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Abstract: Precision oncology, which ensures optimized cancer treatment tailored to the unique
biology of a patient’s disease, has rapidly developed and is of great clinical importance. Deep
learning has become the main method for precision oncology. This paper summarizes the recent
deep-learning approaches relevant to precision oncology and reviews over 150 articles within the last
six years. First, we survey the deep-learning approaches categorized by various precision oncology
tasks, including the estimation of dose distribution for treatment planning, survival analysis and
risk estimation after treatment, prediction of treatment response, and patient selection for treatment
planning. Secondly, we provide an overview of the studies per anatomical area, including the brain,
bladder, breast, bone, cervix, esophagus, gastric, head and neck, kidneys, liver, lung, pancreas, pelvis,
prostate, and rectum. Finally, we highlight the challenges and discuss potential solutions for future
research directions.
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1. Introduction

Precision oncology describes a diverse set of strategies in cancer treatment tailored to
the unique biology of a patient’s disease as each patient has different characteristics that
interact with treatment planning or treatment response [1]. The emergence of precision
oncology, i.e., the development of more personalized and targeted treatment modalities, is
an exciting time in the fight against cancer. Precision oncology has rapidly developed and
become the mainstream of clinical practice. In order to predict and design tailored therapies
to induce clinically meaningful responses, it is essential to understand the correlations
between specific oncogenic mutations, tumor histology, and patient history.

Currently, many types of treatments are used to treat cancer, including radiotherapy,
chemotherapy, chemoradiation, immunotherapy, targeted therapy, surgery, proton therapy,
and photon therapy. To facilitate and improve precision oncology, deep learning has been
adopted for treatment planning and has gained importance and popularity in precision
oncology in recent years. Deep-learning approaches to big data analysis open up new
possibilities in oncology and could have a positive impact on clinical oncology [2]. Deep
learning is able to analyze and detect cancer and identify the best possible treatments
for cancer.

Wang et al. [3] demonstrated that deep learning could be used for automated radio-
therapy planning and has gained enormous attention to improve the quality and efficiency
of treatment planning. Applications of deep learning in precision oncology can be coarsely
divided into dose distribution for treatment planning, survival analysis and risk estima-
tion after treatment, prediction of treatment response, and patient selection for treatment
planning with the type of treatment, such as radiotherapy [4], chemotherapy [5], im-
munotherapy [6], chemoradiation [7], targeted therapy [8], surgery [9], radiosurgery [10],
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and multiple therapy [11]. One particular review of the deep-learning application to
radiotherapy planning was published by Wang et al. [3].

Despite the fact that they cover a significant amount of radiotherapy work, many
crucial aspects of precision oncology were not represented; for example, no work on other
treatments (e.g., chemotherapy, chemoradiation, targeted therapy, immunotherapy) was
included. The purpose of this study is to create a comprehensive overview of all areas in
precision oncology from both methodological and application aspects.

This review contains over 150 papers, the majority of which are recent, covering a
diverse variety of deep-learning applications in precision oncology. A summary table of
selected papers is provided in Table 1, allowing readers to rapidly analyze the information.
To find relevant contributions, PubMed was searched for papers with the term “deep
learning for cancer treatment” in the title or abstract. We examined the references in all of
the publications we selected and discussed with colleagues. We eliminated papers that
did not present precision oncology results. When overlapping work had been reported in
multiple papers, only the most important papers were included. We expect that the search
terms used will cover the majority, if not all, of the deep learning-related work.

The rest of this survey is organized as follows. Section 2 presents an overview of
deep learning that has been used for precision oncology in the context of cancer treat-
ment. Section 3 describes the contributions of deep learning for precision oncology in
different tasks, including dose distribution for treatment planning, survival analysis and
risk estimation after treatment, prediction of treatment response, and patient selection for
treatment planning. Section 4 describes the deep-learning methods in precision oncology
categorized by anatomical application areas. Finally, we highlight the challenges of current
deep-learning approaches and discuss potential solutions for future research directions.
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Table 1. Deep learning for precision oncology.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Bladder Cha et al. [12] CNN 62 patients (65000 regions training;
Leave-one-case-out cross-validation; 29 testing) CT Chemotherapy

Cha et al. [13] CNN 123 patients (82 training; 41 testing) CT Chemotherapy
Wu et al. [14] AlexNet 123 patients (73 training; 41 testing) CT Chemotherapy

Brain Andreas et al. [15] U-Net and HighResNet 402 patients (242 training; 81 validation; 79 testing) MRI + CT Radiotherapy
Han et al. [16] DeepLabV3+ 520 patients (312 training; 104 validation; 104 testing) CT Radiotherapy : WBRT
Jalalifar et al. [17] U-Net 106 patients (90 training; 6 validation; 10 testing) MRI Radiotherapy : SRT

Kazemifar et al. [18] GAN 77 patients with 5-fold cross validation (70% training;
12% validation; 18% testing) MRI + CT Radiotherapy : VMAT

Kazemifar et al. [19] GAN 77 patients (54 training; 12 validation; 11 testing) MRI + CT Radiotherapy : IMPT
Li et al. [20] Cycle GAN 34 patients (28 training; 6 testing) MRI + CT Radiotherapy

Liu et al. [10] CNN 505 patients data with 5-fold cross validation (490
training and validation) MRI Radiosurgery

Maspero et al. [21] cGANs 60 patients (30 training; 10 validation; 20 testing) MRI + CT Radiotherapy : proton
and photon therapy

Wang et al. [22] V-Net 80 patients (75 training; 5 testing) CT Radiosurgery : SRS

Yoon et al. [23] CNN 118 patients (88 training; 30 testing) MRI
Surgery +
Chemoradiotherapy :
CCRT

Yu et al. [4] U-Net 55 patients (40 training; 5 validation; 10 testing) CT Radiotherapy
Breast Bakx et al. [24] U-Net 115 patients (72 training; 18 validation; 15 testing) CT Radiotherapy : IMRT

Byra et al. [25] Inception-ResNet-V2 30 patients with 251 breast masses (212 training; 39
validation) US Chemotherapy : NAC

Chen et al. [26] VGG-16 40 patients with 900 ROI for each patients (30 training;
10 testing) CT Radiotherapy

Adoui et al. [27] CNN 42 patients (42 training; 14 external cases testing) MRI Chemotherapy

Gernaat et al. [28] CNN 2289 patients (803 trainning and validation; 240
testing) CT Radiotherapy

Ha et al. [29] VGG-16 141 patients with 5-fold cross validation (80%
validation; 20% testing) MRI Chemotherapy : NAC

Hedden and Xu [4] U-Net 145 patients (120 training; 5-fold cross validation; 25
testing) CT Radiotherapy : 3D-CRT

Jiang et al. [30] CNN 592 patients (356 training; 236 validation) US Chemotherapy : NAC
Qu et al. [31] CNN 302 patients (244 training; 58 validation) MRI Chemotherapy : NAC
Schreier et al. [32] BibNet 251 patients (149 training; 50 validation; 52 scans CT Radiotherapy

Bone He et al. [9] Inception V3 56 patients (28 training; 28 testing) MRI Surgery
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Table 1. Cont.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Wang et al. [33] Cascade R-CNN 12426 Cells (10 fold cross validation); 300 Cells image
(testing) Phatology Bone marrow smear

Cervix Jihong et al. [34] CNN 140 patients (100 training; 20 validation; 20 testing) CT Radiotherapy : IMRT
Rigaud et al. [35] DeepLabV3 + U-Net 408 patients (255 training; 61 validation; 92 testing) CT Radiotherapy : IMRT

Zaffino et al. [36] U-Net 50 patients (70% training; 30% testing) MRI Radiotherapy :
Brachytherapy

Wang et al. [37] FCN 143 patients (68% training; 32% testing) Pathology: Pap-smear
images Surgery : cervical biopsy

Esophagus Hu et al. [38] CNN 231 patients (161 training; 70 testing) CT Chemoradiation +
Surgery

Jiang et al. [39] Autoencoder + DBN 80 patients with 8-fold cross validation CT Radiotherapy
Jiang et al. [40] CNN + Autoencoder 245 patients (182 training; 63 testing) CT Radiotherapy : IMRT

Gastric Lee et al. [7] RNN-Surv 1190 patients (80% training; 20% testing) Pathology Chemotherapy
Zhang et al. [41] CNN 640 patients (518 training; 122 validation) CT Chemotherapy

Chen et al. [42] ResNet 147 patients (80 training; 35 internal validation; 32
external validation) CT Surgery

Head and neck Cardenas et al. [43] U-Net 71 patients (51 training; 10 validation; 10 testing) CT Radiotherapy
Chen et al. [44] ResNet-101 80 patients (70 training; 10 testing) CT Radiotherapy : IMRT

Diamant et al. [45] CNN 300 patients with 5-fold cross validation (194 training;
106 testing) CT Chemoradiation

Dinkla et al. [46] U-Net 34 patients (22 training; 12 testing) MRI + CT Radiotherapy
Fan et al. [47] ResNet-50 270 patients (195 training; 25 validation; 50 testing) CT Radiotherapy : IMRT

Fujima et al. [48] ResNet-101 113 patients (83 training; 30 testing) CT + PET Surgery +
Chemoradiation

Gronberg et al. [49] Dense Dilated U-Net 340 patients (200 training; 40 validation; 100 testing) CT Radiotherapy : IMRT
Gurney-Champion et al.
[50] U-Net 48 patients with 8-fold cross validation (80% training;

20% validation; 6 testing) MRI Radiotherapy

Ibragimov and Xing [51] CNN 50 patients with 5-fold cross validation (40 training;
10 testing) CT Radiotherapy

Kim et al. [52] DeepSurv 255 patients (183 training; 72 testing) Patients record: oral SCC Surgery
Kim et al. [53] DenseNet 100 patients (80 training; 20 testing) CT Radiotherapy

Koike et al. [54] GAN 107 patients with 5-fold cross validation (92 training;
15 testing) CT Radiotherapy :

IMRT
Koike et al. [55] DenseNet 61 patients (45 training; 16 testing) CT Radiotherapy : VMAT
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Table 1. Cont.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Lalonde et al. [56] U-Net 48 patients (29 training; 9 validation; 10 testing) CT Radiotherapy : proton
therapy (APT)

Liang et al. [57] CNN 185 patients with 4-fold cross-validation CT Radiotherapy
Li et al. [58] cGAN 231 patients (200 training; 16 validation; 15 testing) CT Radiotherapy : IMRT
Lin et al. [59] CNN 1021 patients (715 training; 103 validation; 203 testing) MRI Radiotherapy
Liu et al. [60] U-ResNet-D 190 patients (136 training; 34 validation; 20 testing) CT Radiotherapy : HT
Liu et al. [61] DeepSurv 1055 patients (843 training; 212 validation) Pathology Chemotherapy
Liu et al. [62] GAN 164 patients (117 training; 18 validation; 29 testing) CT + MRI Radiotherapy

Men et al. [63] CNN casacades 100 patients with 5-fold cross validation (80%
training; 20% testing) CT Radiotherapy

Neppl et al. [64] U-Net 81 patients (57 training; 28 validation; 4 testing) MRI + CT Radiotherapy : proton
and photon therapy

Nguyen et al. [65] U-Net + DenseNet 120 patients (80 training; 20 validation; 20 testing) Planning data : VMAT Radiotherapy : VMAT
Nikolov et al. [66] U-Net 486 patients (389 training; 51 validation; 46 testing) CT Radiotherapy
Peng et al. [67] CNN 707 patients (470 training; 237 testing) PET + CT Chemotherapy
Qi et al. [68] GAN + U-Net 45 patients (30 training; 15 testing) MRI + CT Radiotherapy
Tong et al. [69] FCNN 32 patients (22 training; 10 testing) CT Radiotherapy : IMRT
van Rooij et al. [70] U-Net 157 patients (142 training; 15 testing) CT Radiotherapy
Wang et al. [71] CNN 61 patients (61 training; 5 testing) CT + PET Radiotherapy
Zhu et al. [72] U-Net 271 patients (261 training; 10 testing) CT Radiotherapy
Zhong et al. [73] SE-ResNeXt 638 patients (447 training; 191 testing) MRI Chemotherapy

Kidneys Florkow et al. [74] U-Net 66 patients (54 training; 12 testing) MRI + CT Radiotherapy : proton
and photon therapy

Guerreiro et al. [75] U-Net 80 patients (48 training; 12 validation; 20 testing) CT Radiotherapy : proton
and photon therapy

Jackson et al. [76] CNN 113 patients (89 training; 24 testing) CT Radiotherapy

Liver He et al. [77] CapsNet 109 patients (87 training; 22 testing) MRI + Pathology Surgery : liver
transplantation

Ibragimov et al. [78] CNN 72 patients with 8-fold cross validation CT Radiotherapy : SBRT
Ibragimov et al. [78] CNN 125 patients with 20-fold cross validation CT Radiotherapy : SBRT
Ibragimov et al. [79] CNN 125 patients with 10-fold cross validation CT Radiotherapy : SBRT
Ibragimov et al. [80] CNN 122 patients with 20-fold cross validation CT Radiotherapy

Peng et al. [81] ResNet-50 789 patients (562 training; 89 validation; 138 testing) CT Chemotherapy : TACE
therapy

Wei et al. [5] ResNet-10 192 patients (244 training; 48 validation) CT Chemotherapy
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Table 1. Cont.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Zhu et al. [82] CNN 155 patients (101 training; 54 testing) + 25 patients
from external cohort MRI Chemotherapy

Lung Barragan-Montero et al.
[83] U-Net + DenseNet 129 patients with 5-fold cross validation (80 training;

20 validation; 29 testing) Pathology Radiotherapy : IMRT

Cui et al. [84] Dense V-Net 192 patients (147 training, 26 validation; 19 testing) CT Radiotherapy : SBRT
Haq et al. [85] Deeplab V3+ 241 patients (193 training; 24 validation; 24 testing) CT Radiotherapy
He et al. [86] DenseNet 327 patients (236 training; 26 validation; 65 testing) CT Immunotherapy

Huang et al. [8] CNN + ResNet 180 patients with 2-fold cross validation (1-fold
training; 1-fold testing) pathology : H&E Targeted therapy

Liang et al. [87] CNN 70 patients (1000 times bootstrap training; 70
validation) CT Radiotherapy : VMAT

Lou et al. [88] DNN : Deep profiler 944 patients with 5-fold cross validation CT Radiotherapy
Mu et al. [89] CNN 697 patients (284 training; 116 validation; 85 testing) PET/CT Immunotherapy
Tian et al. [90] Deep CNN 939 patients (750 training; 93 validation; 96 training) CT Immunotherapy
Tseng et al. [91] DRL 114 patients (114 training; 34 testing) PET Radiotherapy
Xing et al. [92] HD U-Net 120 patients (72 training; 18 validation; 30 testing) CT Radiotherapy

Xu et al. [93] CNN + RNN 268 patients (179 training; 89 testing) CT + pathology Chemoradiation +
Surgery

Yang et al. [94] CNN + ResNet 180 patients with 2-fold cross validation Pathology Immunotherapy +
Targeted therapy

Yang et al. [6] DNN 200 patients with 5-fold cross validation (5-folds
training; 5-folds testing) CT Immunotherapy

Multi cancer Ding et al. [95] Autoencoder 624 cell lines (520 training; 104 testing) Genomics data Chemotherapy

Sakellaropoulos et al. [96] DNN 1001 cell lines + 251 drugs with 5-fold cross validation
(1001 training; 1001 testing) Genomics data Chemotherapy

Maspero et al. [97] GAN 99 patients (45 training; 24 validation; 30 testing) CT Radiotherapy
Nyflot et al. [98] CNN 558 gamma images (303 training; 255 testing) CT Radiotherapy : IMRT
Yang et al. [99] U-Net 60 patients (36 training; 24 testing) CT Radiotherapy : TRT

Pancreas Liu et al. [100] U-Net 100 patients with 5-fold cross validation (80 training;
20 testing) CT Radiotherapy

Wang et al. [101] CNN 100 patients (80 training; 20 testing) SBRT Radiotherapy : SBRT

Pelvis Arabi et al. [102] Deep CNN 39 patients with 4-fold cross validation (3-fold
training; 1-fold testing) MRI + sCT Radiotherapy

