Journal Description
DNA
DNA
is an international, peer-reviewed, open access journal on DNA and DNA-related technologies published quarterly online by MDPI.
- Open Access—free to download, share, and reuse content. Authors receive recognition for their contribution when the paper is reused.
- Rapid Publication: first decisions in 15 days; acceptance to publication in 3 days (median values for MDPI journals in the second half of 2021).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Mitochondrial DNA: Consensuses and Controversies
DNA 2022, 2(2), 131-148; https://doi.org/10.3390/dna2020010 - 10 Jun 2022
Abstract
►
Show Figures
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of
[...] Read more.
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Full article
Open AccessArticle
Physlr: Next-Generation Physical Maps
by
, , , , , , , , and
DNA 2022, 2(2), 116-130; https://doi.org/10.3390/dna2020009 - 10 Jun 2022
Abstract
►▼
Show Figures
While conventional physical maps helped build most of the reference genomes we use today, generating the maps was prohibitively expensive, and the technology was abandoned in favor of whole-genome shotgun sequencing (WGS). However, genome assemblies generated using WGS data are often less contiguous.
[...] Read more.
While conventional physical maps helped build most of the reference genomes we use today, generating the maps was prohibitively expensive, and the technology was abandoned in favor of whole-genome shotgun sequencing (WGS). However, genome assemblies generated using WGS data are often less contiguous. We introduce Physlr, a tool that leverages long-range information provided by some WGS technologies to construct next-generation physical maps. These maps have many potential applications in genome assembly and analysis, including, but not limited to, scaffolding. In this study, using experimental linked-read datasets from two humans, we used Physlr to construct chromosome-scale physical maps (NGA50s of 52 Mbp and 70 Mbp). We also demonstrated how these physical maps can help scaffold human genome assemblies generated using various sequencing technologies and assembly tools. Across all experiments, Physlr substantially improved the contiguity of baseline assemblies over state-of-the-art linked-read scaffolders.
Full article
Graphical abstract
Open AccessArticle
Updating the Phylogeography and Temporal Evolution of Mitochondrial DNA Haplogroup U8 with Special Mention to the Basques
DNA 2022, 2(2), 104-115; https://doi.org/10.3390/dna2020008 - 07 Apr 2022
Abstract
►▼
Show Figures
Mitochondrial DNA phylogenetic and phylogeographic studies have been very useful in reconstructing the history of modern humans. In addition, recent advances in ancient DNA techniques have enabled direct glimpses of the human past. Taking advantage of these possibilities, I carried out a spatiotemporal
[...] Read more.
Mitochondrial DNA phylogenetic and phylogeographic studies have been very useful in reconstructing the history of modern humans. In addition, recent advances in ancient DNA techniques have enabled direct glimpses of the human past. Taking advantage of these possibilities, I carried out a spatiotemporal study of the rare and little-studied mtDNA haplogroup U8. Today, U8, represented by its main branches U8a and U8b, has a wide western Eurasian range but both with average frequencies below 1%. It is known that, in Paleolithic times, U8 reached high frequencies in European hunter-gatherers. However, it is pertinent to precise that only lineages belonging to U8a and U8c, a sister branch of U8b, were detected at that time. In spite of its wide geographic implantation, U8c was extinct after the Last Glacial Maximum, but U8a subsisted until the present day, although it never reached its high Paleolithic frequencies. U8a is detected mainly in northern and western Europe including the Basques, testifying to a minor maternal Paleolithic continuity. In this respect, it is worth mentioning that Basques show more U8-based affinities with continental European than with Mediterranean populations. On the contrary, coalescent ages of the most ancient U8b clades point to a Paleolithic diversification in the Caucasus and the Middle Eastern areas. U8b-derived branches reached eastern Europe since the Mesolithic. Subsequent Neolithic and post-Neolithic expansions widen its ranges in continental Europe and the Mediterranean basin, including northern Africa, albeit always as a minor clade that accompanied other, more representative, mitochondrial lineages.
