Journal Description
Cells
Cells
is an international, peer-reviewed, open access, journal of cell biology, molecular biology, and biophysics, published semimonthly online by MDPI. The Spanish Society for Biochemistry and Molecular Biology (SEBBM), Signal Transduction Society (STS), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH) and Society for Regenerative Medicine (Russian Federation) (RPO) are affiliated with Cells and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, CAPlus / SciFinder, and many other databases.
- Journal Rank: JCR - Q2 (Cell Biology) / CiteScore - Q1 (General Biochemistry, Genetics and Molecular Biology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.3 days after submission; acceptance to publication is undertaken in 3.3 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 20 topical sections.
- Companion journal: Organoids.
Impact Factor:
6.600 (2020)
;
5-Year Impact Factor:
6.663 (2020)
Latest Articles
The Prognostic and Predictive Significance of Tumor-Infiltrating Memory T Cells Is Reversed in High-Risk HNSCC
Cells 2022, 11(12), 1960; https://doi.org/10.3390/cells11121960 (registering DOI) - 17 Jun 2022
Abstract
Tumor-infiltrating CD45RO+ memory T cells have unanimously been described as a positive prognostic factor in head and neck squamous cell carcinomas (HNSCCs). Here, we investigated the long-term prognostic relevance of CD45RO+ memory T cells in HNSCC with special regard to the influence of
[...] Read more.
Tumor-infiltrating CD45RO+ memory T cells have unanimously been described as a positive prognostic factor in head and neck squamous cell carcinomas (HNSCCs). Here, we investigated the long-term prognostic relevance of CD45RO+ memory T cells in HNSCC with special regard to the influence of clinical characteristics. Pre-treatment biopsy samples from 306 patients with predominantly advanced HNSCC were analyzed. Immunohistochemistry was used to stain tissue microarrays for CD45RO+ memory T cells. CD45RO cell densities were semi-automatically registered and used for survival analysis. High CD45RO+ cell densities were clearly associated with prolonged overall survival (OS) and recurrence-free survival as well as no evidence of disease status after 10 years (p < 0.05). In contrast, the prognostic significance of tumor-infiltrating memory T cells was completely reversed in high-risk groups: in poorly differentiated tumors (G3, G4) and in cases with lymph node involvement (N+), high memory T cell densities correlated with reduced 10-year OS (p < 0.05). In conclusion, an increased density of tumor-infiltrating CD45RO+ cells in HNSCC can be a positive as well as a negative prognostic factor, depending on disease stage and histological grade. Therefore, if CD45RO+ cell density is to be used as a prognostic biomarker, further clinical characteristics must be considered.
Full article
(This article belongs to the Special Issue Cancer and Radiation Therapy)
Open AccessArticle
Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response
by
, , , , , , , , , , , , , , and
Cells 2022, 11(12), 1959; https://doi.org/10.3390/cells11121959 (registering DOI) - 17 Jun 2022
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical,
[...] Read more.
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Full article
(This article belongs to the Special Issue Mechanisms of Action of Therapies for Multiple Sclerosis)
►▼
Show Figures
Graphical abstract
Open AccessReview
Telomere Maintenance and the cGAS-STING Pathway in Cancer
Cells 2022, 11(12), 1958; https://doi.org/10.3390/cells11121958 (registering DOI) - 17 Jun 2022
Abstract
Cancer cells exhibit the unique characteristics of high proliferation and aberrant DNA damage response, which prevents cancer therapy from effectively eliminating them. The machinery required for telomere maintenance, such as telomerase and the alternative lengthening of telomeres (ALT), enables cancer cells to proliferate
[...] Read more.
Cancer cells exhibit the unique characteristics of high proliferation and aberrant DNA damage response, which prevents cancer therapy from effectively eliminating them. The machinery required for telomere maintenance, such as telomerase and the alternative lengthening of telomeres (ALT), enables cancer cells to proliferate indefinitely. In addition, the molecules in this system are involved in noncanonical pro-tumorigenic functions. Of these, the function of the cyclic GMP–AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contains telomere-related molecules, is a well-known contributor to the tumor microenvironment (TME). This review summarizes the current knowledge of the role of telomerase and ALT in cancer regulation, with emphasis on their noncanonical roles beyond telomere maintenance. The components of the cGAS-STING pathway are summarized with respect to intercell communication in the TME. Elucidating the underlying functional connection between telomere-related molecules and TME regulation is important for the development of cancer therapeutics that target cancer-specific pathways in different contexts. Finally, strategies for designing new cancer therapies that target cancer cells and the TME are discussed.
