Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = cucumber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Estimation of Optimum Vacuum Pressure of Air-Suction Seed-Metering Device of Precision Seeders Using Artificial Neural Network Models
Agronomy 2022, 12(7), 1600; https://doi.org/10.3390/agronomy12071600 - 01 Jul 2022
Viewed by 209
Abstract
The success of the seed-metering device of a seeder determines the quality seeding and final plant stand. The adjustment of the optimal vacuum pressure of air-suction-type seed-metering devices is a key factor affecting the success of seed-metering devices. The optimal value of vacuum [...] Read more.
The success of the seed-metering device of a seeder determines the quality seeding and final plant stand. The adjustment of the optimal vacuum pressure of air-suction-type seed-metering devices is a key factor affecting the success of seed-metering devices. The optimal value of vacuum of the seed-metering device should be adjusted in relation to the physical properties of the seed before seeding in the field. This research was carried out to estimate the optimal value of vacuum pressure of an air-suction seed-metering device of a precision seeder by using an artificial neural network method. Training of the network was performed by using a Levenberg–Marquardt (LM) learning algorithm. Training and testing were carried out using Matlab software. The inputs were physical properties of seeds such as surface area, thousand kernel weight, kernel density and sphericity. Optimum vacuum pressures were determined for soybean, maize, cucumber, melon, watermelon, sugarbeet and onion seeds in laboratory. Surface area, thousand kernel weight, kernel density and sphericity of seeds varied from 0.05 to 0.638 cm2, 4.4 to 322.4 g, 0.43 to 1.29 g cm−3 and 42.8 to 85.75%, respectively. The optimal vacuum pressure was determined as 1.5 kPa for onion; 2.0 kPa for sugarbeet; 2.5 kPa for melon and watermelon; 3.0 kPa for soybean; and 4.0 kPa for maize seeds. A trained program using an artificial neural network could satisfactorily estimate the optimum value of vacuum pressure of the air-suction type seed-metering device of precision seeders with a prediction success (R2) of 0.9949 for both linear and polynomial regressions. Full article
(This article belongs to the Special Issue Agricultural Automation and Innovative Agricultural Systems)
Article
Fluopyram: Optimal Application Time Point and Planting Hole Treatment to Control Meloidogyne incognita
Agronomy 2022, 12(7), 1576; https://doi.org/10.3390/agronomy12071576 - 29 Jun 2022
Viewed by 224
Abstract
Research into new nematicides that provide adequate control against root-knot nematodes in a more environment-friendly way is of great interest to vegetable growers. Thus, the effect of fluopyram, a relatively new chemical nematicide, was evaluated against a Swiss population of Meloidogyne incognita in [...] Read more.
Research into new nematicides that provide adequate control against root-knot nematodes in a more environment-friendly way is of great interest to vegetable growers. Thus, the effect of fluopyram, a relatively new chemical nematicide, was evaluated against a Swiss population of Meloidogyne incognita in vitro, in soil and as a planting hole treatment for tomato, lettuce and cucumber plants. Fluopyram treatment in vitro revealed LC50 (lethal concentration, 50%) ranging from 2.15–0.04 µmol of fluopyram/L after 1–14 days of exposure. However, some nematodes (visually categorized as dead) were able to recover and infect cucumber plants. Fluopyram’s optimal application time appeared to be up to 1 day after planting, with a significant control effect on M. incognita up to 14 days after planting. A root penetration assay showed that only nematodes that remained in the rhizosphere were controlled by fluopyram. Furthermore, fluopyram planting hole treatments on lettuce, tomato and cucumber plants, successfully controlled M. incognita in the root zone under greenhouse conditions. Overall, this study contributes to an optimized application of fluopyram for the control of M. incognita in vegetable crops, highlighting its effectiveness in soil and showing its limitation to control juveniles that have already invaded the root systems of plants. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Article
Unusual Ether Lipids and Branched Chain Fatty Acids in Sea Cucumber (Cucumaria frondosa) Viscera and Their Seasonal Variation
Mar. Drugs 2022, 20(7), 435; https://doi.org/10.3390/md20070435 - 29 Jun 2022
Viewed by 247
Abstract
The sea cucumber, Cucumaria frondosa, is harvested primarily for its muscular bands and body wall. Development of a nutraceutical product based on lipid recovered from its viscera would give commercial value to the entire organism; however, such development requires knowledge of the [...] Read more.
The sea cucumber, Cucumaria frondosa, is harvested primarily for its muscular bands and body wall. Development of a nutraceutical product based on lipid recovered from its viscera would give commercial value to the entire organism; however, such development requires knowledge of the lipid and fatty acid (FA) profiles of the viscera. Here, we describe the lipid and FA composition of viscera recovered from C. frondosa harvested in coastal waters in the northwest Atlantic, taking into account variation due to harvest season. We found highest lipid content at ~29% in winter, with diacylglyceryl ethers (DAGE) comprising ~55% of the total lipid mass and triacylglycerols (TAG), phospholipids (PL) and monoacylglycerol ethers (MAGE) at 5–25% each. The branched chain FA, 12-methyltetradecanoic acid (12-MTA), represented 42% of total FA mass in DAGE. In summer, lipid content was lower at 24% and TAG was the dominate lipid, with proportions more than double that found in winter (45% vs. 20%); DAGE in summer dropped to ~30% of total lipids. In TAG, 12-MTA was much lower than found in DAGE in winter, at only 10% but eicosapentaenoic acid (EPA) content was ~20%, which brought the total EPA% to 28% of total FA—the highest among all three seasons. There was little effect of season on MAGE or PL proportions. These data can help harvesters maximize catch efforts in terms of lipid yield and profile. Full article
Show Figures

