spatio-temporal query processor on resilient distributed datasets,” in
Proc. IEEE Int. Conf. Big Data Cloud Comput., Social Comput. Netw.,
Sustain. Comput. Commun., 2016, pp. 50–58.

[79] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[80] Apache HBase, 2010. [Online]. Available: https://hbase.apache.org
[81] Apache Accumulo, 2011. [Online]. Available: https://accumulo.apache.

org
[82] C. Li, Z. Wu, P. Wu, and Z. Zhao, “An adaptive construction method of

hierarchical index for vector data under peer-to-peer networks,” ISPRS
Int. J. Geo-Inf., vol. 8, no. 11, pp. 1–19, Nov. 2019.

[83] Y. Ma, J. Rao, W. Hu, and X. Meng, “An efficient index for massive IOT
data in cloud environment,” in Proc. 21st ACM Int. Conf. Inf. Knowl.
Manage., 2012, pp. 2129–2133.

[84] S. Nishimura, S. Das, D. Agrawal, and A. Abbadi, “MD-HBase: A
scalable multi-dimensional data infrastructure for location aware ser-
vices,” in Proc. IEEE 12th Int. Conf. Mobile Data Manage., 2011,
pp. 7–16.

[85] H. Le and A. Takasu, “A scalable spatio-temporal data storage for
intelligent transportation systems based on HBase,” in Proc. IEEE 18th
Int. Conf. Intell. Transp. Syst., 2015, pp. 2733–2738.

[86] F. Liu, S. Gao, and Z. Zhou, “Research on indexing technology for AIS
data stream,” in Proc. 2nd Int. Conf. Big Data Eng. Technol., 2020, pp. 7–
12.

[87] C. Zhang, L. Zhu, J. Long, S. Lin, Z. Yang, and W. Huang, “A hybrid index
model for efficient spatio-temporal search in HBase,” in Proc. Pacific-
Asia Conf. Knowl. Discov. Data Mining, 2018, pp. 108–120.

[88] N. Du, J. Zhan, M. Zhao, D. Xiao, and Y. Xie, “Spatio-temporal data
index model of moving objects on fixed networks using hbase,” in Proc.
IEEE Int. Conf. Comput. Intell. Commun. Technol., 2015, pp. 247–251.

[89] R. Li et al., “JUST: JD urban spatio-temporal data engine,” in Proc. IEEE
31st Int. Conf. Data Eng., 2020, pp. 1558–1569.

[90] B. Yu, C. Zhang, J. Sun, and Y. Zhang, “Massive GIS spatio-temporal data
storage method in cloud environment,” in Proc. 2nd Int. Conf. Comput.
Sci. Artif. Intell., 2018, pp. 105–109.

[91] H. Xu, N. Yao, Q. Han, S. Cai, and D. Sun, “An approximate nearest
neighbor query algorithm based on BZ-Tree,” in Proc. Int. Conf. Comput.
Sci. Serv. Syst., 2012, pp. 1699–1701.

[92] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, “Spatio-temporal
indexing in non-relational distributed databases,” in Proc. IEEE Int. Conf.
Big Data, 2013, pp. 291–299.

[93] S. Park, D. Ko, and S. Song, “Parallel insertion and indexing method
for large amount of spatiotemporal data using dynamic multilevel grid
technique,” Appl. Sci., vol. 9, no. 20, Oct. 2019, Art. no. 4261.

[94] J. Hughes, A. Annex, C. Eichelberger, A. Fox, and A. Hulbert, “Ge-
oMesa: A distributed architecture for spatio-temporal fusion,” Proc.
SPIE, vol. 9473, 2015, Art. no. 94730F.

[95] C. Böhm, G. Klump, and H. Kriegel, “XZ-Ordering: A. space-filling
curve for objects with spatial extension,” in Proc. Int. Symp. Spatial
Databases, 1999, pp. 75–90.

[96] Redis, 2010. [Online]. Available: http://redis.io
[97] MongoDB, 2010. [Online]. Available: https://www.mongodb.com
[98] X. Guan, C. Bo, Z. Li, and Y. Yu, “ST-hash: An efficient spatio-temporal

index for massive trajectory data in a NoSQL database,” in Proc. 25th
Int. Conf. Geoinformatics, 2017, pp. 1–7.

[99] K. Lee, M. Seo, R. Lee, M. Park, and S. Lee, “Efficient process-
ing of spatio-temporal joins on IoT data,” IEEE Access, vol. 8,
pp. 108371–108386, 2020.

[100] S. Ke, J. Gong, S. Li, Q. Zhu, X. Liu, and Y. Zhang, “A hybrid spatio-
temporal data indexing method for trajectory databases,” Sensors, vol. 14,
no. 7, pp. 12990–13005, Jul. 2014.

[101] T. Pham, D. Nguyen, and K. Doan, “S4STRD: A scalable in memory
storage system for spatio-temporal real-time data,” in Proc. IEEE Int.
Conf. Smart City/SocialCom/SustainCom, 2015, pp. 896–901.