Full article
(This article belongs to the Special Issue DNA Damage Response Regulation and Cancer)
Open AccessReview
Platelets at the Crossroads of Pro-Inflammatory and Resolution Pathways during Inflammation
Cells 2022, 11(12), 1957; https://doi.org/10.3390/cells11121957 (registering DOI) - 17 Jun 2022
Abstract
Platelets are among the most abundant cells in the mammalian circulation. Classical platelet functions in hemostasis and wound healing have been intensively explored and are generally accepted. During the past decades, the research focus broadened towards their participation in immune-modulatory events, including pro-inflammatory
[...] Read more.
Platelets are among the most abundant cells in the mammalian circulation. Classical platelet functions in hemostasis and wound healing have been intensively explored and are generally accepted. During the past decades, the research focus broadened towards their participation in immune-modulatory events, including pro-inflammatory and, more recently, inflammatory resolution processes. Platelets are equipped with a variety of abilities enabling active participation in immunological processes. Toll-like receptors mediate the recognition of pathogens, while the release of granule contents and microvesicles promotes direct pathogen defense and an interaction with leukocytes. Platelets communicate and physically interact with neutrophils, monocytes and a subset of lymphocytes via soluble mediators and surface adhesion receptors. This interaction promotes leukocyte recruitment, migration and extravasation, as well as the initiation of effector functions, such as the release of extracellular traps by neutrophils. Platelet-derived prostaglandin E2, C-type lectin-like receptor 2 and transforming growth factor β modulate inflammatory resolution processes by promoting the synthesis of pro-resolving mediators while reducing pro-inflammatory ones. Furthermore, platelets promote the differentiation of CD4+ T cells in T helper and regulatory T cells, which affects macrophage polarization. These abilities make platelets key players in inflammatory diseases such as pneumonia and the acute respiratory distress syndrome, including the pandemic coronavirus disease 2019. This review focuses on recent findings in platelet-mediated immunity during acute inflammation.
Full article
(This article belongs to the Special Issue The Maladaptive Immune Response in Innate and Adaptive Immunity during Systemic Inflammation)
Open AccessArticle
Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis
Cells 2022, 11(12), 1956; https://doi.org/10.3390/cells11121956 (registering DOI) - 17 Jun 2022
Abstract
Commercial scale production of natural astaxanthin is currently conducted through cultivation of the green alga Haematococcus pluvialis. This study comprehensively investigated the impact of seven different light spectra on the growth, morphology and photosynthesis of H. pluvialis vegetative cells. Further, the lipidomes
[...] Read more.
Commercial scale production of natural astaxanthin is currently conducted through cultivation of the green alga Haematococcus pluvialis. This study comprehensively investigated the impact of seven different light spectra on the growth, morphology and photosynthesis of H. pluvialis vegetative cells. Further, the lipidomes of vegetative H. pluvialis grown under various light spectra were qualitatively and quantitatively analyzed using liquid chromatography/mass spectrometry (LC/MS). The results showed the existence of blue light—alone or with red light—promoted cell division, while pure red light or white light enabled increased cell sizes, cellular pigment, starch and lipid contents, and biomass production. Although the photosynthetic performance of H. pluvialis measured as chlorophyll a fluorescence was not significantly affected by light spectra, the lipid profiles, particularly chloroplast membrane lipids, showed remarkable changes with light spectra. The contents of most lipid species in the blue/red light 1/2 group, which showed the fastest cell division, remained at a moderate level compared with those under other light spectra, indicating the fastest dividing cells were featured by a fine-tuned lipid profile. From biotechnical perspective, this comprehensive study can provide insights into the development of appropriate light regimes to promote the cell density or biomass of H. pluvialis mass culture.
