Journal Description
Big Data and Cognitive Computing
Big Data and Cognitive Computing
is an international, scientific, peer-reviewed, open access journal of big data and cognitive computing published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), dblp, Inspec, and many other databases.
- Journal Rank: CiteScore - Q1 (Management Information Systems)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 20.3 days after submission; acceptance to publication is undertaken in 4.8 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Iris Liveness Detection Using Multiple Deep Convolution Networks
Big Data Cogn. Comput. 2022, 6(2), 67; https://doi.org/10.3390/bdcc6020067 (registering DOI) - 15 Jun 2022
Abstract
In the recent decade, comprehensive research has been carried out in terms of promising biometrics modalities regarding humans’ physical features for person recognition. This work focuses on iris characteristics and traits for person identification and iris liveness detection. This study used five pre-trained
[...] Read more.
In the recent decade, comprehensive research has been carried out in terms of promising biometrics modalities regarding humans’ physical features for person recognition. This work focuses on iris characteristics and traits for person identification and iris liveness detection. This study used five pre-trained networks, including VGG-16, Inceptionv3, Resnet50, Densenet121, and EfficientNetB7, to recognize iris liveness using transfer learning techniques. These models are compared using three state-of-the-art biometric databases: the LivDet-Iris 2015 dataset, IIITD contact dataset, and ND Iris3D 2020 dataset. Validation accuracy, loss, precision, recall, and f1-score, APCER (attack presentation classification error rate), NPCER (normal presentation classification error rate), and ACER (average classification error rate) were used to evaluate the performance of all pre-trained models. According to the observational data, these models have a considerable ability to transfer their experience to the field of iris recognition and to recognize the nanostructures within the iris region. Using the ND Iris 3D 2020 dataset, the EfficeintNetB7 model has achieved 99.97% identification accuracy. Experiments show that pre-trained models outperform other current iris biometrics variants.
Full article
(This article belongs to the Special Issue Data, Structure, and Information in Artificial Intelligence)
►
Show Figures
Open AccessArticle
CompositeView: A Network-Based Visualization Tool
Big Data Cogn. Comput. 2022, 6(2), 66; https://doi.org/10.3390/bdcc6020066 - 14 Jun 2022
Abstract
Large networks are quintessential to bioinformatics, knowledge graphs, social network analysis, and graph-based learning. CompositeView is a Python-based open-source application that improves interactive complex network visualization and extraction of actionable insight. CompositeView utilizes specifically formatted input data to calculate composite scores and display
[...] Read more.
Large networks are quintessential to bioinformatics, knowledge graphs, social network analysis, and graph-based learning. CompositeView is a Python-based open-source application that improves interactive complex network visualization and extraction of actionable insight. CompositeView utilizes specifically formatted input data to calculate composite scores and display them using the Cytoscape component of Dash. Composite scores are defined representations of smaller sets of conceptually similar data that, when combined, generate a single score to reduce information overload. Visualized interactive results are user-refined via filtering elements such as node value and edge weight sliders and graph manipulation options (e.g., node color and layout spread). The primary difference between CompositeView and other network visualization tools is its ability to auto-calculate and auto-update composite scores as the user interactively filters or aggregates data. CompositeView was developed to visualize network relevance rankings, but it performs well with non-network data. Three disparate CompositeView use cases are shown: relevance rankings from SemNet 2.0, an open-source knowledge graph relationship ranking software for biomedical literature-based discovery; Human Development Index (HDI) data; and the Framingham cardiovascular study. CompositeView was stress tested to construct reference benchmarks that define breadth and size of data effectively visualized. Finally, CompositeView is compared to Excel, Tableau, Cytoscape, neo4j, NodeXL, and Gephi.
Full article
(This article belongs to the Special Issue Graph-Based Data Mining and Social Network Analysis)
►▼
Show Figures
Figure 1
Open AccessArticle
Analysis and Prediction of User Sentiment on COVID-19 Pandemic Using Tweets
by
, , , , , and
Big Data Cogn. Comput. 2022, 6(2), 65; https://doi.org/10.3390/bdcc6020065 - 10 Jun 2022
Abstract
►▼
Show Figures
The novel coronavirus disease (COVID-19) has dramatically affected people’s daily lives worldwide. More specifically, since there is still insufficient access to vaccines and no straightforward, reliable treatment for COVID-19, every country has taken the appropriate precautions (such as physical separation, masking, and lockdown)
[...] Read more.
