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Abstract: Circle detection is a crucial problem in computer vision and pattern recognition. Improving
the accuracy and efficiency of circle detectors has important scientific significance and excellent
application value. In this paper, we propose a circle detection method with efficient arc extraction.
In order to reduce edge redundancy and eliminate crossing points, we present an edge refinement
algorithm to refine the edges into single-pixel-wide branchless contour curves. To address the contour
curve segmentation difficulty, we improved the CTAR (Chord to Triangular Arms Ratio) corner
detection method to enhance corner point detection and segment the contour curves based on corner
points. Then, we used the relative position constraint of arcs to improve the circle detection accuracy
further. Finally, we verified the feasibility and reliability of the proposed method by comparing our
approach with five other methods using three datasets. The experimental results showed that the
presented method had the advantages of anti-obscuration, anti-defect, and real-time performance
over other methods.

Keywords: circle detection; corner detection; edge refinement; curve segmentation

1. Introduction

Shape analysis is a crucial problem in image processing and computer vision. Cir-
cles, as one of the simplest shapes in our daily life, have attracted the attention of many
researchers. In the past decades, circle detection has been applied in various scenarios,
such as cell segmentation [1–3], PCB hole detection [4,5], ring traffic sign detection [6,7],
spacecraft attitude analysis [8,9], iris detection [10–12], and ball detection [13,14]. The
demand for circle detection accuracy and efficiency continues to increase as these usage
scenarios change. However, many circle detection methods fail because of complex back-
grounds, noise, occlusions, and defects. As pointed out in [15], these solutions are far from
satisfactory compared to human perception.

Early classical circle detection methods were based on Circle Hough Transform
(CHT) [16,17]. These methods search circles by mapping 2D coordinates to 3D coordi-
nates. Any three points on the edge are mapped to a point in 3D space, and this point
represents a circle. Then, the candidate circles are determined by voting for these points.
CHT-based circle detectors have to traverse and iterate over a large number of edge points,
so such detectors are time-consuming. Moreover, these methods are more susceptible to
interference from noise, which leads to a decrease in accuracy. Some researchers corrected
the shortcomings of the noise resistance of CHT by hypothesis filtering [18]. However,
there is still a problem of long processing time, though its accuracy is better. Xu et al. [19]
proposed Randomized Hough transform (RHT). This method does not completely traverse
all of the edge points, but samples them for processing, which greatly reduces the process-
ing time. Later methods, such as curvature-aided HT (CACD) [20], also use RHT to detect
circles with good results. Unfortunately, the generation of candidate circles in complex
backgrounds or noisy scenes still requires several attempts. Su et al. [21] improved the
operation speed by reducing the redundant computation of voting through a min/max
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voting approach and a sparse structure for batch computation. However, the efficiency
decreases rapidly once it is interfered with by noise, similar to other CHT-based methods.

Unlike the CHT-based methods with complete traversal at the edge, RCD [22] uses
four points randomly sampled in each iteration. Three of the points determine a circle, and
the fourth point is used to check the compatibility of the circle. Although the detection
speed is improved compared to CHT-based methods, it still requires more iterations to
generate candidate circles, because the probability that the sampled points are from the
same circle is small, especially in the case of more noise. Chung et al. [23] improved RCD by
efficient sampling and using refinement strategies to obtain lower time consumption and
higher accuracy. Although the precision, recall, and time consumption of these RCD-based
methods have improved, they are still far from real-time detection.

