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To improve the decision-making level of active distribution networks (ADNs), this paper
proposes a novel framework for coordinated scheduling based on the long short-term
memory network (LSTM) with deep reinforcement learning (DRL). Considering the
interaction characteristics of ADNs with distributed energy resources (DERs), the
scheduling objective is constructed to reduce the operation cost and optimize the
voltage distribution. To tackle this problem, a LSTM module is employed to perform
feature extraction on the ADN environment, which can realize the recognition and learning
of massive temporal structure data. The concerned ADN real-time scheduling model is
duly formulated as a finite Markov decision process (FMDP). Moreover, a modified deep
deterministic policy gradient (DDPG) algorithm is proposed to solve the complex decision-
making problem. Numerous experimental results within a modified IEEE 33-bus system
demonstrate the validity and superiority of the proposed method.

Keywords: active distribution network, deep reinforcement learning, long short-term memory, modified deep
deterministic policy gradient, coordinated scheduling

1 INTRODUCTION

To reduce greenhouse gas emissions, numerous government policies have been established to
encourage the development of renewable energy sources. Along with this trend, conventional
distribution networks are being transformed into active distribution networks (ADNs) (Wei et al.,
2021). Meanwhile, the intermittent and volatility output of high penetration distributed energy
resources (DERs), such as photovoltaic generations (PVs), energy storage systems (ESSs), and wind
farms, increases the uncertainty of ADNs (Usman et al., 2018; Ehsan and Yang, 2019). Especially, the
increasingly severe issues of voltage violation and network loss have attracted widespread attention.
Thus, it is necessary to coordinate the scheduling of DERs to promote the flexibility and interaction
of ADNs.

Recently, various research efforts have been paid to study coordinated scheduling policies to
optimize the decision-making and control of DERs. Studies (Zamzam et al., 2022; Prabawa and Choi,
2021) maintain voltage quality and optimize power losses by coordinating ESSs with charging
stations (CSs). In (Zamzam et al., 2022), the scheduling of DERs in a fast time resolution is solved by
the interior point method. It is verified that ESSs along with CSs are promising entities for reducing
network voltages deviations and system losses. Similarly, Prabawa et al. propose a hierarchical volt/
var control (VVC) framework to minimize the total active power losses and voltage deviations
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through the coordination of smart CSs, PVs, and ESSs at both
global and local stages (Prabawa and Choi, 2021). However,
limited by the model complexity and computational efficiency,
the proposed VVC method may be incapable of handling a large
distribution network with various DERs. Additionally, these
scholars (Ma et al., 2021; Zhu et al., 2020) dissect the random
fluctuation characteristics of PV plants via multi-scenario
modeling, improving ADNs’ efficiencies and economics. To
reduce the PV curtailment and network loss, a non-dominated
sorting genetic algorithm II (NSGA-II)-based voltage regulation
method is proposed in (Ma et al., 2021). Although the NSGA-II
algorithm is easy to implement, it does not guarantee the global
optimum in practical applications. The study reported in (Zhu
et al., 2020) constructs a typical scenario set-based approach to
address the stochastic economic dispatching, preestablishing
charging and discharging schemes for controllable generation
units, PV systems, wind farms, and ESSs. However, it suffers a
heavy computational burden due to the need to consider many
scenarios. Furthermore, studies (Li et al., 2020a; Luo et al., 2021)
establish robust optimal operation strategies to deal with the
randomness of DERs. In (Luo et al., 2021), the uncertainty of
DERs is described based on beta distribution, and a robust
optimization model is established to optimize the network
loss, power purchase cost, and voltage distribution. Li et al.
propose a distributed adaptive robust VVC method (Li et al.,
2020a). It robustly mitigates the network loss while keeping
voltage within regulation scope. However, the decisions made
by the above methods only rely on the current status of ADNs,
and the long-term information and objectives are ignored. These
scholars (Zhang Z. et al., 2021; Chen et al., 2021; Sheng et al.,
2021) consider the cooperative relationship between fast and slow
response resources and mainly establish a multi-timescale
scheduling architecture to improve the economics of ADNs.
For example, studies (Chen et al., 2021; Sheng et al., 2021)
propose a day-ahead economic scheduling model and establish
a real-time scheduling method using model predictive control
(MPC). The authors (Zhang Z. et al., 2021) formulate a double-
layer MPCmethod to achieve minute-level control of mechanical
voltage regulation devices and distributed generations (DGs).
Furthermore, the MPC method combined with decentralized
inter-area coordination is proposed by (Li et al., 2020b) to
cope with the high volatility of DGs efficiently.

Although the aforementioned methodologies help us master
the nature of coordinated scheduling decision-making for ADNs,
the conventional physical model-based methods highly rely on
specific optimization models, resulting in low computational
efficiency and unstable solution performance. The time-
varying DERs gradually infiltrate into ADNs, and it is
challenging for the above methods to respond quickly to real-
time dispatching demands.