The novel coronavirus disease (COVID-19) has dramatically affected people’s daily lives worldwide. More specifically, since there is still insufficient access to vaccines and no straightforward, reliable treatment for COVID-19, every country has taken the appropriate precautions (such as physical separation, masking, and lockdown) to combat this extremely infectious disease. As a result, people invest much time on online social networking platforms (e.g., Facebook, Reddit, LinkedIn, and Twitter) and express their feelings and thoughts regarding COVID-19. Twitter is a popular social networking platform, and it enables anyone to use tweets. This research used Twitter datasets to explore user sentiment from the COVID-19 perspective. We used a dataset of COVID-19 Twitter posts from nine states in the United States for fifteen days (from 1 April 2020, to 15 April 2020) to analyze user sentiment. We focus on exploiting machine learning (ML), and deep learning (DL) approaches to classify user sentiments regarding COVID-19. First, we labeled the dataset into three groups based on the sentiment values, namely positive, negative, and neutral, to train some popular ML algorithms and DL models to predict the user concern label on COVID-19. Additionally, we have compared traditional bag-of-words and term frequency-inverse document frequency (TF-IDF) for representing the text to numeric vectors in ML techniques. Furthermore, we have contrasted the encoding methodology and various word embedding schemes, such as the word to vector (Word2Vec) and global vectors for word representation (GloVe) versions, with three sets of dimensions (100, 200, and 300) for representing the text to numeric vectors for DL approaches. Finally, we compared COVID-19 infection cases and COVID-19-related tweets during the COVID-19 pandemic.
Full article
Figure 1
Open AccessArticle
Decision-Making Using Big Data Relevant to Sustainable Development Goals (SDGs)
Big Data Cogn. Comput. 2022, 6(2), 64; https://doi.org/10.3390/bdcc6020064 - 05 Jun 2022
Abstract
►▼
Show Figures
Policymakers, practitioners, and researchers around the globe have been acting in a coordinated manner, yet remaining independent, to achieve the seventeen Sustainable Development Goals (SDGs) defined by the United Nations. Remarkably, SDG-centric activities have manifested a huge information silo known as big data.
[...] Read more.
Policymakers, practitioners, and researchers around the globe have been acting in a coordinated manner, yet remaining independent, to achieve the seventeen Sustainable Development Goals (SDGs) defined by the United Nations. Remarkably, SDG-centric activities have manifested a huge information silo known as big data. In most cases, a relevant subset of big data is visualized using several two-dimensional plots. These plots are then used to decide a course of action for achieving the relevant SDGs, and the whole process remains rather informal. Consequently, the question of how to make a formal decision using big data-generated two-dimensional plots is a critical one. This article fills this gap by presenting a novel decision-making approach (method and tool). The approach formally makes decisions where the decision-relevant information is two-dimensional plots rather than numerical data. The efficacy of the proposed approach is demonstrated by conducting two case studies relevant to SDG 12 (responsible consumption and production). The first case study confirms whether or not the proposed decision-making approach produces reliable results. In this case study, datasets of wooden and polymeric materials regarding two eco-indicators (CO2 footprint and water usage) are represented using two two-dimensional plots. The plots show that wooden and polymeric materials are indifferent in water usage, whereas wooden materials are better than polymeric materials in terms of CO2 footprint. The proposed decision-making approach correctly captures this fact and correctly ranks the materials. For the other case study, three materials (mild steel, aluminum alloys, and magnesium alloys) are ranked using six criteria (strength, modulus of elasticity, cost, density, CO2 footprint, and water usage) and their relative weights. The datasets relevant to the six criteria are made available using three two-dimensional plots. The plots show the relative positions of mild steel, aluminum alloys, and magnesium alloys. The proposed decision-making approach correctly captures the decision-relevant information of these three plots and correctly ranks the materials. Thus, the outcomes of this article can help those who wish to develop pragmatic decision support systems leveraging the capacity of big data in fulfilling SDGs.
Full article
Figure 1
Open AccessArticle
Social Media Analytics as a Tool for Cultural Spaces—The Case of Twitter Trending Topics
Big Data Cogn. Comput. 2022, 6(2), 63; https://doi.org/10.3390/bdcc6020063 - 02 Jun 2022
Abstract
We are entering an era in which online personalities and personas will grow faster and faster. People are tending to use the Internet, and social media especially, more frequently and for a wider variety of purposes. In parallel, a number of cultural spaces
[...] Read more.
