Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16886)

Search Parameters:
Keywords = film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract
Polymers 2022, 14(12), 2487; https://doi.org/10.3390/polym14122487 (registering DOI) - 18 Jun 2022
Abstract
This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/ [...] Read more.
This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 μm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1–12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films’ solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 μM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities. Full article
(This article belongs to the Special Issue Biopolymer-Based Films and Coatings for Packaging Applications)
Show Figures

Figure 1

Article
Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation
Micromachines 2022, 13(6), 963; https://doi.org/10.3390/mi13060963 (registering DOI) - 18 Jun 2022
Abstract
Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow [...] Read more.
Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow kinetic properties. This study proposes new nanoelectrode arrays for high Faradaic efficiency of the electro-sorption reaction of hydrogen in an alkaline electrolyte. A comparative study of the nanoelectrode arrays, consisting of platinum or palladium or bimetallic nanoparticles (NPs) Pt80Pd20 (wt.%), obtained by nanosecond pulsed laser ablation in aqueous environment, casted onto graphene paper, is proposed. The effects of thin films of perfluoro-sulfonic ionomer on the material morphology, nanoparticles dispersion, and electrochemical performance have been investigated. The NPs-GP systems have been characterized by field emission scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge cycles. Faradaic efficiency up to 86.6% and hydrogen storage capacity up to 6 wt.% have been obtained by the Pt-ionomer and Pd/Pt80Pd20 systems, respectively. Full article
(This article belongs to the Special Issue Metal Nanostructures and Devices)
Show Figures

Figure 1

Article
Preparation of Ion2+-COS/SA Multifunctional Gel Films for Skin Wound Healing by an In Situ Spray Method
Mar. Drugs 2022, 20(6), 401; https://doi.org/10.3390/md20060401 (registering DOI) - 18 Jun 2022
Viewed by 143
Abstract
The rapid preparation of safe and efficient wound dressings that meet the needs of the entire repair process remains a major challenge for effective therapeutic wound healing. Natural, sprayable Ion2+-COS/SA multifunctional dual-network gel films created by the in situ coordination of [...] Read more.
The rapid preparation of safe and efficient wound dressings that meet the needs of the entire repair process remains a major challenge for effective therapeutic wound healing. Natural, sprayable Ion2+-COS/SA multifunctional dual-network gel films created by the in situ coordination of chitooligosaccharide (COS), metal ions and sodium alginate (SA) using casting and an in-situ spray method were synthesized. The gel films exhibited excellent physicochemical properties such as swelling, porosity and plasticity at a COS mass fraction of 3%. Furthermore, at this mass fraction, the addition of bimetallic ions led to the display of multifunctional properties, including significant antioxidant, antibacterial and cytocompatibility properties. In addition, experiments in a total skin defect model showed that this multifunctional gel film accelerates wound healing and promotes skin regeneration. These results suggest that the sprayable Ion2+-COS/SA multifunctional pro-healing gel film may be a promising candidate for the clinical treatment of allodermic wounds. Full article
Show Figures

Graphical abstract

Review
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites
Materials 2022, 15(12), 4312; https://doi.org/10.3390/ma15124312 (registering DOI) - 17 Jun 2022
Viewed by 245
Abstract
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the [...] Read more.
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail. Full article
Show Figures

