
����������
�������

Citation: Wang, J.; Chen, M.; Zhu, W.;

Hu, L.; Wang, Y. A Combined

Approach for Retrieving Bathymetry

from Aerial Stereo RGB Imagery.

Remote Sens. 2022, 14, 760.

https://doi.org/10.3390/rs14030760

Academic Editor:

Pablo Rodríguez-Gonzálvez

Received: 27 December 2021

Accepted: 2 February 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Combined Approach for Retrieving Bathymetry from Aerial
Stereo RGB Imagery
Jiali Wang 1,* , Ming Chen 1 , Weidong Zhu 2, Liting Hu 2 and Yasong Wang 2

1 College of Information, Shanghai Ocean University, 999 Hucheng Huanlu Road, Shanghai 201308, China;
mchen@shou.edu.cn

2 College of Marine Science, Shanghai Ocean University, 999 Hucheng Huanlu Road, Shanghai 201308, China;
wdzhu@shou.edu.cn (W.Z.); lthu@shou.edu.cn (L.H.); yswang@shou.edu.cn (Y.W.)

* Correspondence: jl-wang@shou.edu.cn

Abstract: Shallow water bathymetry is critical in understanding and managing marine ecosystems.
Bathymetric inversion models using airborne/satellite multispectral data are an efficient way to
retrieve shallow bathymetry due to the affordable cost of airborne/satellite images and less field
work required. With the increasing availability and popularity of unmanned aerial vehicle (UAV)
imagery, this paper explores a new approach to obtain bathymetry using UAV visual-band (RGB)
images. A combined approach is therefore proposed for retrieving bathymetry from aerial stereo RGB
imagery, which is the combination of a new stereo triangulation method (an improved projection
image based two-medium stereo triangulation method) and spectral inversion models. In general,
the inversion models require some bathymetry reference points, which are not always feasible in
many scenarios, and the proposed approach employs a new stereo triangulation method to obtain
reliable bathymetric points, which act as the reference points of the inversion models. Using various
numbers of triangulation points as the reference points together with a Geographical Weighted
Regression (GWR) model, a series of experiments were conducted using UAV RGB images of a small
island, and the results were validated against LiDAR points. The promising results indicate that the
proposed approach is an efficient technique for shallow water bathymetry retrieval, and together
with UAV platforms, it could be deployed easily to conduct a broad range of applications within
marine environments.

Keywords: shallow water bathymetry; UAV RGB images; triangulation; Geographical Weighted
Regression (GWR)

1. Introduction

Shallow water regions’ bathymetry is important in various managements and modelling,
such as navigation and transportation [1], modelling of sediment deformation [2], coastal
line or water bank erosion [3,4], and the needs of sand mining and beach nourishment [5].
Bathymetry retrieval techniques can be sorted into two broad categories according to the
principals that are used: geometric measurements and radiometric measurements. Geometric
methods are based on the signal/ray travel return time to calculate the distance or using
two or multiple optical rays to triangulate the depths; these methods include traditional
echo sounding [6], two-medium photogrammetric triangulation [7,8], LiDAR [9], and so
on. Radiometric methods (refer as satellite-derived bathymetry (SDB) methods) [10–13] are
based on radiative transfer, where atmosphere composition and water column, as well as
seabed type and composition, will affect the spectral information acquired using multispec-
tral/hyperspectral imaging sensors. SDB methods usually use inversion models to infer the
depth information. Some popular methods are introduced in the next section and a new
combined approach for bathymetry retrieval is proposed in Section 3.
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2. Bathymetric Retrieval Methods Review

On the category of geometric measurements to obtain bathymetry, echo sounding
techniques are employed for deep water measurement but are usually not suitable for
shallow water due to the vessel’s access. Airborne LiDAR becomes a promising technique
to efficiently obtain shallow bathymetry; its accuracy is very high but very expensive to em-
ploy. With the rapid development of UAV technologies, imaging model-based methods [14]
to obtain the bathymetry have become a popular choice for shallow bathymetry retrieval
compared to sound-based methods or LiDAR. Imaging model-based correction requires
rigorous mathematic equations through collinearity and Snell’s law, and it is difficult to
implement due to the rigorous requirements and complexity [14,15].