Full article
Graphical abstract
Open AccessArticle
The Nature and Chromosomal Landscape of Endogenous Retroviruses (ERVs) Integrated in the Sheep Nuclear Genome
DNA 2022, 2(1), 86-103; https://doi.org/10.3390/dna2010007 - 16 Mar 2022
Abstract
Endogenous retroviruses (ERVs) represent genomic components of retroviral origin that are found integrated in the genomes of various species of vertebrates. These genomic elements have been widely characterized in model organisms and humans. However, composition and abundances of ERVs have not been categorized
[...] Read more.
Endogenous retroviruses (ERVs) represent genomic components of retroviral origin that are found integrated in the genomes of various species of vertebrates. These genomic elements have been widely characterized in model organisms and humans. However, composition and abundances of ERVs have not been categorized fully in all domestic animals. The advent of next generation sequencing technologies, development of bioinformatics tools, availability of genomic databases, and molecular cytogenetic techniques have revolutionized the exploration of the genome structure. Here, we investigated the nature, abundance, organization and assembly of ERVs and complete genomes of Jaagsiekte sheep retrovirus (JSRV) from high-throughput sequencing (HTS) data from two Iraqi domestic sheep breeds. We used graph-based read clustering (RepeatExplorer), frequency analysis of short motifs (k-mers), alignment to reference genome assemblies and fluorescent in situ hybridization (FISH). Three classes of ERVs were identified with the total genomic proportions of 0.55% from all analyzed whole genome sequencing raw reads, while FISH to ovine metaphase chromosomes exhibited abundant centromeric to dispersed distribution of these ERVs. Furthermore, the complete genomes of JSRV of two Iraqi sheep breeds were assembled and phylogenetically clustered with the known enJSRV proviruses in sheep worldwide. Characterization of partial and complete sequences of mammalian ERVs is valuable in providing insights into the genome landscape, to help with future genome assemblies, and to identify potential sources of disease when ERVs become active.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessReview
Nucleases and Co-Factors in DNA Replication Stress Responses
DNA 2022, 2(1), 68-85; https://doi.org/10.3390/dna2010006 - 01 Mar 2022
Abstract
►▼
Show Figures
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse
[...] Read more.
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Full article
Graphical abstract
Open AccessReview
A Comparison of Methods for the Production of Kilobase-Length Single-Stranded DNA
by
and
DNA 2022, 2(1), 56-67; https://doi.org/10.3390/dna2010005 - 01 Mar 2022
Abstract
►▼
Show Figures
DNA nanoengineering, in particular, DNA origami has potential applications in a variety of areas including, for example, nanoelectronics, biomedical diagnostics, and therapeutics. To fully realize the potential of DNA self-assembly in these and other areas, methods must be available for economical, scalable, and
[...] Read more.
DNA nanoengineering, in particular, DNA origami has potential applications in a variety of areas including, for example, nanoelectronics, biomedical diagnostics, and therapeutics. To fully realize the potential of DNA self-assembly in these and other areas, methods must be available for economical, scalable, and reliable production of single-stranded DNA (ssDNA) scaffolds from virtually any source. In this review, we will describe the virtues and liabilities of four strategies for generating ssDNA, including Rolling Circle Amplification (RCA), strand-specific exonuclease digestion, chemical denaturation, and asymmetric PCR (aPCR), with suggestions for approaches to optimize the use of each method.
Full article
Graphical abstract
Open AccessReview
Quality Control of Cell Lines Using DNA as Target
DNA 2022, 2(1), 44-55; https://doi.org/10.3390/dna2010004 - 16 Feb 2022
Cited by 1
Abstract
►▼
Show Figures
Cell lines are a widely used pre-clinical models for biomedical research. The accessibility and the relative simplicity of facilities necessary for the use of cell lines, along with the large number of potential applications, encourage many researchers to choose this model. However, the
[...] Read more.
