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Abstract

In structural health monitoring (SHM), risk assessment and decision strategies rely primarily on sensor responses. Simulated
data can be generated to emulate the monitoring phenomena under different natural operational and environmental conditions in
order to discriminate relevant features and thus identify potential anomalies. Reduced order modeling techniques and one-class
machine learning algorithms allow to efficiently achieve this goal for a fixed number and location of sensors. However, since
the number of sensors available on a structure is often a limitation for SHM, identifying the optimal locations that maximize
the observability of the discriminant features becomes a fundamental task. In this work we propose to use the variational
approximation of sparse Gaussian processes to systematically place a fixed number of sensors over a structure of interest. The
healthy parametric variations of the structure are included by clustering the inducing inputs, i.e., the outcome of variational
inference. This technique is tested on several numerical examples and is demonstrated to be efficient in detecting damages. In
particular, it allows for considering the realistic case where damage types and locations are a priori unknown, thus, overcoming
the main limitation of existing sensor placement strategies for SHM.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

When monitoring a structure over time, its deterioration and damages represent a great concern and the early
detection of unexpected behavior might prevent sudden shutdowns or help avoid catastrophes. In the last decades, the
traditional visual inspection of complex and valuable assets such as bridges, buildings, wind turbines, etc., has been
gradually replaced with structural health monitoring (SHM) systems, which aim at providing reliable information on
the performance and integrity of a structure [1]. In the context of SHM, the combination of sensor measurements,
numerical models simulating the underlying behavior of a structure of interest under different environmental and
operational conditions, and machine learning techniques has led to the design of structural digital twins. These

irtual representations seek to assess the structural state of damage in real-time and can potentially support an
utomated decision-making strategy. Even though there exists a variety of SHM techniques, mainly differing by
he quantity of interest to estimate or for the type of sensors employed while keeping into account the different
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requirements and limitations, they all rely on a network of sensors. Hence, their performance depends critically on
the quality of the information collected at those sensors. Clearly, both improving sensor sensitivity and deciding
where to place sensors play a key role in the digital twin industry.

Motivated by the opportunities of cost reduction for SHM systems and the improvement in the quality of
the monitoring outcome, optimization of sensor placement (OSP) has received growing interest during the last
decades. The exhaustive review [2] provides a collection of examples of OSP applied to SHM, classified based on
the different techniques employed for the sensor placement optimization itself, among which the vibration-based
and the wave-based monitoring are the most commonly used. While the former depend on the dynamics of the
structure using passive sources, e.g., only the ambient loads on the structures are considered, the latter are usually
used in the active sensing domain. Where as vibration monitoring techniques aim at identifying changes in the
natural frequencies and mode shapes with respect to a baseline, in the wave-based monitoring field, vibrations are
generated by a controlled source, e.g., a sinusoidal wave or a short pulse impulse, and signal-processing techniques
are used to differentiate baseline time-dependent responses from the reflections and refraction of the wave caused
by the presence of damages. Since the non-destructive impulses used to excite a structure have a high damping
effect, i.e., it is difficult to observe the effect of the guided-wave far from the source, wave-based monitoring
techniques are usually employed to monitor pipes or plate-like components with complex geometries, e.g., in
aeronautical applications [3,4]. On the contrary, large-scale assets, e.g., dams, bridges, etc., are usually monitored
by vibration-based techniques, see e.g., [5], or by static approaches, see e.g., [6].

Despite their fundamental differences, the general deployment of an OSP strategy is similar for both approaches.
The OSP process can be split into a sequence of a few stages going from the choice of sensor types, over to the
definition of operational parameters, e.g., the candidate sensor locations, and, finally, to the characterization of a
suitable cost function and optimization algorithm, e.g., gradient-based techniques are chosen when the cost function
is continuous and differentiable, while meta-heuristic optimizations might be necessary otherwise. We discuss here
the state of the art of OSP for both the vibration- and the wave-based monitoring techniques. Among the most
popular placement strategies for the former, we note the effective independence method (EFI), the kinetic energy
method (KE), and the more recent information theory approach, which obtains an optimal placement of sensors
by minimizing the information gain within a Bayesian experimental design framework, see e.g., [5,7,8]. For active
sensing based on guided waves, we focus on [9] and [10]. In the former, the authors propose an optimization
procedure where the sensor locations are chosen to minimize the appearance of false alarms and mis-detections. The
latter proposes a strategy to increase the sensitivity to damage by using simulation-based techniques, in which, by
comparing the numerical solution of the guided-wave propagation in undamaged versus damaged scenarios, sensors
are placed where the largest increase in the signal amplitude is observed. When the wave propagation patterns are
very complicated, it has been proposed to maximize the area of coverage (MAC) within a sensor network, see
e.g., [4], where physical properties of Lamb wave propagation and complex geometrical properties are taken into
account, or [11], where the ellipse equations with the sensor actuator pair as the foci are used to compute the
coverage area.

We note that, with the exception of the strategies which maximize the coverage area, all OSP techniques require
knowledge about the characteristics of the damage, e.g., its type, its location, its severity, or its size. Consequently,
these approaches do not generalize well when other types of damages occur and, even though engineering knowledge
can certainly direct the attention to damages that are more likely to occur, it seems unreasonable to characterize
them all. In particular, when relying on numerical simulations to describe the effect of a particular damage on a
structure, including many damage types and all possible combinations becomes computationally intractable. A valid
alternative is to resort to anomaly detection techniques, where damages are identified only by looking at the output
of multiple undamaged scenarios, collected under different standard conditions, which may represent environmental
or operational healthy variations. We refer to [12,13] and references therein for a description on how to address
the damage detection problem with anomaly detection learning strategies for a fixed network of sensors. However,
many questions arise if one wishes to find the optimal sensor locations in the absence of any damage information.
In particular, the definition of new operational parameters and their corresponding cost function must be considered.

In this work we propose a novel strategy for sensor placement in the context of anomaly detection applied
to SHM when a fixed budget is given, i.e., the number and type of sensors is fixed. The sensor locations are
systematically identified as the spacial positions for which the reconstruction error of an output of interest at all

unsensed locations is minimized. The quantity of interest chosen to define the cost function for the sensor placement
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optimization algorithm is the same quantity used to train the anomaly detection classifier which distinguishes healthy
configurations from damaged ones. As such, the proposed placement strategy is based on an appropriate indicator
of the damage detection performance of a given network. More precisely, we employ the variational inference
of sparse Gaussian process regression (GPR) for a damage-sensitive quantity of interest representing an healthy
scenario, and we use the inducing inputs, as the sensor locations. With the variational formulation, sensor locations
are selected by minimizing the Kullback–Leibler (KL) divergence between the exact posterior distribution and the
variational distribution. Therefore, placing sensors at the corresponding location of the inducing inputs addresses
both the information compression of the whole domain and the total variance reduction at the sensor locations.
We also rely on an Expectation–Maximization (EM)-like algorithm for the training phase, which, on one hand,
prevents a combinatorial search in the case of a discrete admissible set of points and, on the other hand, allows
us to include domain restrictions in the optimization to avoid placing sensors in areas difficult to reach or not
suitable for monitoring. Furthermore, we extend the proposed algorithm to take into account the natural variations
of the model parameters, e.g., loads, boundary conditions, material properties, etc., by means of an unsupervised
clustering algorithm. To conclude, we present some numerical examples to test the validity of the proposed method.
In particular, we resort to a wave-propagation based strategy to place sensors on both 2D and 3D structures and to
a static monitoring approach with passive sources to place sensors on a 3D representation of an offshore jacket.

We finally observe that the problem of sensor placement has been addressed in the literature also from
perspectives different from SHM. We mention here three strategies, each relying on a different method and designed
for a different application. Among them, only the first one proposes to use of GPs, even if in a different way and
context with respect to the method proposed in this work. First, the choice of recurring to GPs for sensor placement
has been proposed in [14,15], where either the maximum entropy principle or a mutual information criterion
are used to identify near-optimal locations. In contrast, our work replaces the classic GPR model with a sparse
variational approximation, which at the same time identifies the optimal sensors as the inducing inputs automatically
and accommodates problems with large data set. Additionally, the strategy presented in [15] is used to monitor
diffusion-like spatial phenomena, e.g., temperature in an indoor environment, while the SHM applications involve
more complex phenomena, for which the training of a GPR is not always straightforward. Second, in the recent
work [16], the authors investigate a greedy method to place sensors in a systematic manner to assist field experts in
placing sensors in nuclear reactors. In particular, they propose to use the magic points of the generalized empirical
interpolation method (GEIM) as sensor locations and show the effectiveness of this strategy on multidimensional
examples based on synthetic measurements. Different from our approach, these interpolation points often tend to
cluster on the border of the domain, thus leading to waste in sensed information. Lastly, sparse approaches for
sensor placement have been proposed in [17], where the authors exploit the low-dimensional structure exhibited by
many high-dimensional systems to compress a signal to very few measurements if the sole objective is classification.
Despite the use of sparsity-promoting techniques, this work is entirely based on classification, which is different
from the scope of our work.