The main reason why CHT-based and RCD-based methods are time-consuming is the
large number of iterations and traversal computations. To solve this problem, another type
of method uses the geometric properties of circles to perform detection. These methods
extract the arcs first and then estimate the circle parameters by least-squares circle fitting,
circle-inscribed triangles, or perpendicular bisector intersections. The key to these methods
based on geometric properties is extracting the arc efficiently and accurately. Le et al. [24]
used a line segment detector [25] to extract the circular curve and then performed least-
squares circle fitting to obtain the circle parameters. Although this method achieved good
performance, there was the problem of useless least-squares fitting and redundant calcula-
tions caused by straight lines. This causes the detection time to become longer. Akinlar
et al. [26] proposed an approach based on Edge Drawing Parameter Free (EDPF) [27–29].
They converted the edge into line segments and converted the line segments into arcs. Then,
they estimate circle parameters by continuously calling least-squares circle fitting, where
arcs with similar circle parameters were clustered together. However, a significant devia-
tion occurs when the circle has defects or occlusions. On the basis of EDPF, Zhao et al. [30]
constrained arcs of the same circle by estimating the circle parameters using the inscribed
triangle. It takes advantage of the fact that area calculation is more robust to noise [31],
which significantly improves the accuracy of circle detection. The circle parameters esti-
mation method has equivalent accuracy to the least-squares fitting method because they
also used a linear error compensation algorithm to exact circle parameters, which was not
faster than that of least-squares fitting. Lu et al. [32] determined whether the curve is an
initial circle using the criterion of area restriction, radius, gradient polarity analysis, and
inside diameter. Then, the initial circles were clustered to generate candidate circles. This
was more accurate in complete circles, but often failed to identify occluded circles. The
common problem with these methods is that their detection speed is far from real-time as
they have more redundant computations.

There are other approaches. Dasgupta et al. [33] proposed a population intelligence
technique with adaptive bacterial foraging optimization for circle detection. This method
was more sensitive to noise, though it could produce better results on images with clean
backgrounds. Ayala-Ramirez et al. [34] proposed a genetic algorithm for circle detection,
and the method also failed in detecting circles with defects or occlusions. Moreover, these
methods have the same disadvantage of having prolonged time consumption.

To improve the accuracy and time efficiency of circle detection, we removed the
redundant pixels and split out the useless contour curves. Candidate circle parameters
were derived using least-squares circle fitting, and the relative position constraints of the
arcs were added to improve the circle detection accuracy. Finally, genuine circles were
extracted by a rigorous candidate circle validation. The main contributions of this paper are

1. A method of image edge refinement that reduces edge redundancy while effectively
eliminating intersections;

2. An improved CTAR [35] corner-detection algorithm that ensures complete corner
detection of contour curves by adding positive–negative point detection, adaptive
sampling interval, and adaptive thresholds;
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3. One complete circle dataset and one incomplete circle dataset are constructed, and the
circle detection algorithm was fully tested on these datasets.

The steps of the proposed method are given in Section 2. Section 3 reports the experi-
mental results and provides a comparative analysis. Section 4 concludes this paper.

2. Methodology

Given an image, the circle detection steps of our proposed method are shown in
Figure 1. A detailed description of the framework is presented in the following.
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Figure 1. Flowchart of the proposed method.

2.1. Arc Extraction
2.1.1. Image Preprocessing

The purpose of image preprocessing is to reduce the image noise and extract edges.
We used a 5 × 5 median filter to reduce the noise. Then, we adopted the Canny [36,37]
edge detector to obtain contour curves, as used by most circle detectors. Figure 2a shows a
test image, and Figure 2b shows its contour curves.
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curves segmentation.

2.1.2. Contour Curve Refinement

The contour curves were multiple pixels wide, because Canny evaluated the pixels
in an isolated manner to extract edges [29]. These curves contained many crossing points.
Figure 3a shows a simple case. A one-pixel-wide contour curve can accurately describe a
circle, while multi-pixel-wide curves will lead to computational redundancy. Therefore,
the multi-branched contour curves with crossing points needed to be transformed into
non-branched contour curves to facilitate the extraction of the arc. Deleting redundant
pixels and crossing points can solve the two problems, as shown in Figure 3b.
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curves with non-crossing point.