Cell lines are a widely used pre-clinical models for biomedical research. The accessibility and the relative simplicity of facilities necessary for the use of cell lines, along with the large number of potential applications, encourage many researchers to choose this model. However, the access to cell lines from a non-confident source or through the interlaboratory exchange results in uncontrollable cell lines of uncertain quality. Furthermore, the possibility of using cell lines as an endless resource through multiple passages can contribute to this uncontrolled scenario, the main consequence of which is the lack of reproducibility between the research results. Different initiatives have emerged to promote the best practices regarding the use of cell lines and minimize the effect on the scientific results reported, including comprehensive quality control in the frame of Good Cell Culture Practice (GCCP). Cell Banks, research infrastructures for the professional distribution of biological material of high and known quality and origin, are committed with these initiatives. Many of the quality controls used to test different attributes of cell lines are based on DNA. This review describes quality control protocols of cell lines whose target molecule is DNA, and details the scope or purpose and their corresponding functionality.
Full article
Graphical abstract
Open AccessReview
3D Ultrastructural Imaging of Chromosomes Using Serial Block-Face Scanning Electron Microscopy (SBFSEM)
DNA 2022, 2(1), 30-43; https://doi.org/10.3390/dna2010003 - 05 Feb 2022
Abstract
To date, our understanding of how DNA is packaged in the cell nucleus, condensed from chromatin into chromosomes, and organized throughout the cell cycle remains sparse. Three dimensional (3D) ultrastructural imaging is an important tool for unravelling the organizational structure of chromosomes. For
[...] Read more.
To date, our understanding of how DNA is packaged in the cell nucleus, condensed from chromatin into chromosomes, and organized throughout the cell cycle remains sparse. Three dimensional (3D) ultrastructural imaging is an important tool for unravelling the organizational structure of chromosomes. For large volume 3D imaging of biological samples, serial block-face scanning electron microscopy (SBFSEM) has been applied, whereby ultrastructural information is achieved by analyzing 3D reconstructions acquired from measured data sets. In this review, we summarize the contribution of SBFSEM for obtaining 3D images of chromosomes to investigate their ultrastructure and organization in the cell and its nucleus. Furthermore, this review highlights the potential of SBFSEM for advancing 3D chromosome research.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessBrief Report
Direct Chromosome Preparation Method in Avian Embryos for Cytogenetic Studies: Quick, Easy and Cheap
by
, , , , , and
DNA 2022, 2(1), 22-29; https://doi.org/10.3390/dna2010002 - 26 Jan 2022
Abstract
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture.
[...] Read more.
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture. Despite its high cost and complexity, fibroblast culture is considered the superior approach due to the quality of the metaphases produced. Short-term bone marrow cultivation provides more condensed chromosomes but nonetheless is quicker and easier. In the search for a quicker, cheaper way to prepare metaphases without losing quality, the present work developed a novel, widely applicable protocol for avian chromosome preparation. Twenty-one bird embryos from distinct families were sampled: Icteridae, Columbidae, Furnariidae, Estrildidae, Thraupidae, Troglodytidae and Ardeidae. The protocol was based on a combination of modified fibroblast culture and bone marrow cultivation, taking the advantages of both. The results show that all species consistently presented good mitotic indexes and high-quality chromosomes. Overall, the application of this protocol for bird cytogenetics can optimize the time, considering that most fibroblast cultures take at least 3 days and often much longer. However, our protocol can be performed in 3 h with a much-reduced cost of reagents and equipment.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Central Role of C2H2-Type Zinc Finger-Containing Genes in Pediatric Brain Tumors
by
, , , , , , , , , , and
DNA 2022, 2(1), 1-21; https://doi.org/10.3390/dna2010001 - 03 Jan 2022
Abstract
►▼
Show Figures
Zinc fingers consist of one of the most abundant motifs in transcription factors and DNA-binding proteins. Recent studies provide evidence on the pathological implication of zinc finger proteins in various neurodevelopmental disorders and malignancies but their role in pediatric brain tumors is largely
[...] Read more.