Fortunately, in recent literature, deep reinforcement learning
(DRL) has received growing interest in addressing the ADN
scheduling issue. The nonlinear programming problem is
formulated as a finite Markov decision process (FMDP) in
(Cao et al., 2021a), and the proximal policy optimization is
utilized to coordinate ESSs and wind farms. Bahrami et al.
develop a deep neural network as the approximator of the

state-action value function to benefit load aggregators and
users (Bahrami et al., 2021). Further, reference (Zhang Y.
et al., 2021) controls switchable capacitors, voltage regulators,
and smart inverters via a deep Q-network (DQN) and designs a
delicate reward function to maintain the voltage range. Besides,
these researches (Gao et al., 2021; Cao et al., 2021b; Zhang
J. et al., 2021) introduce the multi-agent DRL technology into
ADN controlling and decision-making. Based on a multi-agent
and multi-objective architecture, DRL is adopted in (Gao et al.,
2021) to develop operation schedules for voltage regulators, on-
load tap changers, and capacitors, improving the
communication efficiency of multi-agent. Research (Cao
et al., 2021b) proposes a multi-agent soft actor-critic
approach to analyze the impact of PV fluctuation on voltage
distribution. However, the state vector consists of node active
power, reactive power, and PV output. For optimization
problems with a large power system, the perception of the
state variables usually leads to low training efficiency and
poor optimization solutions. In reference (Zhang J. et al.,
2021), DQN and deep deterministic policy gradient (DDPG)
are utilized to control discrete and continuous variables,
respectively. It rapidly responds to the state changes of
distribution networks through the coordinated training of
two agents. Other studies (Sun and Qiu, 2021a; Sun and Qiu,
2021b) focus on the collaborative optimization of conventional
programming methods and DRL methods. Sun et al. (Sun and
Qiu, 2021a) present a two-stage control method to alleviate fast
voltage violations. The day-ahead scheduling model is
established as a mixed-integer second-order cone
programming (MISOCP), while the real-time scheduling
problem is solved by a multi-agent DDPG scheme. A similar
situation is discussed in (Sun and Qiu, 2021b), where the day-
ahead scheduling of ADNs, considering the active and reactive
power capacity of electric vehicles (EVs), is constructed as a
MISCOCP. Moreover, the DDPG algorithm is adopted to
formulate the reactive power control and V2G control
schedules.

Given the state-of-the-art ADN scheduling solutions in this
field, there are still two significant limitations. Firstly, the DRL
algorithms represented by DQN and DDPG still suffer
shortcomings in terms of low training efficiency, overlearning,
and poor stability. Secondly, in terms of application, DQN-based
methods fail to learn the mapping relationship between
continuous state and action spaces. Although DDPG-based
methods output continuous actions, they lack an
understanding of temporal structural characteristics and are
incapable of handling large state spaces. It results in a lower
perception of the continuous state information of ADNs.

It can be found that methods for extracting high-
dimensional temporal characteristics in real-time scheduling
of ADNs are limited, and the DRL-based methods lack the
assessment of the integration of multi-extension. To fill these
research gaps, this paper presents a long short-term memory
(LSTM) and modified DDPG (namely, MLDDPG)-based
coordinated scheduling solution. The comprehensive
optimization objective is constructed to minimize the
operating cost and maintain the voltage range of ADNs.
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The temporal features of the ADN environment are extracted
by a LSTM module. While the DDPG agent is leveraged to
strategize real-time operation schemes for DERs. The main
contributions of this paper are threefold.

1) To our best knowledge, the existing DRL-based approaches
are challenging to handle the massive temporal structure data
generated by ADNs. Conversely, relying on the high-
dimensional understanding and mining ability, we employ
a LSTMmodule to characterize the temporal data of ADNs. It
helps the DRL agent extract and learn the changes of temporal
characteristics from both the generation and demand sides
and improves the modeling ability for node features.

2) Although the classic DDPG can rapidly respond to the
scheduling requirements, it still suffers from overlearning,
cold start, and poor stability issues. Thus, the learning rate
decay strategy is proposed to balance the exploration and
exploitation of DRL agents. Besides, the collaborative
assistance policy combined with the modified prioritized
experience replay mechanism is proposed to prevent the
agent from falling into non-optimal strategies. The
combination of extensions improves the convergence speed
and application stability and enhances agents’ reliability in
decision-making scenarios.

3) A modified LSTM-DDPG (MLDDPG) method is developed
to tackle the ADN scheduling issue, which is formulated as a
FMDP. In this way, the optimal ADN scheduling decisions
can better satisfy the real-time response requirements of
DERs. The simulation results demonstrate that our

approach significantly improves the operation efficiency
and economy of ADNs while optimizing voltage distributions.

The remainder of this paper is organized as follows. Problem
Formulation Section sketches the modeling process of the ADN
coordinated scheduling problem. Then our proposed solution
approach is presented in Proposed Real-Time Scheduling Method
Section. Case studies are reported in Case Studies Section. Finally,
Conclusion Section concludes the paper.

2 PROBLEM FORMULATION

Figure 1 exhibits the established ADN coordinated scheduling
architecture based on LSTM and modified DDPG algorithm. The
ADN control problem involving DERs is appropriately
formulated as a FMDP. Specifically, a LSTM module is utilized
to capture the temporal information characteristics of the ADN
load and PV output, which, together with the real-time
information of CSs and ESSs, constitute the environment state.
A DRL-based agent is developed to formulate the ADN control
strategy and evaluate the environmental feedback. Further, the
agent is trained and optimized based on a modified DDPG
module to accelerate the convergence and improve the
application stability of the algorithm. Finally, the optimal
mapping relationship from the environment state to the
control strategy is output to realize the optimal economic
operation of ADNs. The details about the modeling process
are as follows.