The remainder of this paper is organized as follows. Section 2 presents the physical phenomena and synthesizes
how we efficiently construct a database of healthy configurations in both a dynamic and a static scenario. Sparse
Gaussian process approximations are presented in Section 3 with a particular emphasis on variational sparse GPR.
We explain how variational approximations are used for sensor placement in the absence of damage states in
Section 4 and provide numerical evidence of the quality of this method in Section 5. Conclusions are given in
Section 6.

2. Generating a database of synthetic healthy measurements

Simulation-based strategies provide a tool to monitor a structure of interest where experimental measurements
are replaced with synthetic sensor signals, thus allowing to generate accurate datasets inclusive of many possible
scenarios, which would be otherwise unrepresented. As both practical and efficient techniques, they have received
increasing attention in recent years, see e.g., [13,18–22]. Although a key step in SHM corresponds to the
identification of good locations to place sensors, classic simulation-based strategies for damage detection often
rely on the assumption that these locations are known, i.e., the structure of interest is already equipped with a
network of sensors. As mentioned in Section 1 and further clarified in Section 4, the placement strategy proposed
here is based on the same quantity of interest used to define damage detection classifiers. As a direct consequence,
the practical process of generating a synthetic database, used either for anomaly detection or for sensor placement,
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is the same. Hence, in this work we focus on the construction of a database of simulated healthy configurations
where a few given sensor locations are replaced with the points of a coarse mesh over the domain of interest. The
optimal locations will be chosen as a subset of these points or as an arbitrary new set which belongs to the initial
domain in a way that will be specified in Section 4. Nevertheless, we highlight that the core of the approach is
independent of the method used to generate the output of interests and that any damage-sensitive quantity can be
used to guide the placement of sensors in the absence of damaged scenarios.

In the remaining of this section, we first provide a short summary of anomaly detection strategies in Section 2.1.
Then, in Section 2.2, we present the mathematical formulation of the governing physical problem, i.e., the parametric
acoustic–elastic equation in both its dynamic form and its simplified static version, together with its numerical
discretization. The explanation on how to efficiently deal with the need of repeatedly solving the problem for
multiple parameters using the reduced basis method is also explained. We conclude with Section 2.3, where we
define the chosen quantity of interest, obtained by extracting damage-sensitive features from the raw signals.

2.1. A brief recap of SHM anomaly detection

Different from a supervised learning approach, in the anomaly detection framework, the dataset does not include
any damage scenarios. This is done under the assumption that since it would be unreasonable to describe all types of
damages, representing only some damaged configurations would lead to a bias towards certain types and therefore
to mis-detections with high probability. Classic supervised learning algorithms, where every different damage type
is associated with a different categorical class, are here replaced with semi-supervised learning techniques, where
only healthy states are used to train one-class classifiers, e.g., one-class support vector machines, local outlier factor,

r auto-encoders. We note that, to avoid redundancies, in the context of both one-class and standard classification,
aw measurements, e.g., displacements or accelerations, are not directly used in the training, but instead they are
rocessed into features which are sensitive to damages but robust to noise and healthy variations. Then, in the online
hase, the classifier is tested against new measurements to assess if they conform to the normal condition, reflected
n the offline data, i.e., test samples will be classified either as healthy (inlier) or unhealthy (outlier).

We observe that, with anomaly detection techniques it is no longer possible to classify damages by type. However,
y training a separate one-class classifier for each separate location, damage localization and severity can still be
ssessed for a given array of sensors. We refer the interested reader to [23] for a thorough description of outlier
etection algorithms and to [12,13] and references therein for how such algorithms are used in the context of SHM.

.2. The governing problem of linear elasticity

Let Ω ⊂ Rd with d = {2, 3} be an open bounded domain, approximating the geometry of a given structure of
interest and let [0, T ] be a relevant time domain for sensor measurements. Let us also consider a p-dimensional
parameter space Ωµ = [µ1

1, µ
1
2] × [µ2

1, µ
2
2] × · · · × [µp

1 , µ
p
2 ] ⊂ Rp, representing the baseline variations of healthy

configurations under normal environmental and operational conditions, which can be described by both physical and
geometrical properties. For a given parameter µ = [µ1, . . . , µp] ∈ Ωµ, we seek the vector-valued displacement
u = u(x, t; µ) : Ω × [0, T ] × Ωs → Rd such that

ρ
∂2u
∂t2 + ρη

∂u
∂t

− ∇ · σ (u; µ) = s(x, t; µ) in Ω × (0, T ]. (1)

n the above strong-form formulation, ρ is the density, η is a non-dimensional damping coefficient, σ = σ (u; µ) is
the stress tensor σ = 2µε(u)+λTr (ε(u)) I, where I is the d dimensional identity matrix, Tr(·) is the trace operator
applied to the strain tensor ε(u) =

1
2

(
∇u + (∇u)T

)
and the Lamé constants µ and λ are defined by E , the Young’s

odulus, and ν, the non-dimensional Poisson’s ratio, as

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1 − 2ν)
. (2)

Eq. (1) is equipped with suitable boundary and initial conditions, which may depend on µ, and s = s(x, t; µ) is
a parameter-dependent function s : Ω × (0, T ] × P → Rd representing the source term.

After introducing a suitable spatial and temporal discretization, Eq. (1) can be solved numerically, by resorting

for example to the finite element (FE) method. The continuous solution u(t; µ) of the weak-form of (1) is therefore
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replaced with its discrete counterpart uh(tn; µ) ∈ Vh , where Vh is a conforming finite-dimensional subspace of
V = H 1(Ω;Rd ) with dim(Vh) = Nh . Moreover, tn = n T

Nt
is the nth time step of the discrete time interval [0, T ],

hich is partitioned into Nt equal sub-intervals. With the goal of sensor placement, we are only interested in the
olution at few specific locations, representing the vertices of a coarse mesh with ndof degrees of freedom. The
arametric discrete displacement signal ui (µ) are (Nt + 1) × d-dimensional vectors defined as

ui (µ) := [uµ
i (t0), uµ

i (t1), . . . , uµ
i (tNt )] for i = 1, . . . , ndof, (3)

here uµ
i (tn) = uh(xi , tn; µ) =

∑Nh
j=1 u j (tn; µ)ϕ j (xi ). Here, {ϕ j (x)}Nh

j=1 is a basis for Vh and u j (t; µ) is the j th
oefficient of the solution of the linear system associated with (1).

To construct a reliable and robust dataset containing many possible combinations of environmental and
perational conditions, we repeatedly solve (1) for different parameters. To overcome the computational burden
ssociated with this step we resort to model order reduction techniques, see e.g., [24,25], which seek to accurately
pproximate the underlying high-fidelity model by constructing a low-dimensional model by leveraging an offline–
nline decoupling. Indeed, the reduced model is built during an expensive offline phase, where a set of high-fidelity
olutions are combined to fulfill a suitable orthogonality criterion. Then, in the online phase, for a new parameter,
he reduced basis solutions are inexpensively obtained by solving a smaller linear system, i.e., the reduced problem.
inally, the solution is projected back to the original space. While the details of the reduced basis go beyond the
cope of this work, we refer the reader to [13] and references therein for an in-depth description of how the reduced
asis method can be used to solve the acoustic–elastic problem in frequency domain and how to reconstruct the time
ignal with numerical inverse Laplace transforms. Similarly, for the static problem, we refer the reader to [6,26],
or the details of the associated reduced model.