Point P is deleted from the contour curve if it satisfies any one of the following conditions:

N(1)N(3) + N(3)N(5) + N(5)N(7) + N(7)N(1) = true & N(P) = 2, (1)

(N(1) + N(5))(N(3) + N(7)) = true & N(P) > 2, (2)

N(1)N(4)N(6) + N(3)N(6)N(8) + N(2)N(5)N(8) + N(2)N(4)N(7) = true , (3)

Nc(P) > 2 . (4)

where N(p) is the number of foreground points in the eight-neighbor of P, N(1~8) is the
eight-neighbor of P, as shown in Figure 4, and Nc(P) is the number of foreground pixels in
N(2), N(4), N(6), and N(8). We specified that the contour curve pixel logical value is 1 (true),
and the background pixel logical value is 0 (false). Conditions (1)–(4) should be applied in
a logical order. The part without pixels is treated as background pixels when P is on the
image’s border. The effect of contour curve refinement is shown in Figure 2c.
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2.1.3. Contour Curve Segmentation

To speed up the subsequent process, similar to Jia et al. [38], contour curves with
less than 25 pixels are removed, regardless of the image resolution. After that, the image
contains four kinds of contour curves: single arc, interference curves, curves with multiple
arcs, and a combination of arc and interference curves. As shown in Figure 5, except
for the single arc, the other three curves include several corner points distributed at the
intersection of arcs, the intersection of arcs and interference curves, and the intersection of
interference curves.
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The curves shown in Figure 5c,d can be transformed into arcs and interfering contour
curves by dividing them at the corner points. Here, we addressed the CTAR [35] corner
detector to improve the corner detection capability when used for circle detection. The
original CTAR estimates the curvature of point Pi, as shown in Figure 6, based on

R(Pi) =
‖Pi+k − Pi−k‖2

‖Pi − Pi−k‖2 + ‖Pi+k − Pi‖2
, (5)

where Pi+k is the point reached by traversing k points in the positive direction from Pi and
Pi−k is the point reached by traversing k points in the negative direction from Pi.
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The value of k and the corner points determination threshold are fixed in CTAR. The
point is determined as a corner point when k = 3 and R(Pi) < 0.989. However, a fixed k
and fixed threshold do not detect very well due to the complex contour curve. To solve
this problem, we used auto-adaptive k and the corner threshold, positive–negative point
determination, large-scale coarse localization, and small-scale fine localization to enhance
the accuracy of the CTAR.

Considering the demand for subsequent adaptive threshold setting, we modified
Equation (5) as follows:

R(Pi) =
‖Pi − Pi−k‖2 + ‖Pi+k − Pi‖2

‖Pi+k − Pi−k‖2
. (6)

Adjusting Equation (5) does not change the detection performance. All of the k values
in different contour curves are different. k is determined by the curve length and the image
size. As shown in Equation (7), for the calculation of k:

k = η × (
S

100
+ 3) + (1− η)× (

min(width, height)× π

100
+ 3), (7)

where 0≤ η≤ 1 is the weight parameter, S is the length of the curve, and min(width, height)
is the smaller value of the image length and image width. Equation (7) limits k to a minimum
of 3, which is the same as the fixed sampling interval of CTAR. In order to balance the
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impacts of curve length and image size on k, η is set to adjust the weights to accommodate
different types of images.

The curvature set R of a curve is obtained by Equation (8). Mean plus or subtract two
standard deviations are based on the typical distribution characteristics, where 95.44% of
the data appear in this range [39]. Therefore, using the mean curvature plus two standard
deviations as a threshold can judge corner points. Therefore, the corner point threshold is
calculated based on

Tc = R + 2

√√√√√ n
∑

i=1
(Ri − R)2

n
(8)

where R is the mean of R. Points with curvature greater than Tc are determined to be corner
points and form the set C1.

According to Equation (7), k will be larger when a contour curve has multiple arcs, as
shown in Figure 5c. Since a larger k value will smooth the curve, it makes the corner points
among the arcs remain undetected. It is more likely to occur when the curvature of the
corner points is similar to that of the arc. Therefore, we introduce the positive–negative
point detection scheme [40] to improve the corner detection ability. As shown in Figure 7,
line li is formed by Pi−k and Pi. The relative position of Pi+k and li is used to determine
the symbol of Pi. Pi+k is defined as a positive point when Pi+k is in the clockwise rotation
direction of li or on li. The symbol of Pi is set as ‘+’ when Pi+k is a positive point. Figure 7
shows the four positive point cases. Similarly, it is defined as a negative point when Pi+k is
in the counterclockwise direction of li, and the symbol of Pi is ‘−’.
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According to the definition of positive and negative points, we used

sPi =

{
+, (xPi − xPi−k )× (yPi+k − yPi−k ) + (yPi−k − yPi )× (xPi+k − xPi−k ) <= 0
−, (xPi − xPi−k )× (yPi+k − yPi−k ) + (yPi−k − yPi )× (xPi+k − xPi−k ) > 0

(9)

to determine the symbol of Pi. A sequence of symbols was obtained after traversing the
entire curve. Then, we performed the same window smoothing operation twice for the
symbol sequence to reduce the noise.