Maspero et al. [103] cGAN 91 patients (32 training; 59 testing) MRI + sCT Radiotherapy
Ju et al. [104] Dense V-Net 100 patients (80 taining, 20 testing) CT Radiotherapy
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Table 1. Cont.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Prostate Bohara et al. [105] U-Net 70 patients (54 training; 6 validation; 10 testing) CT Radiotherapy : IMRT
Chen et al. [106] U-Net 51 patients (36 training; 15 testing) MRI + CT Radiotherapy : IMRT
Elguindi et al. [107] DeepLabV3+ + U-Net 50 patients (40 training; 10 validation; 50 testing) MRI Radiotherapy

Elmahdy et al. [108] CNN 450 patients (350 training; 68 validation; 32 testing) CT Radiotherapy : proton
therapy (IMPT)

Elmahdy et al. [109] CNN 379 patients + 18 patients (259 training; 111 validation;
18 testing) CT Radiotherapy

Kajikawa et al. [110] AlexNet 60 patients with 5-fold cross validation (48 training;
12 testing) CT + structure label Radiotherapy : IMRT

Kajikawa et al. [111] U-Net 95 patients with 5-fold cross validation (64 training;
16 validation; 15 testing) CT Radiotherapy : IMRT

Kandalan et al. [112] U-Net 248 patients (188 training; 60 testing) Planning data : VMAT Radiotherapy : VMAT
Kearney et al. [113] GAN 141 patients (126 training; 15 testing) CT Radiotherapy : SBRT
Kiljunen et al. [114] CNN 900 patients (900 training; 900 testing) CT Radiotherapy
Kontaxis et al. [115] U-Net 101 patients (80 training; 10 validation; 11 testing) MRI Radiotherapy
Landry et al. [56] U-Net 42 patients (27 training; 7 validation; 8 testing) CT Radiotherapy : VMAT
Largent et al. [116] U-Net + GAN 39 patients (25 training; 14 validation) MRI + CT Radiotherapy : VMAT
Li et al. [117] Dense-Res Hybrid Network 106 patients (106 training; 14 testing) IMRT planning Radiotherapy : IMRT
Ma et al. [118] U-Net 70 patients (60 training; 10 testing) CT Radiotherapy : VMAT
Ma et al. [119] U-Net 70 patients (52 training; 8 validation; 10 testing) CT Radiotherapy : VMAT
Ma et al. [120] U-Net 97 patients (69 taining; 8 validation; 20 testing) CT : Patient anatomy Radiotherapy
Murakami et al. [121] GAN 90 patients (81 training; 9 testing) CT Radiotherapy : IMRT
Nemoto et al. [122] U-Net 556 patients (400 training; 100 validation; 56 testing) CT Radiotherapy : IMRT
Nguyen et al. [123] U-Net 88 patients (72 training; 8 validation; 8 testing) IMRT Radiotherapy : IMRT
Nguyen et al. [124] U-Net 70 patients (54 training; 6 validation; 10 testing) IMRT Radiotherapy : IMRT
Barkousaraie et al. [125] DNN 70 patients (50 training; 7 validation; 13 testing) IMRT Radiotherapy : IMRT
Savenije et al. [107] DenseV-Net 150 patients (97 training; 53 testing) MRI Radiotherapy
Shao et al. [126] CNN 152 patients (99 training; 53 testing) MRI + Pathology Radiotherapy

Shin et al. [127] HD U-Net + Residual
DenseNet

73 patients with 5-fold cross validation (80% training;
20% testing) CT Radiotherapy : VMAT

Sumida et al. [128] U-Net 66 patients (50 training; 16 testing) CT Radiotherapy : VMAT

Xing et al. [129] HD U-net 78 patients with 5-fold cross validation (70 training; 8
testing) CT Radiotherapy : IMRT

Rectum Bibault et al. [130] DNN 95 patients with 5-fold cross-validation (4-fold
training; 1-fold testing) CT Chemoradiation
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Table 1. Cont.

Site Reference Deep Learning Methods Dataset Modality Treatment Methods

Bird et al. [131] cGAN 90 patients (46 training; 44 testing) sCT + MRI Radiotherapy

Jin et al. [132] RP-Net 622 patients (321 training; 160 internal validation; 141
external validation) MRI Chemoradiation : NCRT

Liu et al. [133] ResNet-18 235 patients (170 training; 65 external validation) MRI + Pathology Chemoradiation : NCRT
Men et al. [134] CNN + U-Net 278 patients (218 training; 60 testing) CT Radiotherapy

Shi et al. [135] CNN 51 patients with 10-fold cross validation (90%
training; 10% testing) MRI Chemoradiation : CRT

Song et al. [136] DeeplabV3+ + ResUNet +
DDCNN 199 patients (98 training; 38 validation; 63 testing) CT Radiotherapy

Wang et al. [137] U-Net 93 patients (85 training; 8 validation) + 20 patients
double contoured MRI Chemoradiotherapy :

NACT + Surgery
Xu et al. [138] CNN 350 patients (300 training; 50 validation) MRI Surgery
Zhang et al. [139] CNN 383 patients (290 training; 93 testing) MRI Chemoradiation

Zhou et al. [140] ResNet 122 patients with 5-fold cross validation (80 training;
20 validation; 22 testing) CT Radiotherapy : IMRT

Ovarian Wang et al. [141]
R-CNN + Weakly supervised
learning + Inception model 2
and 3

72 Tissue core (66% training; 34%testing; 5 fold cross
validation) Pathology Molecular target therapy:

antiangiogenesis

Thyroid Lin et al. [142] VGG16 + UNet + SegNet 131 WSIs (28 training; 103 testing) Pathology Surgery
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2. Overview of Deep Learning in Precision Oncology

The purpose of this section is to provide an overview of deep-learning architectures
that have been used for precision oncology surveyed in this paper, including convolutional
neural networks (CNN) (see Section 2.1), recurrent neural networks (RNN) (see Section 2.2),
deep neural networks (DNN) (see Section 2.3), generative adversarial networks (GAN)
(see Section 2.4), and other methods (see Section 2.5). Figure 1 presents the commonly
used deep-learning architectures. Furthermore, we describe common CNN models used in
precision oncology, including FCN, AlexNet, VGGNet, ResNet, U-Net, V-Net, GoogLeNet,
DenseNet, CapsNet, DeepLab, RP-Net, Dense-VNet, and BibNet, from Section 2.1.1– 2.1.13.

Figure 1. Deep-learning methods commonly used for precision oncology. (a) Convolution Neural
Network (CNN), (b) Recurrent Neural Network (RNN), (c) Deep Neural Network (DNN), and (d)
Generative Adversarial Network (GAN).

2.1. Convolutional Neural Network (CNN)

In CNNs, the network’s weights are shared in such a way that the network performs
convolution operations on images. This eliminates the need for the model to learn separate
detectors for the same object that appears at different locations in an image, making the
network equivariant with respect to input translations. Furthermore, it also substantially
decreases the number of parameters that must be learned.

The convolution layer consists of several convolution kernels that are used to generate
various feature maps. Each neuron in a feature map is linked to an area of neighboring
neurons in the previous layer. Convolving the input with a learned kernel and then
applying an element-wise nonlinear activation function to the convolved results yields
the new feature map. The kernel is shared by all spatial locations of the input to create
each feature map. Several different kernels are used to create the complete feature maps.
Formally, the feature value at location (i, j) in the kth feature map of nth layer is defined as
follows:

mn
i,j,k = wn

k ∗ xn
i,j + cn

k (1)

where mn
i,j,k is the new feature map; wn

k is the weight vector of the kth filter of the nth layer;
cn

k is the bias term of the kth filter of the nth layer; xn
i,j is the input patch centered at location

(i, j) of the nth layer; ∗ is a convolution operator.
A CNN also contains pooling layers, where pixel values of neighborhoods are pooled

using a permutation invariant function, such as the max or mean operation. This could
expand the receptive field of succeeding convolutional layers by causing some translation
invariance. Fully connected layers are generally introduced at the last part of a CNN
when weights are no longer shared. The activations in the last layer are sent via a soft-
max function to produce a distribution over classes, and the network is trained using
maximum likelihood.
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In the following section, we describe common CNN models used in precision oncology,
including FCN, AlexNet, VGGNet, ResNet, U-Net, V-Net, GoogLeNet, DenseNet, CapsNet,
DeepLab, RP-Net, Dense-VNet, and BibNet, and we illustrate the network architectures in
Figure 2.

Figure 2. CNN architectures commonly used for precision oncology. (a) FCN, (b) AlexNet, (c) VGG-
16, (d) ResNet-18, (e) U-Net, (f) V-Net, (g) Inception-V3, (h) DenseNet, (i) CapsNet, (j) DeepLab,
(k) RP-Net, (l) Dense V-Net, and (m) BibNet.
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2.1.1. Fully Convolutional Network (FCN)

The fully convolutional network (FCN) is mainly used for semantic segmentation.
Shelhamer et al. [143] converted existing classification networks (AlexNet, VGGNet, and
GoogLeNet) into FCN and transferred their learned representations to the segmentation
problem by fine-tuning. A skip architecture is defined to extend the FCN from VGG-16 to
a three-stream net with an 8-pixel stride (see Figure 2a). Adding a skip from the fourth
pooling layer halves the stride by scoring from the stride 16 layers.

That two-stream net is known as FCN-16s, while FCN-8 is defined by adding a
further skip from the third pooling layer to make stride 8 predictions. Wang et al. [37]
proposed modified FCN structure for diagnosis and treatment planning of cervical high
grade squamous intraepithelial lesions (HSILs) or higher (squamous cell carcinoma; SQCC)
using Papanicolaou staining, thereby, enabling automatic examination of cervical smear
on WSIs and identification and quantification of HSILs or higher (SQCC) for further
treatment suggestion.

2.1.2. AlexNet

AlexNet was introduced by Krizhevsky et al. [144] in the ImageNet large-scale visual
recognition challenge (ILSVRC)-2010 and ILSVRC-2012 contests. AlexNet has 60 million
parameters and 650,000 neurons, consists of eight layers, i.e., five convolutional layers
(some of which are followed by max-pooling layers) and three fully connected layers.
The last fully connected layer is fed into a 1000-way softmax, which generates a distribution
across the 1000 class labels. The architecture of AlexNet is shown in Figure 2b. ILSVRC’s
1000 classes impose a 10-bit constraint on the mapping from image to label for each training
example; however, that is insufficient to learn so many parameters without significant
overfitting. As the size of the AlexNet network made overfitting a significant problem,
Krizhevsky et al. [144] used two main ways to reduce overfitting, i.e., data augmentation
and dropout layers. They used dropout to reduce overfitting in the fully connected layers.

AlexNet was trained using pre- and post-treatment CT scans to classify cases as fully
responding or not fully responding to chemotherapy based on the hybrid ROIs for bladder
cancer treatment response [14]. Kajikawa et al. [110] proposed an automated method
based on AlexNet for predicting the dosimetric eligibility of patients with prostate cancer
undergoing radiotherapy. They train AlexNet using CT images and structure labels.

2.1.3. VGGNet

Liu et al. [145] proposed a modified VGG-16 network. The model includes 13 convo-
lution layers and two fully connected layers, as well as fvie groups of convolution layers
and one group of fully connected layers. Every convolution filter has a 3 × 3 kernel with
a stride of 1 and a 2 × 2 pooling region without overlap. The two 4096-dimension fully-
connected layers are combined into one 100-dimension fully-connected layer, resulting in a
considerable reduction in the number of parameters. The architecture of VGGNet is shown
in Figure 2c. Chen et al. [26] used a modified VGG-16 method to select an optimal surface
region of interest (ROI) from CT images for deep inspiration breath-hold (DIBH) surface
monitoring for cardiac dose reduction in left breast cancer radiotherapy. Ha et al. [29] used
VGG-16 to predict the chemotherapy response using a breast MRI tumor dataset before
initiation of chemotherapy.

2.1.4. ResNet

Residual Neural Network (ResNet) was introduced by He et al. [146] and won first
place on the ILSVRC 2015, achieving a low error rate of 3.57%. The architecture of ResNet
is shown in Figure 2c, which shows ResNet-18 as an example. A deep residual learning
framework was introduced to address the degradation problem. Instead of expecting that
each few stacked layers directly fit a desired underlying mapping, He et al. [146] let the
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ResNet layers fit a residual mapping. Formally, the residual block function is defined as
follows:

y = R(x, {Wi}) + x. (2)

where x is the input to the residual block; y is the output; {Wi} represents the weight layers,
where 1≤ i ≤ number of layers in a residual block; and R(x, {Wi}) represents the residual
mapping to be learned. The operation R(x, {Wi}) + x could be realized by feedforward
neural networks with shortcut connections. Shortcut connections are those skipping one or
more layers. The identity shortcuts could be directly used when the input and output are
of the same dimensions.

ResNet-50 has been applied for cancer treatment in the task of predicting response to
neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC)
from CT images [38]. In their paper, ResNet-50 was compared with other deep-learning
models (i.e., Xception, VGG-16, VGG-19, Inception-V3, and InceptionResnetV2) and
achieved the best classification performance. Fan et al. [47] used ResNet-50 to predict the
dose distribution on CT image slices. They trained ResNet-50 in head and neck cancer
patients who underwent external beam intensity-modulated radiotherapy (IMRT).

Wei et al. [5] used ResNet-10 to predict the response to chemotherapy in colorectal
liver metastases (CRLM) based on contrast-enhanced multidetector tomography (MDCT),
Fujima et al. [48] used ResNet-101 to predict the disease-free survival (DFS) in patients with
oral cavity squamous cell carcinoma (OCSCC) based on 18F-fluorodeoxyglucose positron
emission tomography (FDG PET/CT).

2.1.5. U-Net

U-Net was introduced by Ronneberger et al. [147] in 2015 to process biomedical image
segmentation. It consists of a contracting path and an expansive path. The contracting
path comprises of two 3 × 3 convolutions, which are applied repeatedly, each followed
by a rectified linear unit (ReLU) and a 2 × 2 max pooling operation with stride 2 for
downsampling. The expansive path includes an upsampling of the feature map followed
by a 2 × 2 convolution (upconvolution) that halves the number of feature channels, a con-
catenation with the similarly cropped feature map from the contracting path, and two 3 × 3
convolutions, each followed by a ReLU. The expansive path is roughly symmetrical to the
contracting path and yields a u-shaped architecture. A 1 × 1 convolution is employed
in the final layer to map each 64-component feature vector to the appropriate number of
classes. There are a total of 23 convolutional layers in the network. The architecture of
U-Net is shown in Figure 2e.

Jalalifar et al. [17] combined 2D and 3D U-Net for segmentation of metastatic brain
tumors on MRI before and after radiotherapy. Hedden et al. [148] used a 2D and 3D
U-Net to predict radiotherapy dose distribution from CT images on left-sided breast
cancers. Gronberg et al. [49] proposed a 3D densely connected U-Net to predict 3D dose
distributions given contoured CT images of head and neck who underwent radiotherapy.
Their architecture uses 2-downsampling and 2-upsampling and the bottleneck level using
densely connected dilated convolutions. Each convolution layer in a densely connected
level was connected to all previous convolutions. Recently, U-Net has made a crucial
contribution and is popular in precision oncology.

2.1.6. V-Net

V-Net [149] is mainly used for 3D image segmentation based on a volumetric model
that leverages the power of fully convolutional neural networks and is trained end-to-end.
As shown in Figure 2f, the architecture of V-Net consists of the left part and right part. The
left part of the network consists of a compression path and is divided into several stages,
each of which operates at a different resolution. There are one to three convolutional layers
in each stage. The right part decompresses the signal until it reaches its original size.

A soft-max layer is used to analyze network predictions, which are made up of
two volumes with the same resolution as the original input data. The layer outputs the
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likelihood of each voxel belonging to the foreground or background. In medical volumes,
some of the anatomy of interest occupies only a very small region of the scan. This often
causes the learning process to get trapped in the loss function. As a result, the foreground
region is often missing or only partially detected. To address this problem, Milletari
et al. [149] proposed a novel objective function based on a dice coefficient, which is a
quantity ranging between 0 and 1. The dice coefficient D between two binary volumes can
be written as follows:

D =
2 ∑N

i figi

∑N
i f 2

i + ∑N
i g2

i
(3)

where the sums are calculated across N voxels, of the ground truth binary volume {gi} ∈ G
and the predicted binary segmentation volume { fi} ∈ F. Wang et al. [22] proposed a 3D
V-Net to automatically segment the arteriovenous malformations (AVM) volume on CT
images in brain radiosurgery with a compound loss function. Their method was compared
to clinical contours authorized by clinicians in terms of dice overlapping, volume and
centroid differences, and dose coverage modifications on the original plan.