.3. The chosen quantities of interest are the damage-sensitive features

In the SHM framework it is common to resort to damage-sensitive features, extracted from the raw displacements,
o support the decision-making process, see e.g., [12,13,19]. From a mathematical standpoint, the desired feature
unction

F = F(ui (µ)) : R(Nt +1)×d
→ RQ×d (4)

akes as input a discrete time signal (3) and outputs a set of Q d-dimensional features. In the context of guided-wave
roblems, feature extraction refers to the process of compressing raw sensor measurements, which are high-
imensional because of high sampling rates and possibly long time windows, i.e., both Nt and T are usually
arge, into low-dimensional vectors. Indeed, as the dimensionality of the training dataset grows, many state of
he art machine learning algorithms, including anomaly detection models, become intractable. Dealing with a large
umber of features not only leads to poor generalization capabilities, but also to inefficient learning models with high
omputation costs. This phenomenon, known as curse of dimensionality, can be overcome by feature compression.
s mentioned, the ideal features should be damage-sensitive and, at the same time, insensitive to the natural variation
f the baseline operational and environmental conditions. Common choices for features for guided-waves approach
an be found, e.g., in [12]. We follow the strategy presented in [13], where the authors use six features, i.e., the
rrival time of the wave, the crest factor, the number of peaks and valleys as well as the minimum and the maximum
mplitude in a fixed time window.

To further reduce the dimensionality of the output of interest after normalizing the features, we rely on principal
omponent analysis (PCA), computed by a singular value decomposition to yield an orthonormal basis ordered
y energy of variance. Indeed, the displacements along the d directions are correlated, leading to redundant
eatures. The optimal number dy of retained principal components, i.e., those with the highest variability, is
etermined by looking at the cumulative explained variance ratio as a function of the number of components.
or the sake of notation, we let F include both the classic feature extraction and the subsequent PC compression,

.e., F = F(ui (µ)) : R(Nt +1)×d
→ Rdy .

We remark that there exists alternative anomaly detection algorithms where the entire time signals can be used
irectly. For example, long short-term memory (LSTM) autoencoders are a type of recurrent neural networks
RNNs), successfully used in the context of speech recognition or text translation, see e.g., [27]. More generally,

utoencoders are a type of neural networks, whose output is a reconstructed copy of the input [28]. The strength of
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autoencoders lies in the identification of a low-dimensional non-linear manifold where the input data lay on. This
manifold can be used to reconstruct the full signal with few variables, called the latent variables. In particular, in the
anomaly detection framework, the latent variables could play the role of the aforementioned features, with the main
difference that the network would be purely data-driven, while the features are based on engineering knowledge.
Despite this desirable property, it is less clear how autoencoders could be used for optimal sensor placement.

We finally observe that while signal compression is a fundamental step for the dynamic case, in the context of
static loads, the formulation is greatly simplified. Indeed, since the problem is static, the vector of displacements
(3) also becomes time-independent, i.e., ui (µ) ∈ Rd for i = 1, . . . , ndof. Moreover, the aforementioned compression
process based on damage-sensitive feature extraction and PCA is not needed when the quantities of interest are the
discrete displacements. In this cases the feature map (4) is the identity map, i.e., F = F(ui (µ)) : Rd

→ Rdy , with
y = d .

To conclude, we remark that, in the online phase, the reduced problem has to be solved for nµ random input
parameters, possibly chosen from a fixed sampling strategy, e.g., Sobol sequence, Latin hypercube etc., to obtain
the healthy dataset, i.e.,

Y(µ j ) = [F(u1(µ j )), . . . ,F(undof (µ j ))], for j = 1, . . . , nµ, (5)

where F is defined in (4).

3. Sparse GP regression

The sparse GP regression has received increasing attention in the last decades thanks to its ability to overcome
the computational limitation of a standard GP. Indeed, given the number of training samples n, the computational
complexity of generating a GP model is O(n3) and the associated storage requirement O(n2), which becomes
ntractable for large data sets. The corresponding sparse methods instead rely on a small set of m ≪ n points to

facilitate the information gain of the whole data set, thus allowing for a complexity reduction, i.e., O(nm2). After
short introduction of GP regression in Section 3.1, we detail the properties and advantages of its sparse variation

n Section 3.2. We discuss the formulation of variational inference of a sparse approximation in Section 3.3, which
s of relevance to the method proposed in this paper.

.1. A short review of GP regression models

A GP regression (GPR) model is a supervised machine learning approach, whose goal it is to construct a
egression model to predict continuous quantities of interest given a set of observations. A GP is a set of random
ariables, any finite subset of which follows a Gaussian distribution. We observe that a GP is fully defined by its
rst and second moments. Without loss of generality, we take the mean function m(x) to be zero. The covariance
unction k(x, x′

; θ ), also called the kernel function, is parametrized by a small set of hyperparameters θ , e.g., the
ariance of the kernel and the lengthscales of the input dimensions, thus incorporating some prior knowledge on
he smoothness of the stochastic process and the similarity between data points.

Let D = {(xi , yi )}n
i=1 denote a training data set of d-dimensional inputs X = [x1, . . . , xn]T and the corresponding

eal-valued realization y = [y1, . . . , yn]T of a latent function f (x) corrupted by some Gaussian white noise ε, i.e.,

yi = f (xi ) + εi , where εi ∼ N (0, σ 2
y ),

here σ 2
y is the variance of the noise. We assume a zero-mean GP prior over the latent function we are trying to

odel, i.e., f (x) ∼ GP
(
0, k(x, x′

; θ )
)
. Given the noisy dataset, this can be expressed by the marginal likelihood

p(y|X, θ ) = N (y|0, Knn + σ 2
y In),

here Knn is the n × n covariance matrix with [Knn]i j = k(xi , x j ; θ ), and In is the n-dimensional identity matrix.
or the sake of convenience, we consider the variance of the noise σ 2

y as an additional hyperparameter belonging
o the set θ . The best performance of a GPR model, i.e., its ability to make accurate predictions, strongly depends
n the hyperparameters. The optimal hyperparameters are estimated from the training data D by minimizing the
egative log likelihood over the space of hyperparameters:

θopt = arg min − log [p(y|X, θ )] ,

θ
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where

log [p(y|X, θ )] = log
[
N (y|0, Knn + σ 2

y In)
]

= −
1
2

yT (Knn + σ 2
y In)−1y −

1
2

log |Knn| −
n
2

log 2π. (6)

o predict the function values at p new test inputs X∗ = [x∗1, . . . , x∗p], one assumes a joint GP prior of
he latent function values for the training data fn = [ f (x1), . . . , f (xn)]T and the unobserved function values
∗ = [ f (x∗1), . . . , f (x∗p)], i.e.,

p(fn, f∗) = N
(

0,

[
Knn Kn∗

K∗n K∗∗

])
.

ere, K∗n = KT
n∗

is the covariance matrix between the new inputs X∗ and the training samples X, i.e., [K∗n]i j =

(x∗i , x j ; θopt). Thus, the noise-free posterior distribution is obtained by conditioning the predictive targets f∗ on
he observations y and it has the following posterior mean and variance estimates

my(x∗) = K∗n(Knn + σ 2
y In)−1y,

ky(x∗, x∗) = k(x∗, x∗; θopt) − K∗n(Knn + σ 2
y In)−1Kn∗.

We finally remark that the performance of the predictive distribution peaks with a correct choice of the kernel
unction followed by an accurate estimation of the hyperparameters. Among the commonly used covariance
unctions, we consider the automatic relevance determination squared exponential (ARD-SE) kernel and the ARD
xponential (ARD-E) kernel, i.e.,

kARD-SE(x, x′
; θ ) := σ 2

f exp
(

−
1
2

r
)

and kARD-E(x, x′
; θ ) := σ 2

f exp
(
−

√
r
)
, where r =

d∑
j=1

(x j − x′

j )
2

σ 2
j

, (7)

espectively. Above, θ := [σ 2
f , σ

2
1 , . . . , σ 2

d ], where σ 2
f is the output variance, which determines the average distance

of the function away from its mean and σ 2
j are the characteristic lengthscales for j = 1, . . . , d . For more details

n GPR models and kernel functions we refer the reader to [29–31].

.2. Sparse GPR models

The non-parametric nature of GPR models makes them popular for the prediction of continuous functions.
owever, the training of a GPR model leads to a cubic scaling of the computational cost with the number of

raining samples. This complexity prevents GPRs to be used for big data sizes. To overcome this disadvantage,
parse approximations of GPR methods have been developed, providing an efficient training process that scales
inearly with the number of training data. These methods rely on m ≪ n auxiliary latent variables, evaluated

at some inputs Z ⊂ Rm , which are often referred to as the inducing inputs or equivalently as inducing points
r pseudo-inputs, to reduce the computational requirements to O(nm2), thus making the sparse GPR competitive
mong machine learning methods for large data sets.