We are entering an era in which online personalities and personas will grow faster and faster. People are tending to use the Internet, and social media especially, more frequently and for a wider variety of purposes. In parallel, a number of cultural spaces have already decided to invest in marketing and message spreading through the web and the media. Growing their audience, or locating the appropriate group of people to share their information, remains a tedious task within the chaotic environment of the Internet. The investment is mainly financial—usually large—and directed to advertisements. Still, there is much space for research and investment in analytics that can provide evidence considering the spreading of the word and finding groups of people interested in specific information or trending topics and influencers. In this paper, we present a part of a national project that aims to perform an analysis of Twitter’s trending topics. The main scope of the analysis is to provide a basic ordering on the topics based on their “importance”. Based on this, we clarify how cultural institutions can benefit from such an analysis in order to empower their online presence.
Full article
(This article belongs to the Special Issue Semantic Web Technology and Recommender Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
Synthesizing a Talking Child Avatar to Train Interviewers Working with Maltreated Children
by
, , , , , , , , , , , , and
Big Data Cogn. Comput. 2022, 6(2), 62; https://doi.org/10.3390/bdcc6020062 (registering DOI) - 01 Jun 2022
Abstract
When responding to allegations of child sexual, physical, and psychological abuse, Child Protection Service (CPS) workers and police personnel need to elicit detailed and accurate accounts of the abuse to assist in decision-making and prosecution. Current research emphasizes the importance of the interviewer’s
[...] Read more.
When responding to allegations of child sexual, physical, and psychological abuse, Child Protection Service (CPS) workers and police personnel need to elicit detailed and accurate accounts of the abuse to assist in decision-making and prosecution. Current research emphasizes the importance of the interviewer’s ability to follow empirically based guidelines. In doing so, it is essential to implement economical and scientific training courses for interviewers. Due to recent advances in artificial intelligence, we propose to generate a realistic and interactive child avatar, aiming to mimic a child. Our ongoing research involves the integration and interaction of different components with each other, including how to handle the language, auditory, emotional, and visual components of the avatar. This paper presents three subjective studies that investigate and compare various state-of-the-art methods for implementing multiple aspects of the child avatar. The first user study evaluates the whole system and shows that the system is well received by the expert and highlights the importance of its realism. The second user study investigates the emotional component and how it can be integrated with video and audio, and the third user study investigates realism in the auditory and visual components of the avatar created by different methods. The insights and feedback from these studies have contributed to the refined and improved architecture of the child avatar system which we present here.
Full article
(This article belongs to the Special Issue Multimedia Systems for Multimedia Big Data)
►▼
Show Figures
Figure 1
Open AccessArticle
A Novel Method of Exploring the Uncanny Valley in Avatar Gender(Sex) and Realism Using Electromyography
Big Data Cogn. Comput. 2022, 6(2), 61; https://doi.org/10.3390/bdcc6020061 - 30 May 2022
Abstract
Despite the variety of applications that use avatars (virtual humans), how end-users perceive avatars are not fully understood, and accurately measuring these perceptions remains a challenge. To measure end-user responses more accurately to avatars, this pilot study uses a novel methodology which aims
[...] Read more.
Despite the variety of applications that use avatars (virtual humans), how end-users perceive avatars are not fully understood, and accurately measuring these perceptions remains a challenge. To measure end-user responses more accurately to avatars, this pilot study uses a novel methodology which aims to examine and categorize end-user facial electromyography (f-EMG) responses. These responses (n = 92) can be categorized as pleasant, unpleasant, and neutral using control images sourced from the International Affective Picture System (IAPS). This methodology can also account for variability between participant responses to avatars. The novel methodology taken here can assist in the comparisons of avatars, such as gender(sex)-based differences. To examine these gender(sex) differences, participant responses to an avatar can be categorized as either pleasant, unpleasant, neutral or a combination. Although other factors such as age may unconsciously affect the participant responses, age was not directly considered in this work. This method may allow avatar developers to better understand how end-users objectively perceive an avatar. The recommendation of this methodology is to aim for an avatar that returns a pleasant, neutral, or pleasant-neutral response, unless an unpleasant response is the intended. This methodology demonstrates a novel and useful way forward to address some of the known variability issues found in f-EMG responses, and responses to avatar realism and uncanniness that can be used to examine gender(sex) perceptions.
Full article
(This article belongs to the Special Issue Cognitive and Physiological Assessments in Human-Computer Interaction)
►▼
Show Figures
Figure 1
Open AccessArticle
Earthquake Insurance in California, USA: What Does Community-Generated Big Data Reveal to Us?