Figure 1

Article
Fabrication and Properties of Tree-Branched Cellulose Nanofibers (CNFs) via Acid Hydrolysis Assisted with Pre-Disintegration Treatment
Nanomaterials 2022, 12(12), 2089; https://doi.org/10.3390/nano12122089 (registering DOI) - 17 Jun 2022
Viewed by 217
Abstract
In this paper, the novel morphology of cellulose nanofibers (CNFs) with a unique tree-branched structure was discovered by using acid hydrolysis assisted with pre-disintegration treatment from wood pulps. For comparison, the pulps derived from both softwood and hardwood were utilized to extract nanocellulose [...] Read more.
In this paper, the novel morphology of cellulose nanofibers (CNFs) with a unique tree-branched structure was discovered by using acid hydrolysis assisted with pre-disintegration treatment from wood pulps. For comparison, the pulps derived from both softwood and hardwood were utilized to extract nanocellulose in order to validate the feasibility of proposed material fabrication technique. The morphology, crystalline structures, chemical structures, and thermal stability of nanocellulose were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric analysis (TGA). Prior to acid hydrolysis, softwood and hardwood pulps underwent the disintegration treatment in the fiber dissociator. It has been found that nanocellulose derived from disintegrated pulps possesses much longer fiber length (approximately 5–6 μm) and more evident tree-branched structures along with lower degree of crystallinity when compared with those untreated counterparts. The maximum mass loss rate of CNFs takes place at the temperature level of approximately 225 °C, and appears to be higher than that of cellulose nanowhiskers (CNWs), which might be attributed to an induced impact of amorphous content. On the other hand, disintegration treatment is quite beneficial to the enhancement of tensile strength of nanocellulose films. This study elaborates a new route of material fabrication toward the development of well-tailored tree-branched CNFs in order to broaden the potential widespread applications of nanocellulose with diverse morphological structures. Full article
(This article belongs to the Special Issue From Biomass to Nanomaterials)
Show Figures

Graphical abstract

Article
Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials
Photonics 2022, 9(6), 431; https://doi.org/10.3390/photonics9060431 (registering DOI) - 17 Jun 2022
Viewed by 179
Abstract
This paper presents theoretical studies of Fano resonance based electric-field (E-field) sensors. E-field sensor based on two electro-optical (EO) materials i.e., barium titanate (BaTiO3, BTO) nanoparticles and relaxor ferroelectric material Pb(Mg1/3Nb2/3)O3-PbTiO [...] Read more.
This paper presents theoretical studies of Fano resonance based electric-field (E-field) sensors. E-field sensor based on two electro-optical (EO) materials i.e., barium titanate (BaTiO3, BTO) nanoparticles and relaxor ferroelectric material Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) combined with nanostructure are studied. As for the BTO based E-field sensor, a configuration of filling the BTO nanoparticles into a nano-patterned thin film silicon is proposed. The achieved resonance quality factor (Q) is 11,855 and a resonance induced electric field enhancement factor is of around 105. As for the design of PMN-PT based E-field sensor, a configuration by combining two square lattice air holes in PMN-PT thin film but with one offsetting hole left is chosen. The achieved resonance Q is of 9,273 and an electric field enhancement factor is of around 96. The resonance wavelength shift sensitivity of PMN-PT nanostructured can reach up to 4.768 pm/(V/m), while the BTO based nanostructure has a sensitivity of 0.1213 pm/(V/m). If a spectrum analyzer with 0.1 pm resolution is considered, then the minimum detection of the electric field Emin is 20 mV/m and 0.82 V/m for PMN-PT and BTO based nanostructures, respectively. The nano-patterned E-field sensor studied here are all dielectric, it has therefore the advantage of large measurement bandwidth, high measurement fidelity, high spatial resolution and high sensitivity. Full article
(This article belongs to the Special Issue Advances in Photonic Integrated Devices and Circuits)
Show Figures

Figure 1

Article
Octenyl Succinic Anhydride Modified Pearl Millet Starches: An Approach for Development of Films/Coatings
Polymers 2022, 14(12), 2478; https://doi.org/10.3390/polym14122478 (registering DOI) - 17 Jun 2022
Viewed by 191
Abstract
Pearl millet starches were modified at pH 8.0 using 3.0% octenyl succinic anhydride (OSA), and their pasting, rheological properties, and in vitro digestibility were analyzed. The degree of substitution (D.C.) of OSA-modified starches varied from 0.010 to 0.025. The amylose content decreased after [...] Read more.
Pearl millet starches were modified at pH 8.0 using 3.0% octenyl succinic anhydride (OSA), and their pasting, rheological properties, and in vitro digestibility were analyzed. The degree of substitution (D.C.) of OSA-modified starches varied from 0.010 to 0.025. The amylose content decreased after modification, while the reverse was observed for swelling power. After OSA modification, the pasting viscosities (peak, trough, setback (cP)) of the modified starches increased compared to their native counterparts. G′ (storage modulus) and G″ (loss modulus) decreased significantly (p < 0.05) compared to their native counterparts during heating. Yield stress (σo), consistency (K), and flow behavior index (n) varied from 9.8 to 87.2 Pa, 30.4 to 91.0 Pa.s., and 0.25 to 0.47, respectively. For starch pastes, steady shear properties showed n < 1, indicating shear-thinning and pseudoplastic behavior. The readily digestible starch (RDS) and slowly digestible starch (SDS) contents decreased, while the resistant starch (R.S.) content increased. After OSA treatment, the solubility power of the starches increased; this property of OSA starches speeds up the biodegradability process for the films, and it helps to maintain a healthy environment. Full article
(This article belongs to the Special Issue Smart Polymeric Films and Coatings for Food Packaging Applications)
Show Figures