An overview of sparse GPR methods can be found in [32] and we refer to [33–36] for well-known examples of
parse GPR approaches. A crucial assumption in these models is that the training latent variables fn and the test
ariables f∗ are conditionally independent given the inducing variables fm , evaluated at the corresponding inducing
oints Z = [z1, . . . , zm]T . This means that they can be expressed in two separate conditional distributions, i.e., the
oint prior can be approximated as

p(fn, f∗) ≃ p̂(fn, f∗) =

∫
p̂(f∗|fm) p̂(fn|fm)p(fm)dfm,

here the inducing prior p(fm) = N (0, Kmm). The various traditional sparse GP approaches differ by the choice of
he conditional distribution approximations p̂(f∗|fm) and p̂(fn|fm).

A particular note should be made about the inducing variables, which, depending on the approach, can either
e a subset of the training set X or arbitrary locations in the input space. The former selection strategy leads to a
rohibitive combinatorial optimization, for which sub-optimal greedy-like solutions have been proposed to alleviate
he computational complexity, see e.g., [33,35,37,38]. Nevertheless, relaxing the constraint on the inducing variables

s a subset of the training data can potentially lead to a better local optimizer, as the optimization continuous and
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the target space is now larger. However, we observe that, in both cases, reaching the global minimum is intractable
and one can only expect to converge to a good local minimum. This limitation is common to the optimization of
marginal likelihood functions, which are often non-convex with respect to the hyperparameters. A common trick
to overcome this issue is to use multiple starting points for both the hyperparameters and the inducing inputs [39].
Ultimately, by considering the inducing inputs Z as extra kernel hyperparameters that parametrize the covariance,
their optimal values can be obtained simultaneously by minimizing the negative log likelihood, i.e.,

(Zopt, θopt) = arg min
Z,θ

− log
[

p̂(y|X, Z, θ )
]

= arg min
Z,θ

− log
[
N (y|0, K̂nn + Λ + σ 2

y In)
]
, (8)

here (K̂nn + Λ) is an approximation to the true covariance Knn . Here, K̂nn = KnmK−1
mmKmn is the Nyström

pproximation of the true prior covariance K, which leverages the information provided by the m inducing inputs.
ntuitively, K̂nn quantifies how much information fm provides about fn . The additional term Λ is specific to the
hosen sparse approach, e.g., Λ = diag[Knn − K̂nn] in the sparse pseudo-inputs GP method (SPGP) proposed
n [36].

We finally remark that the quantities in (8) are trained in O(nm2), while the computational complexities for the
redictive mean and variance are O(m) and O(m2), respectively. We refer the reader to [32] and references therein
or more details on the similarities and differences on various sparse methods for GPR.

.3. Variational inference of sparse GPR

An alternative to the exact inference is variational inference, which is another popular method in statistics. Instead
f minimizing the negative log likelihood (8), variational inference seeks to find an approximation of the true
P posterior p(f∗|y) among a given family of distributions. Observing the differences between the marginal log

ikelihoods (6) and (8), one can interpret the sparse algorithms as an exact inference with an approximated prior with
espect to the full GP prior, as suggested in [32]. Therefore, a continuous optimization of (8) with respect to Z will
ot converge to the true GP model. Variational inference instead seeks to overcome this by considering the inducing
nputs as variational parameters, whose optimal values are to be estimated jointly with the hyperparameters.

In [38], a variational Gaussian distribution q(fn) is chosen to approximate the exact posterior p(fn|y) on the
raining function values fn , such that, with the assumption of conditional independence of fn and f∗ given the
nducing variables fm , p(fn|y) can be approximated by the variational posterior

q(fn) =

∫
p(fn|fm)q(fm)dfm .

he optimized inducing variables and hyperparameters are thus obtained by minimizing the Kullback–Leibler
KL) divergence between the true posterior and the variational posterior. In [38], it is proposed to minimize the
L divergence of the augmented true posterior p(fn, fm |y) and the augmented variational posterior q(fn, fm) =

p(fn|fm)q(fm), which is equivalent to maximize the variational lower bound

L(Z, θ ) = log
[
N (0|K̂nn + σ 2

y In)
]

−
1

2σ 2
y

Tr(Knn − K̂nn), (9)

here the second term is the negative trace of Knn − K̂nn scaled with (2σ 2
y )−1 and K̂nn is defined as in Section 3.2.

he resulting (Zopt, θopt) can then be used to build the predictive distribution, which is given by

q(f∗|y) = N
(

K̂∗n(K̂nn + σ 2
y In)−1y, K∗∗ − K̂∗n(K̂nn + σ 2

y In)−1K̂n∗

)
. (10)

e note that this is exactly the one used in [34,35], i.e., the two methods are the same in terms of the predictive
istribution. However, the variational method, with the extra regularization term, relies on a very different selection
f the inducing inputs and the hyperparameters. As opposed to the exact inference defined in (8), this additional
race term acts as a regularizer of the log likelihood, i.e., it summarizes the total variance of the conditional prior
p(fn|fm) and, as such, it can be viewed as an accuracy indicator of predicting fn given fm . Minimizing this term
rompts a good overall estimation of the statistics of the training data. We further note that, in the variational
nference setting, the inducing variables Z determine the flexibility of both p(fn|fm) and q(fm), and, hence, the
osterior q(fn|y).

Finally, we remark that GPy [40], a Gaussian process regression framework in Python, is used for the numerical

mplementation of the examples presented subsequently.
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4. Variational approximation for systematic sensor placement

In this work, we seek to provide a systematic sensor placement strategy in the context of anomaly detection
for SHM. We therefore assume that only synthetic data generated by undamaged configurations under different
environmental and operational conditions are available, i.e., we have no information regarding the type and severity
of the anomalies. This is a realistic assumption because it is likely that many different types of damages will
occur in the life time of a structure. If, on one hand, simulating all possible damages and locations would not be
computationally feasible, it would on the other hand not be reasonable to make the hypothesis that including in
the training set only a few representative damage types will generalize well to other types and locations; instead,
it is more likely that mis-detections would occur. On the contrary, anomaly detection strategies detect damages
by characterizing the similarities among healthy samples and identify as damaged new samples with significantly
different properties from the undamaged ones, see e.g., [41]. Mathematically, this corresponds to unsupervised or
semi-supervised learning techniques as opposed to supervised algorithms, where a different class is assigned to
every different type (or location) of damage. This poses a significant challenge in the context of sensor placement
where one has to define a suitable cost function to be optimized with respect to the operational parameters, e.g., the
candidate locations for the sensor placement, the available number of sensors and so on. Indeed, existing cost
functions are usually formulated in terms of damage detectability, see e.g., [2], which is a well defined concept
only when a finite number of damages is assumed.

To overcome this obstacle, we propose to train a sparse GPR model of the monitoring phenomena, represented
here by a chosen quantity of interest, e.g., displacement, stress or a function of those, by means of variational
inference. By fixing the number m of inducing variables as the number of sensors that the user wishes to place
on the structure, we identify the sensor locations with the local optima Zopt, obtained from the optimization of the
ariational lower bound (9). Then, the learned sparse GP model can be used to predict the effect of having placed
ensors at particular locations Zopt. We recall that the optimal inducing variables Zopt are such that the KL divergence

between q(fn) and the true posterior p(fn|y) is minimal. On one hand, q(fn) being a good approximation of the exact
osterior distribution p(fn|y) implies that the inducing variables provide enough statistics for the observed data,
.e., the information in the training data fn can be compressed well in fm . As a consequence, the sensor locations

do not cluster on the boundaries of the input domain, thus preventing “waste” in the sensed information. On
he other hand, minimizing the regularizing trace term in (9), which represents the total variance of the conditional
rior distribution p(fn|fm), ensures that the mean square error of reconstructing the training latent values fn from the
nducing variables fm is small. Indeed, the variational approximation guarantees that the sparse predictive distribution
s as close as possible to the exact predictive distribution. This minimizes the reconstruction error not only at the
ensor locations, but in the rest of the domain too. Hence, leveraging the variational sparse GPR for optimal sensor
lacements provides a tool to maximize the statistical information gain on the whole computational domain when
sing a fixed number of sensors, while reducing the computational requirements when compared to a traditional
P kernel based method.
In this section we elaborate on how the numerical data obtained from healthy structures, as described in

ection 2, and the variational sparse GPR presented in Section 3.3 are combined for optimal sensor placement.
fter introducing the notation, in Section 4.1 we present details on placing sensors through variational inference of

parse GP for one particular structure configuration, while in Section 4.2 we describe how we handle the parametric
ependency characteristic of each configuration in the context of optimal sensor placement. In Section 4.1, emphasis
s given to an ad-hoc optimization setup which allows, on one hand, to constrain sensors to lie on a specific portion
f the domain and, on the other hand, to deal with extremely large input data. Both requirements are indeed common
n the context of SHM, where structures may be represented by billions of degrees of freedom and only certain
ocations might be admissible to place sensors. We conclude with a description on how this procedure can be used
o provide information about the sensitivity of a fixed network of sensors in Section 4.3.