Big Data Cogn. Comput. 2022, 6(2), 60; https://doi.org/10.3390/bdcc6020060 - 20 May 2022
Abstract
California has a high seismic hazard, as many historical and recent earthquakes remind us. To deal with potential future damaging earthquakes, a voluntary insurance system for residential properties is in force in the state. However, the insurance penetration rate is quite low. Bearing
[...] Read more.
California has a high seismic hazard, as many historical and recent earthquakes remind us. To deal with potential future damaging earthquakes, a voluntary insurance system for residential properties is in force in the state. However, the insurance penetration rate is quite low. Bearing this in mind, the aim of this article is to ascertain whether Big Data can provide policymakers and stakeholders with useful information in view of future action plans on earthquake coverage. Therefore, we extracted and analyzed the online search interest in earthquake insurance over time (2004–2021) through Google Trends (GT), a website that explores the popularity of top search queries in Google Search across various regions and languages. We found that (1) the triggering of online searches stems primarily from the occurrence of earthquakes in California and neighboring areas as well as oversea regions, thus suggesting that the interest of users was guided by both direct and vicarious earthquake experiences. However, other natural hazards also come to people’s notice; (2) the length of the higher level of online attention spans from one day to one week, depending on the magnitude of the earthquakes, the place where they occur, the temporal proximity of other natural hazards, and so on; (3) users interested in earthquake insurance are also attentive to knowing the features of the policies, among which are first the price of coverage, and then their worth and practical benefits; (4) online interest in the time span analyzed fits fairly well with the real insurance policy underwritings recorded over the years. Based on the research outcomes, we can propose the establishment of an observatory to monitor the online behavior that is suitable for supporting well-timed and geographically targeted information and communication action plans.
Full article
(This article belongs to the Special Issue Big Data and Internet of Things)
►▼
Show Figures
Figure 1
Open AccessArticle
The Predictive Power of a Twitter User’s Profile on Cryptocurrency Popularity
Big Data Cogn. Comput. 2022, 6(2), 59; https://doi.org/10.3390/bdcc6020059 - 20 May 2022
Abstract
Microblogging has become an extremely popular communication tool among Internet users worldwide. Millions of users daily share a huge amount of information related to various aspects of their lives, which makes the respective sites a very important source of data for analysis. Bitcoin
[...] Read more.
Microblogging has become an extremely popular communication tool among Internet users worldwide. Millions of users daily share a huge amount of information related to various aspects of their lives, which makes the respective sites a very important source of data for analysis. Bitcoin (BTC) is a decentralized cryptographic currency and is equivalent to most recurrently known currencies in the way that it is influenced by socially developed conclusions, regardless of whether those conclusions are considered valid. This work aims to assess the importance of Twitter users’ profiles in predicting a cryptocurrency’s popularity. More specifically, our analysis focused on the user influence, captured by different Twitter features (such as the number of followers, retweets, lists) and tweet sentiment scores as the main components of measuring popularity. Moreover, the Spearman, Pearson, and Kendall Correlation Coefficients are applied as post-hoc procedures to support hypotheses about the correlation between a user influence and the aforementioned features. Tweets sentiment scoring (as positive or negative) was performed with the aid of Valence Aware Dictionary and Sentiment Reasoner (VADER) for a number of tweets fetched within a concrete time period. Finally, the Granger causality test was employed to evaluate the statistical significance of various features time series in popularity prediction to identify the most influential variable for predicting future values of the cryptocurrency popularity.
Full article
(This article belongs to the Special Issue Semantic Web Technology and Recommender Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
COVID-19 Tweets Classification Based on a Hybrid Word Embedding Method
Big Data Cogn. Comput. 2022, 6(2), 58; https://doi.org/10.3390/bdcc6020058 - 18 May 2022
Abstract
►▼
Show Figures
In March 2020, the World Health Organisation declared that COVID-19 was a new pandemic. This deadly virus spread and affected many countries in the world. During the outbreak, social media platforms such as Twitter contributed valuable and massive amounts of data to better
[...] Read more.
In March 2020, the World Health Organisation declared that COVID-19 was a new pandemic. This deadly virus spread and affected many countries in the world. During the outbreak, social media platforms such as Twitter contributed valuable and massive amounts of data to better assess health-related decision making. Therefore, we propose that users’ sentiments could be analysed with the application of effective supervised machine learning approaches to predict disease prevalence and provide early warnings. The collected tweets were prepared for preprocessing and categorised into: negative, positive, and neutral. In the second phase, different features were extracted from the posts by applying several widely used techniques, such as TF-IDF, Word2Vec, Glove, and FastText to capture features’ datasets. The novelty of this study is based on hybrid features extraction, where we combined syntactic features (TF-IDF) with semantic features (FastText and Glove) to represent posts accurately, which helps in improving the classification process. Experimental results show that FastText combined with TF-IDF performed better with SVM than the other models. SVM outperformed the other models by 88.72%, as well as for XGBoost, with an 85.29% accuracy score. This study shows that the hybrid methods proved their capability of extracting features from the tweets and increasing the performance of classification.