Full article
(This article belongs to the Special Issue Growth and Division in Algae)
►▼
Show Figures
Figure 1
Open AccessArticle
Generating iPSCs with a High-Efficient, Non-Invasive Method—An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming
by
, , , , , , and
Cells 2022, 11(12), 1955; https://doi.org/10.3390/cells11121955 (registering DOI) - 17 Jun 2022
Abstract
Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin
[...] Read more.
Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin biopsies. Nevertheless, to facilitate and simplify the process, which can be divided into three main steps (collecting, culturing and reprogramming), the whole procedure of generating hair keratinocytes has to be revised and upgraded continuously. In this study, we address advancements and approaches which improve the generation and handling of primary HF-derived keratinocytes tremendously, e.g., for iPSCs reprogramming. We not only evaluated different serum- and animal-origin-free media, but also supplements and coating solutions for an enhanced protocol. Here, we demonstrate the importance of speed and accuracy in the collecting step, as well as the choice of the right transportation medium. Our results lead to a more defined approach that further increases the reliability of downstream experiments and inter-laboratory reproducibility. These improvements will make it possible to obtain keratinocytes from plucked human hair for the generation of donor-specific iPSCs easier and more efficient than ever before, whilst preserving a non-invasive capability.
Full article
(This article belongs to the Section Stem Cells)
►▼
Show Figures
Graphical abstract
Open AccessReview
Reciprocal Interactions between Oligodendrocyte Precursor Cells and the Neurovascular Unit in Health and Disease
Cells 2022, 11(12), 1954; https://doi.org/10.3390/cells11121954 (registering DOI) - 17 Jun 2022
Abstract
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these
[...] Read more.
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these interactions are largely unclear, but are increasingly studied. Although OPCs appear to be a rather homogenous cell population in the central nervous system (CNS), they present with an enormous potential to adapt to their microenvironment. In this review, it is summarized what is known about the various roles of OPC-vascular interactions, and the circumstances under which they have been observed.
Full article
(This article belongs to the Special Issue Remodeling and Recovery in the Neurovascular Unit)
Open AccessArticle
Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques
by
, , , , , , , , , and
Cells 2022, 11(12), 1953; https://doi.org/10.3390/cells11121953 (registering DOI) - 17 Jun 2022
Abstract
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques.
[...] Read more.
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.
Full article
(This article belongs to the Collection Non-human Chromosome Analysis)
Open AccessReview
The Roles of TNFR2 Signaling in Cancer Cells and the Tumor Microenvironment and the Potency of TNFR2 Targeted Therapy
Cells 2022, 11(12), 1952; https://doi.org/10.3390/cells11121952 (registering DOI) - 17 Jun 2022
Abstract
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted
[...] Read more.
The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2’s multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.
Full article
(This article belongs to the Special Issue The TNF Receptor Superfamily in Health and Disease)
►▼
Show Figures
Figure 1
Open AccessReview
The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity
Cells 2022, 11(12), 1951; https://doi.org/10.3390/cells11121951 (registering DOI) - 17 Jun 2022
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for
[...] Read more.
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Angiogenesis and Inflammation in Retinal Diseases)
►▼
Show Figures
Figure 1
Open AccessReview
Current and Novel Therapeutic Approaches for Treatment of Diabetic Macular Edema
by
, , , and
Cells 2022, 11(12), 1950; https://doi.org/10.3390/cells11121950 - 17 Jun 2022
Abstract
Diabetic macular edema (DME) is a major ocular complication of diabetes mellitus (DM), leading to significant visual impairment. DME’s pathogenesis is multifactorial. Focal edema tends to occur when primary metabolic abnormalities lead to a persistent hyperglycemic state, causing the development of microaneurysms, often
[...] Read more.