Let us consider a d-dimensional spacial domain Ω ⊂ Rd with a suitable triangulation Th , where h represents the
esh size, leading to a total of ndof mesh points X = [x1, . . . , xndof ]. Moreover, let Ωµ ⊂ Rdµ be a dµ-dimensional

omain representing the space of natural variations of the parameters of an healthy structure, e.g., different
perational loads, external excitements and material properties. For a given parameter combination µ ∈ Ωµ, we
ssume that the inputs and outputs are mapped through a function f and that this process is corrupted by some
aussian white noise ε ∼ N (0, σ 2

y ), i.e.,
yi (µ) = f (xi ; µ) + ε, for i = 1, . . . , ndof, (11)
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where Y(µ) = [y1(µ), . . . , yndof (µ)] are the ndof dy-dimensional outputs of interest (5), e.g., displacements of an
lastic structure or features extracted from time-dependent signals.

We point out that, in contrast to most of the cases where GPRs are employed, in this work, the training outputs
(µ) are not experimental, but simulated. As a direct consequence, for a given parameter µ, the map from inputs

o outputs is known exactly, i.e., f (xi ; µ) is a function of the discrete time-signals (3), as described in Section 2.
herefore, we do not focus on constructing a GPR model to predict the mean and variance of the outputs at new
patial locations. The novelty of our approach lies in the fact that the sparse GPR is adopted to place sensors
ystematically; placing a Gaussian prior on the input–output map, i.e., f (x) ∼ GP(0, k(x, x′

; θ )), allows us to
mploy the variational inference algorithm presented in Section 3.3 and thus to identify the location of sensors as
he inducing inputs.

.1. Constrained variational approximation

The variational learning of the hyperparameters and the inducing inputs are obtained by maximizing the
ariational lower bound (9), which is in general an unconstrained non-convex optimization problem. Indeed, even
f we may have positivity constraints on some hyperparameters, e.g., the variance and lengthscales of the kernel
unction, the fact that we approximate the log value of those hyperparameters transforms the problem to an
nconstrained optimization. While this may not be an issue for the aforementioned hyperparameters, which appear
o be squared in the kernel functions (7), we do need to impose some locality constraints on the inducing points
o prevent them to be outside the input domain, especially when this is non-convex. Moreover, in some particular
cenarios in the framework of SHM, one has to consider that it may be only possible to place sensors on a portion
f the asset, e.g., sensors should not be placed inside a solid 3D structure, or they could only be placed on the
bove-surface structure of an offshore wind turbine, or only on the core of a nuclear reactor, avoiding the reflector
ubdomain [16].

We consider sensor placement for a specific configuration, i.e., the input parameter µ is fixed in (11). For
uccinctness, we neglect the parameter dependence in this part, i.e., yi = yi (µ). Let ns be the number of sensors to
e placed and Ωs ⊂ Ω the admissible domain for sensor locations. To overcome the issues related to unconstrained
ptimization mentioned above, the minimization of the negative variational lower bound (9) is modified as

(Zopt, θopt) = arg min
z∈Ωs∀z∈Z, θ

−L(Z, θ ), (12)

here Z = [z1, . . . , zns ]T
⊂ Rd×ns is the collection of the ns sensor locations and each one of them is

onstrained to belong to Ωs . Depending on the complexity of Ωs , the optimization problem (12) can be solved using
ifferent optimization algorithms. In general, when Ωs is a continuous domain, classic gradient-based constrained
ptimization algorithms, see e.g., [42], can be employed. However, in real-life engineering applications, due to the
omplexity of Ωs , it may be cumbersome to specify its boundaries analytically and, in such cases, it is worth to
eplace Ωs with a discrete counterpart comprising a finite number of admissible points |Ωs | ≫ ns . This clearly poses
challenge for gradient-based techniques, which are not very efficient in discrete settings. To deal with real-world

roblems, classic iterative methods should be replaced with discrete optimization methods. Heuristic algorithms,
.g., the genetic algorithm (GA), have received increasing attention during the recent decade in the field of discrete
ptimization, see, e.g., [2,43], where GA has been used to address several optimal sensor placement problems.
e refer to [44,45] for a detailed description on the GA, a type of evolutionary optimization algorithm that takes

nspiration in the natural selection and undergoes three main stages: selection, crossover, and mutation.
In this work, when the admissible domain is discrete, we propose to combine the gradient-based optimization

ith the GA to form an EM-like algorithm. At first, we fix the inducing points Z and employ a gradient-based
lgorithm to optimize the hyperparameters θ . We then fix the hyperparameters and use the GA to find the optimal
nducing points. We lastly iterate over these two steps until convergence is reached. This approach is summarized
n Algorithm 1. We observe that, in the discrete case, it is possible to add an additional constraint to include
rior knowledge on the importance of each sensor location. When the available sensor locations are assigned with a
pecific cost value, a cost-constrained sensor placement approach could be included in the framework, see, e.g., [46].
n this work however, we consider the case in which the training points either belong to the admissible domain or
ot, without assigning a specific relevance to each location. For the sake of completeness, we observe that, in case

f continuous admissible domains Ωs , one can either choose to combine the two optimization steps mentioned above
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r to keep them separately by replacing the GA with another gradient-based constrained optimization to estimate the
nducing points. The second approach is advantageous for continuous problems with a faster convergence and it is
mployed in this work when Ωs is continuous. We finally remark that DEAP (Distributed Evolutionary Algorithms
n Python) [47] is the framework used for the numerical implementation of the GA examples presented in this work.

Algorithm 1: Variational approximation for systematic sensor placement
Input: training dataset {X, Y}, admissible set Ωs , and max iteration number kmax
Output: optimal constrained inducing points and hyperparameters (Zopt, θopt)
Initialization: set k = 0 and randomly initialize Zk s.t. zi ∈ Ωs for i = 1, . . . , ns

while not converged and k < kmax do
Compute the optimal hyperparameters θ k+1 = arg minθ −L(Zk, θ ).
Compute the optimal constrained locations Zk+1 = arg minz∈Ωs∀z∈Z −L(Z, θ k+1)
Set k = k + 1

end
Set: Zopt = Zk , θopt = θ k

4.2. Including parameter dependency in sensor placement

Let us reintroduce the parameter dependency and consider a set of nµ parameters Dµ = [µ1, . . . ,µnµ
], where

j ∈ Ωµ for j = 1, . . . , nµ. Applying Algorithm 1 for all these parameters, we obtain a set of nµ parameter-
ependent inducing points [Zopt(µ1), . . . , Zopt(µnµ

)], where Zopt(µ j ) correspond to the ns optimal locations for the
pecific parametric underlying system defined by µ j ∈ Ωµ. Having a continuous mapping from the inputs to the
utputs and under the assumption that the parameters in Ωµ only vary some accessory properties without altering
he topology of the structure, it is reasonable to assume that each one of the ns inducing points Zopt(µ j ) lie in the
eighborhood of the corresponding inducing point obtained for a different input parameter, i.e., Zopt(µi ) for i ̸= j
nd i, j = 1, . . . , nµ. Therefore, to include the parametric dependency and summarize the information from this
et of nsnµ into a set of ns locations, we propose to employ the K-medoids algorithm to find ns clusters and its
orresponding centers.