FIGURE 1 | Overall scheme of the proposed ADN coordinated scheduling method.
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2.1 Coordinated Scheduling Model
2.1.1 Objective Function
The sub-objectives consist of substation power purchase cost, ESS
charging and discharging degradation cost, and CS response cost
to realize the economic operation of ADNs. Mathematically, the
comprehensive objective is expressed as:

minf � ∑
t∈ΩT

Csub
t + CESS

t + CCS
t (1)

Csub
t � ∑

i∈Ωsub

πsubP
sub
i,t ∀t ∈ ΩT (2)

CESS
t � ∑

i∈ΩESS

πESS

∣∣∣∣PESS
i,t

∣∣∣∣ ∀t ∈ ΩT (3)

CCS
t � ∑

i∈ΩCS

πCSΔPCS
i,t ∀t ∈ ΩT (4)

where: Csub
t , CESS

t , and CCS
t separately represent the substation

power purchase cost, ESS charging and discharging degradation
cost, and CS response cost. ΩT represents the set of time periods.
Ωsub, ΩESS, and ΩCS are sets of the substation, ESS, and CS nodes,
respectively. πsub, πESS, and πCS indicate the electricity price
purchased from the transmission network, ESS degradation
unit cost, and CS scheduling unit cost, respectively. Psub

i,t is the
power interacted with the transmission network. PESS

i,t indicate the
active power of the ESS. ΔPCS

i,t denote the active power changes of
the CS.

2.1.2 Constraints
2.1.2.1 Power Flow Constraints

PPV
j,t + PESS

j,t − PL
j,t − PCS

j,t � ∑
k∈j

Pjk,t −∑
i∈j
(Pij,t − rij~Iij,t)

+ gj
~Ui,t ∀ij ∈ Ωbus,∀t ∈ ΩT (5)

QPV
j,t + QESS

j,t − QL
j,t � ∑

k∈j

Qjk,t −∑
i∈j
(Qij,t − xij

~Iij,t)
+ bj ~Ui,t ∀ij ∈ Ωbus,∀t ∈ ΩT (6)

~Uj,t � ~Ui,t − 2(Pij,trij + Qij,txij) + ~Iij,t(r2ij
+ x2

ij) ∀ij ∈ Ωbus,∀t ∈ ΩT (7)�����������
2Pij,t

2Qij,t
~Iij,t − ~Ui,t

�����������
2

≤ ~Iij,t + ~Ui,t ∀ij ∈ Ωbus,∀t ∈ ΩT (8)

where:Ωbus is the set of buses in the ADN. PPV
j,t , P

ESS
j,t , P

L
j,t, and P

CS
j,t

indicate the active power of the PV, ESS, load, and CS,
respectively. QPV

j,t , Q
ESS
j,t , and QL

j,t are reactive power of the PV,
ESS, and load, respectively. Pij,t and Qij,t separately represent
the active and reactive power injecting from the ith bus to the jth
bus. rij and xij are the resistance and reactance, respectively. gj

and bj indicate the conductance and susceptance, respectively.
~Iij,t and ~Ui,t represent the square of the branch current
and bus voltage, respectively. Constraints (5–8)
represent the second order cone programming-based Dist-flow
constraints.

2.1.2.2 Safety Operation Constraints

Umin
i ≤Ui,t ≤Umax

i ∀i ∈ Ωbus,∀t ∈ ΩT (9)
Imin
ij ≤ Iij,t ≤ Imax

ij ∀ij ∈ Ωbus, ∀t ∈ ΩT (10)
where:Ui,t indicates the voltage of the ith node at time t.Umax

i and
Umin

i are the maximum and minimum voltage values,
respectively. Iij,t is the branch current at time t. Imax

ij and Imin
ij

represent the maximum and minimum current values,
respectively.

2.1.2.3 Operation Constraints of ESSs

PESS
i,min ≤P

ESS
i,t ≤PESS

i,max ∀i ∈ ΩESS,∀t ∈ ΩT (11)
QESS

i,min ≤Q
ESS
i,t ≤QESS

i,max ∀i ∈ ΩESS,∀t ∈ ΩT (12)��������P
ESS
i,t

QESS
i,t

��������2 ≤ SESSi,max ∀i ∈ ΩESS,∀t ∈ ΩT (13)

EESS
i,t � EESS

i,t−1 + ηci P
ESS
i,t Δt PESS

i,t ≥ 0,∀i ∈ ΩESS,∀t ∈ ΩT (14)
EESS
i,t � EESS

i,t−1 + PESS
i,t Δt/ηdi PESS

i,t < 0,∀i ∈ ΩESS,∀t ∈ ΩT (15)
EESS
i,min ≤E

ESS
i,t ≤EESS

i,max ∀i ∈ ΩESS,∀t ∈ ΩT (16)
where: PESS

i,max and PESS
i,min represent the ESS maximum and

minimum active power respectively. QESS
i,max and QESS

i,min are the
ESS maximum and minimum reactive power, respectively. SESSi,max
stands for the maximum apparent power of the ith ESS. EESS

i,t
indicates the stored energy in the ith ESS at time t. EESS

i,max and
EESS
i,min are the maximum and minimum stored energy,

respectively. ηci and ηdi separately denote the charging and
discharging efficiencies. Equations 11–13 limit the power
output ranges of ESSs, while Equations 14–16 indicate the
energy constraints of ESSs.