Figure 1

Article
Exogenous Si Mitigates the Effects of Cinnamic-Acid-Induced Stress by Regulating Carbon Metabolism and Photosynthetic Pigments in Cucumber Seedlings
Agronomy 2022, 12(7), 1569; https://doi.org/10.3390/agronomy12071569 - 29 Jun 2022
Viewed by 210
Abstract
(1) Background: Cinnamic acid (CA) is a harmful substance secreted by the roots of continuous-cropping crops. (2) Methods: This study aimed to investigate how exogenous Si affects chlorophyll content and carbon metabolism in cucumber seedlings under CA-induced stress. (3) Results: The levels of [...] Read more.
(1) Background: Cinnamic acid (CA) is a harmful substance secreted by the roots of continuous-cropping crops. (2) Methods: This study aimed to investigate how exogenous Si affects chlorophyll content and carbon metabolism in cucumber seedlings under CA-induced stress. (3) Results: The levels of chlorophyll a, chlorophyll b, chlorophyll a+b, and carotenoids were significantly reduced due to CA-induced stress. The addition of exogenous Si significantly alleviated this reduction. Under CA-induced stress, exogenous Si significantly increased the activities of ribulose-1,5-bisphosphate carboxylase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphatase, fructose-1,6-bisphosphate aldolase, and transketolase. CA-induced stress significantly increased the fructose, glucose, and sucrose contents and reduced the starch content in the leaves and roots of seedlings. Similarly, the sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase activities were significantly reduced in plants under CA-induced stress. Overall, exogenous Si significantly reduced the soluble sugar content, increased the starch content, and promoted sucrose metabolism-related enzymatic activity in seedlings. (4) Conclusion: Exogenous Si can effectively increase the content of photosynthetic pigments in leaves of seedlings and maintain the balance of osmotic potential in the plant by reducing the accumulation of carbon assimilation products, which ultimately promotes tolerance to CA-induced autotoxicity stress. Full article
Show Figures

Figure 1

Article
Genome-Wide Identification and Expression Analysis of SnRK Gene Family under Abiotic Stress in Cucumber (Cucumis sativus L.)
Agronomy 2022, 12(7), 1550; https://doi.org/10.3390/agronomy12071550 - 28 Jun 2022
Viewed by 276
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) are a kind of plant-specific serine/threonine (Ser/Thr) protein kinase, which play an important role in plant stress resistance. However, the scale analysis of SnRK in the cucumber genome is currently unclear. In the study, a [...] Read more.
Sucrose non-fermenting 1-related protein kinases (SnRKs) are a kind of plant-specific serine/threonine (Ser/Thr) protein kinase, which play an important role in plant stress resistance. However, the scale analysis of SnRK in the cucumber genome is currently unclear. In the study, a total of 30 CsSnRK genes were identified from genomic data. They were distributed on six chromosomes, including 1 CsSnRK1, 10 CsSnRK2s and 19 CsSnRK3s. According to the analysis of gene structure and motif composition, CsSnRKs showed obvious differences among the three subfamilies. The ratio of synonymous (Ks) and nonsynonymous (Ka) nucleotide substitutions (Ka/Ks) of three paralogues indicates that the CsSnRK gene family undergoes a purifying selection. The analysis of cis-acting elements shows that the promoter region of each CsSnRK gene contained different classes of hormone and stress-related cis-acting elements. Furthermore, based on RNA-sequencing data from the Short Read Archive (SRA) database of NCBI, the expression patterns of CsSnRK genes in six tissues were investigated, indicating that the expression of multiple CsSnRK genes was prevalent in these tissues. Transcription levels of CsSnRK genes after drought, methyl jasmonate (MeJA) and abscisic acid (ABA) treatments were analyzed by quantitative RT-PCR, and the results show that most of the CsSnRK genes responded to these stresses. However, under different treatments, individual genes played a major role. For example, under ABA treatment, CsSnRK2.2 and CsSnRK2.3 played a major role in the response to ABA. These results provide clear evidence that CsSnRKs may be involved in cucumber growth, development and stress response, and provide valuable information for future functional studies of CsSnRKs. Full article
(This article belongs to the Special Issue Breeding, Genetics, and Genomic of the Genus Cucumis)
Show Figures