For the analysis of contour curves shown in Figure 2c, there were only a small number
of corner points on these curves. A curve had a high number of positive or negative points,
and corners existed in the region where a smaller number of symbol points were located.
These points with a smaller number of symbols are called support points. Each section
of consecutive support points is called the support area, as shown in Figure 8. For each
support area, set k to 3 to finely locate the corner points. The point with the largest R(Pi) in
the support area was determined as the corner point and formed set C2.
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Then, the contour curve was segmented according to C1 and C2. In summary, each
contour curve segmentation was carried out in the following steps.

(a) Calculate k according to Equation (7);
(b) The curvature of the point on the curve is estimated;
(c) Calculate Tc based on Equation (8);
(d) Derive the corner set C1 based on Tc;
(e) Positive–negative point detection, sliding window filtering of positive–negative point

sequence, and statistical support area determination;
(f) The curvature is estimated by k = 3 in the support area, and the maximum curvature

point of each support area is the corner point; thus, C2 is derived;
(g) Split the curve according to C1 and C2.

If the original CTAR corner point detection method is followed, then steps (a), (c), (e),
and (f) above are not needed. In this paper, we improved CTAR corner point detection by
adding steps (a), (c), (e), and (f). Algorithm 1 shows the whole contour curve segmentation
process. The new contour curves for Figure 2c are shown in Figure 2d, and each contour
curve is shown with different colors.

2.2. Circle Fitting
2.2.1. Arc Screening

Contour curves with less than 25 pixels are removed, as in Section 2.1.3. Curves whose
ratio of arc length to circumference is greater than τ are used to fit the circle. It can easily
deduce that, when the curve length is constant, the straighter the curve is, the smaller the
ratio. Thus, we defined a curve whose ratio was below or equal to τ, was a straight line,
and did not participate in circle fitting. τ was set to 0.2 in the proposed method, and the
analysis of the choice is given in Section 3.3.2. See Figure 9a for reference; it should satisfy
α > 72◦ when the ratio of arc length to the circumference is greater than 0.2. We took line
L1 and line L2 to calculate θ. L1 was formed by the starting point Ps and the midpoint Pm
of the curve. L2 was formed by the midpoint Pm and the endpoint Pe. θ was 0.5 times α
according to the simple principle of geometry. Therefore, it was calculated that θ should be
greater than 36◦.

For Figure 9b, when the arc occupies a more significant proportion, it may also
cause θ ≤ 36◦. In this case, we chose the difference between ‖Pm − Ps‖2 + ‖Pe − Pm‖2 and
‖Pe − Ps‖2 to judge whether the curve was a straight line. Since ‖Pm − Ps‖2 ≈ ‖Pe − Pm‖2,
the problem can be expressed to

minimize ξ = 2‖Pm − Ps‖2 − ‖Pe − Ps‖2 = 2‖Ps − Pm‖2(1− sin θ
2 )

subject to θ ≤ 36◦
(10)

We obtained ξmin = 1.38‖Ps − Pm‖2 according to a simple calculation. Therefore, if
ξ ≤ 1.38‖Ps − Pm‖2, the curve was judged to be a straight line.