2.1.2.4 Operation Constraints of CSs

�E
EV
ij,t �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 t< tstaj ,∀i ∈ ΩCS,∀j ∈ Ωi
EV

min(�EEV
ij,t−1 + Pcha

i Δt, Eexp
j )

tstaj ≤ t≤ tfinj ,∀i ∈ ΩCS,∀j ∈ Ωi
EV

Eexp
j t> tfinj ,∀i ∈ ΩCS,∀j ∈ Ωi

EV

(17)

EEV
ij,t �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 t< tstaj ,∀i ∈ ΩCS,∀j ∈ Ωi
EV

max(EEV
ij,t+1 − Pcha

i Δt, 0)
tstaj ≤ t≤ tfinj ,∀i ∈ ΩCS,∀j ∈ Ωi

EV

Eexp
j t> tfinj , ∀i ∈ ΩCS,∀j ∈ Ωi

EV

(18)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ECS
i,t,max � ∑

j∈Ωi
EV

�E
EV
ij,t ∀i ∈ ΩCS,∀t ∈ ΩT

ECS
i,t,min � ∑

j∈Ωi
EV

EEV
ij,t ∀i ∈ ΩCS,∀t ∈ ΩT

(19)

ECS
i,t,min ≤ΔPCS

i,t Δt≤ECS
i,t,max ∀i ∈ ΩCS,∀t ∈ ΩT (20)

∑
t∈ΩT

ΔPCS
i,t � 0 ∀i ∈ ΩCS (21)
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where: Ωi
EV indicate the EV users set of the ith CS. �EEV

ij,t and EEV
ij,t

separately denote the upper and lower energy boundaries of the
jth EV (Hu et al., 2021). tstaj and tfinj separately represent the start
and finish charging time of the jth EV. Pcha

i is the charging pile
output power. Eexp

j represent the expected charging power of the
jth EV. ECS

i,t,max and E
CS
i,t,min separately indicate the upper and lower

energy boundaries of the ith CS. Equations 17, 18 limit the
energy boundaries of EVs, and Equations 19, 20 constraint the
response power capacities of CSs. Eq. 21 represents the time
translation characteristics of CSs’ demand response.

2.2 Long Short-Term Memory for
Information Perception
DERs with different operating characteristics bring high-
dimensional and complex information to ADNs, while DRL
agents are challenging to capture their high-dimensional
feature changes. On the other hand, ADN load and PV output
are less affected by control decisions and show high correlation
characteristics on the time scale. As an improved version of
recurrent neural network (RNN), LSTM effectively solves
gradient disappearance and gradient explosion issues and
shows remarkable performance in time series data prediction
and feature extraction. Therefore, a LSTMmodule is employed to
extract the temporal characteristics of loads and PVs and further
improve the long-term performance of the schedulingmodel. The
temporal structure information input X generated by ADNs can
be expressed as:

X � ⎡⎢⎢⎢⎢⎢⎢⎢⎣ PL
i,t PL

i,t−1 / PL
i,t−L+1

QL
i,t QL

i,t−1 / QL
i,t−L+1

PPV
j,t PPV

j,t−1 / PPV
j,t−L+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∀i ∈ Ωbus,∀j ∈ ΩPV,∀t ∈ ΩT

(22)
where: L represents the time-step.

LSTM defines the input gate, forget gate, and output gate based
on the RNN. The formulations of all nodes in a LSTM structure
are given by Equations 23–27.

ft � σ(Wf[ht−1, xt] + bf) (23)
it � σ(Wi[ht−1, xt] + bi) (24)

{ ~ct � tanh(Wc[ht−1, xt] + bc)
ct � ft ⊙ ct−1 + it ⊙ ~ct

(25)
ot � σ(Wo[ht−1, xt] + bo) (26)

ht � ot ⊙ tanh(ct) (27)
where:Wf,Wi,Wc, andWo are the weight matrices of the forget
gate, input gate, cell state, and output gate, respectively. bf, bi, bc,
and bo are the bias weights. σ(·) and tanh(·) denote the sigmoid
activation function and tanh function, respectively. ~ct indicates
the candidate cell state. Eq. 25 denotes that the forget gate
controls what to forget from the previous cell state ct−1, while
the input gate decides what to preserve from the candidate cell
state ~ct. Eq. 27 represents that the output gate controls what to
pass from the cell state ct (Kong et al., 2019).

The temporal characteristics of loads and PVs are captured
relying on the feature extraction ability of the LSTMmodule. The

LSTM output ht is taken as the temporal information perception
required by the DRL agent.

2.3 Finite Markov Decision Process-Based
Scheduling Model
After the temporal environment information is extracted, the
agent completes the scheduling of the ADN bymaking a sequence
of decisions on DERs. We construct the ADN scheduling
problem as a FMDP. The details about the FMDP formulation
are described as follows.