Full article
Figure 1
Open AccessArticle
Sentiment Analysis of Emirati Dialect
Big Data Cogn. Comput. 2022, 6(2), 57; https://doi.org/10.3390/bdcc6020057 - 17 May 2022
Abstract
►▼
Show Figures
Recently, extensive studies and research in the Arabic Natural Language Processing (ANLP) field have been conducted for text classification and sentiment analysis. Moreover, the number of studies that target Arabic dialects has also increased. In this research paper, we constructed the first manually
[...] Read more.
Recently, extensive studies and research in the Arabic Natural Language Processing (ANLP) field have been conducted for text classification and sentiment analysis. Moreover, the number of studies that target Arabic dialects has also increased. In this research paper, we constructed the first manually annotated dataset of the Emirati dialect for the Instagram platform. The constructed dataset consisted of more than 70,000 comments, mostly written in the Emirati dialect. We annotated the comments in the dataset based on text polarity, dividing them into positive, negative, and neutral categories, and the number of annotated comments was 70,000. Moreover, the dataset was also annotated for the dialect type, categorized into the Emirati dialect, Arabic dialects, and MSA. Preprocessing and TF-IDF features extraction approaches were applied to the constructed Emirati dataset to prepare the dataset for the sentiment analysis experiment and improve its classification performance. The sentiment analysis experiment was carried out on both balanced and unbalanced datasets using several machine learning classifiers. The evaluation metrics of the sentiment analysis experiments were accuracy, recall, precision, and f-measure. The results reported that the best accuracy result was 80.80%, and it was achieved when the ensemble model was applied for the sentiment classification of the unbalanced dataset.
Full article
Figure 1
Open AccessArticle
A Better Mechanistic Understanding of Big Data through an Order Search Using Causal Bayesian Networks
Big Data Cogn. Comput. 2022, 6(2), 56; https://doi.org/10.3390/bdcc6020056 - 17 May 2022
Abstract
►▼
Show Figures
Every year, biomedical data is increasing at an alarming rate and is being collected from many different sources, such as hospitals (clinical Big Data), laboratories (genomic and proteomic Big Data), and the internet (online Big Data). This article presents and evaluates a practical
[...] Read more.
Every year, biomedical data is increasing at an alarming rate and is being collected from many different sources, such as hospitals (clinical Big Data), laboratories (genomic and proteomic Big Data), and the internet (online Big Data). This article presents and evaluates a practical causal discovery algorithm that uses modern statistical, machine learning, and informatics approaches that have been used in the learning of causal relationships from biomedical Big Data, which in turn integrates clinical, omics (genomic and proteomic), and environmental aspects. The learning of causal relationships from data using graphical models does not address the hidden (unknown or not measured) mechanisms that are inherent to most measurements and analyses. Also, many algorithms lack a practical usage since they do not incorporate current mechanistic knowledge. This paper proposes a practical causal discovery algorithm using causal Bayesian networks to gain a better understanding of the underlying mechanistic process that generated the data. The algorithm utilizes model averaging techniques such as searching through a relative order (e.g., if gene A is regulating gene B, then we can say that gene A is of a higher order than gene B) and incorporates relevant prior mechanistic knowledge to guide the Markov chain Monte Carlo search through the order. The algorithm was evaluated by testing its performance on datasets generated from the ALARM causal Bayesian network. Out of the 37 variables in the ALARM causal Bayesian network, two sets of nine were chosen and the observations for those variables were provided to the algorithm. The performance of the algorithm was evaluated by comparing its prediction with the generating causal mechanism. The 28 variables that were not in use are referred to as hidden variables and they allowed for the evaluation of the algorithm’s ability to predict hidden confounded causal relationships. The algorithm’s predicted performance was also compared with other causal discovery algorithms. The results show that incorporating order information provides a better mechanistic understanding even when hidden confounded causes are present. The prior mechanistic knowledge incorporated in the Markov chain Monte Carlo search led to the better discovery of causal relationships when hidden variables were involved in generating the simulated data.