To improve the accuracy of bathymetry acquisition by imaging model-based methods,
Partama et al. [16] proposed an empirical method to correct the refraction effect by using the
procedures of Structure-from-Motion (SfM) and Multi-View Stereo (MVS). Their method
utilizes the empirical relationship between the measured true depth and estimates apparent
depth to generate an empirical depth correction factor. Mandlburger et al. [17] proposed
deriving bathymetry using RGBC (red, green, blue, costal blue) aerial images and a deep
neural network method, and laser point clouds serve as the reference data and training data
for the method. Murase et al. [18] proposed an approximation method to solve the position
problem through the incident angles of light rays from an underwater object to two cameras.
They mentioned that the horizontal shift can be neglected when the interest point is not
on the vertical bisector of the shooting positions. Shan [19] suggested that a two-medium
refraction problem can be described as a radial component or equivalent to correct the
camera focal length. Skarlatos and Agraflotis et al. [20] proposed a non-iterative method
based on machine learning to re-project an original image to an image that does not have
any refraction effects, and then employed SfM and MVS techniques to obtain bathymetry.
Cao et al. [15] proposed an algorithm to obtain the optimal observation position when the
conjugate light rays were not intersecting. Although the abovementioned methods can
improve the accuracy of water depth to a certain degree, the positions of observation points
must be taken into account; otherwise, they will introduce new errors.

Another category of bathymetry techniques is based on radiometric measurements–
SDB. SDB methods use the Beer–Lambert Law (in this case wavelength-dependent expo-
nential attenuation of light in the water column) to derive inversion models. Assuming
some references are available for estimating inversion models’ coefficients, it is generally
possible to inverse a large area’s bathymetry using the models and estimated coefficients.
There are 4 classic global inversion models: single-band bathymetric inversion model [10],
two-band bathymetric inversion model [21], multi-band bathymetric inversion [22] model,
and artificial neural network (ANN) method to inverse bathymetric [23].

3. A Proposed Combined Approach for Bathymetry Retrieval

In order to avoid the computational complexity of imaging model-based correction, a
projection image based two-medium stereo triangulation method (hereinafter referred to as
ST method) is proposed to make the water depth calculation simpler. The projection image
concept was first introduced by one of the authors of [24], and utilizing the projection im-
age, [24] achieves elevation correction of a single target point on the ground and refinement
of the building edges. In this paper, this work was extended to take into account the ray
refraction through two-medium photogrammetry, and the resultant projection images are
then well suitable for quick and simple water depth triangulation. The ST method served
as the water depth reference provider for inversion methods. The Geographical Weighted
Regression (GWR) model, which has a character of weighting distribution, was used during
the inversion model’s regression. In order to obtain the effective variables of the GWR
model, we use principle component analysis (PCA) to extract the optimal component
information from a set of combinations of RGB band ratios. Legleiter [11] proposed that the
natural logarithmic values of the band ratios can be regarded as the appropriate estimators
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of water depths; therefore, the natural logarithmic value of the optimal RGB band ratio was
used as the model’s estimator to estimate the model’s coefficients.

The details of the projection image based two-medium stereo triangulation method
and GWR model are described in Sections 3.1 and 3.2, respectively. The efficiency of the
combined approach is illustrated by a bathymetry inversion experiment in Section 4.1. In
Section 4.2, different numbers of triangulation points are used as reference points of the
GWR model for inverse bathymetry of an island’s surrounding area, using the relative
experiments to validate the superiorities of the combined approach. Furthermore, the
inversion results of the GWR model are compared with that inversed by the MLR model.

3.1. The Projection Image Based Two-Medium Stereo Triangulation Method

The ST method is the extended version of the method used for elevation correction
and refinement [24]. Similar to orthoimage generation process (forward and backward
projections) [25], a projection image is obtained by projecting the original image onto a
horizontal plane that has a constant elevation. It can be proven that in the two-medium
photogrammetry case, although the ray refracts when passing through the air-water inter-
face, all the projected points of an underwater vertical line still form a straight locus either
on the left or right projection image. Therefore the same projection image method used
in [24] can be applied to correct and refine the water depths of underwater points.