2.1.7. GoogLeNet

GoogLeNet (or Inception-V1) is the state-of-the-art architecture at ILSRVRC 2014 [150],
and it produces the record lowest error (6.67%) on the ImageNet classification dataset.
Inception-V1 restricts filter size to 1 × 1, 3 × 3, and 5 × 5. Convolutions with bigger spatial
filters (e.g., 5 × 5) are usually more computationally costly. As the computational cost
increased, Szegedy et al. [151] proposed the 5×5 convolution replaced by the two 3 × 3
convolutions. Inception-V3 is similar to and contains all the features of Inception-V2 with
the additions, such as the use of 7 × 7 factorized convolution. 7 × 7 factorized convolution
includes a change that factorizes the first 7 × 7 convolutional layer into a sequence of 3 × 3
convolutional layers. The architecture of Inception-V3 is shown in Figure 2g.

2.1.8. DenseNet

A DenseNet [152] utilizes dense connections between layers, in which all layers are
directly connected in a feedforward fashion. The architecture of DenseNet is shown in
Figure 2h. Each layer in DenseNet obtains additional inputs from all preceding layers
and passes on its feature maps to all subsequent layers. DenseNet uses parameters more
efficiently than alternative architectures (in particular, ResNets) [152]. In addition enhanced
parameter efficiency, one significant advantage of DenseNets is the increased flow of
information and gradients across the network, which makes them easy to train. Dense
connections also have a regularizing effect, which decreases overfitting on tasks with
smaller training set sizes.

He et al. [86] proposed 3D-DenseNet to estimate the target tumor area and predict
response to immunotherapy from CT images in non-small-cell lung cancer. The module
contained a total of four blocks, with dense connections within each block. Kim et al. [53]
performed deep-learning-based segmentation in two-step (i.e., localization and ROI spe-
cific segmentation) with a modified fully convolutional DenseNet (FC-DenseNet). They
analyzed contouring data from CT images of patients with head and neck cancer who un-
derwent radiotherapy and observed the effectiveness of deep-learning-based segmentation
for OARs in the head and neck region.

2.1.9. CapsNet

CapsNet [153] is the idea of proposing a CNN with a new structure called “capsules”
and reusing output from several of those capsules to form more stable representations for
higher capsules. The architecture of CapsNet is shown in Figure 2i. A simple CapsNet
contains two convolutional layers, one fully connected layer, primary capsules, and a digital
capsule (DigitCaps). The convolution layer converts pixel intensities into local feature
detector activity, which are subsequently sent into the primary capsules. The primary
capsule is a convolutional capsule layer that contains 32 channels of convolutional 8D
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capsules (each primary capsule contains eight convolutional units, each with a 9 × 9 kernel
and a 2 stride). The digital capsule has one 16D capsule per digit class and each of the 16D
capsules receives input from all of the capsules in the layer below. The digit capsule output
is fed into a decoder with three fully connected layers. CapsNet was used to compress
pre- and post-transplant MRI scans to make a risk assessment of liver transplantation as a
treatment for hepatocellular cancer [77].

2.1.10. DeepLab

DeepLab is one of the deep convolutional neural networks (DCNNs) that are used for
semantic segmentation. DeepLab-V1 [154] uses atrous convolution to control the resolution
at which feature responses are calculated in DCCNs. DeepLab-V2 [155] uses atrous spatial
pyramid pooling (ASPP) to segment objects. DeepLab-V3 [156] adds ASPP with image-level
features and applied atrous convolution to extract output features. In addition, DeepLab-
V3+ [157] includes a decoder module to extend DeepLab-V3 and generate a faster and
more robust encoder-decoder network for semantic segmentation. The architecture of
DeepLab-V3+ is shown in Figure 2j. Deeplab V3+ was used for 2D model segmentation
from CT images in the task to enable online dose optimization during radiotherapy of
cervical cancer [35].

2.1.11. RP-Net

The RP-Net architecture is similar to the U-Net architecture. It contains downsampling
and upsampling paths [158]. There are four stages in each path, followed by a recursive
residual block. In the downsampling path, each stage contains a recursive residual block
with three residual units and a 2× 2× 2 max pooling layer with 2 strides. In the upsampling
path, each stage contains an upsampling layer with convolution layer and a recursive
residual block. The last path is the pyramid pooling module that is used to collect different
levels of volumetric contextual information. The architecture of RP-Net is shown in Figure 2j.
Recently, a 3D RP-Net-based deep-learning method for precision oncology was proposed
to predict pathologic complete response (pCR) after neoadjuvant chemoradiotherapy based
on pre-treatment and post-treatment MRI of rectal cancer [132].

2.1.12. Dense V-Network

Dense V-Network is a combination of DenseNet and V-Net [104]. The architecture
of the Dense V-Network is divided into batch-wise spatial dropout, dense feature stacks,
V-network downsampling and upsampling, dilated convolutions, and an explicit spa-
tial prior [159]. Figure 2l presents the detailed architecture of the Dense V-Network.
Cui et al. [84] proposed Dense V-Networks for automatic segmentation of gross tumor
volumes (GTVs) in 3D planning CT images for lung cancer patients who underwent stereo-
tactic body radiotherapy (SBRT).

2.1.13. BibNet

Recently, BibNet was introduced to segment CT images for radiotherapy planning [32].
Schreier et al. [32] proposed automatic segmentation for female breasts and hearts who
underwent radiotherapy. BibNet is a fully convolutional neural network with a bib-like
shape. BibNet combines the fundamental structure of a U-Net with added multi-resolution
level processing and residual connection. In other words, BibNet is a combination of the
U-Net and the ResNet.

2.2. Recurrent Neural Network (RNN)

The main idea of RNN is to interact with sequential data [160]. The input and output
of a traditional Neural Network are independent of each other. For further computations,
RNN keeps a record of its previous data. It is called recurrent because it executes the
same functions for each member of the sequence, with the outcome being determined
by previous calculations. The architecture of RNN is shown in Figure 1b. There are four



Diagnostics 2022, 12, 1489 15 of 37

types of RNN, namely, one-to-one RNN, one-to-many RNN, many-to-one RNN, and many-
to-many RNN. One-to-one RNN is the basic form of neural network that gives a single
output for a single input. One-to-many RNN produces multiple outputs from a single
input. Many-to-one RNN produces a single output from multiple inputs. Many-to-many
RNN produces multiple outputs from multiple inputs. RNN has been used for precision
oncology, such as [6,7,93].

2.3. Deep Neural Network (DNN)

A deep neural network (DNN) [161] is one of the deep-learning methods. DNN has
multiple hidden layers between the input and output layers [162]. The input layer feeds
the input instance x = (x1, . . . , xp)T to the output. The architecture of DNN is shown in
Figure 1c. Sadeghnejad et al. [125] proposed DNN for fast beam orientation for Prostate
Cancer Treated with intensity-modulated radiotherapy. They indicating that DNN is a very
fast algorithm and could provide results with good quality.

In addition, Katzman et al. [163] introduced the DNN-based DeepSurv model to
understand the relationship between treatments and patients. DeepSurv is a Cox propor-
tional hazard deep neural network that uses state-of-the-art prediction methods to provide
personalized treatment recommendations based on the interaction between a patient’s
covariates and treatment effectiveness. Deepsurv could predict a patient’s risk or death,
which is a multi-layer perceptron with single-node output. The basic model for survival
data uses the cox regression model proposed by Cox [164] given their baseline data x.
Formally, the hazard function is defined as follows:

λ(t|x) = λ0(t) · eh(x) (4)

where λ0(t) is the baseline hazard function; eh(x) is the risk score; h(x) is the log-risk
function; and t is survival time.

Kim et al. [52] proposed a DNN-based DeepSurv model for survival prediction in
oral squamous cell carcinoma (SCC) patients who underwent surgical treatment. They
compared the DeepSurv model with random survival forest (RSF) and the Cox proportional
hazard (CPH) model and showed that DeepSurv had the best performance among the three
models. Thus, deep-learning-based survival prediction may enhance prediction accuracy
and help clinicians choose better treatment options and prevent unnecessary treatments.

2.4. Generative Adversarial Network (GAN)

The Generative Adversarial Network (GAN) was proposed in 2014 by Goodfel-
low et al. [165]. They present a new adversarial framework for estimating generative
models in which simultaneously train two models, i.e., generative and discriminative. A
generative model captures the data distribution, while a discriminative model estimates
the likelihood that a sample originated from the training data rather than generative.
(see Figure 1d for the detailed architecture of GAN). Li et al. [20] proposed conditional
GAN (cGAN) for fully automated rapid head-and-neck intensity-modulated radiother-
apy (IMRT) consisting of PyraNet for the generator and DenseNet for the discriminator.
PyraNet is a novel deep-learning network that implements 28 classic ResNet blocks in
pyramid-like concatenations.

2.5. Other Methods

Several deep-learning methods have been used for precision oncology, such as deep
reinforcement learning (DRL), Autoencoder (AE), and deep belief networks (DBN). DRL
was used for automated radiotherapy dose adaptation from FDG-PET/CT images [91].
Jiang et al. [40] proposed stacked de-noise autoencoder combined with a 1D convolution
network to predict dose-volume histogram (DVH) from distance to target histogram (DTH)
of esophageal radiotherapy. In other words, a 1D convolution network is used to make
correlations between the features of DTH and DVH. In another paper proposed autoencoder
combined with DBN [39], the DBN method was used to model the correlation between
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DTH and DVH for esophageal radiotherapy planning. The correlation between DTH and
DVH could be used to predict DVH of the corresponding OAR for new patients.

3. DL Methods by Applications
3.1. Dose Distribution for Treatment Planning of Radiotherapy

Retrospective analyses have been conducted to examine various deep-learning models
in treatment planning and dose distribution. Figure 3 illustrates four kinds of deep-learning
networks in this field, including Figure 3a ResNet-antiResNet, Figure 3b 3D U-ResNet-B,
Figure 3c 3D dense dilated U-Net, and Figure 3d DeepLabV3+. Fan et al. [47] proposed
a ResNet-antiResNet model for automatic treatment planning strategy in head and neck
cancer patients undergoing radiotherapy.

As shown in Figure 3a, their network architecture is composed of ResNet (which
consists of a stack of similar blocks, each of which is made up of convolutional layers)
and antiResNet (an inversed ResNet structure) to restore image details and upsample the
feature maps, and they also used multiple skip-layer connections to connect convolutional
and deconvolutional layers. The input of their model comprises computed tomography
(CT) images and contours delineating the planning target volumes (PTV) and organs at
risk (OAR), and the output is a dose distribution prediction model on CT image slices.

Chen et al. [44] employed a ResNet-101 model to generate patient-specific dose
distribution maps for nasopharyngeal cancer radiotherapy using CT images labeled with
targets and OAR. Zhou et al. [140] proposed a 3D CNN model (namely 3D U-ResNet-
B) based on ResNet and 3D U-Net [147] to predict 3D dose distributions for intensity-
modulated radiation therapy (IMRT) of rectal cancer using CT images.

As shown in Figure 3b, their proposed encoder model consists of five encoding
modules, each of which is stacked by different numbers of ResNet blocks to extract image
features and decoder model consists of five decoding modules, each including a convolution
block except the first module which contains only one 3 × 3 × 3 convolution layer to
perform a voxel-wise regression to achieve dose prediction. They used eight channels of
the 3D matrix from CT images, beam configuration, and contoured structures as input,
and the output is a 3D dose distributions matrix.

Gronberg et al. [49] developed a 3D dense dilated U-Net for 3D radiotherapy dose
distribution using CT images of head and neck cancer patients as part of a fully automated
radiotherapy planning. As shown in Figure 3c, their proposed method differs from tra-
ditional U-Net architecture by using only two downsampling and upsampling steps and
with the addition of a densely connected sequence of dilated convolution (dilation rates 1,
2, 5, and 9; repeated twice) as the bottleneck level. Each convolution operation is connected
to all preceding convolutions within the level in the densely connected level. The input of
their proposed method is contoured CT images and the output is dose distribution maps.

Kajikawa et al. [111] compared a 3D CNN expanded with the traditional machine
learning models for IMRT dose distribution using contours in the planning CT images for
prostate cancer patients. They employed a 3D CNN that was expanded with the similar 2D
U-Net and the architecture consists of an encoder module (containing four repeated blocks
of two 3 × 3 × 3 convolution layers, each followed by a ReLU, a batch normalization, and a
2 × 2 × 2 max-pooling layers), a decoder module (containing four repeated blocks of two 3
× 3 × 3 convolution layers, each followed by a ReLU, a batch normalization, and a 2 × 2 ×
2 deconvolution layers), and skip connection modules.

The input of their method is contours from planning CT images and the output is 3D
dose distribution maps. Nguyen et al. [65] proposed the hierarchically densely connected
U-Net (HD UNet) based on two network architectures, i.e., DenseNet and 3D UNet for 3D
radiotherapy dose distribution on head and neck cancer patients.
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Figure 3. Deep learning architectures for dose distribution using (a) ResNet-antiResNet [47], (b) 3D
U-ResNet-B [140], (c) 3D dense dilated U-Net [49], and (d) DeepLabV3+ [16].

Yu et al. [4] employed a U-Net to predict the multileaf collimator (MLC) shape in the
task for automatic treatment planning for whole-brain radiotherapy (WBRT). The input of
their model is the digitally reconstructed radiograph (DRR) from CT images and the output
is the MLC shape. Hedden and Xu [148] compared two deep-learning models, including
2D U-Net and 3D U-Net, to predict radiotherapy dose distribution for left-sided breast
cancers and showed that the 3D U-Net outperformed the 2D U-Net. The input of their
method comprises of six channels, including the patient CT, the binary mask for four OARs
and one covering the volume receiving 95% dose.

Liu et al. [60] proposed deep learning, namely U-ResNet-D, which consists of a
contracting path (left side) and expansive path (right side) to predict 3D dose distribution
for nasopharyngeal patients treated by heliac tomotherapy. The input of their model is CT
images and contoured structures, and the output is 3D dose distribution. The predicted
3D dose map can be used to improve radiotherapy planning, guide automatic treatment
planning, maintain plan quality and consistency and compare clinical techniques [60].
Guerreiro et al. [75] employed two seperate 3D patch-based U-Net models to predict pencil
beam scanning (PBS) and volumetric-modulated arc therapy (VMAT) dose distribution for
pediatric abdominal tumors. They used 10 channels of the planning CT, OARs, internal
target volume (ITV), and vertebra contours as input and predicted 3D dose distribution
as output.
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Barragán-Montero et al. [83] proposed a hierarchically densely connected U-Net (HD
U-Net) to predict 3D dose distribution for lung IMRT patients. The input of their method is
patient anatomy and beam configuration and the output is 3D dose distribution maps. It is
divided into 10 input channels: nine for anatomical information (consisting of PTV and
OAR) and one for beam setup (represented by a 3D matrix of the non-modulated beam
dose distribution). Xing et al. [92] employed an HD U-Net to boost the accuracy of dose
distribution. The training used CT images and the anisotropic analytic algorithm (AAA)
dose as the input and the Acuros XB (AXB) dose as the output. For testing, the output will
be the boosted dose maps.

Bohara et al. [105] proposed a U-Net style like network to predict beam tunable
pareto optimal dose distribution for IMRT on prostate cancer. The input of their network
is PTV, body contours, OARs, and the output is the predicted dose distribution map.
Kandalan et al. [112] employed a 3D U-Net to predict dose distribution for VMAT in
prostate cancer. The inputs of their architecture are the contours of the PTV, the OARs
(comprises of body, rectum, bladder, left and right femoral heads), and the output is
predicted dose distribution. Kontaxis et al. [115] employed a 3D U-Net to predict the 3D
IMRT dose distribution in patient anatomy where the input of their method is the patient
anatomy and the output is the distribution dose.