Diabetic macular edema (DME) is a major ocular complication of diabetes mellitus (DM), leading to significant visual impairment. DME’s pathogenesis is multifactorial. Focal edema tends to occur when primary metabolic abnormalities lead to a persistent hyperglycemic state, causing the development of microaneurysms, often with extravascular lipoprotein in a circinate pattern around the focal leakage. On the other hand, diffusion edema is due to a generalized breakdown of the inner blood–retinal barrier, leading to profuse early leakage from the entire capillary bed of the posterior pole with the subsequent extravasation of fluid into the extracellular space. The pathogenesis of DME occurs through the interaction of multiple molecular mediators, including the overexpression of several growth factors, including vascular endothelial growth factor (VEGF), insulin-like growth factor-1, angiopoietin-1, and -2, stromal-derived factor-1, fibroblast growth factor-2, and tumor necrosis factor. Synergistically, these growth factors mediate angiogenesis, protease production, endothelial cell proliferation, and migration. Treatment for DME generally involves primary management of DM, laser photocoagulation, and pharmacotherapeutics targeting mediators, namely, the anti-VEGF pathway. The emergence of anti-VEGF therapies has resulted in significant clinical improvements compared to laser therapy alone. However, multiple factors influencing the visual outcome after anti-VEGF treatment and the presence of anti-VEGF non-responders have necessitated the development of new pharmacotherapies. In this review, we explore the pathophysiology of DME and current management strategies. In addition, we provide a comprehensive analysis of emerging therapeutic approaches to the treatment of DME.
Full article
(This article belongs to the Special Issue Understanding Retinopathy at the Neuro-Glial-Vascular Intersection: Mechanisms, and Potential Therapeutic Targets)
►▼
Show Figures
Figure 1
Open AccessReview
The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond
by
and
Cells 2022, 11(12), 1949; https://doi.org/10.3390/cells11121949 - 17 Jun 2022
Abstract
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes,
[...] Read more.
Neuropsychiatric diseases are among the most common brain developmental disorders, represented by schizophrenia (SZ). The complex multifactorial etiology of SZ remains poorly understood, which reflects genetic vulnerabilities and environmental risks that affect numerous genes and biological pathways. Besides the dysregulation of protein-coding genes, recent discoveries demonstrate that abnormalities associated with non-coding RNAs, including microRNAs and long non-coding RNAs (lncRNAs), also contribute to the pathogenesis of SZ. lncRNAs are an actively evolving family of non-coding RNAs that harbor greater than 200 nucleotides but do not encode for proteins. In general, lncRNA genes are poorly conserved. The large number of lncRNAs specifically expressed in the human brain, together with the genetic alterations and dysregulation of lncRNA genes in the SZ brain, suggests a critical role in normal cognitive function and the pathogenesis of neuropsychiatric diseases. A particular lncRNA of interest is GOMAFU, also known as MIAT and RNCR2. Growing evidence suggests the function of GOMAFU in governing neuronal development and its potential roles as a risk factor and biomarker for SZ, which will be reviewed in this article. Moreover, we discuss the potential mechanisms through which GOMAFU regulates molecular pathways, including its subcellular localization and interaction with RNA-binding proteins, and how interruption to GOMAFU pathways may contribute to the pathogenesis of SZ.
Full article
(This article belongs to the Special Issue Non-coding RNAs: Epigenetic Players Implicated in Human Diseases)
►▼
Show Figures
Figure 1
Open AccessReview
Circular RNA as a Novel Biomarker and Therapeutic Target for HCC
Cells 2022, 11(12), 1948; https://doi.org/10.3390/cells11121948 - 17 Jun 2022
Abstract
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have
[...] Read more.
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5′ terminal cap and 3′ poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.
Full article
(This article belongs to the Special Issue Molecular and Signaling Networks in Cancer Development and Progression)
►▼
Show Figures
Figure 1
Open AccessArticle
Quantitative Succinyl-Proteome Profiling of Turnip (Brassica rapa var. rapa) in Response to Cadmium Stress
by
, , , , , , and
Cells 2022, 11(12), 1947; https://doi.org/10.3390/cells11121947 - 17 Jun 2022
Abstract
Protein post-translational modification (PTM) is an efficient biological mechanism to regulate protein structure and function, but its role in plant responses to heavy metal stress is poorly understood. The present study performed quantitative succinyl-proteome profiling using liquid chromatography–mass spectrometry analysis to explore the
[...] Read more.