The relationships of underwater points (P, P1, and P2), projection points (PL, PR, PL1,
PL2, PR1, and PR2), camera centers (SL and SR), and projected camera centers (SL’ and SR’)
are shown in Figure 1. Through searching along the vertical line passing through P, all the
projected points of the line can be mapped onto a locus LL (on the left projection image) or
LR (on the right projection image). Assuming the searching is performed between points
P1 and P2 (P is located somewhere on the line segment between P1 and P2), PL, PR, PL1,
PL2, PR1, and PR2 are the projected points of P, P1, and P2 (L mean on the left projection
image and R means on the right projection image), respectively. The depth (ZP) of P can be
determined by comparing the correlation coefficients of the left and right candidate pairs
(PL and PR; PL1 and PR1; PL2 and PR2).
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Figure 1. The relationships among the searching points, projection points, and projected centers in
the ST method.

There are three major advantages or special properties of projection images that make the
projection image concept very attractive, especially from the computation efficiency aspect:

1. All projection images are within the same spatial coordinate system;
2. All projection images’ pixels have the same ground sample distance (GSD) and are

not affected by any rotation angles because the rotation angles are zeros; and



Remote Sens. 2022, 14, 760 4 of 15

3. When the elevation of target point is equal to the horizontal plane elevation Z0, the
projected points of the target point on the left and right projection images share the
same position.

When the original image is projected to an air-water interface with elevation Z0, the
projected point P (XP, YP, Z0) can be obtained by Equation (1): XP =

(
a1(x−x0)+a2(y−y0)−a3 f
c1(x−x0)+c2(y−y0)−c3 f

)
(Z0 − ZS) + XS

YP =
(

b1(x−x0)+b2(y−y0)−b3 f
c1(x−x0)+c2(y−y0)−c3 f

)
(Z0 − ZS) + YS

(1)

where x, y are the original image coordinates; x0, y0 are the camera’s principal points and
f is the camera’s focal length; (XS, YS, ZS) are the coordinate of camera projection center
S; (ai, bi, ci) (i = 1, 2, 3) denote the nine parameters of the rotation matrix of the original
image [26].

In the two-medium photogrammetry case, rigorous geometry is taken in account in
the proposed method. According to Snell’s Law, the relationship of a left projected point
PL (XPL, YPL, Z0) and the searching point Pi (XP, YP, ZPi) can be expressed in Equation (2):

n2 = sin2 αL
sin2 βL

=
(XPL−XS)

2[(XP−XPL)
2+(Z0−ZPi)

2]
(XP−XS)

2[(XPL−XS)
2+(ZPi−Z0)2]

n2 = sin2 αL
sin2 βL

=
(YPL−YS)

2[(YP−YPL)
2+(Z0−ZPi)

2]
(YP−XPL)

2[(YPL−YS)
2+(ZPi−Z0)2]

(2)

where n is the ratio of water refractive index and air refractive index, αL is the angle of
incidence to the left projection image, and βL is the angle of light refraction at the left
projection image.

Utilizing Equation (2), a series of candidate pairs (left and right projected points) of an
underwater point can be obtained. Using a simple matching technique (cross correlation
coefficients) the best candidate pair can be found for the underwater point. The cross
correlation coefficients can be computed by the normalized cross correlation coefficient
(NCC) [27,28] image matching technique:

NCCi(PLi, PRi) =
∑s∈W

(
ILi(sLi)− ILi

)
(IRi(sRi)− IRi)√

∑s∈W (ILi(sLi)− ILi)
2
√

∑s∈W (IRi(sRi)− IRi)
2

(3)

ILi =
1

m× n ∑
s∈W

ILi(sLi) IRi =
1

m× n ∑
s∈W

IRi(sRi) i = 1, 2, 3, . . . , n

where ILi, IRi denote the image intensity values of the points PLi, PRi on their projection
images within a correlation window W. m and n are window W’s size, and sLi, sRi are the
pixels in window W on the left and right projection images, respectively. The NCCi value
mainly depends on ILi and IRi, which are defined by the pixel values sLi and sRi.