Full article
Figure 1
Open AccessArticle
Virtual Reality Adaptation Using Electrodermal Activity to Support the User Experience
Big Data Cogn. Comput. 2022, 6(2), 55; https://doi.org/10.3390/bdcc6020055 - 13 May 2022
Abstract
Virtual reality is increasingly used for tasks such as work and education. Thus, rendering scenarios that do not interfere with such goals and deplete user experience are becoming progressively more relevant. We present a physiologically adaptive system that optimizes the virtual environment based
[...] Read more.
Virtual reality is increasingly used for tasks such as work and education. Thus, rendering scenarios that do not interfere with such goals and deplete user experience are becoming progressively more relevant. We present a physiologically adaptive system that optimizes the virtual environment based on physiological arousal, i.e., electrodermal activity. We investigated the usability of the adaptive system in a simulated social virtual reality scenario. Participants completed an n-back task (primary) and a visual detection (secondary) task. Here, we adapted the visual complexity of the secondary task in the form of the number of non-player characters of the secondary task to accomplish the primary task. We show that an adaptive virtual reality can improve users’ comfort by adapting to physiological arousal regarding the task complexity. Our findings suggest that physiologically adaptive virtual reality systems can improve users’ experience in a wide range of scenarios.
Full article
(This article belongs to the Special Issue Cognitive and Physiological Assessments in Human-Computer Interaction)
►▼
Show Figures
Figure 1
Open AccessArticle
A New Comparative Study of Dimensionality Reduction Methods in Large-Scale Image Retrieval
Big Data Cogn. Comput. 2022, 6(2), 54; https://doi.org/10.3390/bdcc6020054 - 13 May 2022
Abstract
Indexing images by content is one of the most used computer vision methods, where various techniques are used to extract visual characteristics from images. The deluge of data surrounding us, due the high use of social and diverse media acquisition systems, has created
[...] Read more.
Indexing images by content is one of the most used computer vision methods, where various techniques are used to extract visual characteristics from images. The deluge of data surrounding us, due the high use of social and diverse media acquisition systems, has created a major challenge for classical multimedia processing systems. This problem is referred to as the ‘curse of dimensionality’. In the literature, several methods have been used to decrease the high dimension of features, including principal component analysis (PCA) and locality sensitive hashing (LSH). Some methods, such as VA-File or binary tree, can be used to accelerate the search phase. In this paper, we propose an efficient approach that exploits three particular methods, those being PCA and LSH for dimensionality reduction, and the VA-File method to accelerate the search phase. This combined approach is fast and can be used for high dimensionality features. Indeed, our method consists of three phases: (1) image indexing within SIFT and SURF algorithms, (2) compressing the data using LSH and PCA, and (3) finally launching the image retrieval process, which is accelerated by using a VA-File approach.
Full article
(This article belongs to the Special Issue Multimedia Systems for Multimedia Big Data)
►▼
Show Figures
Figure 1
Open AccessEditorial
Knowledge Modelling and Learning through Cognitive Networks
by
and
Big Data Cogn. Comput. 2022, 6(2), 53; https://doi.org/10.3390/bdcc6020053 - 13 May 2022
Abstract
Knowledge modelling is a growing field at the fringe of computer science, psychology and network science [...]
Full article
(This article belongs to the Special Issue Knowledge Modelling and Learning through Cognitive Networks)
Open AccessArticle
Cognitive Networks Extract Insights on COVID-19 Vaccines from English and Italian Popular Tweets: Anticipation, Logistics, Conspiracy and Loss of Trust
Big Data Cogn. Comput. 2022, 6(2), 52; https://doi.org/10.3390/bdcc6020052 - 12 May 2022
Abstract
Monitoring social discourse about COVID-19 vaccines is key to understanding how large populations perceive vaccination campaigns. This work reconstructs how popular and trending posts framed semantically and emotionally COVID-19 vaccines on Twitter. We achieve this by merging natural language processing, cognitive network science
[...] Read more.