In conclusion, only curves that satisfy either condition θ ≤ 36◦ or ξ > 1.38‖Ps − Pm‖2
can be fitted to the circle. Figure 10a shows the result after contour curve screening.
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Algorithm 1 Contour Curve Segmentation

Input: Curve set Ψ = {c1, c2, . . . , cn}
Output: Curve group set Θ
1 Initialize parameters
2 while Ψ 6= ∅ do
3 for ci ∈ Ψ do
4 Initialize curvature set CR ← ∅
5 Initialize direction set D ← ∅
6 Initialize corner set C ← ∅
7 Calculate k by Equation (7) and then limit the maximum value to 15
8 for P ∈ ci do
9 Calculate R by Equation (6) and then push it in CR
10 Calculate S by Equation (9) and then push its coordinate in D
11 end for
12 Twice smoothed the D
13 Obtain the set of support area H form D
14 Set k = 2
15 Initialize C2 ← ∅
16 for cn ∈ H do
17 Initialize CH ← ∅
18 for P ∈ cn do
19 Calculate R by Equation (6) and then push it in CH
20 end for
21 Find the maximum value in CH and then push its coordinate in C2
22 end for
23 Calculate corner threshold Tc by Equation (8)
24 Initialize C1 ← ∅
25 for P ∈ CR do
26 if P > Tc then
27 Push coordinate of P in C1
28 end if
29 end for
30 Push the set of curves obtained by dividing ci by C1 and C2 into Θ
31 end for
32 end while
33 Return
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2.2.2. Arc Relative Position Constraint

KASA circle fitting [41] is one of the implementations of least-squares circle fitting. We
estimated the circle parameters (x, y, r) for each curve by KASA, where (x, y) is the circle
center, and r is the radius. We selected the fitted points by equally spaced sampling on the
curve to improve the fitting speed. The sampling interval was determined by

n = S/50 + 1

where S is the curve length. An initial circle set can be obtained by KASA.
We considered two circles to be congruent when circle i and circle j have at least 80%

overlap, as suggested by Jia et al. [38], Zhao et al. [30], and Lu et al. [32]. We defined the
overlap ratio between Ci and Cj in the following manner:

Overlap Ratio(Ci, Cj) =
area(Ci) ∩ area(Cj)

area(Cj) ∪ area(Cj)
, (11)

where area(C∗) denotes the area of C∗. When Overlap Ratio(Ci, Cj) >= 0.8, curves i and j
are on the same circle. Then, the two curves are combined into one curve. The same is true
for the operation of multiple curves on the same circle.

Different curves on the same circle are constrained to one curve, which improves the
accuracy of circle detection. KASA with equally spaced sampling is then performed for
each combined curve. We labeled the curves on the same circle with the same color in
Figure 10b.

2.3. Circle Validation

Identifying the true or false of the fitting circles is a crucial process to improve the
accuracy of circle detection. Figure 10c shows an image containing the two error circles.
The distribution of points on the wrong circle curve was very different from the distribution
of points on the correct circle curve. We reflected it in the standard deviation of the distance
between points on the curve and the center of the fitted circle. It was quickly concluded
that the standard deviation of the interference curve was much larger than that of the arc.
To simplify the calculation, we replaced the standard deviation with the sum of absolute
values of li − r. li is a line segment from Pi to circle center O. li − r is shown in Figure 11.

A true or false circle is defined as follows:

circle =


true,

S
∑

i=1
|li − r| < λrS

f alse,
S
∑

i=1
|li − r| ≥ λrS

, (12)

where S is the length of the curve and λ is the allowable curve deviation degree coefficient.
The smaller the λ, the tighter the circle verification. The final circle detection result for
Figure 2a is shown in Figure 10d.
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3. Experimental

This section shows the results of the proposed method on many datasets and compares
them with the results of other methods. Furthermore, all experiments were performed on
an Intel Core i5-9400 2.9 GHz desktop with 8 G RAM.

3.1. Performance Metrics

We used the average detection time and three well-known metrics in the information
retrieval area to assess the proposed method: precision, recall, and F-measure. Except
for the average detection time, the other metrics are defined as precision = TPs

TPs+FPs ,

recall = TPs
TPs+FNs , and F−measure = 2×precision×recall

precision+recall , where TPs is the number of correct
predictions, FPs is the number of incorrect predictions, and FNs is the number of omissions.
All three indicators are within the range [0, 1].