Using the projection images, the steps of the ST method to obtain a target point’s water
depth are described as follows:

1. Projecting the original images to the air-water interface to generate projection images;
2. Locating the target point’s horizontal position (X, Y), obtaining a series of depth

candidates for the target point within the reasonable water depth range (hmin, hmax)
and depth searching increment (k), and choosing an appropriate cross correlation
window size (m × n);

3. Computing the candidate pairs of searching points using Equation (2);
4. Computing the correlation coefficients of the candidate pairs by Equation (3); and
5. Finding the pair with the maximum correlation coefficient and regarding its corre-

sponding depth as the optimal depth position of the target point.
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3.2. Geographically Weighted Regression (GWR) Model

The GWR model has many applications by the spatial heterogeneous relationship in
the inversion process, such as housing market modelling [29], urban analysis [30], ecology
and environmental science [31], and infectious disease epidemiology [32]. The GWR
model was employed by Kim [33] for bathymetry inversion model’s regression and their
experiments indicate that better results can be obtained using the GWR model compared to
the multiple linear regression (MLR) model and artificial neural network (ANN) model.

Compared to global regression models, such as the MLR model or ANN model,
the GWR model reflects the spatially varying relationships, and the coefficients are the
functions of special locations [34]. The GWR model can be described using Equation (4):

yi = β0(ui, vi) +
m

∑
k=1

βk(ui, vi)xik + εi i = 1, 2, . . . , n (4)

where yi is the estimated water depth of sample i; xik is the kth explanatory variable of
sample i; m is the number of explanatory variables; β0 is the intercept parameter of sample
i; βk is the local regression coefficient for the kth explanatory variable of sample i; εi is the
random error of sample i; (ui, vi) is the position coordinate of sample i.

The set of coefficients varies continuously by the location changes over the experimen-
tal area in the GWR model, where the regression point that is nearer to the observation
point has more influence in the set of coefficients than a point farther away [35]. The set of
regression coefficients around the reversion point at the location (ui, vi) can be estimated
by weight least squares [36]. The key to regression coefficients is selecting the weighting
function and kernel function. Considering that a lot of the observations in this study are
clustered distribution around the experimental area, adaptive kernel was chosen to provide
the geographic weighting in GWR [28], and the Akaike Information Criterion (AIC) [37]
bandwidth method was used to compute the bandwidth to control the size of the kernel.

3.3. Bathymetric Accuracy Assessment Criteria

To evaluate the performance of ST method and the combined approach, mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of determination (R2) are
chosen as the criteria to assess the bathymetric accuracy, where R2 varies from 0 to 1, and
the value closer to 1 denotes the better model performance. The corresponding equations
are expressed as Equations (5)–(7):

MAE =
1
n

n

∑
i=1
|Zi − Hi| (5)

RMSE =

√
∑n

i=1(Zi − Hi)
2

n
(6)

R2 = 1− ∑n
i=1(Zi − Hi)

2

∑n
i=1
(
Zi − Z

)2 (7)

where Zi and Hi denote the real water depth and estimated depth of the test point i respectively,
Z denotes the mean value of n real water depths, and n is the number of test points.

4. The Experiments of Retrieving Bathymetry Using the Combined Approach

To verify the proposed combined approach, a bathymetry retrieval experiment in the
surrounding region of an island (18◦39′N, 110◦17′E) was conducted. The shallow water
around the island is very clear and the visibility can reach to 10 m in depth. The total
50 images with more than 0.75 overlap rates were captured using a Phantom4 RTK camera
mounted on a small lightweight UAV. The UAV flying height was around 250 m above
the water level. The image size was 5472 × 3648 pixels, the pixel size was 2.41 × 2.41 µm2,