Figure 1

Article
Effects of Water and Fertilizer Flow Rates on the Mixing Process and Fertilization Uniformity of Cotton under Mulch Drip Irrigation
Water 2022, 14(12), 1952; https://doi.org/10.3390/w14121952 (registering DOI) - 17 Jun 2022
Viewed by 138
Abstract
Water and fertilizer flow rates are the most convenient variable to control in the process of drip irrigation under mulch. Suitable water and fertilizer flow rates are beneficial to improve water and fertilizer uniformity. Nine groups of water and fertilizer rate combinations were [...] Read more.
Water and fertilizer flow rates are the most convenient variable to control in the process of drip irrigation under mulch. Suitable water and fertilizer flow rates are beneficial to improve water and fertilizer uniformity. Nine groups of water and fertilizer rate combinations were set in the common water and fertilizer rate range to study the influence of the water and fertilizer rate on fertilization uniformity. The numerical simulation of the mixing process in the main pipe was first carried out based on the multiphase flow theory, and then the field experiment for the different water and fertilizer rate combinations in the machine-picked cotton-planting pattern (one film, three tubes and six rows) was conducted. Through the numerical simulation of the mixing process in the pipeline and the analysis of water and fertilizer uniformity field experiment results, it was found that the uniform mixing length is related to the water and fertilizer flow rate, and the water and fertilizer flow rate had some effect on fertilizer uniformity. In the irrigation system with a main pipe diameter of 100 mm and a fertilizer injection pipe diameter of 20 mm, the water fertilizer flow rate ratio should be between 3–8 to ensure the effect of the mixing process and fertilization uniformity. A water flow rate of 2 m s−1 and fertilizer flow rate of 0.35 m s−1 is recommended during the fertilizer process in northern Xinjiang. This paper shows the feasibility of numerical simulation in the study of cotton water and fertilizer mixing processes, and the results can provide some reference for cotton planting. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Article
High Temperature Tribological Performance of Steel/Copper Friction Pairs Lubricated with a Modified C-WS2-(Fe3O4 + TiN) Nanoadditives in Non-Copper Coated Solid Wires
Nanomaterials 2022, 12(12), 2091; https://doi.org/10.3390/nano12122091 (registering DOI) - 17 Jun 2022
Viewed by 119
Abstract
In this study, four kinds of nanoparticles, graphite, WS2, Fe3O4, and TiN, were used as lubricating additives for steel/copper friction pairs to solve the problem of welding contact tube wear with non-copper-coated solid wire at high temperature. [...] Read more.
In this study, four kinds of nanoparticles, graphite, WS2, Fe3O4, and TiN, were used as lubricating additives for steel/copper friction pairs to solve the problem of welding contact tube wear with non-copper-coated solid wire at high temperature. The single and composite nanoparticles have excellent dispersion stability in absolute ethanol under the action of the compound surfactant NaSTA + OA + PVP (i.e., sodium stearate, oleic acid, and polyvinylpyrrolidone). The tribological test results showed that the maximum decrement, with reference to the average coefficient of friction and wear volumes, were measured with nanoparticle concentration in 1:1:1 ratio at 300 °C. Compared with dry friction, the average friction coefficient and wear volume are reduced by 74.3% and 84.8%, respectively, which may be attributed to the formation of a stable tribo-film mainly composed of C–O, Fe2O3, WO3, TiO2, TiNxOy composite on the worn surface. Therefore, it is considered that the combined lubrication effects of the ball-bearing effect, repairing of worn surfaces, and the tribo-film resulted in the lowest friction and wear. Full article
Show Figures