Han et al. [16] employed a DeepLabV3+ model [157] for automated treatment planning
for whole-brain radiotherapy (WBRT) by colleting CT images from patients who received
WBRT. They used DeepLabV3+ architecture to automatically determine the beam apertures
on laterally opposed digitally reconstructed radiographs (DRRs) from each patient’s CT
image using the physician-drawn field apertures. As shown in Figure 3d the DeepLabv3+
extends DeepLabv3 [156] by employing an encoder-decoder structure, in which the en-
coder module uses atrous convolution at multiple scales to encode multi-scale contextual
information. In contrast, the decoder module refines the outputs at object boundaries.

Li et al. [117] proposed an automatic IMRT planning in prostate cancer patients with
real-time planning efficiency based on a customized deep-learning network called the
Dense-Res Hybrid Network (DRHN), which consists of three dense blocks, three ResNet
blocks, and four naive convolution layers in a cascade structure. Each DenseNet block
comprises one 3D convolutional layer concatenated with the following DenseNet blocks.
In contrast, each ResNet block comprises two 3D convolutional layers, in which the sum
of the first and second layers serves as the block’s output [117]. The input of DRHN is
projections at nine template beam angles to produce a 3D matrix that is a stack of radiation
fluence intensity maps from nine different beam angles. Then, the DRHN is combined with
fully automated post-processing to turn DRHN output into a treatment plan [117].

Jihong et al. [34] proposed a CNN model for automated IMRT treatment planning in
cervical cancer patients. The automatic IMRT plans tailored using CNN-generated targets
provide improved dose sparing without sacrificing target dosage, and they indicated that
their method significantly reduced the planning time. The CNN model consists of two
convolution layers with the rectified linear unit (ReLU) as the activation function, two max-
pooling layers, and two fully connected layers, where the input of their CNN is overlap
volume histogram (OVH) data that describes the spatial information of a PTV and OAR
(consisting of bladder, rectum, bowel, left femoral, right femoral, left marrow, and right
marrow) and the output is IMRT plan objective values, then the patient-specific IMRT
objectives set were utilized to construct automated plans [34].

Jiang et al. [39] proposed a deep-learning-based dosimetry evaluation at OARs based
on their geometrical relationship with PTV for esophageal radiation treatment planning.
This model is based on three major contributions: distance to target histogram (DTH) to
describe the geometrical relationship between PTV and OARs, autoencoder to reduce DTH
and dose-volume histogram (DVH) feature dimensions, and DBN to model the correlation
between DTH and DVH. Jiang et al. [40] proposed a deep-learning model, including a
stacked de noise autoencoder (SDAE) and a 1D convolutional network, to construct a
dosimetry evaluation model for esophageal radiotherapy planning.
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In their proposed method, SDAE is used to extract the features from DTH and DVH
curves, and the 1D CN is used to learn the relationship between DTH and DVH fea-
tures. Finally, the DVH curve is reconstructed using DVH features based on SDAE. Ibragi-
mov et al. [79] proposed a multi-path neural network (NN), including a convolutional path
and a FC path, to predict liver stereotactic radiotherapy (SBRT) outcomes.

Two main types of information were used for outcome prediction, such as 3D dose
plans given to the liver and numerical characteristics accessible prior to treatment (e.g.,
tumor size, demographics, OAR properties, laboratory measurements of the liver function,
and tumor positioning). To enhance the performance of the proposed NN, they pre-
trained it on a large database of CT images. Liang et al. [87] employed a 3D CNN to
predict radiation pneumonitis (serious adverse effect of thoracic radiotherapy) with dose
distribution. They used dose distribution as input, and the output is a predictive model of
radiation pneumonitis.

Wang et al. [101] employed two CNNs for sequentially predicting fluence maps and
beam dose from patient anatomy and generating IMRT plans directly. Their architecture
consists of two CNNs, including beam-dose CNN (BD CNN) and fluence map CNN (FM
CNN). The input of BD CNN is patient anatomy, and the output is to predict beam dose.
Then, the predicted beam dose is used as the input for FM CNN to predict fluence maps.
Subsequently, the predicted fluence maps are sent to the treatment planning system to
finalize the plan.

Kajikawa et al. [110] employed an Alexnet model to predict the dosimetric feasibility
of patients with prostate cancer undergoing radiotherapy. The input of their method is
CT images and structure labels extracted from digital imaging and communications in
medicine radiotherapy (DICOM-RT) structures. The output is a two-class classification
(whether the patient belongs to the meeting all dose constraints category or not) instead of
dose distribution.

3.2. Survival Analysis and Risk Estimation after Treatment

The ultimate goal of precision oncology is to improve patient treatment outcomes.
Traditional cancer therapies like chemotherapy are cytotoxic to most cells, and thus they
could damage healthy cells as well as cancer cells, while chemotherapy could be effective
and a mainstay of cancer treatment for many patients, it also comes with the potential for
many side effects. Figure 4 illustrates four kinds of deep-learning networks in this field,
including Figure 4a CNN[23], Figure 4b DeepSurv [52], Figure 4c residual CNN [41], and
Figure 4d survival recurrent network (SRN) [7].

Yoon et al. [23] proposed a CNN to predict the overall survival time from MRI images
of glioblastoma patients who had surgery and concurrent chemoradiation. As shown in
Figure 4a, their proposed method consists of an input layer, a hidden layer (composed
of six convolution layers and six fully connected layers, some of which were followed by
Leaky ReLU as the activation function and max-pooling), and output layer to predict the
overall survival time.

Kim et al. [52] employed a deep neural network (DNN)-based survival model, namely
DeepSurv, to predict the survival of oral squamous cell carcinoma (SCC) patients who
underwent surgical treatment. As shown in Figure 4b, DeepSurv architecture consists of
fully connected layers and dropout layers, where the input is the patient’s pathological
information and the output is the predicted overall survival. DeepSurv is a Cox propor-
tional hazard deep neural network that uses state-of-the-art prediction methods to provide
personalized treatment recommendations based on the interaction between a patient’s
covariates and treatment effectiveness [163].
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Figure 4. The detailed architectures of DL models (a) a CNN [23] and (b) a DeepSurv [52] to predict
the overall survival time of glioblastoma and oral cancer patients, respectively. (c) A residual
CNN [41] and (d) a SRN [7] to generate the risk score of overall survival and the survival probability
of gastric cancer patients. (e) A multi-input CNN [27], (f) a densely connected center cropping
CNN (DC3CNN) [82], and (g) a 3D DenseNet [86] to predict the treatment response from breast
cancer chemotherapy, colorectal liver metastases chemotherapy, and lung cancer immunotherapy,
respectively. (h) A modified FCN [37] to predict HSILs or higher (SQCC) for further treatment
suggestion for cervical cancer patients; and (i) a ResNet [42] to guide the patient selection of adjuvant
imatinib therapy for gastrointestinal stromal tumor patients.

Zhang et al. [41] proposed a deep learning based on 18 layers of residual CNN to
predict the risk for overall survival of gastric cancer patients in order to assess chemotherapy
programs. As shown in Figure 4c, their architecture comprises eight residual blocks,
in which the input is segmented CT images and the output is the patient’s risk score (low
risk and high risk).
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Lee et al. [7] proposed a deep-learning-based survival analysis, namely survival
recurrent network (SRN), to predict survival after surgery in gastric cancer patients with
the pathological data being set as the input and the output is the probability of life or
death. As shown in Figure 4d, the SRN architecture is composed of the recurrent neural
network (RNN) and analyzes patient information at the first time visit. The unit takes the
prediction and trains itself based on actual survival data at each time point. The probability
of survival is input and learned to predict the survival probability for the following year.
This sequential loop ends at the five-year visit to yield the final survival probability.

Risk prediction of overall survival is important for precision oncology. This helps
clinicians to make decisions in treatment planning for each patient. He et al. [77] proposed
a convergent artificial intelligence (AI) model that integrates transitory clinical data with
quantitative histologic and radiomic characteristics to provide a more objective risk analysis
of HCC patients undergoing liver transplantation with the MRI images being set as input.

3.3. Prediction of Treatment Response

Adoui et al. [27] proposed a multi-input CNN to predict the complete pathological
response (pCR) to neoadjuvant chemotherapy in breast cancer using MRI images. As shown
in Figure 4e, their architecture is composed of two parallel sub-architectures with identical
layer structures, where the first input is pre-chemotherapy MRI images and the second
input is post-chemotherapy MRI images. Predicting NAC response could help minimize
toxicity and delay in initiating effective treatment [27].

Byra et al. [25] proposed two CNNs to predict neoadjuvant chemotherapy response
in breast cancer by using ultrasound (US) images collected before and after treatment
as the input. The two CNNs were utilized to extract generic features from US images,
and the difference between the features from the two CNNs was employed to train logistic
regression models for response prediction.

Jiang et al. [30] also proposed a deep learning radiomic nomogram (DLRN) to pre-
dict the pCR to NAC in breast cancer based on pre and post-chemotherapy US images.
Qu et al. [31] proposed a multipath deep CNN to predict pCR to neoadjuvant chemotherapy
in breast cancer based on MRI images. Their CNN had five repetitions of convolution
and max-pooling layers. It ended with three dense layers, where the input is six con-
trast enhancement pre-chemotherapy and six contrast enhancement post-chemotherapy,
respectively.

Hu et al. [38] compared six CNN models, including Xception, VGG16, VGG19,
ResNet50, InceptionV3, InceptionResNetV2 to predict neoadjuvant chemotherapy response
in esophageal cancer based on CT images. All the six CNN models were pre-trained on Im-
ageNet dataset. They eliminated the last fully connected layer on CNN and utilized global
max pooling to convert feature maps to raw values by taking the maximum values of each
layer’s feature maps. Wei et al. [5] employed a ResNet10 to predict chemotherapy response
in colorectal liver metastases in order to aid subsequent treatment decision-making in the
management of colorectal liver metastases. The input of their model is contrast-enhanced
multidetector CT (MDCT) images, and the output is a predicted response to chemotherapy.

Zhu et al. [82] proposed a densely connected center cropping CNN (DC3CNN) to
predict chemotherapy response in patients with colorectal liver metastases by using pre-
and post-chemotherapy MRI images. As shown in Figure 4f, their architecture consists of
four inputs, including pre-treatment T2-weighted image, pre-treatment apparent diffusion
coefficient (ADC) map, post-treatment T2-weighted image, and post-treatment ADC map.
Each input data stream was processed using a DC3CNN path, then the output of each
DC3CNN was linked to a fully connected layer, followed by two fully connected layers
and the final output layer.

Ibragimov et al. [78] proposed a CNN to predict hepatobiliary toxicity in liver cancer
patients after stereotactic body radiotherapy (SBRT). Their CNN is composed of three
sets of convolutional layers with two max-pooling layers and dropouts that separate the
convolutional layers. The input is the dose volume of the hepatobiliary tract, and the
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output is a binary result showing whether a patient is at high risk of developing acute or
late HB toxicity. To enhance the performance, the deep-learning model was pre-trained on
3D CT images of 2644 human organs.

Wang et al. [71] proposed a CNN to predict IMRT response based on fluorodeoxyglucose-
positron emission tomography/CT (FDG-PET/CT) images in patients with oropharyngeal
cancer. They used planned dose distributions, pre-radiotherapy CT, and PET images as the
CNN inputs to predict treatment response. Wang et al. [141] proposed a weakly supervised
deep-learning method for guiding ovarian cancer treatment and identifying an effective
biomarker on immunohistochemical (IHC) stained histopathological dataset.

Diamant et al. [45] proposed a CNN consisting of three convolution blocks (each with
a convolution layer, ReLU, and a max-pooling layer), a flattening layer, two fully connected
layers, and a dropout layer before being classified using a sigmoid activation function to
predict the treatment outcomes for patients with head and neck squamous cell carcinoma
(SCC). CT images are the input to the proposed model, and patient outcomes (distant
metastasis and no distant metastasis) are the output.

Fujima et al. [48] employed a ResNet-101 to predict radiotherapy and chemoradiation
response in patients with oral cancer based on FDG-PET/CT images. The input of their
architecture is images from three different slice planes, i.e., sagittal, coronal, and axial,
and the output is a diagnostic model that can distinguish between disease-free (treatment
control) and non-disease-free (treatment failure). Peng et al. [81] employed a ResNet-50
to predict transarterial chemoembolization (TACE) therapy response in hepatocellular
carcinoma based on CT images. To enhance the performance, transfer learning techniques
were utilized.

He et al. [86] employed a 3D DenseNet to classify lung cancer patients into high
tumor mutational burden (TMB) or low TMB to predict immunotherapy response by using
CT images. As shown in Figure 4g, their architecture consists of two modules, i.e., the
feature extraction module and the classification module. The feature extraction module
comprises four blocks of dense connections, where the input is CT images, and the output
is 1020 deep learning features. They used the fully connected network as the classifier for
the classification module, where the input of the classification module comprised all deep
learning features and the output comprised of the patient’s low and high scores.

Tian et al. [90] proposed a deep learning based framework to predict Programmed
death-ligand 1 (PD-L1) expression and response to immunotherapy in lung cancer based on
CT images. Their architecture consists of two deep learning modules, including a feature
extraction module based on the DenseNet-121 to extract deep learning features and a
classification module based on the fully connected network to classify PD-L1 expressions
to predict response immunotherapy.

3.4. Patient Stratification for Personalized Medicine

In recent years, deep learning based algorithms have been widely utilized to optimize
treatment planning process and has received a great deal of attention in the medical
community due to its tremendous prospects in terms of enhancing treatment planning
quality and efficiency.

Wang et al. [37] proposed a modified fully convolutional network (FCN)-based cervical
lesions diagnosis system to detect high grade squamous intraepithelial lesions (HSILs) or
higher (squamous cell carcinoma; SQCC) on Papanicolaou (Pap) stained histopathological
dataset, which usually immediately indicate patients must be referred to colposcopy and
surgery in order for further treatment suggestion. As shown in Figure 4h, their architecture
consists of the input layer, 13 convolution layers (each followed by ReLU), five max-pooling
layers, two dropout layers, and an output layer where the input is whole-slide images of
conventional Pap smear samples and the output is to predict HSILs or higher (SQCC) for
further treatment suggestion.

Chen et al. [42] employed a ResNet model based on contrast-enhanced computed
tomography (CE-CT) images in patients diagnosed with gastrointestinal stromal tumors as
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input to validate and develop a prognostic nomogram for recurrence-free survival (RSF)
after surgery to guide the selection for adjuvant imatinib therapy. As shown in Figure 4i,
the ResNet architecture consists of two convolution blocks (comprises of three convolution
layers), ten identify blocks (comprises of two convolution layers), three pooling layers,
and a dense layer.

Huang et al. [8] proposed a DeepIMLH algorithm to identify gene mutations in lung
cancer with hematoxylin-eosin (H&E) stained image to predict the mutated genes which
are potential candidates for targeted drug therapy. The DeepIMLH algorithm began by
downloading 180 lung cancer hematoxylin-eosin staining (H&E) pictures from the Cancer
Gene Atlas (TCGA). Color normalization was then performed using the deep convolution
Gaussian mixture model (DCGMM). Convolutional neural networks (CNN) and residual
networks (Res-Net) were utilized to detect mutant genes in H&E stained images with high
accuracy. The input of their deep-learning architecture is bio-markers of lung cancer H&E
stains, and the output is sliding with characteristics of different lung cancer biomarkers for
targeted therapy.

Yang et al. [6] proposed a deep-learning-based predicting model to differentiate
immunotherapy responders from nonresponders in non-small-cell lung cancer patients
by using CT images. Wang et al. [141] proposed an automatic weakly supervised deep
learning framework for patient selection and guiding ovarian cancer treatment using
effective biomarkers for bevacizumab on histopathological WSIs by considering the cost,
potential adverse effects, including hypertension, proteinuria, bleeding, thromboembolic
events, poor wound healing, and gastrointestinal perforation.

Lin et al. [142] proposed a fast, fully automatic, and efficient deep learning framework
for segmentation of papillary thyroid carcinoma (PTC) from both Papanicolaou-stained
thyroid fine-needle aspiration (FNA) and ThinPrep (TP) histopathological slides. PTC is
the most common form of thyroid cancer with the best prognosis, and most patients can be
cured if treated appropriately and early enough.