Monitoring social discourse about COVID-19 vaccines is key to understanding how large populations perceive vaccination campaigns. This work reconstructs how popular and trending posts framed semantically and emotionally COVID-19 vaccines on Twitter. We achieve this by merging natural language processing, cognitive network science and AI-based image analysis. We focus on 4765 unique popular tweets in English or Italian about COVID-19 vaccines between December 2020 and March 2021. One popular English tweet contained in our data set was liked around 495,000 times, highlighting how popular tweets could cognitively affect large parts of the population. We investigate both text and multimedia content in tweets and build a cognitive network of syntactic/semantic associations in messages, including emotional cues and pictures. This network representation indicates how online users linked ideas in social discourse and framed vaccines along specific semantic/emotional content. The English semantic frame of “vaccine” was highly polarised between trust/anticipation (towards the vaccine as a scientific asset saving lives) and anger/sadness (mentioning critical issues with dose administering). Semantic associations with “vaccine,” “hoax” and conspiratorial jargon indicated the persistence of conspiracy theories and vaccines in extremely popular English posts. Interestingly, these were absent in Italian messages. Popular tweets with images of people wearing face masks used language that lacked the trust and joy found in tweets showing people with no masks. This difference indicates a negative effect attributed to face-covering in social discourse. Behavioural analysis revealed a tendency for users to share content eliciting joy, sadness and disgust and to like sad messages less. Both patterns indicate an interplay between emotions and content diffusion beyond sentiment. After its suspension in mid-March 2021, “AstraZeneca” was associated with trustful language driven by experts. After the deaths of a small number of vaccinated people in mid-March, popular Italian tweets framed “vaccine” by crucially replacing earlier levels of trust with deep sadness. Our results stress how cognitive networks and innovative multimedia processing open new ways for reconstructing online perceptions about vaccines and trust.
Full article
(This article belongs to the Special Issue Machine Learning and Artificial Intelligence for Health Applications on Social Networks)
►▼
Show Figures
Figure 1
Open AccessArticle
Robust Multi-Mode Synchronization of Chaotic Fractional Order Systems in the Presence of Disturbance, Time Delay and Uncertainty with Application in Secure Communications
Big Data Cogn. Comput. 2022, 6(2), 51; https://doi.org/10.3390/bdcc6020051 - 08 May 2022
Abstract
►▼
Show Figures
This paper investigates the robust adaptive synchronization of multi-mode fractional-order chaotic systems (MMFOCS). To that end, synchronization was performed with unknown parameters, unknown time delays, the presence of disturbance, and uncertainty with the unknown boundary. The convergence of the synchronization error to zero
[...] Read more.
This paper investigates the robust adaptive synchronization of multi-mode fractional-order chaotic systems (MMFOCS). To that end, synchronization was performed with unknown parameters, unknown time delays, the presence of disturbance, and uncertainty with the unknown boundary. The convergence of the synchronization error to zero was guaranteed using the Lyapunov function. Additionally, the control rules were extracted as explicit continuous functions. An image encryption approach was proposed based on maps with time-dependent coding for secure communication. The simulations indicated the effectiveness of the proposed design regarding the suitability of the parameters, the convergence of errors, and robustness. Subsequently, the presented method was applied to fractional-order Chen systems and was encrypted using the chaotic masking of different benchmark images. The results indicated the desirable performance of the proposed method in encrypting the benchmark images.
Full article
Figure 1
Open AccessArticle
Gender Stereotypes in Hollywood Movies and Their Evolution over Time: Insights from Network Analysis
Big Data Cogn. Comput. 2022, 6(2), 50; https://doi.org/10.3390/bdcc6020050 - 06 May 2022
Abstract
The present analysis of more than 180,000 sentences from movie plots across the period from 1940 to 2019 emphasizes how gender stereotypes are expressed through the cultural products of society. By applying a network analysis to the word co-occurrence networks of movie plots
[...] Read more.
The present analysis of more than 180,000 sentences from movie plots across the period from 1940 to 2019 emphasizes how gender stereotypes are expressed through the cultural products of society. By applying a network analysis to the word co-occurrence networks of movie plots and using a novel method of identifying story tropes, we demonstrate that gender stereotypes exist in Hollywood movies. An analysis of specific paths in the network and the words reflecting various domains show the dynamic changes in some of these stereotypical associations. Our results suggest that gender stereotypes are complex and dynamic in nature. Specifically, whereas male characters appear to be associated with a diversity of themes in movies, female characters seem predominantly associated with the theme of romance. Although associations of female characters to physical beauty and marriage are declining over time, associations of female characters to sexual relationships and weddings are increasing. Our results demonstrate how the application of cognitive network science methods can enable a more nuanced investigation of gender stereotypes in textual data.
Full article
(This article belongs to the Special Issue Knowledge Modelling and Learning through Cognitive Networks)
►▼
Show Figures
Figure 1
Open AccessArticle
A Comparative Study of MongoDB and Document-Based MySQL for Big Data Application Data Management
Big Data Cogn. Comput. 2022, 6(2), 49; https://doi.org/10.3390/bdcc6020049 - 05 May 2022
Abstract
In the context of the heavy demands of Big Data, software developers have also begun to consider NoSQL data storage solutions. One of the important criteria when choosing a NoSQL database for an application is its performance in terms of speed of data
[...] Read more.