Remote Sens. 2022, 14, 760 6 of 15

and the focal length was 9 mm. A total of 32 ground control points (the black triangles in
Figure 2) sampled from LiDAR points, of which the accuracies were 0.1 m, 0.1 m, 0.2 m
in X, Y, Z directions, respectively, were used for image calibration and orientation. An
iterative camera calibration method was used [38] to estimate the camera lens distortion.
The distortion residuals of the calibrated images reported less than 0.58 pixels, and the
image orientation accuracies after the block adjustment applied were around 0.25 m, 0.24 m,
and 0.55 m in X, Y, and Z directions, respectively. The elevation of air-water interface was
determined manually using the air-water interface points through the forward stereo trian-
gulation method [25]. The projection images were then generated by projecting the original
images onto the air-water interface plane. Figure 2 shows the mosaic image composed
using 5 projection images. There are slight displacements among the projected images,
mainly because the region shares different elevations with the air-water interface plane.
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Figure 2. The mosaic image of the experimental area composed by 5 projection images.

Besides UAV RGB images, the LiDAR point cloud data of the experimental area were also
acquired from an UAV-borne photon-counting bathymetric Lidar. This instrument uses the
time-of-flight distance measurement principle of infrared nanosecond pulses for topographic
applications and green (532 nm) nanosecond pulses for bathymetric applications. Figure 3
shows the bathymetry with 1 m spatial resolutions derived by interpolating those LiDAR
points using the ordinary kriging method [39]. The interpolated bathymetry was used as the
evaluation and validation data to compare and validate the combined approach.



Remote Sens. 2022, 14, 760 7 of 15
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Bathymetry derived by interpolating dense LiDAR points. 

4.1. Bathymetry Determination Using the Combined Approach 

Following the ST method’s steps described in Section 3.1, 520 underwater points 

(shown as yellow points in Figure 2) were triangulated to obtain water depths, and the 
method was achieved in the environment of VC++ 2013. These 520 points were mainly dis-
tributed in the test area within 15 m of water depth. The triangulated depths are compared 

with the depths of their nearest LiDAR points’. When applying the ST method, consider-
ing that the water depths of 520 points are less than 15 m, the hmin was set to 0 m and the 

hmax was set to 15 m. The cross correlation window size had a strong influence on the re-
sults[40]; a 51× 51 window size was set as cross correlation window size and 0.2 m as the 
depth searching interval—the same as the projection image’s resolution. A series of can-

didate pairs and their corresponding correlation coefficients were obtained based on the 
above setting parameters. The optimal depth position of the target point, therefore, can be 

determined using the maximum correlation coefficient criterion, for example. All 520 
points were tested by ST method, and 400 points out of 520 points that had maximum 

coefficients greater than 0.6 were chosen as the acceptable points. Those 400 points were 
then compared with their nearest LiDAR points, shown in the corresponding scatter dia-
gram in Figure 4a, and MAE reached 1.595 m and RMSE reached 1.843 m. The large resid-

uals can be attributed to the fact that the ST method ignores the sea surface undulations 
due to waves and refractions’ change, as well as some test points with weak textures. 

In order to infer the bathymetry of the experimental area, the obtained triangulation 
depths were used as the reference depths of the inversion model. Then the GWR model 
(introduced in Section 3.2) was used as inversion model to infer bathymetry of the exper-

imental area, and PCA was used to extract the optimal band ratio that can reveal the most 
information among the 6 band ratios (DNR/DNG, DNR/DNB, DNG/DNR, DNG/DNB, 

DNB/DNR, and DNB/DNG) in the RGB image. As the result of PCA, the ratio of the digital 
number red band (DNR) and digital number green band (DNG) had the highest component 
score, which explained 92.1% of the total band ratios’ information. Then the natural loga-

rithmic values (ln(DNR/DNG)) of the DNR and DNG ratios were used as the variables of 
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4.1. Bathymetry Determination Using the Combined Approach