4. DL Methods by Anatomical Application Areas
4.1. Bladder

Cha et al. [12] applied the DL-CNN technique proposed by Krizhevsky et al. [144] for
bladder lesion segmentation in CT images for calculating tumor size changes in response
to neoadjuvant chemotherapy. CNN was trained to classify regions of interest (ROIs) on
2D sections and identify patterns in the inside and outside areas of the bladder lesion to
generate a lesion likelihood map. Cha et al. [13] employed an Auto-Initialized Cascaded
Level Sets (AI-CALS) system to predict chemotherapy response in bladder cancer using
pre-and post-treatment CT images. The AI-CALS system consists of three levels, includ-
ing preprocessing, initial segmentation, and level set segmentation. They indicated that
computerized assessment based on radiomics information from pre-and post-treatment CT
images of bladder cancer patients could assist in assessing treatment response.

Wu et al. [14] employed an AlexNet based deep-learning model for bladder cancer
treatment using pre-and post-treatment CT scans undergoing chemotherapy. ROIs in
pre-and post-treatment were extracted from segmented lesions and combined into hybrid
pre-post-image pairs (h-ROIs). CNN was trained with h-ROIs to classify cancer as fully
responding or not fully responding to chemotherapy.

4.2. Brain

Han et al. [16] employed a DeepLab-V3+ for automated treatment planning for whole-
brain radiotherapy (WBRT) using CT images. Yu et al. [4] employed a U-Net for automated
treatment planning for WBRT using CT images to predict the multileaf collimator (MLC)
shape bypassing the contouring processes. They constructed the dose-volume histogram
(DVH) curves to assess the automatic MLC shaping performance. Jalalifar et al. [17]
proposed a cascaded 2D and 3D U-Net for segmentation of metastatic brain tumors before
and after stereotactic radiotherapy (SRT) using MRI. 2D U-Net is used to find the tumor’s
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location and then crop the image around the tumor. At the same time, 3D U-Net is an
extension of 2D U-Net that uses a volumetric input image to provide the information for
final segmentation.

Liu et al. [10] proposed a modified DeepMedic CNN for automatic brain metastasis
delineation strategy on contrast-enhanced T1-weighted MRI for efficient and effective
stereotactic radiosurgery treatment planning.

Kazemifar et al. [18] proposed a GAN model to predict the dosimetric accuracy of sCT
images for volumetric modulated arc therapy (VMAT) based on radiotherapy planning.
A similar approach by Kazemifar et al. [19] proposed a modified GAN model for intensity-
modulated proton therapy (IMPT) based on radiotherapy planning. To predict overall
survival after treatment, Yoon et al. [23] proposed a CNN using MRI and clinical profiles of
glioblastoma patients who have received surgery followed by concurrent chemoradiation.

4.3. Breast

Chen et al. [26] proposed a VGG-16 technique-based automatic ROI selection method
to select an optimal surface ROI for deep inspiration breath-hold (DIBH) surface monitoring
in left breast cancer radiotherapy. There are four steps in the proposed ROI selection scheme
in their paper, i.e., surface representation (converting the surface to a surface representative
map), surface ROI generation, ROI registration error (RE) prediction, and ROI selection.

Ha et al. [29] employed a VGG-16 model to predict neoadjuvant chemotherapy (NAC)
response using a breast MRI tumor dataset. In their paper, patients were divided into three
groups based on their NAC response (i.e., complete response, partial response, and no
response) and indicated that VGG-16 achieved an overall accuracy of 88% in the 3-class
prediction NAC response in breast tumors.

Qu et al. [31] proposed a multipath CNN to predict complete pathological response
after NAC by combining pre-NAC and post-NAC MRI data in breast cancer. Their proposed
model performs better than pre-NAC data only or post-NAC data only. Bakx et al. [24]
proposed a deep-learning model, based on the U-Net and the contextual atlas regression
forest (cARF) model for dose prediction of radiotherapy in breast cancer. They compared
U-Net with a contextual atlas regression forest (cARF) and indicated that the results of both
models encourage automated plan generation.

Gernaat et al. [28] proposed a deep-learning network consisting of two CNNs to
automatically measure coronary arteries and thoracic aorta on radiotherapy planning CT
scans of breast cancer patients. Hedden and Xu [148] proposed two deep-learning models,
i.e., 2D U-Net and 3D U-Net, for dose distribution in left-sided breast radiotherapy using
CT images. They indicated that 3D U-Net exceeds the performance of 2D U-Net, in which
the average dose difference for both models is 0.02%.

4.4. Bone

He et al. [9] employed transfer learning in Inception-V3 which was pre-trained on
ImageNet dataset to predict the local recurrence of giant cell bone tumors after curettage
based on pre-surgery MRI. There were 60 patients with histopathologically confirmed giant
cell bone tumors in the proximal tibia or distal femur who underwent MRI and lesion
curettage. They indicated that CNN had the potential to predict the recurrence of giant cell
bone tumors after curettage.

Wang et al. [33] proposed a fully automatic Bone Marrow Nucleated Differential Count
(BM NDC) using Whole-side images (WSIs) with 40× objective magnification, which can
replace traditional manual counting relying on light microscopy via oil-immersion 100×
objective lens with a total of 1000×magnification. This study develops an efficient and fully
automatic hierarchical deep learning framework for BM NDC WSI analysis only in seconds.

4.5. Cervix

Rigaud et al. [35] compared two deep-learning models, including 2D DeepLab-V3+
and 3D U-Net, for automatic segmentation in CT scans to find out daily online dose
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optimization strategies and thereby reduce the toxicity of IMRT radiotherapy for cervical
cancer. 2D DeepLab-V3+ showed better robustness between datasets and provided superior
dice similarity coefficients (DSCs) for several organs, whereas 3D U-Net showed better
accuracy for anatomical structures that benefited from interslice data.

Zaffino et al. [36] employed a 3D U-Net for automated segmentation based on
MRI in gynecologic cancer patients treated with high dose rate (HDR) brachytherapy.
Wang et al. [37] proposed a modified FCN to segment and to detect high-grade squamous
intraepithelial lesions (HSILs) or higher (SQCC) from Pap stained whole slide images
(WSIs) for future treatment suggestions.

4.6. Esophagus

Hu et al. [38] used deep learning to predict response to neoadjuvant chemoradiother-
apy in esophageal squamous cell carcinoma (ESCC) using CT images. They compared
six deep-learning models, such as Xception, VGG-16, VGG-19, ResNet-50, Inception-V3,
and InceptionResnetV2 for feature extractions to optimize prediction performance and
showed that ResNet-50 achieves the best classification performance among others.

Jiang et al. [39] proposed autoencoder and deep belief network (DBN) for dosimetry
evaluation at the organ at risk (OAR) using CT scans in esophageal radiotherapy planning.
Autoencoder was used to reduce feature dimensions for dose-volume histogram (DVH)
and distance to target histogram (DTH). In contrast, DBN was used to model the correlation
between DVH and DTH to predict DVH for new patients. Jiang et al. [40] used stacked
de-noise auto-encoder (SDAE) and 1D convolutional network (1D-CN) for dosimetry
evaluation using CT images in esophageal radiotherapy planning. SDAE was used to
extract features from DVH and DTH curves, whereas the 1D-CN model was used to learn
the relationship between DTH and DVH features.

4.7. Gastric

Lee et al. [7] proposed a deep-learning-based survival analysis or recurrent survival
network (SRN) for risk-prediction of patients with gastric cancer by including clinical and
pathologic data and treatment regiments. Risk prediction of overall survival is essential for
gastric cancer patients to assess treatment planning and may guide personalized medicine.
Zhang et al. [41] proposed a CNN to predict the risk for overall survival in gastric cancer
patients based on CT images. They divided patients into two groups, high-risk and low-risk
groups, and showed that the high-risk groups had poor overall survival while the low-risk
groups had better survival.

Chen et al. [42] employed a ResNet model to validate and develop a prognostic
nomogram for recurrence-free survival (RSF) after surgery based on contrast-enhanced CT
(CE-CT) in a training cohort including 80 patients diagnosed with gastrointestinal stromal
tumors to guide the selection for adjuvant imatinib therapy. They showed that ResNet
has excellent performance and could be a potential tool for selecting patients for adjuvant
imatinib therapy.

4.8. Head and Neck

Cardenas et al. [43] employed a 3D U-Net for automated segmentation using CT
images to generate high-quality clinical target volumes (CTV) of lymph nodes for head and
neck cancer radiotherapy. Kim et al. [53] proposed a modified FC-DenseNet to investigate
the feasibility of segmentation using CT images of patients with head and neck cancer who
underwent radiotherapy. Fan et al. [47] proposed a ResNet-antiResNet model for 3D dose
prediction and distribution-based optimization for automatic treatment planning on CT
images of head and neck cancer patients treated with intensity-modulated radiotherapy
(IMRT).

Kim et al. [52] employed a deep-learning-based survival prediction (DeepSurv)
method in oral squamous cell carcinoma (SCC) patients undergoing surgical treatment.
They compared DeepSurv with random survival forest (RSF) and cox proportional hazard
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(CPH) models and showed that DeepSurv had the highest performance than the RSF and
CPH models. Fujima et al. [48] employed a ResNet-101 to predict treatment outcomes using
FDG-PET/CT images in patients with oral cavity squamous cell carcinoma (OCSCC) who
underwent treatment with curative intent, in which the majority of patients underwent
surgery as their first treatment, and some received additional radiotherapy with or without
chemotherapy.

Wang et al. [71] proposed a CNN to predict the outcome of dose distribution using
pre-radiotherapy FDG-PET/CT images in oropharyngeal cancer patients undergoing IMRT.
Chen et al. [44] employed a ResNet-101 model for predicting optimal dose distributions for
radiotherapy using CT images in nasopharyngeal cancer.

They proposed two different input images. The first input is the images with associated
contoured structures, including 19 ROIs (17 OARs and two targets contoured on the
planning CT of all the patients), while the second input is altering the gray image label
with radiation beam geometry information.

4.9. Liver

He et al. [77] proposed a convergent artificial intelligence (AI) model that integrates
transitory clinical data with quantitative histologic and radiomic characteristics to provide
a more objective risk analysis of HCC patients undergoing liver transplantation using
pre-and post-treatment MRI scans. They demonstrated that the deep-learning model
integrating clinical and multi-scale histopathologic and radiomic image features could be
employed to identify risk factors for recurrence.

Ibragimov et al. [80] proposed a CNN to identify the critical region or predict dose and
risk based on CT images for the abdominal area after liver stereotactic body radiotherapy
(SBRT). Wei et al. [5] employed a ResNet-10 model to predict the response to chemotherapy
based on multi-detector CT (MDCT) images in colorectal liver metastases.

4.10. Lung

Barrag’an-Montero et al. [83] proposed a hierarchically densely connected U-Net (HD
U-Net), which combines DenseNet and U-Net to predict 3D dose distribution in lung IMRT
patients using anatomical and beam setup information as input. He et al. [86] employed a
3D DenseNet to predict response to chemotherapy based on CT images in patients with
advanced non-small-cell lung cancer (NSCLC). Tian et al. [90] proposed a deep learning
based framework to predict Programmed death-ligand 1 (PD-L1) expression and response
to immunotherapy in lung cancer based on CT images. Their architecture consists of two
deep learning modules, including a feature extraction module based on the DenseNet-121
to extract deep learning features and a classification module based on the fully connected
network to classify PD-L1 expressions to predict response immunotherapy. Tseng et al. [91]
proposed a three-component neural networks framework for DRL to develop automated
radiation adaption for NSCLC patients who received radiotherapy.

4.11. Multi Cancer

Several deep-learning methods in cancer treatment may be possible for treatment
planning in several cancers. Maspero et al. [97] proposed GAN architecture-based deep-
learning network for radiotherapy dose calculations in multi-cancer, i.e., head and neck
cancer, lung cancer, and breast cancer. They trained 3 GAN networks on each anatomical
site to determine whether one network was generalizable to all sites. Yang et al. [99]
organized Thoracic Auto-segmentation Challenge, which was held as part of the Amer-
ican Association of Physicists in Medicine’s 2017 Annual Meeting (AAPM). This grand
challenge’s ultimate goal was to develop a platform for comparing alternative autosegmen-
tation algorithms, a recommendation for selecting autosegmentation algorithms for clinical
application, and benchmark data for assessing autosegmentation algorithms in thoracic ra-
diation therapy planning. More than 100 participants submitted their proposed algorithms
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for automatic segmentation of OARs, including esophagus, heart, lung, and spinal cord,
in thoracic radiotherapy.

Sakellaropoulos et al. [96] compared DNN with ML algorithms for prediction of drug
response from gene expression using genomics data of cancer cell lines. They compared
the DNN method with two different state-of-the-art algorithms (i.e., random forest (RF)
and elastic net (Enet)) and indicated that DNN performs better than the RF and Enet
methods. Ding et al. [95] proposed an autoencoder to identify informative characteristics
in genome-scale omics data and to train classifiers for predicting drug efficacy in cancer cell
lines. There are three main steps in their paper, i.e., feature engineering of omics data (first
step), feature construction via DNN autoencoder (second step), and training of machine
learning models to predict drug sensitivity response using various feature sets as inputs
(third step).

4.12. Pelvic

Maspero et al. [103] employed a cycle GAN for MR-based dose calculation using
synthetic CT (sCT) images on general pelvis MR-only radiotherapy. SCT images are
required to enable MR-only radiotherapy and facilitate radiation attenuation modeling
in humans. Arabi et al. [102] used the DCNN method to generate sCT from MRI and for
segmentation OARs in the pelvic region (i.e., bladder, bones, rectum, and body boundary).

4.13. Prostate

Recent studies [112,114,122,123] have investigated the use of deep learning for the
task of predicting dose distribution of the cancer treatment in the prostate gland. Kan-
dalan et al. [112] employed a 3D U-Net for dose prediction for volumetric-modulated arc
therapy (VMAT) using PTV and OARs contours in prostate cancer. Kiljunen et al. [114] pro-
posed a CNN for automated CT segmentation of prostate cancer for radiotherapy planning.
Nemoto et al. [122] employed a 2D U-Net-based deep learning for semantic segmentation
for radiotherapy of prostate cancer. Nguyen et al. [123] proposed a modified U-Net to
predict radiotherapy dose distribution of prostate cancer from image contours using PTV
and OAR. Each patient in their research had 6 contours, such as PTV, bladder, body, rectum,
left and right femoral head.

4.14. Rectum

Jin et al. [132] proposed a 3D RP-Net to predict treatment response from longitudinal
multiparametric MRI before and after neoadjuvant chemoradiation (CRT) in rectal cancer.
The 3D RP-Net architecture consists of two subnetworks (i.e., a convolutional encoding
or decoding subnetwork and a multi-stream Siamese subnetwork). The first network is
used for feature extraction and segmentation. In contrast, the second network is used
for response prediction. Zhang et al. [139] proposed a multi-path deep CNN for rectal
cancer response prediction to neoadjuvant chemoradiation based on diffusion kurtosis and
T2-weighted MRI. Deep-learning models were constructed primarily to predict pathologic
complete response (pCR) and to assess tumor regression grade and T downstaging.

4.15. Ovarian

Wang et al. [141] proposed an automated precision oncology framework to effectively
identify and select EOC and peritoneal serous papillary carcinoma (PSPC) patients with
positive therapeutic effect. They developed a hybrid deep learning framework and weakly
supervised deep-learning models for each potential biomarker.

4.16. Thyroid

Lin et al. [142] proposed a fully automatic, efficient, and fast deep learning framework
for fast screening of papanicolaou-stained fine needle aspiration (FNA) and ThinPrep (TP)
histopathological slides for thyroid cancer diagnosis.
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5. Discussion and Conclusions

During the recent years, there have been many studies using supervised deep-learning
approaches in clinical oncology reporting highly promising results that frequently outper-
formed the performance of clinicians, setting high hopes of AI tools. However, supervised
deep-learning approaches need a significant amount of high quality labeled data, that is
laborious, costly, and time-consuming. The lack of labeled data can be trained with limited
supervision, such as semi-supervised learning [166], weakly-supervised learning [167] and
annotation free [168]. The first solution to the lack of labeled data is semi-supervised learn-
ing.