Figure 1

Article
Spermidine Modify Antioxidant Activity in Cucumber Exposed to Salinity Stress
Agronomy 2022, 12(7), 1554; https://doi.org/10.3390/agronomy12071554 - 28 Jun 2022
Viewed by 250
Abstract
The effects of short-term 48 h long NaCl-stress and spermidine level modification on polyamines level and antioxidant status in cucumber (Cucumis sativus cv. Dar) leaves were investigated. Seedlings kept in nutrient solutions treated with 50 mM NaCl for 48 h exhibited reduced relative [...] Read more.
The effects of short-term 48 h long NaCl-stress and spermidine level modification on polyamines level and antioxidant status in cucumber (Cucumis sativus cv. Dar) leaves were investigated. Seedlings kept in nutrient solutions treated with 50 mM NaCl for 48 h exhibited reduced relative water content and accumulation of free polyamines, especially spermidine. Salinity stress caused an increase in superoxide radicals and hydrogen peroxide generation during the salinity-induced increase in antioxidant enzyme activities. Spermidine application before stress resulted in a marked increase in spermidine and spermine contents in the leaves of salt-stressed cucumber seedlings. Additionally, increased spermidine/spermine level mobilised the antioxidant enzyme’s activity and limited reactive oxygen species content. Polyamine synthesis inhibitor (MGBG) slightly decreased spermidine and spermine levels during salinity and reversed the antioxidant activity mobilisation. These results showed that Spd modifications significantly improved PAs, enhancing salinity stress tolerance by detoxifying ROS. Our findings determined the implication of PAs for improving the salinity tolerance of important vegetable species. Full article
Show Figures

Figure 1

Article
Occurrence, Genetic Variability of Tomato Yellow Ring Orthotospovirus Population and the Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Its Rapid Detection
Viruses 2022, 14(7), 1405; https://doi.org/10.3390/v14071405 (registering DOI) - 27 Jun 2022
Viewed by 346
Abstract
Tomato-infecting viruses have been considered as a serious threat to tomato crops in Poland. Therefore, during 2014–2021, 234 tomato samples delivered directly by greenhouse tomato growers to Plant Disease Clinic of IPP-NRI were tested. Eight virus species: pepino mosaic virus (PepMV), tomato yellow [...] Read more.
Tomato-infecting viruses have been considered as a serious threat to tomato crops in Poland. Therefore, during 2014–2021, 234 tomato samples delivered directly by greenhouse tomato growers to Plant Disease Clinic of IPP-NRI were tested. Eight virus species: pepino mosaic virus (PepMV), tomato yellow ring orthotospovirus (TYRV), tomato spotted wilt orthotospovirus (TSWV), potato virus Y (PVY), cucumber mosaic virus (CMV), tomato black ring virus (TBRV) and tomato mosaic virus (ToMV) were detected in single or mixed infection in 89 samples. The presence of TYRV was established for the first time in Poland in 2014. Since then, its presence has been observed in single and mixed infection with TSWV and CMV. Here, we analysed the genetic variability of TYRV population based on complete nucleocapsid (N) protein gene sequence of 55 TYRV isolates. Maximum-likelihood reconstruction revealed the presence of three distinct, well-supported phylogroups. Moreover, the effect of host species on virus diversity was confirmed. Therefore, RT-LAMP assay was developed for the rapid and efficient detection of TYRV isolates that can be implemented in field and greenhouse conditions. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2022)
Show Figures