According to the expressions of precision and recall, we can learn that precision
evaluates the percentage of correct circles among the detected circles, while recall indicates
the percentage of correctly detected circles among all ground truth circles. We would
certainly like to have greater precision and recall, but the two are contradictory in most
cases. For example, given an image containing multiple circles, in the extreme case, only
one circle is detected and it is true. Therefore, the precision is 1, but the recall is low. If
we detect all circles, but more false circles, then the recall is 1 and the precision is very
low. A single precision or recall metric does not directly reflect the strength of the detector.
The F-measure was generated to consider these two metrics, which reflected the overall
detection performance. The larger the F-measure, the better the detection effect.

We considered the detected circle correct when the detected circle had at least 80%
overlap with the ground truth circle. It was the same definition as that in Section 2.2.2 for
two circles being the same circle.

3.2. Dataset

We performed experiments using three datasets, which were used to analyze the per-
formance of the circle detector for complete circles and circles with occlusions. Additionally,
the size of all images was less than 1000 × 1000.

Mini. For this dataset, eight common images were used to test circle detectors over the
years [26,42–44], as shown in Figure 12: Stability-ball (236 × 236 pixels), Coin (256 × 256),
Plates (400 × 390), Cake (231 × 231), Ball (231 × 232), Gobang (239 × 237), Swatch
(236 × 272), and Insulator (204 × 150).

Complete-circle. This included 183 images that contained different scenes. These
images were obtained from [30,32], and the internet. Some of the PCB images inside
contained different noise levels. As a result, more circles were included in each image,
and the background was more complex. Some images may have had near-elliptical circles
because the camera view was not perfectly perpendicular to the scene. Nevertheless, all
the circles in this dataset were complete circles with no defects and no occlusions.
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Incomplete-circle. This also included 125 images, such as eyes, balls, plates, and
cartoon images. The sources of the images were the same as those of the Complete-circle
dataset. Unlike the Complete-circle dataset, the images in this dataset contained some
circles with defects or obscurities, making detection more difficult.
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3.3. Method Analysis
3.3.1. Ablative Analysis

To test the performance of the improved CTAR corner detector, we conducted a
comparison experiment with the original CTAR. We added Gaussian noise with zero mean
and 1–12% variance to the images separately to test the robustness. The experimental
results are shown in Figure 13. The results showed that many non-corners were also
detected as corners, because the original CTAR used fixed sampling intervals and a fixed
corner point threshold. Although the detection could be improved by modifying these
two parameters, the radius of the circle was not equal on each image, which needed to use
different parameters for different images to achieve better results. Even in the same image,
the radii of the different circles were not equal.

In contrast, the sampling interval and corner point threshold of our improved CTAR
was different for each curve. It effectively reduced the detection error of corners. The
smoothness of the contour curve decreased as the noise increased, and the original CTAR
became more sensitive. Therefore, the result was that the curves retained after curve
splitting and filtering became sparser, which led to a smaller number of correct circles
in the end. In comparison, the improved CTAR algorithm had higher anti-interference
performance and more robust adaptability.

We also used the same images as in Figure 13 to perform experiments on the relative
position constraint. The experimental results are shown in Figure 14. We used the colors
in the second and third rows to distinguish the curves on different circles, and curves on
the same circle were identified with the same color. Curves without color were considered
invalid curves. The quantitative analysis is shown in Figure 15. The results show that
the relative position constraint effectively improved the detection. Because it constrained
the curves on the same circle to one curve, this increased the number of points involved
in KASA circle fitting; i.e., it improved the precision of the circle fitting. The recall with
and without the relative position constraint had smaller difference. Therefore, from the
comprehensive performance F-measure, the experimental results after the relative position
constraint were better than those without the relative position constraint.
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The projection distortion may cause the circle to take on an elliptical shape. Therefore,
we also tested whether the proposed method could detect ellipse-like circles. We selected
ellipse images with eccentricity e from 0 to 0.54 for the experiment, as shown in the first
row of Figure 16. The results are shown in the second row. The results show that our
method can accept ellipses with e ≤ 0.47 as circles. This condition is limited by the λ of
circle validation in Equation (12). We can accept larger e by slightly increasing λ. However,
as the eccentricity increased, the detected circle was also more off the ellipse’s center, and
the precision decreased rapidly. Therefore, our method was more suitable for cases where
the degree of distortion is not very large.