Protein post-translational modification (PTM) is an efficient biological mechanism to regulate protein structure and function, but its role in plant responses to heavy metal stress is poorly understood. The present study performed quantitative succinyl-proteome profiling using liquid chromatography–mass spectrometry analysis to explore the potential roles of lysine succinylation modification in turnip seedlings in response to cadmium (Cd) stress (20 μM) under hydroponic conditions over a short time period (0–8 h). A total of 547 succinylated sites on 256 proteins were identified in the shoots of turnip seedlings. These succinylated proteins participated in various biological processes (e.g., photosynthesis, tricarboxylic acid cycle, amino acid metabolism, and response to stimulation) that occurred in diverse cellular compartments according to the functional classification, subcellular localization, and protein interaction network analysis. Quantitative analysis showed that the intensities of nine succinylation sites on eight proteins were significantly altered (p < 0.05) in turnip shoots after 8 h of Cd stress. These differentially succinylated sites were highly conserved in Brassicaceae species and mostly located in the conserved domains of the proteins. Among them, a downregulated succinylation site (K150) in the glycolate oxidase protein (Gene0282600.1), an upregulated succinylation site (K396) in the catalase 3 protein (Gene0163880.1), and a downregulated succinylation site (K197) in the glutathione S-transferase protein (Gene0315380.1) may have contributed to the altered activity of the corresponding enzymes, which suggests that lysine succinylation affects the Cd detoxification process in turnip by regulating the H2O2 accumulation and glutathione metabolism. These results provide novel insights into understanding Cd response mechanisms in plants and important protein modification information for the molecular-assisted breeding of Brassica varieties with distinct Cd tolerance and accumulation capacities.
Full article
(This article belongs to the Special Issue Research on Plant Functional Genomics and Stress Response)
►▼
Show Figures
Figure 1
Open AccessFeature PaperReview
Exosome-Mediated Immunosuppression in Tumor Microenvironments
Cells 2022, 11(12), 1946; https://doi.org/10.3390/cells11121946 - 16 Jun 2022
Abstract
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive
[...] Read more.
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.
Full article
(This article belongs to the Special Issue Exosomes as Mediators of Immunosuppression in Tumor and Chronic Inflammatory Microenvironments)
►▼
Show Figures
Figure 1
Open AccessFeature PaperReview
Diving into the Evolutionary History of HSC70-Linked Selective Autophagy Pathways: Endosomal Microautophagy and Chaperone-Mediated Autophagy
by
, , , , , and
Cells 2022, 11(12), 1945; https://doi.org/10.3390/cells11121945 - 16 Jun 2022
Abstract
Autophagy is a pleiotropic and evolutionarily conserved process in eukaryotes that encompasses different types of mechanisms by which cells deliver cytoplasmic constituents to the lysosome for degradation. Interestingly, in mammals, two different and specialized autophagic pathways, (i) the chaperone-mediated autophagy (CMA) and (ii)
[...] Read more.
Autophagy is a pleiotropic and evolutionarily conserved process in eukaryotes that encompasses different types of mechanisms by which cells deliver cytoplasmic constituents to the lysosome for degradation. Interestingly, in mammals, two different and specialized autophagic pathways, (i) the chaperone-mediated autophagy (CMA) and (ii) the endosomal microautophagy (eMI), both rely on the use of the same cytosolic chaperone HSPA8 (also known as HSC70) for targeting specific substrates to the lysosome. However, this is not true for all organisms, and differences exist between species with respect to the coexistence of these two autophagic routes. In this paper, we present an in-depth analysis of the evolutionary history of the main components of CMA and eMI and discuss how the observed discrepancies between species may contribute to improving our knowledge of these two functions and their interplays.
Full article
(This article belongs to the Special Issue New Advance in Chaperone-Mediated Autophagy)
►▼
Show Figures
Figure 1
Open AccessFeature PaperArticle
The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients
by
, , , , , , , , , , and
Cells 2022, 11(12), 1944; https://doi.org/10.3390/cells11121944 - 16 Jun 2022
Abstract
Background: Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. Methods: Using quantitative,
[...] Read more.