Figure 1

Article
High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family
Plants 2022, 11(13), 1665; https://doi.org/10.3390/plants11131665 - 23 Jun 2022
Viewed by 250
Abstract
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants [...] Read more.
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses. Full article
(This article belongs to the Special Issue Advances in Plant Viral Diseases)
Show Figures

Figure 1

Article
Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan
Int. J. Mol. Sci. 2022, 23(13), 6990; https://doi.org/10.3390/ijms23136990 - 23 Jun 2022
Viewed by 224
Abstract
Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia [...] Read more.
Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia fungorum strain R8, Paenibacillus pasadenensis strain R16, Pantoea agglomerans strain 255-7, and Pseudomonas syringae strain 260-02) against four viruses (Cymbidium Ring Spot Virus—CymRSV; Cucumber Mosaic Virus—CMV; Potato Virus X—PVX; and Potato Virus Y—PVY) on Nicotiana benthamiana plants under controlled conditions and compared them with a chitosan-based resistance inducer product. Our studies indicated that ePGPB- and chitosan-treated plants presented well-defined biocontrol efficacy against CymRSV and CMV, unlike PVX and PVY. They exhibited significant reductions in symptom severity while promoting plant height compared to nontreated, virus-infected controls. However, these phenotypic traits showed no association with relative virus quantification. Moreover, the tested defense-related genes (Enhanced Disease Susceptibility-1 (EDS1), Non-expressor of Pathogenesis-related genes-1 (NPR1), and Pathogenesis-related protein-2B (PR2B)) implied the involvement of a salicylic-acid-related defense pathway triggered by EDS1 gene upregulation. Full article
(This article belongs to the Special Issue Plant Innate Immunity 4.0)
Show Figures

Figure 1

Article
Disinfection Efficacy of Tobamovirus-Contaminated Soil in Greenhouse-Grown Crops
Horticulturae 2022, 8(7), 563; https://doi.org/10.3390/horticulturae8070563 - 21 Jun 2022
Viewed by 285
Abstract
The tobamoviruses tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV) have caused severe crop damages worldwide. Soil-mediated dispersion of the mechanically transmitted tobamoviruses constitute a major hindrance toward mitigating disease spread in crops carefully planted under sanitized conditions. [...] Read more.
The tobamoviruses tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV) have caused severe crop damages worldwide. Soil-mediated dispersion of the mechanically transmitted tobamoviruses constitute a major hindrance toward mitigating disease spread in crops carefully planted under sanitized conditions. Tobamoviruses are viable for months in soil and plant debris and for more than a year adhere to clay. However, a low percentage of infectious foci occur in soil following a tobamovirus-infected growing cycle, rendering disinfection studies of several contaminated plots inconclusive for large-scale crop productions. We have therefore formulated a rigorous platform for studying disinfectant efficacy in greenhouses by pouring a virus inoculum to planting pits prior to disinfectant treatment and by truncating seedling roots before planting, which was otherwise conducted under sanitized conditions. We have found that chlorine-based Taharan was significantly efficient in preventing disease spread of ToBRFV and CGMMV in tomato and cucumber plants, respectively. KlorBack was often as good as Taharan. In addition, a formulation of chlorinated tri-sodium phosphate used at a nonphytotoxic 3% concentration showed disinfection efficiency similar to Taharan effect on ToBRFV infection only. Our study provided a small-scale platform for disinfectant efficacy evaluation necessary for application in tobamovirus-contaminated soil, which commonly occurs in commercial tomato and cucumber greenhouses. Full article
(This article belongs to the Special Issue Innovative System for Disinfection in Greenhouses)
Show Figures