Semi-supervised learning aims to learn from both labeled and unlabeled data with a
limited amount of labeled and unlabeled data [166]. The second solution to the problem of
the lack of labeled data is weakly supervised learning. Hu et al. [167] described a method to
infer voxel-level transformation from higher-level correspondence information contained
in anatomical labels using weakly supervised learning.

Deep learning for digital pathology is hindered by the extremely high spatial resolution
of images. Most studies have employed patch-based methods, which often require detailed
annotation of image patches. This typically involves laborious free-hand contouring on
WSIs. To alleviate the burden of such contouring, Chen et al. [168] proposed a training
approach to train CNNs on WSIs using slide-level labels without dividing the input image
or feature maps into patches.

The second challenge is data variations across different hospitals or laboratories.
To address this problem, some authors used stain normalization to reduce the color and
intensity variations present in stained images from different laboratories. However, there
are computational challenges that this normalization step must overcome, especially for
real-time applications, such as the memory and run-time bottlenecks associated with the
processing of images at high resolution. Moreover, stain normalization can be sensitive to
the quality of the input images, e.g., when they contain stain spots or dirt.

Anghel et al. [169] proposed a high-performance system for stain normalization
using a state-of-the-art unsupervised method based on stain-vector estimation. Their
results show that the optimizations achieve up to 58× speedup compared to a baseline
implementation. Tellez et al. [170] evaluated several stain color augmentation and stain
color normalization algorithms in order to quantify their effects on CNN classification
performance and performed an evaluation using data from a total of 9 different centers
spanning four relevant classification tasks, i.e., mitosis detection, tumor metastasis detection
in lymph nodes, prostate epithelium detection, and multiclass colorectal cancer tissue
classification.

Zanjani et al. [171] introduced three deep generative models (including variational
auto-encoder (VAE), generative adversarial networks (GAN) and deep convolutional Gaus-
sian mixture models (DCGMM)) for performing stain-color normalization in histopatho-
logical H&E images. Shaban et al. [172] presented StainGAN as a novel method for the
stain normalization task. StainGAN is based on GANs that not only eliminate the need for
the reference image but also achieve high visual similarity to the target domain, making it
easier to get rid of the stain variations, thus improving the diagnosis process for both the
pathologist and computer-aided diagnosis (CAD) systems.

Kang et al. [173] proposed a stain normalization network, called StainNet, which
employs a fully 1 × 1 convolution network to adjust the color value in a pixel-by-pixel
manner. In their method, StainGAN was used as the teacher network and StainNet as
the student network to learn the color mapping by distillation learning. The computation
results demonstrated that StainNet is more than 40-times faster than StainGAN and can
normalize a 100,000 × 100,000 whole slide image in 40 s.

The third challenge is a big data issue with limited GPU memory. Dealing with
streaming and fast-moving input data is one of the most difficult parts of Big Data Analytics.
For instance, histopathology images are critical for medical diagnosis, e.g., cancer and its
treatment. A standard histopathology slice can be easily scanned at a high resolution.
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These high resolution images can make most existing imaging processing tools infeasible
or less effective when operated on a single machine with limited memory, disk space and
computing power. Therefore, DL must be adapted to handle streaming data since there is a
need for algorithms that can cope with massive volumes of continuous input data.

Researchers have already noticed the big data problem that medical image analysis
faces. Stathopoulos and Kalamboukis [174] indicated that, with an increased amount of
medical image data, Content Based Image Retrieval (CBIR) techniques are required to
process large-scale medical images more efficiently. In their work, Latent Semantic Analysis
(LSA) is applied to large-scale medical image databases. Kye et al. [175] proposed a GPU-
based Maximum Intensity Projection (MIP) method with their visibility culling method to
process as well as illustrate images at an interactive-level rate. In their experiments, every
single scan can generate more than a thousand images of a patient.

Xu et al. [176] proposed an algorithm that addresses big data problems by leveraging
parallel computing on high-performance computing (HPC) clusters. They developed a
parallel multiple instance learning (P-MIL) algorithm on HPC clusters using a combination
of message passing interface (MPI) and multi-threading.

One popular strategy is based on multiple-instance-learning (MIL), where the image
is subdivided into a grid of patches [177]. Pinckaers et al. [177] showed that modern CNNs
can extract meaningful features from high-resolution images without additional heuristics,
reaching similar performance as state-of-the-art patch-based and MIL methods. CNN
is the most popular representation learning method for computer vision tasks and was
successfully applied in digital pathology [178].

Cruz-roa et al. [178] proposed a high-throughput adaptive sampling for whole-slide
histopathology image analysis (HASHI), a novel, accurate and high-throughput framework
that combines the powerful capabilities of CNN models for image recognition and an
adaptive sampling method for the rapid detection of precise extent of invasive breast cancer
on WSIs. Their method is based on a CNN tile classifier that estimates the probability of
the presence of invasive breast cancer within a WSI through adaptive sampling because
CNN is only able to classify small regions, not the full WSI.

From the over 150 papers reviewed in this survey, it is evident that deep learning has
pervaded every aspect of precision oncology and can help clinicians to make decisions in
treatment planning. As demonstrated in Sections 3 and 4, the performance of deep learning
for precision oncology is quite impressive. In some cases, deep learning has even achieved
better performance than experienced humans.

Deep learning has been applied to various precision oncology tasks, including dose
distribution for treatment planning, survival analysis and risk estimation after treatment,
prediction of treatment response, and patient selection for treatment planning and has
been applied for various cancers, e.g., bladder, brain, breast, bone, cervix, esophagus,
gastric, head and neck, kidneys, liver, lung, pancreas, pelvis, prostate, and rectum. The
categorization of deep learning presented in this survey acts as a reference guide for the
most current techniques available in the literature for precision oncology. Further research
to validate the output of each algorithm maybe needed in the near future.

Author Contributions: C.-W.W., M.-A.K. and N.P.F. wrote and approved the manuscript. C.-W.W.
supervised and also acquired funding for this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This study is supported by the Ministry of Science and Technology of Taiwan, under grant
(MOST 109-2221-E-011-018-MY3).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.



Diagnostics 2022, 12, 1489 30 of 37

References
1. Bode, A.M.; Dong, Z. Recent advances in precision oncology research. NPJ Precis. Oncol. 2018, 2, 1–6.
2. Kann, B.H.; Hosny, A.; Aerts, H.J. Artificial intelligence for clinical oncology. Cancer Cell 2021, 39, 916–927.
3. Wang, M.; Zhang, Q.; Lam, S.; Cai, J.; Yang, R. A review on application of deep learning algorithms in external beam radiotherapy

automated treatment planning. Front. Oncol. 2020, 10, 2177.
4. Yu, J.; Goh, Y.; Song, K.J.; Kwak, J.; Cho, B.; Kim, S.S.; Lee, S.W.; Choi, E.K. Feasibility of automated planning for whole-brain

radiation therapy using deep learning. J. Appl. Clin. Med. Phys. 2021, 22, 184–190.
5. Wei, J.; Cheng, J.; Gu, D.; Chai, F.; Hong, N.; Wang, Y.; Tian, J. Deep-learning-based radiomics predicts response to chemotherapy

in colorectal liver metastases. Med. Phys. 2021, 48, 513–522.
6. Yang, Y.; Yang, J.; Shen, L.; Chen, J.; Xia, L.; Ni, B.; Ge, L.; Wang, Y.; Lu, S. A multi-omics-based serial deep-learning approach to

predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J.
Transl. Res. 2021, 13, 743.

7. Lee, J.; An, J.Y.; Choi, M.G.; Park, S.H.; Kim, S.T.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; Kim, S.; Lee, H.; et al. Deep learning–based
survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric
cancer. JCO Clin. Cancer Inform. 2018, 2, 1–14.

8. Huang, K.; Mo, Z.; Zhu, W.; Liao, B.; Yang, Y.; Wu, F.X. Prediction of Target-Drug Therapy by Identifying Gene Mutations in
Lung Cancer With Histopathological Stained Image and Deep Learning Techniques. Front. Oncol. 2021, 11, 901.

9. He, Y.; Guo, J.; Ding, X.; van Ooijen, P.; Zhang, Y.; Chen, A.; Oudkerk, M.; Xie, X. Convolutional neural network to predict the
local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images. Eur. Radiol. 2019,
29, 5441–5451.

10. Liu, Y.; Stojadinovic, S.; Hrycushko, B.; Wardak, Z.; Lau, S.; Lu, W.; Yan, Y.; Jiang, S.B.; Zhen, X.; Timmerman, R.; et al. A deep
convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS
ONE 2017, 12, e0185844.

11. Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D deep learning for multi-modal imaging-guided survival time prediction of
brain tumor patients. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016; pp. 212–220.

12. Cha, K.H.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.P.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; Weizer, A.Z. Bladder
cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network—A pilot
study. Tomography 2016, 2, 421–429.

13. Cha, K.H.; Hadjiiski, L.; Chan, H.P.; Weizer, A.Z.; Alva, A.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Samala, R.K. Bladder cancer
treatment response assessment in CT using radiomics with deep-learning. Sci. Rep. 2017, 7, 1–12.

14. Wu, E.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.P.; Cha, K.H.; Richter, C.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; et al.
Deep-learning approach for assessment of bladder cancer treatment response. Tomography 2019, 5, 201–208.

15. Andres, E.A.; Fidon, L.; Vakalopoulou, M.; Lerousseau, M.; Carré, A.; Sun, R.; Klausner, G.; Ammari, S.; Benzazon, N.; Reuzé, S.;
et al. Dosimetry-driven quality measure of brain pseudo computed tomography generated from deep learning for MRI-only
radiation therapy treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 813–823.

16. Han, E.Y.; Cardenas, C.E.; Nguyen, C.; Hancock, D.; Xiao, Y.; Mumme, R.; Court, L.E.; Rhee, D.J.; Netherton, T.J.; Li, J.; et al.
Clinical implementation of automated treatment planning for whole-brain radiotherapy. J. Appl. Clin. Med. Phys. 2021, 22, 94–102.

17. Jalalifar, A.; Soliman, H.; Sahgal, A.; Sadeghi-Naini, A. A Cascaded Deep-Learning Framework for Segmentation of Metastatic
Brain Tumors Before and After Stereotactic Radiation Therapy. In Proceedings of the 2020 42nd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1063–1066.

18. Kazemifar, S.; McGuire, S.; Timmerman, R.; Wardak, Z.; Nguyen, D.; Park, Y.; Jiang, S.; Owrangi, A. MRI-only brain radiotherapy:
Assessing the dosimetric accuracy of synthetic CT images generated using a deep-learning approach. Radiother. Oncol. 2019,
136, 56–63.

19. Kazemifar, S.; Barragán Montero, A.M.; Souris, K.; Rivas, S.T.; Timmerman, R.; Park, Y.K.; Jiang, S.; Geets, X.; Sterpin, E.; Owrangi,
A. Dosimetric evaluation of synthetic CT generated with GANs for MRI-only proton therapy treatment planning of brain tumors.
J. Appl. Clin. Med. Phys. 2020, 21, 76–86.

20. Li, W.; Li, Y.; Qin, W.; Liang, X.; Xu, J.; Xiong, J.; Xie, Y. Magnetic resonance image (MRI) synthesis from brain computed
tomography (CT) images based on deep-learning methods for magnetic resonance (MR)-guided radiotherapy. Quant. Imaging
Med. Surg. 2020, 10, 1223.

21. Maspero, M.; Bentvelzen, L.G.; Savenije, M.H.; Guerreiro, F.; Seravalli, E.; Janssens, G.O.; van den Berg, C.A.; Philippens, M.E.
Deep-learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiother. Oncol.
2020, 153, 197–204.

22. Wang, T.; Lei, Y.; Tian, S.; Jiang, X.; Zhou, J.; Liu, T.; Dresser, S.; Curran, W.J.; Shu, H.K.; Yang, X. Learning-based automatic
segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery. Med. Phys. 2019,
46, 3133–3141.

23. Yoon, H.G.; Cheon, W.; Jeong, S.W.; Kim, H.S.; Kim, K.; Nam, H.; Han, Y.; Lim, D.H. Multi-parametric deep-learning model for
prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients. Cancers 2020, 12, 2284.



Diagnostics 2022, 12, 1489 31 of 37

24. Bakx, N.; Bluemink, H.; Hagelaar, E.; van der Sangen, M.; Theuws, J.; Hurkmans, C. Development and evaluation of radiotherapy
deep learning dose prediction models for breast cancer. Phys. Imaging Radiat. Oncol. 2021, 17, 65–70.

25. Byra, M.; Dobruch-Sobczak, K.; Klimonda, Z.; Piotrzkowska-Wroblewska, H.; Litniewski, J. Early prediction of response to
neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks. IEEE J. Biomed. Health
Informatics 2020, 25, 797–805.

26. Chen, H.; Chen, M.; Lu, W.; Zhao, B.; Jiang, S.; Zhou, L.; Kim, N.; Spangler, A.; Rahimi, A.; Zhen, X.; et al. Deep-learning based
surface region selection for deep inspiration breath hold (DIBH) monitoring in left breast cancer radiotherapy. Phys. Med. Biol.
2018, 63, 245013.

27. El Adoui, M.; Drisis, S.; Benjelloun, M. Multi-input deep-learning architecture for predicting breast tumor response to chemother-
apy using quantitative MR images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1491–1500.

28. Gernaat, S.A.; van Velzen, S.G.; Koh, V.; Emaus, M.J.; Išgum, I.; Lessmann, N.; Moes, S.; Jacobson, A.; Tan, P.W.; Grobbee, D.E.;
et al. Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of
Western and Asian breast cancer patients. Radiother. Oncol. 2018, 127, 487–492.

29. Ha, R.; Chin, C.; Karcich, J.; Liu, M.Z.; Chang, P.; Mutasa, S.; Pascual Van Sant, E.; Wynn, R.T.; Connolly, E.; Jambawalikar, S. Prior
to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach
using a breast MRI tumor dataset. J. Digit. Imaging 2019, 32, 693–701.

30. Jiang, M.; Li, C.L.; Luo, X.M.; Chuan, Z.R.; Lv, W.Z.; Li, X.; Cui, X.W.; Dietrich, C.F. Ultrasound-based deep learning radiomics in
the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur. J. Cancer
2021, 147, 95–105.

31. Qu, Y.H.; Zhu, H.T.; Cao, K.; Li, X.T.; Ye, M.; Sun, Y.S. Prediction of pathological complete response to neoadjuvant chemotherapy
in breast cancer using a deep learning (DL) method. Thorac. Cancer 2020, 11, 651–658.

32. Schreier, J.; Attanasi, F.; Laaksonen, H. A full-image deep segmenter for CT images in breast cancer radiotherapy treatment.
Front. Oncol. 2019, 9, 677.

33. Wang, C.W.; Huang, S.C.; Lee, Y.C.; Shen, Y.J.; Meng, S.I.; Gaol, J.L. Deep learning for bone marrow cell detection and classification
on whole-slide images. Med Image Anal. 2022, 75, 102270.

34. Jihong, C.; Penggang, B.; Xiuchun, Z.; Kaiqiang, C.; Wenjuan, C.; Yitao, D.; Jiewei, Q.; Kerun, Q.; Jing, Z.; Tianming, W. Automated
Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network. Technol.
Cancer Res. Treat. 2020, 19, 1533033820957002.

35. Rigaud, B.; Anderson, B.M.; Zhiqian, H.Y.; Gobeli, M.; Cazoulat, G.; Söderberg, J.; Samuelsson, E.; Lidberg, D.; Ward, C.; Taku, N.;
et al. Automatic segmentation using deep learning to enable online dose optimization during adaptive radiation therapy of
cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1096–1110.

36. Zaffino, P.; Pernelle, G.; Mastmeyer, A.; Mehrtash, A.; Zhang, H.; Kikinis, R.; Kapur, T.; Spadea, M.F. Fully automatic catheter
segmentation in MRI with 3D convolutional neural networks: application to MRI-guided gynecologic brachytherapy. Phys. Med.
Biol. 2019, 64, 165008.