Background: Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. Methods: Using quantitative, reverse-transcription PCR, we assessed L1 mRNA expression in 12 BC cells, 210 BC patients and in 47 normal mammary tissues. L1 expression was then correlated with molecular and clinicopathological data. Results: We identified a tumor-exclusive expression of L1s, absent in normal mammary cells and tissues. A positive correlation between L1 expression and tumor dedifferentiation, lymph-node involvement and increased immune infiltration was detected. Molecular subtyping highlighted an enrichment of L1s in basal-like cells and cancers. By exploring disease-free survival, we identified L1 overexpression as an independent biomarker for patients with a high risk of recurrence in hormone-receptor-negative BCs. Conclusions: Overall, L1 reactivation identified BCs with aggressive features and patients with a worse clinical fate.
Full article
(This article belongs to the Special Issue Predictive Molecular Pathology in Breast Cancer)
►▼
Show Figures
Figure 1
Open AccessReview
Aberrant Synaptic Pruning in CNS Diseases: A Critical Player in HIV-Associated Neurological Dysfunction?
by
and
Cells 2022, 11(12), 1943; https://doi.org/10.3390/cells11121943 - 16 Jun 2022
Abstract
Even in the era of effective antiretroviral therapies, people living with Human Immunodeficiency Virus (HIV) are burdened with debilitating neurological dysfunction, such as HIV-associated neurocognitive disorders (HAND) and HIV-associated pain, for which there are no FDA approved treatments. Disruption to the neural circuits
[...] Read more.
Even in the era of effective antiretroviral therapies, people living with Human Immunodeficiency Virus (HIV) are burdened with debilitating neurological dysfunction, such as HIV-associated neurocognitive disorders (HAND) and HIV-associated pain, for which there are no FDA approved treatments. Disruption to the neural circuits of cognition and pain in the form of synaptic degeneration is implicated in developing these dysfunctions. Glia-mediated synaptic pruning is a mechanism of structural plasticity in the healthy central nervous system (CNS), but recently, it has been discovered that dysregulated glia-mediated synaptic pruning is the cause of synaptic degeneration, leading to maladaptive plasticity and cognitive deficits in multiple diseases of the CNS. Considering the essential contribution of activated glial cells during the development of HAND and HIV-associated pain, it is possible that glia-mediated synaptic pruning is the causative mechanism of synaptic degeneration induced by HIV. This review will analyze the known examples of synaptic pruning during disease in order to better understand how this mechanism could contribute to the progression of HAND and HIV-associated pain.
Full article
(This article belongs to the Special Issue The Past, Present and Future of NeuroHIV: A Perspective to A Cure)
►▼
Show Figures
Figure 1
Open AccessArticle
The Association of MEG3 lncRNA with Nuclear Speckles in Living Cells
by
, , , , , and
Cells 2022, 11(12), 1942; https://doi.org/10.3390/cells11121942 - 16 Jun 2022
Abstract
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear
[...] Read more.
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear speckles in living cells, we generated a fluorescently tagged MEG3 transcript that could be detected in real time. Under regular conditions, transient association of MEG3 with nuclear speckles was observed, including a nucleoplasmic fraction. Transcription or splicing inactivation conditions, known to affect nuclear speckle structure, showed prominent and increased association of MEG3 lncRNA with the nuclear speckles, specifically forming a ring-like structure around the nuclear speckles. This contrasted with metastasis-associated lung adenocarcinoma (MALAT1) lncRNA that is normally highly associated with nuclear speckles, which was released and dispersed in the nucleoplasm. Under normal conditions, MEG3 dynamically associated with the periphery of the nuclear speckles, but under transcription or splicing inhibition, MEG3 could also enter the center of the nuclear speckle. Altogether, using live-cell imaging approaches, we find that MEG3 lncRNA is a transient resident of nuclear speckles and that its association with this nuclear body is modulated by the levels of transcription and splicing activities in the cell.