1) State: the agent captures the real-time environment
information. In this study, the environment information
is divided into two parts: temporal information and
instant information. The temporal information of
loads and PVs are extracted by the LSTM module. The
instant information consists of the real-time states of
ESSs and CSs. Thus, the environment state st can be
expressed as:

st � (ht, zt) (28)
where: zt indicates the feature information of ESSs and CSs as
shown in Eq. 29.

zt � (EESS
i,t , P

CS
j,t) ∀i ∈ ΩESS,∀j ∈ ΩCS (29)

2) Action: the agent selects the action to be executed according to
the ADN state. Slow devices are usually scheduled in an offline
manner due to their limited allowable daily switching times
(Liu and Wu, 2021). To sufficiently absorb the PV power,
thus, the active and reactive output of ESSs and the response
power of CSs are regarded as the action at.

at � (PESS
i,t , Q

ESS
i,t ,ΔPCS

j,t ) ∀i ∈ ΩESS, ∀j ∈ ΩCS (30)

3) Reward: the feedback value that the agent obtains from the
environment after executing the control action. The
substation power purchase cost Csub

t , ESS charging and
discharging degradation cost CESS

t , and CS response cost
CCS
t are taken as the feedback reward. Additionally, given

the significance of the safe operation of ADNs, the voltage
violation penalty is also considered in the reward rt, expressed
as follows:

rt � −Csub
t − CESS

t − CCS
t −Dt (31)

Dt � −πvol ∑
i∈Ωbus

[max(Ui,t − Umax
i , 0) +max(Umin

i − Ui,t, 0)]
(32)

where: Dt represents the penalty caused by voltage violation,
quantizing the voltage deviation level in ADNs (Zhang Y. et al.,
2021). πvol is a significant penalty coefficient.

4) State-action value function: the total expected rewards that the
current policy π can bring after executing the action at. The
state-action value function Qπ(s, a) can be expressed as:
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Qπ(s, a) � E⎡⎣∑K
k�0

γkrt+k|st � s, at � a⎤⎦ (33)

where: π is the policy that maps from a comprehensive state to a
schedule plan.K represents the horizon of time steps. γ indicates the
discount rate, balancing future rewards and immediate rewards.

The primary purpose of the ADNs scheduling problem is to
find the optimal policy πp, which is equivalent to maximizing the
state-action value function:

Qπp(s, a) � max
π

Qπ(s, a) (34)

3 PROPOSED REAL-TIME SCHEDULING
METHOD
3.1 Classic Deep Deterministic Policy
Gradient
DDPG adopts a classic actor-critic-based architecture and
realizes agent learning and training through four deep neural

networks. It adopts the actor network μ(s|θμ) and critic network
Q(s, a|θQ) to realize the policy action and action evaluation. The
target actor network μ′(s|θμ′) is utilized to select an action aj+1 for
the state sj+1 extracted from the replay buffer, and the target critic
network Q′(s, a|θQ′) is applied to calculate the state-action value
function of the historical sample.

The action of DERs can be expressed in the following
equation.

at � μ(st∣∣∣∣θμ) +N (35)
where: N represents the noise, which is usually the Ornstein-
Uhlenbeck (OU) process. The ADN is not a great inertia system
(e.g., inverted pendulums and aircraft systems) (Fujimoto et al.,
2018). Thus, we adopt the Gaussian noiseN(0, σt) instead of the

TABLE 1 | Training process of the proposed MLDDPG-based method.

TABLE 2 | Parameters of the proposed method.

Parameters Value

Number of hidden units (actor) {120, 80}
Number of hidden units (critic) {80, 60}
Standard deviation of noises 5
Initial learning rate α0 0.015
Decay rate cd 0.4
Decay step nd 180
Discount rate γ 0.9
Soft-updated parameter τ 0.002
Mini-batch size 128
Buffer capacity 4000
Number of hidden units (LSTM) {50}

FIGURE 2 | Training process of our proposed MLDDPG method.
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OU process. The standard deviation of noise decreases linearly to
0 as the training episode increases.

The critic network can be updated by minimizing the loss
function LQ:

LQ � 1
Nb

∑Nb

j�1
[yj − Q(sj, aj∣∣∣∣θQ)]2 (36)

yj � { rj , sj+1 is terminal

rj + γQ′(sj+1, μ′(sj+1∣∣∣∣θμ′)∣∣∣∣∣θQ′) , otherwise (37)

where:Nb represents the mini-batch size sampled from the replay
buffer. yj is the target value.

The parameter of the actor network can be updated based on
the policy gradient, which can be expressed as:

∇θμJ �
1
Nb

∑Nb

j�1
[∇aQ(sj, aj∣∣∣∣θQ) · ∇θμμ(sj∣∣∣∣θμ)] (38)

Then, the weights of target networks are soft-updated via
Eq. 39.

{ θμ′,k+1 � τθμ,k + (1 − τ)θμ′,k
θQ′,k+1 � τθQ,k + (1 − τ)θQ′,k (39)

where: k is the learning iteration. τ indicates the soft-updated
parameter, and τ≪ 1.

3.2 Proposed Modified Strategies
The classic DDPG algorithm is widely applied in continuous
action decision processing. Nevertheless, it has the following two
significant shortcomings in practical application.

1) DDPG updates the network parameters with a fixed learning
rate α, expressed as Eq. 40. A larger learning rate may lead to
overlearning and affect the agent’s stability, while a lower
learning rate slows down the convergence speed.