37. Wang, C.W.; Liou, Y.A.; Lin, Y.J.; Chang, C.C.; Chu, P.H.; Lee, Y.C.; Wang, C.H.; Chao, T.K. Artificial intelligence-assisted fast
screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning.
Sci. Rep. 2021, 11, 1–14.

38. Hu, Y.; Xie, C.; Yang, H.; Ho, J.W.; Wen, J.; Han, L.; Lam, K.O.; Wong, I.Y.; Law, S.Y.; Chiu, K.W.; et al. Computed tomography-
based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma.
Radiother. Oncol. 2021, 154, 6–13.

39. Jiang, D.; Li, T.; Mao, R.; Du, C.; Liu, J. Deep Learning Based Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation
Treatment Planning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 868–871.

40. Jiang, D.; Yan, H.; Chang, N.; Li, T.; Mao, R.; Du, C.; Guo, B.; Liu, J. Convolutional neural network-based dosimetry evaluation of
esophageal radiation treatment planning. Med. Phys. 2020, 47, 4735–4742.

41. Zhang, L.; Dong, D.; Zhang, W.; Hao, X.; Fang, M.; Wang, S.; Li, W.; Liu, Z.; Wang, R.; Zhou, J.; et al. A deep learning risk
prediction model for overall survival in patients with gastric cancer: A multicenter study. Radiother. Oncol. 2020, 150, 73–80.

42. Chen, T.; Liu, S.; Li, Y.; Feng, X.; Xiong, W.; Zhao, X.; Yang, Y.; Zhang, C.; Hu, Y.; Chen, H.; et al. Developed and validated a
prognostic nomogram for recurrence-free survival after complete surgical resection of local primary gastrointestinal stromal
tumors based on deep learning. EBioMedicine 2019, 39, 272–279.

43. Cardenas, C.E.; Beadle, B.M.; Garden, A.S.; Skinner, H.D.; Yang, J.; Rhee, D.J.; McCarroll, R.E.; Netherton, T.J.; Gay, S.S.; Zhang, L.;
et al. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a
Fully Automated Deep Learning-Based Approach. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 801–812.

44. Chen, X.; Men, K.; Li, Y.; Yi, J.; Dai, J. A feasibility study on an automated method to generate patient-specific dose distributions
for radiotherapy using deep learning. Med. Phys. 2019, 46, 56–64.

45. Diamant, A.; Chatterjee, A.; Vallières, M.; Shenouda, G.; Seuntjens, J. Deep learning in head & neck cancer outcome prediction.
Sci. Rep. 2019, 9, 1–10.



Diagnostics 2022, 12, 1489 32 of 37

46. Dinkla, A.M.; Florkow, M.C.; Maspero, M.; Savenije, M.H.; Zijlstra, F.; Doornaert, P.A.; van Stralen, M.; Philippens, M.E.; van den
Berg, C.A.; Seevinck, P.R. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based
three-dimensional convolutional neural network. Med. Phys. 2019, 46, 4095–4104.

47. Fan, J.; Wang, J.; Chen, Z.; Hu, C.; Zhang, Z.; Hu, W. Automatic treatment planning based on three-dimensional dose distribution
predicted from deep learning technique. Med. Phys. 2019, 46, 370–381.

48. Fujima, N.; Andreu-Arasa, V.C.; Meibom, S.K.; Mercier, G.A.; Salama, A.R.; Truong, M.T.; Sakai, O. Deep learning analysis using
FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur. Radiol. 2020, 30, 6322–6330.

49. Gronberg, M.P.; Gay, S.S.; Netherton, T.J.; Rhee, D.J.; Court, L.E.; Cardenas, C.E. Dose prediction for head and neck radiotherapy
using a three-dimensional dense dilated U-net architecture. Med. Phys. 2021, 48, 5567–5573.

50. Gurney-Champion, O.J.; Kieselmann, J.P.; Wong, K.H.; Ng-Cheng-Hin, B.; Harrington, K.; Oelfke, U. A convolutional neural
network for contouring metastatic lymph nodes on diffusion-weighted magnetic resonance images for assessment of radiotherapy
response. Phys. Imaging Radiat. Oncol. 2020, 15, 1–7.

51. Ibragimov, B.; Xing, L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med.
Phys. 2017, 44, 547–557.

52. Kim, D.W.; Lee, S.; Kwon, S.; Nam, W.; Cha, I.H.; Kim, H.J. Deep-learning-based survival prediction of oral cancer patients. Sci.
Rep. 2019, 9, 1–10.

53. Kim, N.; Chun, J.; Chang, J.S.; Lee, C.G.; Keum, K.C.; Kim, J.S. Feasibility of continual deep-learning-based segmentation for
personalized adaptive radiation therapy in head and neck area. Cancers 2021, 13, 702.

54. Koike, Y.; Anetai, Y.; Takegawa, H.; Ohira, S.; Nakamura, S.; Tanigawa, N. Deep-learning-based metal artifact reduction using
cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning. Phys. Med.
2020, 78, 8–14.

55. Koike, Y.; Ohira, S.; Akino, Y.; Sagawa, T.; Yagi, M.; Ueda, Y.; Miyazaki, M.; Sumida, I.; Teshima, T.; Ogawa, K. Deep-learning-
based virtual noncontrast CT for volumetric modulated arc therapy planning: Comparison with a dual-energy CT-based approach.
Med. Phys. 2020, 47, 371–379.

56. Lalonde, A.; Winey, B.; Verburg, J.; Paganetti, H.; Sharp, G.C. Evaluation of CBCT scatter correction using deep convolutional
neural networks for head and neck adaptive proton therapy. Phys. Med. Biol. 2020, 65, 245022.

57. Liang, S.; Tang, F.; Huang, X.; Yang, K.; Zhong, T.; Hu, R.; Liu, S.; Yuan, X.; Zhang, Y. Deep-learning-based detection and
segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur.
Radiol. 2019, 29, 1961–1967.

58. Li, X.; Wang, C.; Sheng, Y.; Zhang, J.; Wang, W.; Yin, F.F.; Wu, Q.; Wu, Q.J.; Ge, Y. An artificial intelligence-driven agent for
real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med. Phys. 2021,
48, 2714–2723.

59. Lin, L.; Dou, Q.; Jin, Y.M.; Zhou, G.Q.; Tang, Y.Q.; Chen, W.L.; Su, B.A.; Liu, F.; Tao, C.J.; Jiang, N.; et al. Deep learning for
automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 2019, 291, 677–686.

60. Liu, Z.; Fan, J.; Li, M.; Yan, H.; Hu, Z.; Huang, P.; Tian, Y.; Miao, J.; Dai, J. A deep-learning method for prediction of three-
dimensional dose distribution of helical tomotherapy. Med. Phys. 2019, 46, 1972–1983.

61. Liu, K.; Xia, W.; Qiang, M.; Chen, X.; Liu, J.; Guo, X.; Lv, X. Deep learning pathological microscopic features in endemic
nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy. Cancer Med. 2020,
9, 1298–1306.

62. Liu, Y.; Chen, A.; Shi, H.; Huang, S.; Zheng, W.; Liu, Z.; Zhang, Q.; Yang, X. CT synthesis from MRI using multi-cycle GAN for
head-and-neck radiation therapy. Comput. Med Imaging Graph. 2021, 91, 101953.

63. Men, K.; Geng, H.; Cheng, C.; Zhong, H.; Huang, M.; Fan, Y.; Plastaras, J.P.; Lin, A.; Xiao, Y. More accurate and efficient
segmentation of organs-at-risk in radiotherapy with convolutional neural networks cascades. Med. Phys. 2019, 46, 286–292.

64. Neppl, S.; Landry, G.; Kurz, C.; Hansen, D.C.; Hoyle, B.; Stöcklein, S.; Seidensticker, M.; Weller, J.; Belka, C.; Parodi, K.; et al.
Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR
head scans. Acta Oncol. 2019, 58, 1429–1434.

65. Nguyen, D.; Jia, X.; Sher, D.; Lin, M.H.; Iqbal, Z.; Liu, H.; Jiang, S. 3D radiotherapy dose prediction on head and neck cancer
patients with a hierarchically densely connected U-net deep-learning architecture. Phys. Med. Biol. 2019, 64, 065020.

66. Nikolov, S.; Blackwell, S.; Zverovitch, A.; Mendes, R.; Livne, M.; De Fauw, J.; Patel, Y.; Meyer, C.; Askham, H.; Romera-Paredes,
B.; et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv 2018,
arXiv:1809.04430.

67. Peng, H.; Dong, D.; Fang, M.J.; Li, L.; Tang, L.L.; Chen, L.; Li, W.F.; Mao, Y.P.; Fan, W.; Liu, L.Z.; et al. Prognostic value of deep
learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal
carcinoma. Clin. Cancer Res. 2019, 25, 4271–4279.

68. Qi, M.; Li, Y.; Wu, A.; Jia, Q.; Li, B.; Sun, W.; Dai, Z.; Lu, X.; Zhou, L.; Deng, X.; et al. Multi-sequence MR image-based synthetic
CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Med. Phys. 2020, 47, 1880–1894.

69. Tong, N.; Gou, S.; Yang, S.; Ruan, D.; Sheng, K. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy
using shape representation model constrained fully convolutional neural networks. Med. Phys. 2018, 45, 4558–4567.



Diagnostics 2022, 12, 1489 33 of 37

70. van Rooij, W.; Dahele, M.; Brandao, H.R.; Delaney, A.R.; Slotman, B.J.; Verbakel, W.F. Deep-learning-based delineation of head
and neck organs at risk: geometric and dosimetric evaluation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 677–684.

71. Wang, C.; Liu, C.; Chang, Y.; Lafata, K.; Cui, Y.; Zhang, J.; Sheng, Y.; Mowery, Y.; Brizel, D.; Yin, F.F. Dose-distribution-driven PET
image-based outcome prediction (DDD-PIOP): A deep learning study for oropharyngeal cancer IMRT application. Front. Oncol.
2020, 1592.

72. Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X. AnatomyNet: deep learning for fast and fully
automated whole-volume segmentation of head and neck anatomy. Med. Phys. 2019, 46, 576–589.

73. Zhong, L.Z.; Fang, X.L.; Dong, D.; Peng, H.; Fang, M.J.; Huang, C.L.; He, B.X.; Lin, L.; Ma, J.; Tang, L.L.; et al. A deep learning
MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0. Radiother.
Oncol. 2020, 151, 1–9.

74. Florkow, M.C.; Guerreiro, F.; Zijlstra, F.; Seravalli, E.; Janssens, G.O.; Maduro, J.H.; Knopf, A.C.; Castelein, R.M.; van Stralen,
M.; Raaymakers, B.W.; et al. Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric
abdominal tumours. Radiother. Oncol. 2020, 153, 220–227.

75. Guerreiro, F.; Seravalli, E.; Janssens, G.; Maduro, J.; Knopf, A.; Langendijk, J.; Raaymakers, B.; Kontaxis, C. Deep learning
prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother. Oncol. 2021, 156, 36–42.

76. Jackson, P.; Hardcastle, N.; Dawe, N.; Kron, T.; Hofman, M.S.; Hicks, R.J. Deep learning renal segmentation for fully automated
radiation dose estimation in unsealed source therapy. Front. Oncol. 2018, 8, 215.

77. He, T.; Fong, J.N.; Moore, L.W.; Ezeana, C.F.; Victor, D.; Divatia, M.; Vasquez, M.; Ghobrial, R.M.; Wong, S.T. An imageomics and
multi-network based deep-learning model for risk assessment of liver transplantation for hepatocellular cancer. Comput. Med
Imaging Graph. 2021, 89, 101894.

78. Ibragimov, B.; Toesca, D.; Chang, D.; Yuan, Y.; Koong, A.; Xing, L. Development of deep neural network for individualized
hepatobiliary toxicity prediction after liver SBRT. Med. Phys. 2018, 45, 4763–4774.

79. Ibragimov, B.; Toesca, D.A.; Yuan, Y.; Koong, A.C.; Chang, D.T.; Xing, L. Neural networks for deep radiotherapy dose analysis
and prediction of liver SBRT outcomes. IEEE J. Biomed. Health Informatics 2019, 23, 1821–1833.

80. Ibragimov, B.; Toesca, D.A.; Chang, D.T.; Yuan, Y.; Koong, A.C.; Xing, L.; Vogelius, I.R. Deep learning for identification of critical
regions associated with toxicities after liver stereotactic body radiation therapy. Med. Phys. 2020, 47, 3721–3731.

81. Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; et al. Residual convolutional neural
network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur. Radiol.
2020, 30, 413–424.

82. Zhu, H.B.; Xu, D.; Ye, M.; Sun, L.; Zhang, X.Y.; Li, X.T.; Nie, P.; Xing, B.C.; Sun, Y.S. Deep learning-assisted magnetic resonance
imaging prediction of tumor response to chemotherapy in patients with colorectal liver metastases. Int. J. Cancer 2021, 148, 1717–
1730.

83. Barragán-Montero, A.M.; Nguyen, D.; Lu, W.; Lin, M.H.; Norouzi-Kandalan, R.; Geets, X.; Sterpin, E.; Jiang, S. Three-dimensional
dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations.
Med. Phys. 2019, 46, 3679–3691.

84. Cui, Y.; Arimura, H.; Nakano, R.; Yoshitake, T.; Shioyama, Y.; Yabuuchi, H. Automated approach for segmenting gross tumor
volumes for lung cancer stereotactic body radiation therapy using CT-based dense V-networks. J. Radiat. Res. 2021, 62, 346–355.

85. Haq, R.; Hotca, A.; Apte, A.; Rimner, A.; Deasy, J.O.; Thor, M. Cardio-pulmonary substructure segmentation of radiotherapy
computed tomography images using convolutional neural networks for clinical outcomes analysis. Phys. Imaging Radiat. Oncol.
2020, 14, 61–66.

86. He, B.; Di Dong, Y.S.; Zhou, C.; Fang, M.; Zhu, Y.; Zhang, H.; Huang, Z.; Jiang, T.; Tian, J.; Chen, C. Predicting response to
immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J. Immunother.
Cancer 2020, 8, e000550.

87. Liang, B.; Tian, Y.; Chen, X.; Yan, H.; Yan, L.; Zhang, T.; Zhou, Z.; Wang, L.; Dai, J. Prediction of radiation pneumonitis with dose
distribution: a convolutional neural network (CNN) based model. Front. Oncol. 2020, 9, 1500.

88. Lou, B.; Doken, S.; Zhuang, T.; Wingerter, D.; Gidwani, M.; Mistry, N.; Ladic, L.; Kamen, A.; Abazeed, M.E. An image-based deep
learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. Lancet Digit. Health
2019, 1, e136–e147.

89. Mu, W.; Jiang, L.; Shi, Y.; Tunali, I.; Gray, J.E.; Katsoulakis, E.; Tian, J.; Gillies, R.J.; Schabath, M.B. Non-invasive measurement of
PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J. Immunother. Cancer 2021, 9,
e002118.

90. Tian, P.; He, B.; Mu, W.; Liu, K.; Liu, L.; Zeng, H.; Liu, Y.; Jiang, L.; Zhou, P.; Huang, Z.; et al. Assessing PD-L1 expression
in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed
tomography images. Theranostics 2021, 11, 2098.

91. Tseng, H.H.; Luo, Y.; Cui, S.; Chien, J.T.; Ten Haken, R.K.; Naqa, I.E. Deep reinforcement learning for automated radiation
adaptation in lung cancer. Med. Phys. 2017, 44, 6690–6705.

92. Xing, Y.; Zhang, Y.; Nguyen, D.; Lin, M.H.; Lu, W.; Jiang, S. Boosting radiotherapy dose calculation accuracy with deep learning.
J. Appl. Clin. Med. Phys. 2020, 21, 149–159.



Diagnostics 2022, 12, 1489 34 of 37

93. Xu, Y.; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H.J. Deep learning predicts lung cancer
treatment response from serial medical imaging. Clin. Cancer Res. 2019, 25, 3266–3275.

94. Yang, Y.; Yang, J.; Liang, Y.; Liao, B.; Zhu, W.; Mo, X.; Huang, K. Identification and Validation of Efficacy of Immunological
Therapy for Lung Cancer From Histopathological Images Based on Deep Learning. Front. Genet. 2021, 12, 121.