[102] C. Qian, C. Yi, C. Cheng, G. Pu, X. Wei, and H. Zhang, “GeoSOT-based
spatio-temporal index of massive trajectory data,” ISPRS Int. J. Geo-Inf.,
vol. 8, no. 6, pp. 1–12, Jun. 2019.

[103] M. Zaharia et al., “Apache spark: A unified engine for Big Data process-
ing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016.

[104] R. Cortés, X. Bonnaire, O. Marin, L. Arantes, and P. Sens, “GeoTrie:
A scalable architecture for location-temporal range queries over massive
geotagged data sets,” in Proc. IEEE 15th Int. Symp. Netw. Comput. Appl.,
2016, pp. 10–17.

[105] S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker, “Prefix
hash tree: An indexing data structure over distributed hash tables,” in
Proc. 23rd ACM Symp. Princ. Distrib. Comput., 2004, pp. 368–368.

[106] A. Papadopoulos and D. Katsaros, “A-tree: Distributed indexing of
multidimensional data for cloud computing environments,” in Proc. IEEE
3rd Int. Conf. Cloud Comput. Technol. Sci., 2011, pp. 407–414.

[107] M. Malensek, S. Pallickara, and S. Pallickara, “Exploiting geospatial and
chronological characteristics in data streams to enable efficient storage
and retrievals,” Futur. Gener. Comp. Syst. vol. 29, no. 4, pp. 1049–1061,
Jun. 2013.

[108] P. Memarzia, M. Patrou, M. Alam, S. Ray, V. Bhavsar, and K. Kent, “To-
ward efficient processing of spatio-temporal workloads in a distributed
in-memory system,” in Proc. IEEE Int. Conf. Mobile Data Manage.,
2019, pp. 118–127.

[109] M. Patrou et al., “DISTIL: A distributed in-memory data processing
system for location-based services,” in Proc. ACM SIGSPATIAL Int. Conf.
Adv. Geographic Inf. Syst., 2018, pp. 496–99.

[110] A. Akdogan, C. Shahabi, and U. Demiryurek, “ToSS-it: A cloud-based
throwaway spatial index structure for dynamic location data,” in Proc.
IEEE 15th Int. Conf. Mobile Data Manage., 2014, pp. 249–258.

[111] A. Akdogan, C. Shahabi, and U. Demiryurek, “D-ToSS: A distributed
throwaway spatial index structure for dynamic location data,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 9, pp. 2334–2348, Sep. 2016.

[112] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
Concepts, methodologies, and applications,” ACM Trans. Intell. Syst.
Technol., vol. 5, no. 3, pp. 1–55, Sep. 2014.

Ruijie Tian received the M.S. degree in software en-
gineering in 2019 from Dalian Maritime University,
Dalian, China, in 2019, where he is currently working
toward the Ph.D. degree in computer science and
technology with Information Science and Technology
College.

His research interests include spatio-temporal data
management, and distributed computing.

https://hbase.apache.org
https://accumulo.apache.org
https://accumulo.apache.org
http://redis.io
https://www.mongodb.com

TIAN et al.: SURVEY OF SPATIO-TEMPORAL BIG DATA INDEXING METHODS IN DISTRIBUTED ENVIRONMENT 4155

Huawei Zhai received the M.S. and Ph.D. degrees in
software engineering and computer application tech-
nology from the Information Science and Technol-
ogy College, Dalian Maritime University (DLMU),
Dalian, China, in 2007 and 2012, respectively.

He is currently a Associate Professor with DLMU.
His research interests include Big Data, intelligent
transportation, and intelligent software.

Weishi Zhang received the B.S. degree in computer
science from Xi’an Jiaotong University, Xi’an, China,
in 1984, the M.S. degree in computer science from
the Chinese Academy of Science, Beijing, China,
in 1986, and the Ph.D. degree in computer science
from the University of Munich, Munich, Germany, in
1996.

From 1986 to 1990, he was an Assistant Researcher
with the Shenyang Institute of Computing, Chinese
Academy of Science. From 1990 to 1992, he was
a Visiting Scholar with Passau University, Passau,

Germany. From 1992 to 1997, he was an Assistant Professor with University
of Munich. In 1997, he joined the Department of Computer Science, Dalian
Maritime University, Dalian, China, where he is currently a Full Professor with
the School of Information Science and Technology. His research interests include
computer vision, Big Data intelligent processing, software engineering, software
architecture, formal specification techniques, and program semantics model.

Fei Wang received the B.S. and M.S. degrees in
computer science and technology from Dalian Mar-
itime University, Dalian, China, in 2012 and 2015,
respectively, and the Ph.D. degree in control theory
and engineering from the Dalian University of Tech-
nology, Dalian, China in 2019.

He is currently a Lecturer with Dalian Maritime
University. His research interests include robotics,
deep learning, 3-D data processing, and scene under-
standing.

Yao Guan received the B.S. degree in IoT engineer-
ing in 2021 from Dalian Maritime University, Dalian,
China, where she is currently working toward the
M.S. degree in software engineering with Information
Science and Technology College.

Her research interests include spatio-temporal data
management and traffic Big Data analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