Full article
(This article belongs to the Special Issue Technologies and Applications of RNA Imaging)
►▼
Show Figures
Figure 1
Open AccessArticle
The Shape of Human Red Blood Cells Suspended in Autologous Plasma and Serum
Cells 2022, 11(12), 1941; https://doi.org/10.3390/cells11121941 - 16 Jun 2022
Abstract
(1) Background: In almost all studies of the shape of the human red blood cell (RBC), the suspending medium was a salt solution supplemented with albumin. However, the ratio of thickness across the dimple region to the thickness of the rim (THR) depends
[...] Read more.
(1) Background: In almost all studies of the shape of the human red blood cell (RBC), the suspending medium was a salt solution supplemented with albumin. However, the ratio of thickness across the dimple region to the thickness of the rim (THR) depends on the albumin concentration. Values of the THR in the literature range from 0.27 to 0.627 whereas in the present work it was 0.550 or 0.601 whether measured in plasma or serum. (2) Methods: 9911 RBCs of eight donors were suspended in autologous plasma or serum. Sedimented RBCs were observed under bright field illumination at 416 nm. From the profiles of gray value, the THR was determined. (3) Results: The THR displays a wide distribution within a single blood sample. A direct correlation of THR and spontaneous curvature of the membrane is likely. The variation of the mean THR between different donors is large. The aspect ratio of RBCs viewed face-on ranged on average from 1 to 1.48. In oval RBCs, the rim is thicker along the major axis than along the minor axis, an effect increasing with increasing aspect ratio. Remodeling of the membrane skeleton occurs in vivo with a characteristic time ( ) on the order of 1 h. (4) Conclusions: Consideration of these data in models of RBC behavior might improve the agreement with observations. h suggests a more general type of reference configuration of the membrane skeleton than a stress free shape.
Full article
(This article belongs to the Special Issue Advances in Red Blood Cells Research)
►▼
Show Figures
Figure 1
Journal Menu
► ▼ Journal Menu-
- Cells Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Cancers, Cells, Current Oncology, Onco
Adaptation Mechanisms in Therapy-Resistant Breast Cancer
Topic Editors: Luisa Alejandra Helguero, Iola F. Duarte Ciceco, Ana M. GilDeadline: 31 July 2022
Topic in
Cells, IJMS, JCM, JPM, Pharmaceutics
Cystic Fibrosis
Topic Editors: Nicoletta Pedemonte, Miqueias Lopes Pacheco, Vito Terlizzi, Paolo Scudieri, Fabio BertozziDeadline: 31 August 2022
Topic in
Applied Sciences, Bioengineering, Cells, Micromachines
Bioreactors for Advanced Cell Culture, (Nano)toxicity, Regenerative Medicine and Organ Bioengineering
Topic Editors: Ludovica Cacopardo, Sandeep Keshavan, Bharath Babu NunnaDeadline: 30 September 2022
Topic in
Cells, Life, Physiologia, Sports
Skeletal Muscle Structure and Function in Health and Disease
Topic Editors: Gopal J. Babu, Maria PennutoDeadline: 15 December 2022
Conferences
Special Issues
Special Issue in
Cells
Molecular and Cellular Mechanisms underlying the Immunomodulatory Potential of Mesenchymal Stromal Cells
Guest Editor: Selim KuçiDeadline: 30 June 2022
Special Issue in
Cells
Molecular and Cell Basis of Skin Diseases and Aging
Guest Editors: �?ngeles Juarranz, Elisa CarrascoDeadline: 15 July 2022
Special Issue in
Cells
EGF Receptor (EGFR) Trafficking Pathways: From Epithelial Cell Functions to Epithelial Carcinomas
Guest Editor: Cathleen R. CarlinDeadline: 24 July 2022
Special Issue in
Cells
B Lymphocytes in Auto-Inflammatory Diseases
Guest Editor: Moncef M. ZoualiDeadline: 31 July 2022
Topical Collections
Topical Collection in
Cells
Role of Autophagy in Viral Infection
Collection Editor: Grant R. Campbell
Topical Collection in
Cells
Molecular signaling, Circuit Neuroplasticity and the Cognitive Function
Collection Editor: Francisco Monje
Topical Collection in
Cells
Fibroblast Growth Factor Receptor (FGFR) Signaling Pathway in Cancer and Inflammation
Collection Editors: Antoni Wiedlocha, Malgorzata Zakrzewska