Following the ST method’s steps described in Section 3.1, 520 underwater points
(shown as yellow points in Figure 2) were triangulated to obtain water depths, and the
method was achieved in the environment of VC++ 2013. These 520 points were mainly
distributed in the test area within 15 m of water depth. The triangulated depths are
compared with the depths of their nearest LiDAR points’. When applying the ST method,
considering that the water depths of 520 points are less than 15 m, the hmin was set to 0 m
and the hmax was set to 15 m. The cross correlation window size had a strong influence on
the results [40]; a 51 × 51 window size was set as cross correlation window size and 0.2 m
as the depth searching interval—the same as the projection image’s resolution. A series of
candidate pairs and their corresponding correlation coefficients were obtained based on the
above setting parameters. The optimal depth position of the target point, therefore, can be
determined using the maximum correlation coefficient criterion, for example. All 520 points
were tested by ST method, and 400 points out of 520 points that had maximum coefficients
greater than 0.6 were chosen as the acceptable points. Those 400 points were then compared
with their nearest LiDAR points, shown in the corresponding scatter diagram in Figure 4a,
and MAE reached 1.595 m and RMSE reached 1.843 m. The large residuals can be attributed
to the fact that the ST method ignores the sea surface undulations due to waves and
refractions’ change, as well as some test points with weak textures.
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In order to infer the bathymetry of the experimental area, the obtained triangulation
depths were used as the reference depths of the inversion model. Then the GWR model
(introduced in Section 3.2) was used as inversion model to infer bathymetry of the ex-
perimental area, and PCA was used to extract the optimal band ratio that can reveal the
most information among the 6 band ratios (DNR/DNG, DNR/DNB, DNG/DNR, DNG/DNB,
DNB/DNR, and DNB/DNG) in the RGB image. As the result of PCA, the ratio of the digital
number red band (DNR) and digital number green band (DNG) had the highest compo-
nent score, which explained 92.1% of the total band ratios’ information. Then the natural
logarithmic values (ln(DNR/DNG)) of the DNR and DNG ratios were used as the variables
of GWR model. Here, the obtained 400 triangulation depths were used as the reference
depths of the GWR model and their corresponding ln(DNR/DNG) values were used as the
model’s variables to estimate the model’s parameters. Then 400 reference depths can be
calibrated by the model’s parameters. Figure 4b shows the scatter diagram of 400 calibrated
values when comparing with the corresponding 400 LiDAR depths, and MAE and RMSE
are 1.050 m and 1.383 m, respectively.

From the inversion results, the precisions of reference points have improved after
being calibrated by the model’s parameters. This indicates that the combined method,
which utilizes the GWR model combined with the ST method to obtain bathymetry, is an
effective way, and this method is easy to implement since only RGB images are required.

4.2. Evaluation of the Combined Approach

Section 4.1 validates that the GWR model combined with depths obtained by the ST
method is an effective way to inverse bathymetry. To further illustrate the advantages
of the combined approach, the inversion results retrieved by the combined method are
compared with that inferred by the GWR model combined with LiDAR points. Considering
the general situation, the number of water depth points is limited because the depths
are usually acquired from electronic charts, LiDAR data, or field depths measurement
with bathymetric instruments, and these technologies are difficult to carry out. Four
triangulation sets (Set A, Set B, Set C, and Set D) of triangulation depths as reference
points for the GWR model were carried out. The reference points (120 points, 200 points,
300 points, and 400 points) of the 4 sets were derived from 400 triangulation points, which
were obtained by the ST method. Table 1 shows the MAE and RMSE of the reference points
of the 4 triangulation sets when compared with their nearest LiDAR points, and Figure 5
shows the positions of reference points in 4 triangulation sets. Similarly, another 3 LiDAR
sets (Set E, Set F, and Set G) experiments, which took LiDAR points as reference points of
the GWR model, were tested. The LiDAR points were the nearest points of reference in
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Set A, Set B, and Set C. Besides these points being used as reference points in inversion,
120 LiDAR points were independently selected (Figure 5) as validation points to validate
the inversion results obtained by the 4 triangulation sets or 3 LiDAR sets, respectively.
Table 2 shows the comparison results of 120 validation points and their corresponding
estimation values acquired by 4 triangulation sets and 3 LiDAR sets, and Figure 6 shows
the scatter plots of 120 estimation values derived from 4 triangulation sets and 3 LiDAR
sets when compared with their LiDAR depths.