95. Ding, M.Q.; Chen, L.; Cooper, G.F.; Young, J.D.; Lu, X. Precision oncology beyond targeted therapy: combining omics data with
machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res. 2018, 16, 269–278.

96. Sakellaropoulos, T.; Vougas, K.; Narang, S.; Koinis, F.; Kotsinas, A.; Polyzos, A.; Moss, T.J.; Piha-Paul, S.; Zhou, H.; Kardala, E.;
et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep. 2019, 29, 3367–3373.

97. Maspero, M.; Houweling, A.C.; Savenije, M.H.; van Heijst, T.C.; Verhoeff, J.J.; Kotte, A.N.; van den Berg, C.A. A single neural
network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer. Phys. Imaging
Radiat. Oncol. 2020, 14, 24–31.

98. Nyflot, M.J.; Thammasorn, P.; Wootton, L.S.; Ford, E.C.; Chaovalitwongse, W.A. Deep learning for patient-specific quality
assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
Med. Phys. 2019, 46, 456–464.

99. Yang, J.; Veeraraghavan, H.; Armato, S.G., III; Farahani, K.; Kirby, J.S.; Kalpathy-Kramer, J.; van Elmpt, W.; Dekker, A.; Han, X.;
Feng, X.; et al. Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017. Med. Phys. 2018,
45, 4568–4581.

100. Liu, Y.; Lei, Y.; Fu, Y.; Wang, T.; Tang, X.; Jiang, X.; Curran, W.J.; Liu, T.; Patel, P.; Yang, X. CT-based multi-organ segmentation
using a 3D self-attention U-net network for pancreatic radiotherapy. Med. Phys. 2020, 47, 4316–4324.

101. Wang, W.; Sheng, Y.; Palta, M.; Czito, B.; Willett, C.; Hito, M.; Yin, F.F.; Wu, Q.; Ge, Y.; Wu, Q.J. Deep Learning–Based Fluence
Map Prediction for Pancreas Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost. Adv. Radiat. Oncol. 2021,
6, 100672.

102. Arabi, H.; Dowling, J.A.; Burgos, N.; Han, X.; Greer, P.B.; Koutsouvelis, N.; Zaidi, H. Comparative study of algorithms for
synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region. Med. Phys. 2018,
45, 5218–5233.

103. Maspero, M.; Savenije, M.H.; Dinkla, A.M.; Seevinck, P.R.; Intven, M.P.; Jurgenliemk-Schulz, I.M.; Kerkmeijer, L.G.; van den
Berg, C.A. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only
radiotherapy. Phys. Med. Biol. 2018, 63, 185001.

104. Ju, Z.; Wu, Q.; Yang, W.; Gu, S.; Guo, W.; Wang, J.; Ge, R.; Quan, H.; Liu, J.; Qu, B. Automatic segmentation of pelvic organs-at-risk
using a fusion network model based on limited training samples. Acta Oncol. 2020, 59, 933–939.

105. Bohara, G.; Sadeghnejad Barkousaraie, A.; Jiang, S.; Nguyen, D. Using deep learning to predict beam-tunable Pareto optimal
dose distribution for intensity-modulated radiation therapy. Med. Phys. 2020, 47, 3898–3912.

106. Chen, S.; Qin, A.; Zhou, D.; Yan, D. U-net-generated synthetic CT images for magnetic resonance imaging-only prostate
intensity-modulated radiation therapy treatment planning. Med. Phys. 2018, 45, 5659–5665.

107. Savenije, M.H.; Maspero, M.; Sikkes, G.G.; van der Voort van Zyp, J.; Kotte, T.; Alexis, N.; Bol, G.H.; van den Berg, T.; Cornelis, A.
Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.
Radiat. Oncol. 2020, 15, 1–12.

108. Elmahdy, M.S.; Jagt, T.; Zinkstok, R.T.; Qiao, Y.; Shahzad, R.; Sokooti, H.; Yousefi, S.; Incrocci, L.; Marijnen, C.; Hoogeman, M.;
et al. Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate
cancer. Med. Phys. 2019, 46, 3329–3343.

109. Elmahdy, M.S.; Ahuja, T.; van der Heide, U.A.; Staring, M. Patient-specific finetuning of deep-learning models for adaptive
radiotherapy in prostate CT. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa
City, IA, USA, 3–7 April 2020; pp. 577–580.

110. Kajikawa, T.; Kadoya, N.; Ito, K.; Takayama, Y.; Chiba, T.; Tomori, S.; Takeda, K.; Jingu, K. Automated prediction of dosimetric
eligibility of patients with prostate cancer undergoing intensity-modulated radiation therapy using a convolutional neural
network. Radiol. Phys. Technol. 2018, 11, 320–327.

111. Kajikawa, T.; Kadoya, N.; Ito, K.; Takayama, Y.; Chiba, T.; Tomori, S.; Nemoto, H.; Dobashi, S.; Takeda, K.; Jingu, K. A
convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J. Radiat. Res. 2019,
60, 685–693.

112. Kandalan, R.N.; Nguyen, D.; Rezaeian, N.H.; Barragán-Montero, A.M.; Breedveld, S.; Namuduri, K.; Jiang, S.; Lin, M.H. Dose
prediction with deep learning for prostate cancer radiation therapy: model adaptation to different treatment planning practices.
Radiother. Oncol. 2020, 153, 228–235.

113. Kearney, V.; Chan, J.W.; Wang, T.; Perry, A.; Descovich, M.; Morin, O.; Yom, S.S.; Solberg, T.D. DoseGAN: A generative adversarial
network for synthetic dose prediction using attention-gated discrimination and generation. Sci. Rep. 2020, 10, 1–8.

114. Kiljunen, T.; Akram, S.; Niemelä, J.; Löyttyniemi, E.; Seppälä, J.; Heikkilä, J.; Vuolukka, K.; Kääriäinen, O.S.; Heikkilä, V.P.;
Lehtiö, K.; et al. A deep-learning-based automated CT segmentation of prostate cancer anatomy for radiation therapy planning-a
retrospective multicenter study. Diagnostics 2020, 10, 959.

115. Kontaxis, C.; Bol, G.; Lagendijk, J.; Raaymakers, B. DeepDose: towards a fast dose calculation engine for radiation therapy using
deep learning. Phys. Med. Biol. 2020, 65, 075013.



Diagnostics 2022, 12, 1489 35 of 37

116. Largent, A.; Barateau, A.; Nunes, J.C.; Mylona, E.; Castelli, J.; Lafond, C.; Greer, P.B.; Dowling, J.A.; Baxter, J.; Saint-Jalmes, H.;
et al. Comparison of deep-learning-based and patch-based methods for pseudo-CT generation in MRI-based prostate dose
planning. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 1137–1150.

117. Li, X.; Zhang, J.; Sheng, Y.; Chang, Y.; Yin, F.F.; Ge, Y.; Wu, Q.J.; Wang, C. Automatic IMRT planning via static field fluence
prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Phys. Med. Biol. 2020, 65, 175014.

118. Ma, M.; K. Buyyounouski, M.; Vasudevan, V.; Xing, L.; Yang, Y. Dose distribution prediction in isodose feature-preserving
voxelization domain using deep convolutional neural network. Med. Phys. 2019, 46, 2978–2987.

119. Ma, M.; Kovalchuk, N.; Buyyounouski, M.K.; Xing, L.; Yang, Y. Incorporating dosimetric features into the prediction of 3D VMAT
dose distributions using deep convolutional neural network. Phys. Med. Biol. 2019, 64, 125017.

120. Ma, J.; Nguyen, D.; Bai, T.; Folkerts, M.; Jia, X.; Lu, W.; Zhou, L.; Jiang, S. A feasibility study on deep-learning-based individualized
3D dose distribution prediction. Med. Phys. 2021, 48, 4438–4447.

121. Murakami, Y.; Magome, T.; Matsumoto, K.; Sato, T.; Yoshioka, Y.; Oguchi, M. Fully automated dose prediction using generative
adversarial networks in prostate cancer patients. PLoS ONE 2020, 15, e0232697.

122. Nemoto, T.; Futakami, N.; Yagi, M.; Kunieda, E.; Akiba, T.; Takeda, A.; Shigematsu, N. Simple low-cost approaches to semantic
segmentation in radiation therapy planning for prostate cancer using deep learning with non-contrast planning CT images. Phys.
Medica 2020, 78, 93–100.

123. Nguyen, D.; Long, T.; Jia, X.; Lu, W.; Gu, X.; Iqbal, Z.; Jiang, S. A feasibility study for predicting optimal radiation therapy dose
distributions of prostate cancer patients from patient anatomy using deep learning. Sci. Rep. 2019, 9, 1–10.

124. Nguyen, D.; McBeth, R.; Sadeghnejad Barkousaraie, A.; Bohara, G.; Shen, C.; Jia, X.; Jiang, S. Incorporating human and learned
domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired
framework for generating Pareto optimal dose distributions in radiation therapy. Med. Phys. 2020, 47, 837–849.

125. Sadeghnejad Barkousaraie, A.; Ogunmolu, O.; Jiang, S.; Nguyen, D. A fast deep-learning approach for beam orientation
optimization for prostate cancer treated with intensity-modulated radiation therapy. Med. Phys. 2020, 47, 880–897.

126. Shao, W.; Banh, L.; Kunder, C.A.; Fan, R.E.; Soerensen, S.J.; Wang, J.B.; Teslovich, N.C.; Madhuripan, N.; Jawahar, A.; Ghanouni,
P.; et al. ProsRegNet: A deep learning framework for registration of MRI and histopathology images of the prostate. Med Image
Anal. 2021, 68, 101919.

127. Shin, D.S.; Kim, K.H.; Kang, S.W.; Kang, S.H.; Kim, J.S.; Kim, T.H.; Kim, D.S.; Cho, W.; Suh, T.S.; Chung, J.B. Dose Super-Resolution
in Prostate Volumetric Modulated Arc Therapy Using Cascaded Deep Learning Networks. Front. Oncol. 2020, 10, 2443.

128. Sumida, I.; Magome, T.; Das, I.J.; Yamaguchi, H.; Kizaki, H.; Aboshi, K.; Yamaguchi, H.; Seo, Y.; Isohashi, F.; Ogawa, K. A
convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy. Phys. Medica
2020, 72, 88–95.

129. Xing, Y.; Nguyen, D.; Lu, W.; Yang, M.; Jiang, S. A feasibility study on deep-learning-based radiotherapy dose calculation. Med.
Phys. 2020, 47, 753–758.

130. Bibault, J.E.; Giraud, P.; Housset, M.; Durdux, C.; Taieb, J.; Berger, A.; Coriat, R.; Chaussade, S.; Dousset, B.; Nordlinger, B.; et al.
Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer.
Sci. Rep. 2018, 8, 1–8.

131. Bird, D.; Nix, M.G.; McCallum, H.; Teo, M.; Gilbert, A.; Casanova, N.; Cooper, R.; Buckley, D.L.; Sebag-Montefiore, D.; Speight, R.;
et al. Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning. Radiother.
Oncol. 2021, 156, 23–28.

132. Jin, C.; Yu, H.; Ke, J.; Ding, P.; Yi, Y.; Jiang, X.; Duan, X.; Tang, J.; Chang, D.T.; Wu, X.; et al. Predicting treatment response from
longitudinal images using multi-task deep learning. Nat. Commun. 2021, 12, 1–11.

133. Liu, X.; Zhang, D.; Liu, Z.; Li, Z.; Xie, P.; Sun, K.; Wei, W.; Dai, W.; Tang, Z.; Ding, Y.; et al. Deep learning radiomics-
based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A
multicentre study. EBioMedicine 2021, 69, 103442.

134. Men, K.; Dai, J.; Li, Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer
using deep dilated convolutional neural networks. Med. Phys. 2017, 44, 6377–6389.

135. Shi, L.; Zhang, Y.; Nie, K.; Sun, X.; Niu, T.; Yue, N.; Kwong, T.; Chang, P.; Chow, D.; Chen, J.H.; et al. Machine learning for
prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
Magn. Reson. Imaging 2019, 61, 33–40.

136. Song, Y.; Hu, J.; Wu, Q.; Xu, F.; Nie, S.; Zhao, Y.; Bai, S.; Yi, Z. Automatic delineation of the clinical target volume and organs at
risk by deep learning for rectal cancer postoperative radiotherapy. Radiother. Oncol. 2020, 145, 186–192.

137. Wang, J.; Lu, J.; Qin, G.; Shen, L.; Sun, Y.; Ying, H.; Zhang, Z.; Hu, W. A deep-learning-based autosegmentation of rectal tumors in
MR images. Med. Phys. 2018, 45, 2560–2564.

138. Xu, J.; Zhou, X.; Ma, J.; Liu, S.; Zhang, M.; Zheng, X.; Zhang, X.; Liu, G.; Zhang, X.; Lu, Y.; et al. Application of convolutional
neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging.
Zhonghua Wei Chang. Wai Zhi = Chin. J. Gastrointest. Surg. 2020, 23, 572–577.

139. Zhang, X.Y.; Wang, L.; Zhu, H.T.; Li, Z.W.; Ye, M.; Li, X.T.; Shi, Y.J.; Zhu, H.C.; Sun, Y.S. Predicting rectal cancer response to
neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI. Radiology 2020, 296, 56–64.



Diagnostics 2022, 12, 1489 36 of 37

140. Zhou, J.; Peng, Z.; Song, Y.; Chang, Y.; Pei, X.; Sheng, L.; Xu, X.G. A method of using deep learning to predict three-dimensional
dose distributions for intensity-modulated radiotherapy of rectal cancer. J. Appl. Clin. Med. Phys. 2020, 21, 26–37.

141. Wang, C.W.; Lee, Y.C.; Chang, C.C.; Lin, Y.J.; Liou, Y.A.; Hsu, P.C.; Chang, C.C.; Sai, A.K.O.; Wang, C.H.; Chao, T.K. A Weakly
Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers 2022,
14, 1651.

142. Lin, Y.J.; Chao, T.K.; Khalil, M.A.; Lee, Y.C.; Hong, D.Z.; Wu, J.J.; Wang, C.W. Deep Learning Fast Screening Approach on
Cytological Whole Slides for Thyroid Cancer Diagnosis. Cancers 2021, 13, 3891.

143. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
2016, 39, 640–651.

144. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25.

145. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In
Proceedings of the 2015 third IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lampur, Malaysia, 3–6 November
2015; pp. 730–734. https://doi.org/10.1109/ACPR.2015.7486599.

146. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
https://doi.org/10.1109/CVPR.2016.90.

147. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

148. Hedden, N.; Xu, H. Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional
deep-learning models. Phys. Medica 2021, 83, 101–107.

149. Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571. https://doi.org/10.1109/3DV.2016.79.

150. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

151. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. https://doi.org/10.1109/CVPR.2016.308.

152. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
https://doi.org/10.1109/CVPR.2017.243.

153. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3859–3869.
https://doi.org/10.5555/3294996.3295142.

154. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. Semantic Image Segmentation with Deep Convolutional Nets
and Fully Connected CRFs. arXiv 2015, arXiv:1412.7062 .

155. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. DeepLab: Semantic Image Segmentation with Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848 .
https://doi.org/10.1109/TPAMI.2017.2699184.

156. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

157. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European conference on computer vision (ECCV), Glasgow, UK, 23–28 August 2018;
pp. 801–818.

158. Wang, L.; Xie, C.; Zeng, N. RP-Net: A 3D Convolutional Neural Network for Brain Segmentation From Magnetic Resonance
Imaging. IEEE Access 2019, 7, 39670–39679. https://doi.org/10.1109/ACCESS.2019.2906890.

159. Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C.
Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans. Med Imaging 2018, 37, 1822–1834.
https://doi.org/10.1109/TMI.2018.2806309.

160. Kaur, M.; Mohta, A. A Review of Deep Learning with Recurrent Neural Network. In Proceedings of the 2019 International
Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27–29 November 2019; pp. 460–465.
https://doi.org/10.1109/ICSSIT46314.2019.8987837.

161. Szegedy, C.; Toshev, A.; Erhan, D. Deep Neural Networks for Object Detection. Adv. Neural Inf. Process. Syst. 2013, 26, 2553–2561.
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