θj+1 � θj − α∇θLθ (40)

2) Based on the experience replay buffer, the prioritized experience
replay buffer refines the learning efficiency of the agent (Hou
et al., 2017). In the early training stage, however, the samples with
the larger deviations are frequently selected for training, which
may cause the overfitting issue. The repeated training of such
samplesmakes the agent fall into the locally optimal solution, and
the agent’s generalization ability is significantly reduced.

For the shortcomings of the classic DDPG algorithm, we
propose three improved strategies as fellows: learning rate
decay strategy, collaborative assistance policy, and modified
prioritized experience replay to improve the basic agent. The
details of the proposed modified model are as below.

3.2.1 Learning Rate Decay
An exponential decay model is introduced to change the learning
rate α appropriately and balance the exploration and exploitation
abilities (Wang et al., 2022). The learning rate in each episode can
be calculated by Eq. 41.

α � α0c
n·n−1d
d (41)

FIGURE 3 | The active power output of each unit in the ADN.

FIGURE 4 | Voltage amplitude distribution of the ADN throughout
the day.

FIGURE 5 | Training rewards of different algorithms (DQN, DDPG,
LDDPG, and MLDDPG).
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where: α0 is the initial learning rate. cd indicates the decay rate. n
stands for the current training episode. nd is the decay step.

3.2.2 Collaborative Assistance
Generally, agents can be equipped with a specific scheduling ability
to deal with ADNs environment after a long training period.
However, considering the importance of ADNs’ security
indicators, agents are often difficult to be trusted in some critical
decision-making scenarios. To this end, we propose the collaborative
assistance mechanism to help the agent efficiently learn the
coordinated control strategy. Specifically, we first generate Ns

scenes before the training and then capture the environment state
st. The CPLEX solver is applied to calculate the optimal solution of
the control variable, namely, the action at. Next, the reward rt and
new state st+1 are obtained, and the above “successful” samples
containing the optimal actions are placed in replay buffer D. These
pre-generated samples assist the agent in speeding up convergence
and preventing it from sticking into non-optimal strategies. In the
training stage, successful samples generated by the CPLEX and
historical samples obtained from the FMDP are combined to form
the mini-batch to optimize the agent parameters.

3.2.3 Modified Prioritized Experience Replay
The main idea of the modified prioritized experience replay is
to reconstruct the replay bufferD and the mini-batch sampling

method. Firstly, the replay buffer with a capacity |D| is
divided into two equal pools used to store successful and
historical samples, respectively. The cooperative training of
different samples speeds up the convergence while
avoiding the locally optimal problem. Secondly, successful
and historical samples are sampled with different
probabilities. The successful samples are extracted from the
replay buffer with uniform probability, eliminating the
relevance between different scenes. The historical samples
are sampled with the specified priority according to the
time difference error (TD-error). The proportion of
two types of samples participating in training is shown in
Eq. 42.

Nb � Ns +Nh

� βNb + (1 − β)Nb , β ∈ [0, 1] (42)

where: Ns and Nh represent the number of successful and
historical samples in the mini-batch. β is the proportion
parameter, which decreases linearly with the increase of
episode. In this way, the agent gradually accumulates high-
quality historical samples to significantly reduce the possibility
of voltage violation.

3.3 Training Process of the Proposed
Solution Method
Table 1 demonstrates the training process of our proposed
solution approach for solving the ADN scheduling problem as
described in Problem Formulation Section. In each episode, we
first use LSTM to extract the temporal feature ht of PVs and
loads, which are combined with instant information zt to serve
as the environment state st. The agent formulates the
scheduling strategies of ESSs and CSs using the actor
network μ(s|θμ). Upon executing the action at, the reward
rt is obtained by the agent, and the new state st+1 is observed.
The historical samples are accumulated via the above
interactions and stored in the replay buffer D. Note that
half of the replay buffer has been filled with successful
samples via the collaborative assistance policy. Then, a
mini-batch is extracted based on the modified prioritized
experience replay mechanism, and the network parameters
are updated. Specifically, after 24-h scheduling is completed,
the learning rate α decays exponentially, and the training
proportion β is also adjusted. Repeat the above steps until
the maximum training episode is reached.

FIGURE 6 | Cumulative total costs of different methods (Uncontrolled,
DQN, DDPG, LDDPG, and MLDDPG).

TABLE 3 | Application results of different methods (Uncontrolled, DQN, DDPG, LDDPG, MLDDPG, MPC, and CPLEX).

Methods Voltage Qualification Rate
(%)

ESS Charging and
Discharging Power/kWh

Power Loss/kWh Operating Cost/¥

Uncontrolled 99.17 1 630.53 2 542.51 39,695.27
DQN 99.55 1 716.45 2 503.23 36,489.69
DDPG 99.78 1 642.30 2 392.38 35,588.35
LDDPG 100 1 702.18 2 338.22 33,964.68
MLDDPG 100 1 613.55 2 251.64 32,203.17
MPC 100 1 685.43 2 329.13 33,692.55
CPLEX 100 1 698.56 2 235.48 32,165.47
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4 CASE STUDIES

4.1 Case Study Setup
In this study, the performance of the proposed approach is
illustrated using a modified IEEE 33-bus distribution system.
The system consists of two PV plants at buses 14 and 24, two CSs
at buses 7 and 32, and an ESS at bus 17. The capacities of all PV
plants are 400 kWp, and their power generation characteristics
are described by real-world data. The installed capacity of the ESS
is 600 kWh, and the charging and discharging capacity limit is
250 kVA. The charging efficiency ηci and discharging efficiency η

d
i

are set as 0.9. The upper and lower boundaries of storage capacity
are set as 0.1 and 0.9, respectively. Assume the CSs serve 200 EVs
per day, wherein the configuration and operation data of EVs and
CSs come from the Charging Bar (http://admin.bjev520.com).