Figure 1

Article
Performance and Structure Evaluation of Gln-Lys Isopeptide Bond Crosslinked USYK-SPI Bioplastic Film Derived from Discarded Yak Hair
Polymers 2022, 14(12), 2471; https://doi.org/10.3390/polym14122471 (registering DOI) - 17 Jun 2022
Viewed by 150
Abstract
To reduce the waste from yak hair and introduce resource recycling into the yak-related industry, an eco-friendly yak keratin-based bioplastic film was developed. We employed yak keratin (USYK) from yak hair, soy protein isolate (SPI) from soybean meal as a film-forming agent, transglutaminase [...] Read more.
To reduce the waste from yak hair and introduce resource recycling into the yak-related industry, an eco-friendly yak keratin-based bioplastic film was developed. We employed yak keratin (USYK) from yak hair, soy protein isolate (SPI) from soybean meal as a film-forming agent, transglutaminase (EC 2.3.2.13, TGase) as a catalytic crosslinker, and glycerol as a plasticizer for USYK-SPI bioplastic film production. The structures of the USYK-SPI bioplastic film were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-Ray diffraction (XRD). The mechanical properties, the thermal behavior, light transmittance performance, and water vapor permeability (WVP) were measured. The results revealed that the added SPI possibly acted as a reinforcement. The formation of Gln-Lys isopeptide bonds and hydrophobic interactions led to a stable crosslinking structure of USYK-SPI bioplastic film. The thermal and the mechanical behaviors of the USYK-SPI bioplastic film were improved. The enhanced dispersion and formation of co-continuous protein matrices possibly produced denser networks that limited the diffusion of water vapor and volatile compounds in the USYK-SPI bioplastic films. Moreover, the introduction of SPI prompted the relocation of hydrophobic groups on USYK molecules, which gave the USYK-SPI bioplastic film stronger surface hydrophobicity. The SPI and USYK molecules possess aromatic amino residuals (tyrosine, phenylalanine, tryptophan), which can absorb ultraviolet radiation. Thus, the USYK-SPI bioplastic films were shown to have an excellent UV barrier. The synergy effect between USYK and SPI is not only able to improve rigidity and the application performance of keratin-based composite film but can also reduce the cost of the keratin-based composite film through the low-cost of the SPI alternative which partially replaces the high-cost of keratin. The data obtained from this research can provide basic information for further research and practical applications of USYK-SPI bioplastic films. There is an increasing demand for the novel USYK-SPI bioplastic film in exploit packaging material, biomedical materials, eco-friendly wearable electronics, and humidity sensors. Full article
(This article belongs to the Special Issue Advance in Functional Biological Polymer Membranes)
Show Figures