In the context of the heavy demands of Big Data, software developers have also begun to consider NoSQL data storage solutions. One of the important criteria when choosing a NoSQL database for an application is its performance in terms of speed of data accessing and processing, including response times to the most important CRUD operations (CREATE, READ, UPDATE, DELETE). In this paper, the behavior of two of the major document-based NoSQL databases, MongoDB and document-based MySQL, was analyzed in terms of the complexity and performance of CRUD operations, especially in query operations. The main objective of the paper is to make a comparative analysis of the impact that each specific database has on application performance when realizing CRUD requests. To perform this analysis, a case-study application was developed using the two document-based MongoDB and MySQL databases, which aim to model and streamline the activity of service providers that use a lot of data. The results obtained demonstrate the performance of both databases for different volumes of data; based on these, a detailed analysis and several conclusions were presented to support a decision for choosing an appropriate solution that could be used in a big-data application.
Full article
(This article belongs to the Topic Complex Data Analytics and Computing with Real-World Applications)
►▼
Show Figures
Figure 1
Open AccessArticle
A New Ontology-Based Method for Arabic Sentiment Analysis
Big Data Cogn. Comput. 2022, 6(2), 48; https://doi.org/10.3390/bdcc6020048 - 29 Apr 2022
Abstract
Arabic sentiment analysis is a process that aims to extract the subjective opinions of different users about different subjects since these opinions and sentiments are used to recognize their perspectives and judgments in a particular domain. Few research studies addressed semantic-oriented approaches for
[...] Read more.
Arabic sentiment analysis is a process that aims to extract the subjective opinions of different users about different subjects since these opinions and sentiments are used to recognize their perspectives and judgments in a particular domain. Few research studies addressed semantic-oriented approaches for Arabic sentiment analysis based on domain ontologies and features’ importance. In this paper, we built a semantic orientation approach for calculating overall polarity from the Arabic subjective texts based on built domain ontology and the available sentiment lexicon. We used the ontology concepts to extract and weight the semantic domain features by considering their levels in the ontology tree and their frequencies in the dataset to compute the overall polarity of a given textual review based on the importance of each domain feature. For evaluation, an Arabic dataset from the hotels’ domain was selected to build the domain ontology and to test the proposed approach. The overall accuracy and f-measure reach 79.20% and 78.75%, respectively. Results showed that the approach outperformed the other semantic orientation approaches, and it is an appealing approach to be used for Arabic sentiment analysis.
Full article
(This article belongs to the Topic Complex Data Analytics and Computing with Real-World Applications)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
BDCC, Land, Remote Sensing, Smart Cities, Sustainability
Urban Computing—Data, Techniques, Tools, and Applications
Topic Editors: Gavin McArdle, Mir Abolfazl Mostafavi, Hamidreza Rabiei-DastjerdiDeadline: 30 September 2022
Topic in
Entropy, Algorithms, BDCC, Data
Complex Data Analytics and Computing with Real-World Applications
Topic Editors: S. Ejaz Ahmed, Shuangge Steven Ma, Peter X.K. SongDeadline: 22 November 2022
Topic in
BDCC, Future Internet, Information, Remote Sensing, Sustainability
Big Data and Artificial Intelligence
Topic Editors: Miltiadis D. Lytras, Andreea Claudia SerbanDeadline: 31 December 2022
Topic in
Applied Sciences, BDCC, Mathematics, Electronics, Entropy
Machine and Deep Learning
Topic Editors: Andrea Prati, Luis Javier García Villalba, Vincent A. CicirelloDeadline: 31 March 2023
Conferences
Special Issues
Special Issue in
BDCC
Semantic Web Technology and Recommender Systems
Guest Editors: Konstantinos Kotis, Dimitris SpiliotopoulosDeadline: 30 June 2022
Special Issue in
BDCC
Data Science in Health Care
Guest Editors: Nadav Rappoport, Yuval Shahar, Hyojung PaikDeadline: 8 August 2022
Special Issue in
BDCC
Sustainable Big Data Analytics and Machine Learning Technologies
Guest Editor: Jenq-Haur WangDeadline: 31 August 2022
Special Issue in
BDCC
Big Data Analytics for Cultural Heritage
Guest Editors: Manolis Wallace, Vassilis Poulopoulos, Angeliki Antoniou, Martín López-NoresDeadline: 30 September 2022