The electricity price for power loss is modeled by the time of use
(TOU) price. The unit costs of the CS scheduling πCS and ESS
degradation πESS are set as 0.2 ¥/kWh and 0.06 ¥/kWh, respectively
(Cui et al., 2020). The penalty coefficient πvol for voltage violation is

-5000. A workstation with an AMD R9 3950X CPU and an
NVIDIA GeForce 2080Ti GPU is used for the simulation.

4.2 Training Process
Let the simulation step length be 5 min, and the temporal data
over the past 12 time steps are fed into the LSTMmodule. Table 2
details the parameters of the proposed method, and Figure 2
illustrates the obtained rewards under 1000 training episodes.

As attested by Figure 2, the agent learns from the ADN
environment by undergoing trials and errors, and the rewards
oscillate obviously in the initial stage. Then, the solution process
tends to converge steadily from the middle to the final late stage.
Especially, the initial learning rate is 0.015, so the agent is
encouraged to explore the environment with a high probability
in the first 30 episodes. Therefore, the rewards fluctuate
obviously, and the average reward in this stage is −201.36.
From 30 to 300 episodes, the agent quickly learns successful
samples via the collaborative assistance policy and accumulates a

FIGURE 7 | Influence of ESS and CS planning schemes on the operation
cost of the ADN. (A) Total operation cost of the ADN under different ESS
capacity and CS capacity; (B) Total operation cost under different ESS
capacity when the CS capacity is 240, 320, 400, and 480 kW,
respectively.

FIGURE 8 | Influence of EV and CS running states on the operation cost
of the ADN. (A) Total operation cost of the ADN under different EV penetration
rates and charger power; (B) Total operation cost under different EV
penetration rates when the charger power is 20, 40, 60, and 80 kW,
respectively.
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certain amount of successful experience. The average reward in
this stage increases to −201.36. After that, the agent can learn the
optimal mapping from 300 to 1000 episodes. Meanwhile, the
learning rate decreases to 8.86 × 10−4 to steadily exploit the

existing experience, and the average reward of the agent is stable
at −111.76.

4.3 Practical Application Results
Figures 3, 4 separately exhibit the active power output and voltage
amplitude distribution in the testing period. As attested by Figure 3,
the well-trained agent can schedule the output of the ESS and CSs as
well as cooperate with PVs to respond to the power demand of the
ADN. Herein, the agent chooses to charge the ESS during 0:00-7:00
due to the low load level and TOU price. It plays a positive role in
reducing the load peak-valley difference and network loss, and the
average power loss is 58.06 kW in this period. At around 20:00, the
operating pressure of the ADN is alleviated by reducing the charging
load and adjusting the ESS discharging power. The final operating cost
of the distribution network throughout the day is ¥31,936.62.
Moreover, it can be seen from Figure 4 that the operating voltage
of each node in the ADN is within the safe range. The minimum
voltage is 0.966 3 p.u., which appears on bus 18 at 11:35.

4.4 Numerical Comparison of Different
Methods
To comprehensively evaluate the implementation effect of our
method, DRL algorithms, including DQN, DDPG, and LSTM-

FIGURE 9 | Topology of the modified IEEE 123-bus test system.

TABLE 4 | Numerical results in the modified IEEE 123-bus test system.

Methods Voltage Qualification Rate
(%)

ESS Charging and
Discharging Power/kWh

Power Loss/kWh Operating Cost/¥

Uncontrolled 99.62 4 623.58 2 089.44 34,598.58
DDPG 99.71 4 803.61 1 991.34 32,863.29
MLDDPG 100 4 866.36 1 872.87 25,813.86

FIGURE 10 | Voltage distribution of the test system at 12:00 and 20:00.
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DDPG (LDDPG), are taken as benchmark solutions to
compare the decision-making capabilities in coordinated
scheduling. The parameter settings of DQN, DDPG, and
LDDPG are listed in Supplementary Material. Figure 5
details the reward in each episode for different DRL
algorithms, and Figure 6 exhibits the cumulative costs of
their online testing over 100 days. As depicted, although the
DQN algorithm converges rapidly, it has relatively weak
convergence and stability in dealing with decision-making
problems with high-dimensional state and action spaces.
The average convergence reward of DQN is −126.79. Due to
the capacity for coping with continuous action spaces, the
performance of DDPG is better than that of DQN in terms of
convergence performance and stability. Obviously, the
LDDPG method initially shows the worst convergence
performance, and the reward stabilizes at −117.78 after
about 500 episodes. The proposed MLDDPG method
improves the convergence performance using three modified
mechanisms, and the rewards are stable at −111.59, which is
increased by 9.72% compared with the classic DDPG
algorithm. Moreover, MLDDPG also achieves excellent
decision-making results in the online testing stage, reducing
the operation cost by 18.89%.