Graphical abstract

Article
Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years
Sustainability 2022, 14(13), 7543; https://doi.org/10.3390/su14137543 - 21 Jun 2022
Viewed by 196
Abstract
Cucumber plant growth and the fate of N in the plant-soil system are influenced by fertilization practices, the strengths of which may vary among soils. Three soils with different years of greenhouse vegetable cultivation (0, 2, and 18 years) were fertilized differently (CK, [...] Read more.
Cucumber plant growth and the fate of N in the plant-soil system are influenced by fertilization practices, the strengths of which may vary among soils. Three soils with different years of greenhouse vegetable cultivation (0, 2, and 18 years) were fertilized differently (CK, no N fertilizer applied; CF, chemical NPK fertilizers applied; RCF, reduced chemical NPK fertilizers applied, with N, P, and K reduced by 46.5%, 68.6%, and 54.7%; RCF+CM, 75% of the total N derived from chemical fertilizer and the rest from chicken manure in the case of reduced fertilization) in a pot experiment to study the changes in cucumber (Cucumis sativus L.) growth, N uptake, residue, and losses. The original N in soil was insufficient to maintain leaf growth and chlorophyll synthesis at later growth stages, even in soil with 18 years of greenhouse vegetable cultivation, where the original N content was the highest (total N 1.73 g kg−1). However, the CF treatment with excessive N fertilization inhibited leaf growth at the early growing stage and accelerated leaf senescence later, especially in soil with longer years of greenhouse vegetable cultivation. Therefore, reduced fertilizer application (RCF and RCF+CM) is appropriate to improve cucumber growth and productivity in greenhouse cultivation with different planting years. Although the same amount of N was applied, the RCF+CM treatment performed better than the RCF treatment in terms of increasing plant N uptake (by 30.5%) and soil N pool storage (by 25.0%) while decreasing N losses (by 16.6%) in soil with 0 years of greenhouse vegetable cultivation. In soil with 2 and 18 years of greenhouse vegetable cultivation, the soil itself functions much better in exogenous N retention and supply, with the N storage and losses not significantly different between the RCF and RCF+CM treatments. We conclude that reduced fertilization with the co-application of chicken manure is optimal for plant growth promotion, output-input ratio increase, soil N fertility improvement, and environmental risk mitigation. Full article
Show Figures

Figure 1

Article
Compost Addition Attenuates the Negative Impacts of High Soil Mineral Nitrogen Levels on Rhizosphere Microbial Characteristics and Enhances Cucumber Growth in Monoculture Systems
Plants 2022, 11(13), 1621; https://doi.org/10.3390/plants11131621 - 21 Jun 2022
Viewed by 227
Abstract
Due to the increase in the human population, it is necessary to seek efficient methods of increasing crop productivity and, simultaneously, sustaining the soil. One way is to grow high demand crops continuously without rotating with other crops. This practice is often accompanied [...] Read more.
Due to the increase in the human population, it is necessary to seek efficient methods of increasing crop productivity and, simultaneously, sustaining the soil. One way is to grow high demand crops continuously without rotating with other crops. This practice is often accompanied by increased rates of fertilizer application that can affect efficient nitrogen (N) cycling in the plant rhizosphere soil which, in turn, affects both plant growth and environmental pollution. In the present study, twelve various cucumber soils were selected from monoculture systems presenting different cropping years and divided into two groups including soils with relatively high mineral N (HMN) content (N > 100 mg kg−1 soil) and those with a lower mineral N (LMN) content (N < 100 mg kg−1 soil). All soils were amended with the addition of compost alone or in combination with bacterial inoculation to evaluate their effects on plant growth, microbial numbers, N mineralization, and N cycling genes. In general, the HMN soils increased (p < 0.05) net N mineralization (NNM) but did not statistically (p > 0.05) affect plant biomass compared to the LMN soils; however, compost addition increased both NNM and plant biomass in the HMN soils. In addition, the HMN soils had higher fungal pathogen numbers (FPNs) but lower total microbial biomass (TMB) and bacterial numbers (BNs) compared to the LMN soils; however, compost addition decreased FPNs but increased TMB and BNs in the HMN soils (all p < 0.05). Plant biomass was positively related to TMB, BN and NNM but was negatively related to FPN (all p < 0.05). In summary, compost addition reduced the high mineral N levels’ adverse effects on the rhizosphere soil and plant growth. Full article
(This article belongs to the Special Issue Plant Metabolic Responses to Biotic and Abiotic Stress)
Show Figures