Similar to K-mean algorithm, K-medoids is a clustering algorithm that breaks the data set into a user-defined
umber of groups and minimizes the distance of the center of each cluster and the points in it. The difference
etween these two clustering algorithms is that the K-means algorithm averages points within a cluster as the
enter, whereas K-medoids selects only data points as cluster centers. In comparison, K-medoids is more robust
s the algorithm seeks to minimize the sum of dissimilarities of all points inside a cluster instead of the sum of
quared Euclidean distances, as used in the K-means algorithm, which is sensitive to noise and outliers [48]. We
oint out that, in the numerical examples, the clustering step is carried out in Matlab [49] by employing the built-in
unction kmedoids. For more details on K-medoids algorithm, we refer the readers to [48,50].

We summarize the algorithm for sensor placement that incorporates parameter variation of a solid structure in
lgorithm 2. We notice that given different initial conditions, the K-medoids algorithm can lead to different clusters.
he final decision can be made by either fixing the initial condition or by engineering experience across the resulting
lusters.

Algorithm 2: Parametrized variational approximation for systematic sensor placement

Input: parametric training dataset {X, Y(µ j )}
nµ

j=1 and admissible set Ωs

Output: optimal constrained sensor locations Zopt
for j = 1, · · · , nµ do

Apply Algorithm 1 to data set {X, Y(µ j )} to get ns inducing inputs Zopt(µ j ) constrained to Ωs

end
Apply K-medoids algorithm to the nsnµ inducing inputs [Zopt(µ1), . . . , Zopt(µnµ

)] to get ns clusters
Set: Zopt = cluster centers
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4.3. A tool for sensor sensitivity

The technology proposed here can also be applied to answer a few related questions: (i) how many sensors are
eeded to achieve a prescribed precision? (i i) what is the expected sensitivity of a fixed sensor network? (i i i) when
fixed network of ns sensors already exists, given a budget of nextra

s additional sensors, where should these be
laced to achieve optimal coverage? Properly addressing these queries is of great importance in the maintenance
f real-life engineering problems.

The first point refers to the need of defining a suitable measure to quantify the quality of the locations,
hether they are obtained with the proposed variational approach or already placed on the monitored structure.
straightforward choice is to compute the reconstruction of the quantity of interest, i.e., mq

Y(µ j )(xi ) at all training
oints xi ∈ X, for i = 1, . . . , ndof. Here mq

Y(µ j )(xi ) is the mean of the posterior distribution (10) of the sparse model
ased on the variational parameters, i.e., outcome of Algorithm 2. Hence, the relative reconstruction error of the
uantity of interest at unsensed locations can be used as an indicator of the sensor sensitivity. On one hand this
uantity grows as we move away from the sensors and, on the other hand, increasing the number ns of sensors is
xpected to improve the global coverage. Moreover, we define the average relative reconstruction error over the nµ

amples as

R =

nµ∑
j=1

1
nµ

∥Y(µ j ) − mq
Y(µ j )(X)∥

∥Y(µ j )∥
, (13)

where Y(µ j ) is the simulated quantity of interest (5). A low R value is an indicator of a good global placement
which takes the parametric dependency of the structure into account. An additional indicator to quantify the quality
of sensor placement is the point-wise relative variance reduction, defined as

Vi =
KimK−1

mmKmi

Ki i
, for i = 1, . . . , ndof, (14)

where K is the kernel matrix with optimized hyperparameters defined in Section 3. This quantity expresses how
much variance reduction can be achieved by including the chosen sensor locations. A relative variance reduction
close to one indicates that the inducing variables alone can reproduce the full GP prediction well.

Finally, we note that in the variational inference framework of the proposed approach, it is possible to jointly
optimize some inducing inputs and keep the already existing sensor locations fixed. Thus, the strategy presented in
this work can be efficiently implemented to systematically place additional sensors while accounting for the already
existing structural coverage.

5. Numerical results

In Sections 5.1, 5.2, and 5.3, we provide examples of sensor placement in two and three dimensions for which
we use the methodology presented in Section 4. A wave-based monitoring strategy is employed for the 2D and 3D
examples given in Sections 5.1 and 5.2, respectively. Here, we resort to the mean reconstruction error and the relative
variance reduction to test the quality of the sensor locations. Section 5.3, instead, presents a real-life engineering
example, for which a static monitoring approach is used. Taking into account the complexity of the geometry and
the large number of degrees of freedom, tests to assess the good quality of the placement are performed by looking
at the achieved accuracy in detecting damages. The synthetic databases used in the training phase are constructed
following the procedure given in Section 2.

5.1. Two-dimensional examples for the guided-wave problem

The examples in this section follow the wave-based monitoring approach, for which we train a variational sparse
GP model with compressed signals. We consider the same governing problem (1) for three different geometries
shown in Fig. 1 and we refer to these problems as Problems 1a, 1b, 1c, whose domains will be identified by

Ωa,Ωb, and Ωc, respectively.
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Fig. 1. 2D examples with different geometries: Problem 1a relies on 360 training inputs (small black dots), corresponding to the vertices
f a coarse mesh over the domain, while Problems 1b and 1c have 286 and 375 training points, respectively. The location of the center of
he active source is the same for three geometries and corresponds to S̄ = [0.54, 0.125] (black triangle).

For each problem, we consider zero initial conditions for both the displacement and the velocity and prescribe
free slip boundary conditions, i.e.,{

u · n = 0
(σ · n) · τ = gN

on ∂Ω ,

where τ is the tangential vector to ∂Ω and gN = 0 for simplicity. The high fidelity numerical solutions of (1) are
computed using the FE approximation by P1 elements over a domain discretized in tetrahedral cells with a total
of Nh = 30′912 degrees of freedom, while for the RB solver we rely on 267 basis for Problem 1a. Similar order
of magnitudes of these parameters are used for the other two problems: Nh = 31′200 and 284 basis for Problem
1b and Nh = 26′072 and 306 basis for Problem 1c. For the discretization in time, we consider Nt = 20′000 and
T = 20 for the three problems. The natural variations are described by three parameters, i.e.,

µ = [E, ν, k] ∈ Ωµ = [0.999, 1.001] × [0.329, 0.331] × [1.9, 2.1] ⊂ R3, (15)

where E is the Young’s Modulus, ν the Poisson’s ratio which determines the Lamé constants (2) and k is a parameter
of the active source function s(x, t; µ), defined as follows

s(x, t; µ) =

exp
{
−

∑d
i=1

(xi −µ̄i )2

2σ̄ 2
i

}
2πσ̄ d

ks sin(kπ t) te−t . (16)

Here, σ̄ = 0.01 represents the width of a Gaussian centered at S̄ = [0.55, 0.125] with fixed amplitude coefficient
ks = 100. The parameter k represents the number of cycles before attenuation of the source impulse. For each
problem we consider nµ = 100 samples and, to obtain a well balanced dataset, we sample from a Sobol’s
sequence [51], i.e., a base-2 digit sequence which provides a successively finer uniform partition of the intervals
Ωµ. We note that the density and damping coefficients are fixed, i.e., ρ = 1, η = 0.1, respectively.

The training points X ⊂ Rndof ⊂ Ωi with i = a, b, c are obtained by fixing the same size of a coarse mesh for the
three problems, thus recovering ndof = 360, ndof = 286, and ndof = 375 mesh points, for Problems 1a, 1b, and 1c
respectively1. We observe that the mesh points on the boundary are not included in the training set. This correspond
to a practical choice due to the free-slip boundary conditions, for which at least one of the two displacement
directions will be identically zero on each boundary edge. For each geometry we consider dy = 3 quantities of
interest (5) to train the variational sparse GP, i.e., the first three principal components of the Q = 12 features
extracted from the discrete time-dependent displacement signals (3), obtained for µ1, . . . µnµ

. We note that for
Problems 1a, 1b, and 1c, the first three principal components account for more than 80% of the variability. By way
of example, Fig. 2 shows the normalized features over the nµ samples and the corresponding principal components

1 We note that the ndof degrees of freedom refer to the number of training points for the sensor placement strategy and they are independent
from the N degrees of freedom used in the numerical simulations in Section 2.2. In general, n ≪ N .
h dof h
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Fig. 2. Example of normalized features extracted from the solution obtained by solving the acoustic–elastic problem on the geometry 1a with
µ1 = [1, 0.33, 2] (a). The first and second rows show the 6 features related to the displacement along the x and y directions, respectively
for a total of Q = 12 features. The Q corresponding principal components are shown in (b). The first three principal components account
for 60.5%, 13.3%, and 11.5% of the variability, respectively for a total of more than 85%. Similar values are obtained for all the other
samples and, for the other two geometries, i.e., Problems 1b and 1c, the importance of the three components is more balanced. The mean
and standard deviation used for the normalization are based on the features extracted from nµ = 100 samples, obtained using the first 100
parameters of a Sobol sequence based on Ωµ.

for Problem 1a with µ = [1, 0.33, 2]. Normalization is performed by features, i.e., the means m̄1, . . . , m̄ Q and
variances σ̄1, . . . , σ̄Q are computed for each one of the Q features over all training points (e.g., ndof = 360 for
Problem 1a) and all simulations obtained for nµ input parameters.