Table 1. MAE and RMSE of the reference points of 4 triangulation sets when compared with their
nearest LiDAR points.

4 Triangulation Sets Set A Set B Set C Set D

Reference points’
number 120 200 300 400

MAE (m) 0.997 1.244 1.371 1.595
RMSE (m) 1.165 1.488 1.631 1.843
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Table 2. Inversion results of 4 triangulation sets and 3 LiDAR sets when compared to the estimation
depths with LiDAR depths of 120 validation points.

Reference Points’
Number

Set A Set B Set C Set D Set E Set F Set G

Triangulation Points as Reference Points LiDAR Points as Reference Points

120 200 300 400 120 200 300

120 Validation points’
MAE (m) 1.713 1.341 1.118 1.059 1.471 1.275 1.09

120 Validation points’
RMSE (m) 2.329 1.824 1.455 1.406 2.021 1.765 1.417
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From Tables 1 and 2, the accuracies of 120 validation points in 4 triangulation sets
increase with an increase of the number of reference points, although the accuracies of the
reference points decrease. This phenomenon illustrates that in the case of low precision
of reference points, using more reference points can also obtain high precision inversion
results. Similarly, by comparing the inversion results of 4 triangulation sets and 3 LiDAR
sets, the phenomenon is also proven. Using the ST method to obtain depth is a cost-effective
approach, and it has the characteristics of semi-automation and fast acquisition of a large
number of points’ depth. Combining the method with the GWR model is a high-efficiency
way to inverse bathymetry, since only UAV RGB images are required. Additionally, from
comparing the inversion results with the high-precision LiDAR points in Table 2 and
Figure 6, the combined approach is also proven to have high inversion precision.

According to the GWR model and its reference points, the local regression coefficients
and intercept parameters corresponding to 1 m spatial resolutions of the experimental area
were estimated, and then the experimental area’s bathymetry with 1 m spatial resolutions
could be derived by the corresponding local regression coefficients and intercept parameters.
In order to further validate the combined approach, the absolute residuals between the
interpolation bathymetry (Figure 3) of dense LiDAR points and the inferred bathymetries
by 4 triangulation sets and 3 LiDAR sets are showin in Figure 7. Table 3 shows MAE and
RMSE in the whole experimental area by per-pixel comparison between the interpolation
bathymetry and the inferred bathymetries of 4 triangulation sets and 3 LiDAR sets.
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Table 3. MAE and RMSE of the experimental area by comparing the interpolation bathymetry of
dense LiDAR points and the inferred bathymetries of 4 triangulation sets and 3 LiDAR sets.

Set A Set B Set C Set D Set E Set F Set G

The experimental area’s
MAE (m) 2.31 2.247 2.129 1.986 2.293 2.157 1.997

The experimental area’s
RMSE (m) 3.287 3.211 3.064 2.876 3.432 3.164 3.019

As shown in Figure 7 and Table 3, bathymetry obtained in Set D is closest to interpo-
lation bathymetry. This phenomenon indicates that the triangulation depths can be used
to inverse bathymetry, and that abundant triangulation depths involved in inversing the
bathymetry can get better results than those inversed by limited number measured depths
such as LiDAR depths. The bigger residuals are usually found in the area that has a depth
of more than 12 m; this phenomenon can be attributed to the fact that the reference points
are mainly distributed within 12 m depth areas.