Zinc fingers consist of one of the most abundant motifs in transcription factors and DNA-binding proteins. Recent studies provide evidence on the pathological implication of zinc finger proteins in various neurodevelopmental disorders and malignancies but their role in pediatric brain tumors is largely unexplored. To this end, we investigated the differential expression of zinc finger-containing genes along with relevant biological processes and pathways among four main brain tumor categories (pilocytic astrocytomas, ependymomas, medulloblastomas and glioblastomas). By employing an extended bioinformatic toolset, we performed a preliminary in silico study in order to identify the expression of zinc finger-containing genes and associated functions in pediatric brain tumors. Our data analysis reveals the prominent role of C2H2-type zinc finger-containing genes in the molecular mechanisms underlying pediatric brain tumors followed by the Ring and PHD finger types. Significant dysregulation of ABLIM2 and UHFR1 genes was detected in all tumor types drawing attention to the dysregulation of cell polarization process and Ubiquitin-Proteasome System (UPS) in the pathogenesis of pediatric brain tumors. Moreover, significant gene clustering was observed in multiple locations with two highly visible clusters revealing a contrast in gene regulation between medulloblastomas and the other three brain tumor types, indicating a promising area of future research.
Full article
Graphical abstract
Open AccessObituary
One for Sorrow
DNA 2021, 1(2), 105-109; https://doi.org/10.3390/dna1020011 - 20 Dec 2021
Abstract
“Did it work [...]
Full article
(This article belongs to the Special Issue In Memoriam of Joy Dorothy Ann Delhanty)
►▼
Show Figures
Figure 1
Open AccessHypothesis
Large Intra-Age Group Variation in Chromosome Abnormalities in Human Blastocysts
DNA 2021, 1(2), 91-104; https://doi.org/10.3390/dna1020010 - 06 Dec 2021
Cited by 1
Abstract
►▼
Show Figures
Research Question: Is maternal age only a gross predictor of chromosome abnormalities in human embryos? Design: Here, we evaluated the less-studied variation in chromosome abnormality rates in embryos of patients within the same age group. Patients undergoing IVF and PGD for chromosomal abnormalities
[...] Read more.
Research Question: Is maternal age only a gross predictor of chromosome abnormalities in human embryos? Design: Here, we evaluated the less-studied variation in chromosome abnormality rates in embryos of patients within the same age group. Patients undergoing IVF and PGD for chromosomal abnormalities in ~127 different IVF clinics were included. PGT-A analysis was performed by a single reference laboratory using array CGH or NGS. To get an estimate of the range of abnormalities observed, the aCGH and NGS data were studied both independently and together. Results: The overall results showed the typical increase in aneuploidy rates with advancing maternal age (AMA) but extensive variability within each age group. Conclusions: Increasing aneuploidy with maternal age has been demonstrated in live births, unborn fetuses, IVF embryos and oocytes. In contrast, post-meiotic and other abnormalities that might lead to mosaicism, polyploidy and haploidy, are commonplace (around 30%), regardless of maternal age. Here we conclude that age is only a gross predictor of chromosome abnormalities in IVF embryos. In contrast to the existing standard of offering PGT-A to AMA patients, the high rate and extreme variation of chromosomal abnormalities in human embryos may warrant PGT-A for further IVF cycles even in younger age groups, especially if a history of increased levels of aneuploidy is evident. Furthermore, better indicators are needed to determine which patients are at a higher risk of producing increased levels of aneuploid embryos.
Full article
Graphical abstract
Open AccessCommentary
Classification Problems of Repetitive DNA Sequences
by
and
DNA 2021, 1(2), 84-90; https://doi.org/10.3390/dna1020009 - 02 Nov 2021
Abstract
Repetitive DNA sequences, satellite DNAs (satDNAs) and transposable elements (TEs) are essential components of the genome landscape, with many different roles in genome function and evolution. Despite significant advances in sequencing technologies and bioinformatics tools, detection and classification of repetitive sequences can still
[...] Read more.