Graphical abstract

Article
Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells
Materials 2022, 15(12), 4300; https://doi.org/10.3390/ma15124300 (registering DOI) - 17 Jun 2022
Viewed by 154
Abstract
The high efficiency of perovskite solar cells strongly depends on the quality of perovskite films and carrier extraction layers. Here, we present the results of an investigation of the photoelectric properties of solar cells based on perovskite films grown on compact and mesoporous [...] Read more.
The high efficiency of perovskite solar cells strongly depends on the quality of perovskite films and carrier extraction layers. Here, we present the results of an investigation of the photoelectric properties of solar cells based on perovskite films grown on compact and mesoporous titanium dioxide layers. Kinetics of charge carrier transport and their extraction in triple-cation perovskite solar cells were studied by using transient photovoltage and time-resolved photoluminescence decay measurements. X-ray diffraction analysis revealed that the crystallinity of the perovskite films grown on mesoporous titanium dioxide is better compared to the films grown on compact TiO2. Mesoporous structured perovskite solar cells are found to have higher power conversion efficiency mainly due to enlarged perovskite/mesoporous -TiO2 interfacial area and better crystallinity of their perovskite films. Full article
(This article belongs to the Special Issue Emerging Materials for Energy Applications)
Article
Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties
Molecules 2022, 27(12), 3895; https://doi.org/10.3390/molecules27123895 (registering DOI) - 17 Jun 2022
Viewed by 215
Abstract
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × [...] Read more.
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications. Full article
(This article belongs to the Special Issue Polymers in Biomedical Applications)
Article
Comparison of Properties of Colorless and Transparent Polyimide Nanocomposites Containing Chemically Modified Nanofillers: Functionalized-Graphene and Organoclay
Polymers 2022, 14(12), 2469; https://doi.org/10.3390/polym14122469 (registering DOI) - 17 Jun 2022
Viewed by 104
Abstract
Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and transparent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which [...] Read more.
Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and transparent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which hexadecylamine (C16) was substituted on graphene sheet (GS) and montmorillonite (MMT), respectively, were used as nanofillers to reinforce the CPI hybrid films. These two nanofillers were admixed in varying loadings of 0.25 to 1.00 wt%, and the morphology, thermal properties, and optical transparency of the hybrid films were investigated and compared. The results suggest that the thermal properties of the CPI hybrid films can be improved by adding only a small amount of nanofiller. Transmission electron microscopy results of the CPI hybrid film containing two types of fillers suggested that the fillers were well dispersed in the nano-size in the matrix polymer; however, some of the fillers were observed as agglomerated particles above the critical concentration of 0.50 wt%. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Article
Modulated Fluorescence in LB Films Based on DADQs—A Potential Sensing Surface?
Molecules 2022, 27(12), 3893; https://doi.org/10.3390/molecules27123893 (registering DOI) - 17 Jun 2022
Viewed by 121
Abstract
Novel fluorescent Langmuir-Blodgett (LB) films have been constructed from three different amphiphilic dicynaoquinodimethanes (DADQs). The DADQs varied in functional group structure, which had an impact on the LB film structure and the fluorescence properties. As the fluorescence of DADQs competes with non-radiative decay [...] Read more.
Novel fluorescent Langmuir-Blodgett (LB) films have been constructed from three different amphiphilic dicynaoquinodimethanes (DADQs). The DADQs varied in functional group structure, which had an impact on the LB film structure and the fluorescence properties. As the fluorescence of DADQs competes with non-radiative decay (conformational change), the packing and/or free volume in the LB film will influence the average fluorescence lifetime and integrated intensity. The pristine (blank) LB films were then exposed to a selection of non-fluorescent target analytes (some with environmental relevance) and the fluorescence was measured and analyzed relative to the pristine LB film. Exposure of the LB films to selected target analytes results in a modulation of the fluorescence, both with respect to average fluorescence lifetime and integrated intensity. The modulation of the fluorescence is different for different DADQ LB films and can be attributed to restricted non-radiative decays or charge transfer reactions between target analyte and DADQ LB film. The response from the DADQ LB films shows that these systems can be developed into sensing surfaces based on fluorescence measurements. Full article
Show Figures

Graphical abstract

Article
Preparation and Characterization of Eco-Friendly Transparent Antibacterial Starch/Polyvinyl Alcohol Materials for Use as Wound-Dressing
Micromachines 2022, 13(6), 960; https://doi.org/10.3390/mi13060960 (registering DOI) - 17 Jun 2022
Viewed by 122
Abstract
In this study, eco-friendly and transparent starch-based/polyvinyl alcohol/citric acid composite films are evaluated for their efficacy as wound dressing materials. The starch/polyvinyl alcohol (PVA) materials with added citric acid (0.46–1.83 wt%) and glycerol were made and handled based on the modified casting method. [...] Read more.
In this study, eco-friendly and transparent starch-based/polyvinyl alcohol/citric acid composite films are evaluated for their efficacy as wound dressing materials. The starch/polyvinyl alcohol (PVA) materials with added citric acid (0.46–1.83 wt%) and glycerol were made and handled based on the modified casting method. This new formulation decreases the amount of PVA used in the conventional preparation method. Citric acid ensures an appropriate antibacterial environment for wound-dressing materials. The mechanical, chemical, and surface morphological properties of such films were assessed and analyzed by tensile strength tests, UV–Vis spectrometry, swelling index, and scanning electron microscopy (SEM). Furthermore, the water vapor transmission (WVT) quantity was measured for an ideal wound-healing process to investigate an optimal moisture environment around the wound bed. Moreover, the pH level of the dressings was measured to examine the possibility of bacterial growth around these starch-based films. Additionally, the films’ in-vitro antibacterial activities were studied against the two most common Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus). The new starch-based dressings demonstrated suitable degradation, antibacterial activity, fluid absorption, and adequate mechanical strength, representing wound-dressing materials’ vital features. Full article
(This article belongs to the Special Issue Selected Papers from ICMA2021)
Show Figures

Figure 1

Back to TopTop