In terms of setup for the GPR, we note that for all the three examples, we use the ARD-Exponential kernel
(7), which provide the best performance on the training set with respect to other popular choices, the Squared
Exponential, Matérn-32 ad Matérn-52, both ARD and not.

By applying the sensor placement methodology described in Section 4 for {X, Y(µ j )}
nµ

j=1, we obtain the
ystematic placement of sensors shown in Fig. 3. For each geometry, the plots overlay the locations of the
s = 4, 9, 16, 25 inducing points obtained by applying Algorithm 1 nµ times over the admissible domains Ωa ,

Ωb, and Ωc, i.e., a total of nsnµ inducing inputs, sometimes overlapping, is shown. The sets of inducing points are
compared with the corresponding centroids, obtained by applying Algorithm 2, and, as an example, the inducing
points obtained by applying Algorithm 1 for the first Sobol’s parameter µ1 = [1, 0.33, 2] are also shown. While
for larger numbers of inducing points, clusters appear to be more visible, for smaller ns , the location of the nsnµ

inducing inputs shows more variability. This can be explained by the fact that the optimal inducing inputs are
optimized to reconstruct different quantities of interests, which depend on the input parameter µ j . However, one

also have to consider that, when trying to reconstruct a non-trivial quantity of interest over a complex structure
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Fig. 3. Comparison of the location of inducing points obtained by applying Algorithm 1 for nµ = 100 samples (cyan squares) and the
orresponding ns centroids obtained with Algorithm 2 (red stars). The inducing points obtained for one particular sample, i.e., µ = [1, 0.33, 2],
re also shown (yellow circles). Each row shows a different geometry while each column shows a fixed number ns of inducing points,

which increases from left to right, i.e., ns = 4, 9, 16, 25.

with only few ns points, the sparse model might get stuck in a local minimum without reaching convergence. For
example, the inducing points obtained for µ1 for Problem 1a and ns = 9 are not very well distributed over the
ntire domain. Nevertheless, the centroids seem to be a good summary of the entire underlying phenomena. Indeed,
s shown in Fig. 4, the optimal centroids obtained by clustering the results over the first nµ = 10 or the entire
arameter domain, i.e., over nµ = 100 sample, are almost always indistinguishable. We note that purple stars in

Fig. 4 correspond to the same centroids shown in Fig. 3, i.e., obtained by averaging the results of nµ = 100 samples.
As mentioned in Section 4.3, two ways to quantify the quality of the sensor placement outcome are by means

of the reconstruction error and the variance reduction. Fig. 5 shows the point-wise mean reconstruction of the first
sample for Problems 1a, i.e., mq

Y(µ1)(xi ) with xi ∈ X. We observe that as ns increases, the different characteristics
f the three principal components become visible in the reconstruction. We also note that reconstruction accuracy
chieved for the first principal component Y1 is higher than the one for the other two. Indeed, the highest variability
f the first principal component correspond to a less noisy field, simpler to be reconstructed by means of GPR. We
emark that similar results are obtained for Problems 1b and 1c. Fig. 6 shows, for the three problems, the mean
econstruction error over the nµ samples, defined in (13), for the three quantities of interests as a function of
he number ns of inducing points. These errors are compared to those obtained by reconstructing the principal
omponents using the centroids as fixed variational hyperparameters in a new sparse GPR model. We observe that
he difference between these two is minimal, which implies that the centroids are good approximations of the
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Fig. 4. Comparison of the centroids obtained with Algorithm 2 for different number of samples nµ, namely nµ = 10, 40, 70 and 100.
Each row shows a different geometry while each column shows a fixed number ns of inducing points, which increases from left to right,
i.e., ns = 4, 9, 16, 25.

inducing points for sensor placement. Finally, Fig. 7 shows the relative variance reduction (14), averaged over the
nµ samples. A variance reduction above 0.7 almost everywhere even for ns = 4 is an indication of good sensor
placement.

To conclude, Fig. 8 compares the position of the centroids obtained with Algorithm 2 with the centroids obtained
by applying the K-medoids algorithm to the training points X directly. This strategy is chosen as a proxy to place
points equidistantly over a complex domain. Although this naive strategy may seem to give almost as good results as
the laborious methodology followed to obtain the variational centroids, as shown in Fig. 9, placing sensors without
including physical information does not yield a good result. Indeed, the mean reconstruction accuracy obtained by
training a new variational sparse GP model with fixed inducing inputs as the centroids obtained by K-medoids on
the training points is not as good as the one obtained with variational centroids.

5.2. A three-dimensional example for the guided-wave problem

The sensor placement strategy following the guided-wave monitoring approach can be extended to 3D problems.
Let us consider the geometry of a T-beam as shown in Fig. 10. We consider the acoustic–elastic model (1) with
zero initial conditions and homogeneous Dirichlet boundary conditions imposed on the surface z = 0 together with
zero traction on the remaining surfaces. We compute the high fidelity solutions using the FE approximation by P1

′
elements over a fine mesh with Nh = 262 863 degrees of freedom and for the low fidelity model we use 505 basis.
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Fig. 5. Comparison of the first three principal components obtained for Problem 1a either by extracting the features from the time signals
nd then performing PCA (first row) or by sparse GP reconstruction using ns = 4, 9, 16 or 25 inducing points (second to fifth rows). As
he number of inducing points increases, the output of interests can be better reconstructed. The reference principal components correspond
o the results obtained for µ1 = [1, 0.33, 2]. The color scale is the same for the reference and the corresponding reconstructions.

For the time discretization, we set Nt = 10′000 and T = 10. We consider the same parameter space (15) as for
the 2D problem, where k is the free parameter of the active source function (16), centered at S̄ = [0.7, 1, 2]. The
training dataset corresponds to ndof = 4688 input points of a coarse mesh restricted to the Neumann surfaces and
dy = 4 output of interests, i.e., the first four principal components of the normalized Q = 18 features, extracted from
the discrete time signals, as described in Section 2.3. We note that the union of the first four principal component
accounts for more than 90% of the total variability for all samples. By way of example, the first two components
obtained for µ1 = [1, 0.33, 2] are shown in the first row of Fig. 12. After running Algorithm 2 for nµ = 10 Sobol’s
parameters, we obtain the inducing points and the centroids of the K-medoid clusters shown in Fig. 11. Fig. 12
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s

a

Fig. 6. Mean reconstruction errors with error-bars with respect to the number ns of inducing points for the first, second and third principal
components (solid lines) used to train the variational sparse GP model. The corresponding mean reconstruction error, obtained by training a
new variational sparse GP model with fixed inducing inputs corresponding to the centroids, is also shown (dashed lines). Each plot shows
the result for one of the three geometries.

Fig. 7. Relative variance reduction (14) obtained using ns centroids and averaged over nµ samples. Each row shows a different geometry
while each column corresponds to a fixed number ns of inducing points, which increases from left to right, i.e., ns = 4, 9, 16, 25. The color
cale is the same for all the plots.

lso shows the mean reconstruction of the first two output of interest mq
Y j (µ1)(X), for j = 1, 2, over the training

set X for a fixed parameter µ1 and increasing number of sensors, i.e., ns = 4, 16, 36. As expected, the different

characteristics of the output of interest become more visible in the predictions as the number of sensors increases.

Finally, the relative variance reduction (14), with respect to the centroids and averaged over nµ samples, is shown
in Fig. 13 for all training points. An overall relative reduction above 92% is achieved already for ns = 4 sensors.
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Fig. 8. Comparison of centroids obtained using Algorithm 2 (red stars) and the naive clustering, referred to as equidistant points (cyan
own-facing triangles). Each row shows a different geometry while each column shows a fixed number ns of inducing points, which increases
rom left to right, i.e., ns = 4, 9, 16, 25.