Repetitive DNA sequences, satellite DNAs (satDNAs) and transposable elements (TEs) are essential components of the genome landscape, with many different roles in genome function and evolution. Despite significant advances in sequencing technologies and bioinformatics tools, detection and classification of repetitive sequences can still be an obstacle to the analysis of genomic repeats. Here, we summarize how specificities in repetitive DNA organizational patterns can lead to an inability to classify (and study) a significant fraction of bivalve mollusk repetitive sequences. We suggest that the main reasons for this inability are: the predominant association of satDNA arrays with Helitron/Helentron TEs; the existence of many complex loci; and the unusual, highly scattered organization of short satDNA arrays or single monomers across the whole genome. The specificities of bivalve genomes confirm the need for introducing diverse organisms as models in order to understand all aspects of repetitive DNA biology. It is expected that further development of sequencing techniques and synergy among different bioinformatics tools and databases will enable quick and unambiguous characterization and classification of repetitive DNA sequences in assembled genomes.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Karyotype Organization of the Endangered Species Yellow Cardinal (Gubernatrix cristata)
by
, , , and
DNA 2021, 1(2), 77-83; https://doi.org/10.3390/dna1020008 - 27 Oct 2021
Abstract
Karyotypic analyses have several applications in studies of chromosome organization, evolution, and cytotaxonomy. They are also essential to genome assembly projects. Here, we present for the first time the karyotype description of the endangered species yellow cardinal, Gubernatrix cristata (Passeriformes, Thraupidae), using conventional
[...] Read more.
Karyotypic analyses have several applications in studies of chromosome organization, evolution, and cytotaxonomy. They are also essential to genome assembly projects. Here, we present for the first time the karyotype description of the endangered species yellow cardinal, Gubernatrix cristata (Passeriformes, Thraupidae), using conventional staining with Giemsa and 18S rDNA probes. This species has 78 chromosomes, with 12 pairs of macrochromosomes and 27 microchromosome pairs. The 18S rDNA clusters were found in four microchromosomes. Our results revealed that G. cristata has a typical avian karyotype (approximately 80 chromosomes). However, G. cristata has an apomorphic state in relation to the 18S rDNA distribution since the ancestral condition corresponds to only two microchromosomes with these sequences. Probably, duplications and translocations were responsible for increasing the number of 18S rDNA clusters in G. cristata. The results were compared and discussed with respect to other Thraupidae and Passeriformes members. Considering the globally threatened status of G. cristata, we believe that its karyotype description could be a starting point for future cytogenetics and sequencing projects.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Incidence, Reproductive Outcome, and Economic Impact of Reciprocal Translocations in the Domestic Pig
by
, , , , , , , and
DNA 2021, 1(2), 68-76; https://doi.org/10.3390/dna1020007 - 09 Oct 2021
Abstract
Pigs (Sus scrofa) have vast economic importance, with pork accounting for over 30% of the global meat consumption. Chromosomal abnormalities, and in particular reciprocal translocations (RTs), are an important cause of hypoprolificacy (litter size reduction) in pigs. However, these do not
[...] Read more.
Pigs (Sus scrofa) have vast economic importance, with pork accounting for over 30% of the global meat consumption. Chromosomal abnormalities, and in particular reciprocal translocations (RTs), are an important cause of hypoprolificacy (litter size reduction) in pigs. However, these do not necessarily present with a recognizable phenotype and may cause significant economic losses for breeders when undetected. Here, we present a reappraisal of the incidence of RTs across several European pig herds, using contemporary methodology, as well as an analysis modelling the economic impact of these abnormalities. Molecular cytogenetic investigation was completed by karyotyping and/or multiprobe FISH (fluorescence in situ hybridisation) between 2016–2021, testing 2673 animals. We identified 19 types of chromosome abnormalities, the prevalence of these errors in the database was 9.1%, and the estimated incidence of de novo errors was 0.90%. Financial modelling across different scenarios revealed the potential economic impact of an undetected RT, ranging from £69,802 for an individual affected terminal boar in a commercial farm selling weaned pigs, to £51,215,378 for a genetics company with an undetected RT in a dam line boar used in a nucleus farm. Moreover, the added benefits of screening by FISH instead of karyotyping were estimated, providing a strong case for proactive screening by this approach.