Furthermore, we define the ADN voltage qualification rate
Rvol as shown in Eq. 43, and the optimization comparison results
are listed inTable 3. The prediction horizon, control horizon, and
sampling time interval of the MPC algorithm are 1 h, 20 min, and
5 min, respectively. The DQN and DDPG methods improve the
voltage distribution of the ADN, but they still suffer from voltage
violation issues. Depending on the information perception ability
of the LSTM module for PVs and residential loads, both LDDPG
and MLDDPG algorithms successfully restrict the node voltage
within an acceptable range. Besides, the MLDDPG agent is
capable of adapting to various environments via the
collaborative assistance policy combined with the modified
prioritized experience replay mechanism. Thus, the proposed
method shows remarkable results in reducing power loss and
operating cost, and the total operating cost is ¥32,203.17, which is
5.19% lower than that of LDDPG. The MPC can also cope with
uncertainties based on rolling optimization, and the algorithm
performance is close to that of LDDPG. In addition, the proposed
method takes only 0.16 s to solve the scheduling scheme, which is
much less than 381.37 s of the CPLEX. Therefore, although the
difference between the MLDDPG and the optimal solution is
0.12%, it still achieves an excellent optimization decision-making
effect while meeting the real-time scheduling requirements.

Rvol � 1 −
∑

t∈ΩT

∑
i∈Ωbus

σ(Ui,t)
|ΩT||Ωbus| × 100% (43)

σ(Ui,t) � { 0 , Umin
i ≤Ui,t ≤Umax

i

1 , otherwise
(44)

4.5 Sensitivity Analysis
Furthermore, the influence of ESS and CS planning schemes and
running states on the proposed model is analyzed. Figure 7

illustrates the influence of ESS capacity and CS capacity planning
schemes on the ADN operation cost. As attested, the total cost of
the ADN gradually decreases with the increase of ESS capacity.
For every 100-kWh increase in the ESS capacity, the total
operation cost of the ADN is reduced by ¥29.18. Meanwhile,
for every 40-kW increase in the CS capacity, the total cost only
decreases by ¥6.80. Notably, when the CS capacity is larger than
400 kW, there is little impact on the operating cost of the ADN,
indicating that the CS capacity configuration far covers the EV
charging demand.

Assuming that the number of vehicles is 2 000 in this area,
Figure 8 exhibits the impact of EV penetration rates and charger
power operation status on the total cost of the ADN.With the EV
penetration rate increasing, the total cost increases gradually. For
every 1% increase in the EV penetration rate, the operation cost of
the ADN increases by ¥31.20. The increase of the charger power
improves the carrying capacity of CS but also increases the
operation burden of the ADN. For every 1-kW increase in the
charger power, the operation cost increases by ¥15.61. Note that
the total cost remains stable when the EV penetration rate
increases to a specific value. For example, when the charger
power is 20 kW, the operation cost is stabilized at around
¥33,998.07 after the EVPR is increased to 20%, which means
that the CS carrying capacity and dispatchable potential reach the
upper limits.

4.6 Scalability Performance
Finally, simulations are also performed on a modified IEEE 123-bus
test system to evaluate the scalability of the proposed method. As
shown in Figure 9, the test system is modified by integrating 6 PV
units, 3 ESSs, and 3 CSs. The parameter setting of each unit is the
same as that in Case Study Setup Section. Table 4 lists the numerical
results in the modified IEEE 123-bus test system, and Figure 10
exhibits the voltage distribution at peak power consumption.

It can be observed that there are voltage violation issues when
no control is applied, especially during peak power consumption.
The uncontrolled method also suffers from high network loss and
operating cost issues due to the lack of coordination. Limited by
the dimension of environmental states, the DDPG algorithm
makes slight improvements in dealing with voltage violation
issues. By contrast, the proposed method captures the
temporal trends and high-dimensional features of DERs to
against uncertainties and provides a basic state for the
coordination of each unit. The total operating cost of the
MLDDPG method is ¥25,813.86, which is 25.39% lower than
that of the uncontrolled mode. The results demonstrate that the
proposed MLDDPG method effectively realizes improvements in
economic performance and voltage violation mitigation. We
conclude that the scalability performance of our method in a
large system is validated.

5 CONCLUSION

Based on the LSTM and modified DDPG algorithm, this paper
proposes a novel DRL method for coordinated scheduling of
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ADNs. Specifically, the LSTM is employed to capture the
temporal information of DERs. Then, the extracted state
features are fed into the modified DDPG to formulate the
operation schedules for CSs and ESSs. Case studies are carried
out within a modified IEEE 33-bus system embedded with PVs,
ESSs, and CSs. The training and testing results show that the
proposed MLDDPG method can not only maintain the safe
voltage range but also reduce the economic cost of ADNs. The
convergence performance and stability of the proposed method
are also improved, which is 9.72% higher than that of the classic
DDPG algorithm. Furthermore, the sensitivity analysis is
performed, and the scalability of the proposed method is
validated in a modified IEEE 123-bus test system. One future
direction is to evaluate the sensitivity of DRL-based training
parameters and further enhance the robustness of the proposed
method. In addition, slow devices will be considered to
coordinate with the proposed method and further improve the
scalability of the scheduling model.
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