Fig. 9. Mean reconstruction errors with error-bars with respect to the number ns of inducing points for the three quantity of interest jointly
solid line) used to train the variational sparse GP model. The corresponding mean reconstruction error, obtained by training a variational
parse GP model with fixed inducing inputs corresponding to the centroids is also shown (dashed line) together with the one where the
xed inducing inputs are the naive centroids (dotted line). Each plot shows the result for one of the three geometries.
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Fig. 10. 3D geometry of a T-beam with 4688 training points (small black dots), corresponding to the vertices of a coarse mesh over the
domain. The location of the center of the active source corresponds to S̄ = [0.7, 1, 2] (black triangle). The Dirichlet boundary corresponds
to the surface at z = 0 (cyan filled surface).

Fig. 11. Comparison of the location of inducing points obtained by applying Algorithm 1 for nµ = 10 samples (cyan squares) and
he corresponding ns centroids obtained with Algorithm 2 (red stars). Each plot shows a different fixed number ns of inducing points,
.e., ns = 4, 9, 16, 25, 36.

.3. Application to a realistic geometry of an offshore jacket

We now consider a real-life engineering example of an offshore jacket, consisting of 192 components, as shown
n Fig. 14. The bottom of the jacket is fixed on the ground and other boundaries are assumed to be free. We
ntroduce two parameters, µx , µy ∈ Ωµ = [0.1, 1] kPa, representing the surface wind loads on the 64 components
n the dark box in Fig. 14 in the x and y directions, respectively. We assume the jacket to be linear elastic with

oung’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. As mentioned in Section 2.3, the displacements
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Fig. 12. Comparison of the first two principal components obtained by extracting the features from the time signals and then performing
PCA (first row) or by sparse GP reconstruction using ns = 4, 16, or 36 inducing points (second to fourth rows). As the number of inducing

oints increases, the output of interests can be better reconstructed. The reference principal components correspond to the results obtained
or µ1 = [1, 0.33, 2]. The color scale is the same for the reference and the corresponding reconstructions.

nder different load combinations are chosen as quantity of interest. The degrees of freedom of the full model

xceed four million in the original finite element model which is solved by the SCRBE solver from Akselos [52].
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Fig. 13. Relative variance reduction (14) obtained using ns centroids and averaged over nµ samples. Each plot shows a different fixed
umber ns of inducing points, which increases from left to right, i.e. ns = 4, 16, 36. The color scale is the same for the three plots.

o further accelerate the process, the degrees of freedom can be drastically reduced by taking a random subset of
oints within each component as representatives of that component. In this way, the total number of degrees of
reedom decreases to Nh = 4632. Here, we choose to first identify the optimal ns components and then place one
ensor per chosen component instead of computing the exact locations of the sensors directly. We note that this is
practical procedure in real-life engineering where the exact location of a sensor on a chosen component can be

ecided later, both empirically through engineering experience and practicality. We assume a budget of ns = 10
isplacement sensors and, for each one of the 192 components, we fix a sensor location, e.g., the point near the
eometric center of that component. Thus, the admissible set Ωs is such that |Ωs | = 192. We randomly generate
µ = 40 samples in Ωµ and apply Algorithm 2 to get the ns cluster centers as the components for sensor placement,
s shown in Fig. 15.

We note that though the geometry of the jacket structure is complicated, the chosen components are distributed
pproximately evenly over the whole domain, providing evidence that employing variational inference of sparse
PRs prevents waste of sensed information. To validate this sensor configuration, considering the complexity of

he geometry and the large number of degrees of freedom, we return to the anomaly detection strategy introduced
n Section 2.1. First, we place ns = 10 displacement sensors on the surface of the optimal components and then
rain a one-class classifier for each sensor location, following the procedure presented in [13]. In particular, we
hoose the one-class support vector machine (OC-SVM), a semi-supervised classification method derived as a simple
odification of the well-known supervised SVM method [53]. Each one of the ns OC-SVM classifiers is trained
ith nµ = 100 healthy samples, i.e., the displacements computed with input parameter µi ∈ Ωµ for i = 1, . . . , nµ

nd evaluated at the corresponding sensor locations. The ns models are separately tested on synthetic test samples,
ither healthy or damaged. Healthy samples are expected to be classified as inliers, i.e., belonging to the same
onfiguration as the training samples, and damaged samples are expected to be classified as outliers.

We observe that for real-life engineering problems, to assess the most probable damages, one may include
now-how and experience of engineers. For the proposed configuration, we consider an increased wind load,
.e., Ω extra

µ = [1, 1.5] kPa, to represent a source of potential structural damages. We design four test scenarios,
epending on the chosen input parameter space, i.e., either the baseline Ωµ or the modified Ωµ, and for each case
e sample nµ = 100 parameters. In particular, case 1 corresponds to the healthy scenario, i.e., µx , µy ∈ Ωµ; cases
and 3 represent scenarios of potential minor damages, i.e., we choose µx ∈ Ω extra

µ and µy ∈ Ωµ for case 2 and,
he opposite, i.e., µx ∈ Ωµ and µy ∈ Ω extra

µ for case 3; lastly, for case 4, the loads in both directions are sampled
rom the extended parameter space, i.e., µx , µy ∈ Ω extra

µ . The classification results for the four test cases, sensor
y sensor, are shown in Table 1, where the accuracy percentages in correctly classifying nµ = 100 samples per
cenario are provided. Healthy samples are classified as inliers with 98% of success for all the sensor locations.
he major damaged case (case 4) is always detected, i.e., for all samples and all sensor locations, the classifier
orrectly identifies the outliers. However, among all scenarios, we observe that for case 2 we do not get as accurate
esults as compared to other cases. We point out that the test cases are randomly generated and we notice that the
alse positives in cases 2 and 3 correspond to the situation in which one of the two parameters, i.e., either µx or

y , sampled from Ω extra
µ , is close to the lower bound, i.e., close to the healthy domain Ωµ, fooling the classifier. In

his case, the accuracy of the classifier can be improved by enlarging the training data set. Finally, we remark that,

iven the general situation where various types of anomalies in different locations can appear during the life time
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Fig. 14. Jacket model: wind loads applied on components in the square.

of a structure, relying on the assumption that we only have access to the simulation data of the healthy structure
allows us to present a systematic way to place a designed amount of sensors to encourage the representation of the
statistics of the whole domain while preventing sensed information waste.

6. Conclusions

A systematic approach to address the sensor placement problem in a SHM context where no prior knowledge
on the damages is assumed is proposed. The examples presented in this work provide numerical evidence that the
variational inference of sparse GPR can be modified to place the sensors on structures characterized by complex
geometries. The proposed approach is validated against both 2D and 3D numerical examples to confirm the quality
of the sensor placement. We note that one of the novelties of the proposed method is that it does not assume

any prior information of the anomalies, hence, it is robust to different type and severity of damages. In this work,
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Fig. 15. Jacket model: components chosen for sensor placement.

Table 1
Sensor-wise percentages of accuracy for undamaged (case 1), minor damaged (cases
2 and 3) and major damaged (case 4) scenarios.

Sensor no. Case 1 Case 2 Case 3 Case 4

1 99 81 93 100
2 100 83 94 100
3 99 77 94 100
4 100 77 94 100
5 98 91 92 100
6 100 81 93 100
7 100 79 90 100
8 99 74 94 100
9 100 83 93 100
10 100 76 93 100

the generation of synthetic healthy databases leverages reduced order modeling techniques to efficiently include
physical and geometrical parametric dependencies. As a direct consequence, the method is easily extendable to
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ther structures and avoids high computational costs related to simulating high fidelity models and considering all
ossible damage combinations.

We finally remark that in real-life engineering, the parameter space describing the natural variations of a large-
cale structure is expected to be high dimensional. The procedure explained in this work can be extended to many
arameters, but it requires a higher computational effort for both the construction of a healthy database and the
raining of multiple sparse variational GPR models. When the number of parameters is too large, one may rely on

ethodologies that compress the parameter space by retaining only those few parameters that influence the quantity
f interest the most. The variance-based global sensitivity indices (Sobol’s indices) [54] and the derivative based
lobal sensitivity measures (DGSM) [55] are popular choices.
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