Full article
(This article belongs to the Special Issue Selected Papers from the Joint Meeting of the 23rd International Chromosome Conference (ICC) and the 24th International Colloquium in Animal Cytogenetics and Genomics (ICACG))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Sex-Determination Mechanisms among Populations within Cryptic Species Complex of Calotes (Squamata: Agamidae: Draconinae)
by
, , , , , and
DNA 2021, 1(2), 49-67; https://doi.org/10.3390/dna1020006 - 06 Oct 2021
Abstract
►▼
Show Figures
Sex-determination mechanisms and sex chromosomes are known to vary among reptile species and, in a few celebrated examples, within populations of the same species. The oriental garden lizard, Calotes versicolor, is one of the most intriguing species in this regard, exhibiting evidence
[...] Read more.
Sex-determination mechanisms and sex chromosomes are known to vary among reptile species and, in a few celebrated examples, within populations of the same species. The oriental garden lizard, Calotes versicolor, is one of the most intriguing species in this regard, exhibiting evidence of multiple sex-determination modes within a single species. One possible explanation for this unusual distribution is that in C. versicolor, different modes of sex determination are confined to a particular population or a species within a cryptic species complex. Here, we report on a population genetic analysis using SNP data from a methylation-sensitive DArT sequencing analysis and mitochondrial DNA data obtained from samples collected from six locations: three from Bangladesh and three from Thailand. Our aim was to determine whether C. versicolor is best described as a single species with multiple lineages or as multiple species, as well as if its sex-determination mechanisms vary within or between species. We present evidence that the latter possibility is the case and that C. versicolor comprises a complex of cryptic species. We also identify sex-linked markers within these species and use them to identify modes of sex determination. Overall, our results suggest that different sex-determination modes have evolved among closely related species and within populations of Agamid lizards.
Full article
Graphical abstract
Open AccessReview
Small RNAs Worm Up Transgenerational Epigenetics Research
by
DNA 2021, 1(2), 37-48; https://doi.org/10.3390/dna1020005 - 29 Sep 2021
Abstract
►▼
Show Figures
DNA is central to the propagation and evolution of most living organisms due to the essential process of its self-replication. Yet it also encodes factors that permit epigenetic (not included in DNA sequence) flow of information from parents to their offspring and beyond.
[...] Read more.
DNA is central to the propagation and evolution of most living organisms due to the essential process of its self-replication. Yet it also encodes factors that permit epigenetic (not included in DNA sequence) flow of information from parents to their offspring and beyond. The known mechanisms of epigenetic inheritance include chemical modifications of DNA and chromatin, as well as regulatory RNAs. All these factors can modulate gene expression programs in the ensuing generations. The nematode Caenorhabditis elegans is recognized as a pioneer organism in transgenerational epigenetic inheritance research. Recent advances in C. elegans epigenetics include the discoveries of control mechanisms that limit the duration of RNA-based epigenetic inheritance, periodic DNA motifs that counteract epigenetic silencing establishment, new mechanistic insights into epigenetic inheritance carried by sperm, and the tantalizing examples of inheritance of sensory experiences. This review aims to highlight new findings in epigenetics research in C. elegans with the main focus on transgenerational epigenetic phenomena dependent on small RNAs.
Full article
Graphical abstract
Open AccessArticle
Demethylation of Non-CpG Sites in DNA Is Initiated by TET2 5-Methylcytosine Dioxygenase
DNA 2021, 1(1), 26-36; https://doi.org/10.3390/dna1010004 - 21 Sep 2021
Abstract
►▼
Show Figures
In the mammalian genome, cytosine methylation predominantly occurs at CpG sites. In addition, a number of recent studies have uncovered extensive C5 cytosine methylation (5mC) at non-CpG (5mCpH, where H = A/C/T) sites. Little is known about the enzyme responsible for active demethylation
[...] Read more.