Figure 1

Article
Plant Growth-Promoting Rhizobacteria Improve Growth and Fruit Quality of Cucumber under Greenhouse Conditions
Plants 2022, 11(12), 1612; https://doi.org/10.3390/plants11121612 - 20 Jun 2022
Viewed by 370
Abstract
Cucumber fruit is rich in fiber, carbohydrates, protein, magnesium, iron, vitamin B, vitamin C, flavonoids, phenolic compounds, and antioxidants. Agrochemical-based production of cucumber has tripled yields; however, excessive synthetic fertilization has caused problems in the accumulation of salts in the soil and has [...] Read more.
Cucumber fruit is rich in fiber, carbohydrates, protein, magnesium, iron, vitamin B, vitamin C, flavonoids, phenolic compounds, and antioxidants. Agrochemical-based production of cucumber has tripled yields; however, excessive synthetic fertilization has caused problems in the accumulation of salts in the soil and has increased production costs. The objective of this study was to evaluate the effect of three strains of plant growth-promoting rhizobacteria (PGPR) on cucumber fruit growth and quality under greenhouse conditions. The rhizobacteria Pseudomonas paralactis (KBendo6p7), Sinorhizobium meliloti (KBecto9p6), and Acinetobacter radioresistens (KBendo3p1) was adjusted to 1 × 108 CFU mL−1. The results indicated that the inoculation with PGPR improved plant height, stem diameter, root length, secondary roots, biomass, fruit size, fruit diameter, and yield, as well as nutraceutical quality and antioxidant capacity, significantly increasing the response of plants inoculated with A.radioresistens and S.meliloti in comparison to the control. In sum, our findings showed the potential functions of the use of beneficial bacteria such as PGPR for crop production to reduce costs, decrease pollution, and achieve world food safety and security. Full article
(This article belongs to the Special Issue Vegetable and Fruit Production)
Show Figures

Figure 1

Review
Serial-Omics and Molecular Function Study Provide Novel Insight into Cucumber Variety Improvement
Plants 2022, 11(12), 1609; https://doi.org/10.3390/plants11121609 - 20 Jun 2022
Viewed by 269
Abstract
Cucumbers are rich in vitamins and minerals. The cucumber has recently become one of China’s main vegetable crops. More specifically, the adjustment of the Chinese agricultural industry’s structure and rapid economic development have resulted in increases in the planting area allocated to Chinese [...] Read more.
Cucumbers are rich in vitamins and minerals. The cucumber has recently become one of China’s main vegetable crops. More specifically, the adjustment of the Chinese agricultural industry’s structure and rapid economic development have resulted in increases in the planting area allocated to Chinese cucumber varieties and in the number of Chinese cucumber varieties. After complete sequencing of the “Chinese long” genome, the transcriptome, proteome, and metabolome were obtained. Cucumber has a small genome and short growing cycle, and these traits are conducive to the application of molecular breeding techniques for improving fruit quality. Here, we review the developments and applications of molecular markers and genetic maps for cucumber breeding and introduce the functions of gene families from the perspective of genomics, including fruit development and quality, hormone response, resistance to abiotic stress, epitomizing the development of other omics, and relationships among functions. Full article
Show Figures

Figure 1

Article
Genome-Wide Association Studies Reveal Candidate Genes Related to Stem Diameter in Cucumber (Cucumis sativus L.)
Genes 2022, 13(6), 1095; https://doi.org/10.3390/genes13061095 - 19 Jun 2022
Viewed by 359
Abstract
The stem diameter, an important agronomic trait, affects cucumber growth and yield. However, no genes responsible for cucumber stem diameter have been identified yet. In this study, the stem diameter of 88 cucumber core germplasms were measured in spring 2020, autumn 2020 and [...] Read more.
The stem diameter, an important agronomic trait, affects cucumber growth and yield. However, no genes responsible for cucumber stem diameter have been identified yet. In this study, the stem diameter of 88 cucumber core germplasms were measured in spring 2020, autumn 2020 and autumn 2021, and a genome-wide association study (GWAS) was carried out based on the gene sequence and stem diameter of core germplasms. A total of eight loci (gSD1.1, gSD2.1, gSD3.1, gSD3.2, gSD4.1, gSD5.1, gSD5.2, and gSD6.1) significantly associated with cucumber stem diameter were detected. Of these, five loci (gSD1.1, gSD2.1, gSD3.1, gSD5.2, and gSD6.1) were repeatedly detected in two or more seasons and were considered as robust and reliable loci. Based on the linkage disequilibrium sequences of the associated SNP loci, 37 genes were selected. By further investigating the five loci via analyzing Arabidopsis homologous genes and gene haplotypes, five genes (CsaV3_1G028310, CsaV3_2G006960, CsaV3_3G009560, CsaV3_5G031320, and CsaV3_6G031260) showed variations in amino acid sequence between thick stem lines and thin stem lines. Expression pattern analyses of these genes also showed a significant difference between thick stem and thin stem lines. This study laid the foundation for gene cloning and molecular mechanism study of cucumber stem development. Full article
Show Figures

Figure 1

Back to TopTop