To better analyze the errors of different depths on the bathymetries retrieved by
4 triangulation sets and 3 LiDAR sets, the experimental regional depths were divided into
6 depth ranges, and each depth range and its corresponding MAE and RMSE are shown
in Figure 8. As Figure 8 shows, the inversion precision has increased in the depth of the
3–30 m range by increasing the number of reference points. For the 0–3 m depth range,
the substrates of the bottom have big diversities, and the transparency of water is very
high. The area has a high requirement for reference points in the inversion model. Set G
has relatively more reference points and higher accuracy, so it is reasonable for Set G to
have the highest inversion accuracy in the 0–3 m depth range.
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To validate that the GWR model is superior in RGB image-based inversion models
over other global inversion models, the MLR model was used to inverse bathymetry of
the experimental area. Here, using the natural logarithmic values (ln(DNR), ln(DNG), and
ln(DNB)) of the red band, green band, and blue band as the variables of the MLR model,
respectively, the corresponding water depth can be retrieved as follows:

h = a0 + a1 ln(DNR) + a2 ln(DNG) + a3 ln(DNB)

where ai (i = 1, 2, 3) are the regression coefficients, a0 is the bias, and h is the estimate
depth. The reference points of the 4 triangulation sets were also used as the reference points
of the MLR model, respectively, and then the corresponding coefficients and bias were
obtained. Utilizing the obtained coefficients and bias, the corresponding estimation depths
of 120 validation points were derived. Table 4 shows the MAE and RMSE of 120 validation
points when compared to the 120 estimated values with the LiDAR depths.

Table 4. The validation results of the MLR model combined with the ST method.

The Number of Reference
Points 120 200 300 400

120 validation points’ MAE (m) 2.045 1.98 1.894 1.948
120 validation points’ RMSE (m) 2.609 2.573 2.506 2.515

Inferior validation results are shown when comparing the MAE and RMSE with those
points obtained by the GWR model (4 triangulation sets in Table 2), and the increasing
number of reference points have indistinctive effects on the inversion results. This can
be attributed to the fact that the global regression models have great dependences on
radiances reflected by water substrates and demand that the radiances have special uni-
form distribution; however, the bottom of the inversion area has large diversities, such
that the underwater substrates around the north side of the island are full of coral reefs
with inhomogeneous distributions, and the rest of the shallow water area of the island
is mostly sand and gravels. The experimental results indicate that the GWR model has
higher accuracy than the global regression models in the area with spatial inhomogeneous
distributions, and the GWR model is sensitive to the number of observation points. When
more points are involved in inversion, the better inversion results are retrieved.

5. Discussions and Conclusions

With the rapid development of UAV technology, bathymetry acquisition directly
based on UAV RGB images is efficient and low-cost when compared to sound-based
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methods or LiDAR. This paper presents a combined approach to retrieve bathymetry from
aerial stereo RGB images. Firstly, we used the projection image based two-medium stereo
triangulation method to obtain water depths; then, the obtained depths were used as
the water depth references for the GWR model. These two components of the proposed
combined approach are highly complementary each other. Such combination can overcome
the common weaknesses of bathymetry methods: the projection image based two-medium
stereo triangulation method works well in clear and texture rich water, and the inversion
method works well in homogeneous shallow water regions. Using the projection images
to obtain water depths greatly simplifies the complexity of the image space and target
space transformation, eliminates the repeated pixel resampling from the original images,
and greatly improves the calculation efficiency. The GWR method is efficient for deriving
bathymetry because it can well reflect the spatial relationships of the variable values.

The experiments demonstrate the effectiveness of the combined approach. Although
there are errors in the water depths obtained by the projection image based two-medium
stereo triangulation method, the preliminary results were still produced by the GWR
method when combined with more triangulation water depths, and the results can be
slightly higher than that obtained by the GWR method combined with less LiDAR points.
The article also compares the GWR method with the conventional inversion model (MLR),
and the results shows that the GWR method is better than the MLR method. The GWR
method has better inversion results by increasing the number of reference points, while the
MLR results are not obvious with the reference points increasing.

The depth inversion using UAV RGB images has great potential and still has a wide
application prospect. Although only airborne (UAV) RGB images are demonstrated, the
proposed combined method can be considered a general method for retrieving bathymetric
measurements using airborne or satellite images. Although the combination method is conve-
nient, it still has some limitations, such as the high requirement on water transparency, and the
inversion result is affected by wave, tide, sun glint, etc. Further research is planned to conduct
rigorous investigations to expand this proposed approach, such as utilizing overlapped image
regions to improve the reliabilities and robustness of the retrieved bathymetry.
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