In the mammalian genome, cytosine methylation predominantly occurs at CpG sites. In addition, a number of recent studies have uncovered extensive C5 cytosine methylation (5mC) at non-CpG (5mCpH, where H = A/C/T) sites. Little is known about the enzyme responsible for active demethylation of 5mCpH sites. Using a very sensitive and quantitative LC–MS/MS method, we demonstrate that the human TET2, an iron (II)- and 2OG-dependent dioxygenase, which is a frequently mutated gene in several myeloid malignancies, as well as in a number of other types of cancers, can oxidize 5mCpH sites in double-stranded DNA in vitro. Similar to oxidation of 5mCpG, oxidation of 5mC at CpH sites produces 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC) bases in DNA. After 5mCpG, which is the most preferred substrate, TET2 prefers 5mCpC as a substrate, followed by 5mCpA and then 5mCpT. Since the TDG/BER pathway and deformylation or decarboxylation of 5fC or 5caC, respectively, can convert 5fCpH and 5caCpH to an unmodified cytosine base in DNA, our results suggest a novel demethylation pathway of 5mCpH sites initiated by TET2 dioxygenase.
Full article
Graphical abstract
Open AccessArticle
Ligase A and RNase HI Participate in Completing Replication on the Chromosome in Escherichia coli
DNA 2021, 1(1), 13-25; https://doi.org/10.3390/dna1010003 - 03 Sep 2021
Abstract
►▼
Show Figures
In Escherichia coli, several enzymes have been identified that participate in completing replication on the chromosome, including RecG, SbcCD, ExoI, and RecBCD. However, other enzymes are likely to be involved and the precise enzymatic mechanism by which this reaction occurs remains unknown.
[...] Read more.
In Escherichia coli, several enzymes have been identified that participate in completing replication on the chromosome, including RecG, SbcCD, ExoI, and RecBCD. However, other enzymes are likely to be involved and the precise enzymatic mechanism by which this reaction occurs remains unknown. Two steps predicted to be necessary to complete replication are removal of Okazaki RNA fragments and ligation of the nascent strands at convergent replication forks. E. coli encodes two RNases that remove RNA-DNA hybrids, rnhA and rnhB, as well as two ligases, ligA and ligB. Here, we used replication profiling to show that rnhA and ligA, encoding RNase HI and Ligase A, participate in the completion reaction. Deletion of rnhA impaired the ability to complete replication and resulted in over-replication in the terminus region. It additionally suppressed initiation events from oriC, suggesting a role for the enzyme in oriC-dependent initiation, as has been suggested previously. We also show that a temperature-sensitive mutation in Ligase A led to over-replication at sites where replication completes, and that degradation at these sites occurred upon shifting to the nonpermissive temperature. Deletion of rnhB or ligB did not affect the growth or profile of replication on the genome.
Full article
Graphical abstract
Open AccessReview
The Pre-Metaphase Stretch: A Re-Examination
DNA 2021, 1(1), 3-12; https://doi.org/10.3390/dna1010002 - 29 Jun 2021
Abstract
►▼
Show Figures
Pre-metaphase stretch is a term first coined by the preeminent cell biologist Sally Hughes-Schrader in 1950 to describe an elongation of prometaphase chromosomes observed in the primary spermatocytes of phasmid insects and praying mantids. Research from many groups since Hughes-Schrader’s initial observation has
[...] Read more.
Pre-metaphase stretch is a term first coined by the preeminent cell biologist Sally Hughes-Schrader in 1950 to describe an elongation of prometaphase chromosomes observed in the primary spermatocytes of phasmid insects and praying mantids. Research from many groups since Hughes-Schrader’s initial observation has revealed reasons for both how and why chromosomes might elongate prior to metaphase. In this review, we describe Hughes-Schrader’s initial findings and discuss how recent work illuminates and provides some mechanistic explanation for this long-ago observed phenomenon.
Full article
Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Conferences
Special Issues
Special Issue in
DNA
In Memoriam of Joy Dorothy Ann Delhanty
Guest Editors: Darren Griffin, Sioban Sen GuptaDeadline: 30 June 2022
Special Issue in
DNA
From Mutation and Repair to Therapeutics
Guest Editors: Ashis Basu, Deyu LiDeadline: 31 August 2022
Special Issue in
DNA
Physics and Chemistry of Radiation Damage to DNA and Its Consequences
Guest Editor: Amitava AdhikaryDeadline: 22 December 2022
Special Issue in
DNA
DNA Flexibility and Supercoiling
Guest Editors: Alberto Perez, Pablo D. DansDeadline: 31 May 2023