3.3.2. Threshold Analysis

There were three parameters in the proposed method, namely η, τ, and λ. Due to
the complexity of the images, it was not possible to obtain the best results for each image
with a fixed set of parameters. In order to reveal the effect of these three parameters on the
proposed method, a series of experiments for the F-measure were conducted. We conducted
experiments for each parameter separately using the control variable method.

In the curve segmentation stage, η was used to determine how much the sampling
interval was affected by the curve length and the image size, and a larger η indicated that
the sampling interval was more affected by the curve length. Figure 17a shows that better
results could be obtained when η = 0.7 or 0.8. The Mini and Complete-circle datasets had
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the highest F-measure when η = 0.7, and only the Incomplete-circle dataset had the highest
F-measure when η = 0.8. Therefore, we chose to use η = 0.7. We used τ to determine
whether a curve was a straight line or not. As τ increased, more curves were judged to
be straight lines. The highest F-measure was found on all three datasets when τ = 0.2
according to Figure 17b. Therefore, τ was set to 0.2. λ was used to determine the true and
false circles in the circle verification stage, and a smaller value indicated more stringent
circle verification. From Figure 17c, the best results were obtained when λ = 0.06. Therefore,
λ was set to 0.06 in the proposed method.
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3.4. Performance Comparison

On the three datasets, the proposed method was compared with several methods:
the four-point random sampling-based method RCD [22], the geometry-based method
EDCircles [26] with pseudo circle detection control, the improved RHT-based method
CACD [20], the AS method [32] with arc-supported line segments, and Zhao M Y’s [30]
method using inscribed triangles. All comparison methods are available and open-source
on the Internet. Note that, regarding the application of the circle detectors, we considered
all of the parameters as default parameters. These parameters were set only once and then
kept constant in all of the experiments reported below. The parameters of our method were
set to η = 0.7, τ = 0.2, λ =0.06. On the other hand, we used the default parameters from the
other methods to obtain the initial detection results. These parameters were the better ones
illustrated in the literature on these methods. For example, for CACD, we set the number
of iterations to 60,000, as described in the literature [20]. Meanwhile, the CACD and AS
methods were run in Matlab R2018b, and the other three methods and our method were
run in VS2019.

For the Mini dataset, the detection time is shown in Table 1 in milliseconds, and
the comparison of the F-measure is shown in Figure 18. RCD required a lot of iterative
operations because it used random sampling, which resulted in a much longer detection
time than that of the other methods. In comparison, the proposed method had a better
performance in terms of the detection time. This was because redundant pixels were
removed when performing edge refinement. Moreover, we removed the interference curves
segmented in the curve segmentation stage. This effectively reduced the computational
effort of circle fitting. The detection time of our method and AS was closer, but the F-
measure of the AS was more volatile and even decreased to 0 at the seventh image, as
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shown in Figure 18. Additionally, the detection times of the other methods were two to
four times higher than those of our method.

Table 1. Time consumption of the Mini dataset.

Images RCD EDCircles CACD AS Zhao MY Ours

Stability-ball 2237 80.80 59.50 29.40 97.70 24.67
Coin 2648 126.1 105.1 45.90 131.3 37.78
Plates 3276 234.8 316.7 68.80 207.3 73.45
Cake 2357 79.30 81.00 27.00 123.7 28.85
Ball 2473 84.40 58.90 34.20 112.0 29.45

Gobang 1921 70.80 56.60 17.50 84.30 30.12
Swatch 4485 47.70 33.90 19.10 66.70 19.97

Insulator 1442 95.10 52.40 28.70 108.3 27.68
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Figure 19 displays the result for the Mini dataset. The CACD lost many TPs, which
reflected the disadvantage of the HT-class circle detection methods: only circles with a
small range of radii could be detected in a limited time. Although the scan radius could be
increased, the detection time would be significantly longer. In contrast, RCD had a sufficient
number of circles, but its lack of adequate circle validation led to more FPs. Although
EDCircles had satisfactory performance, it also lacked a small number of TPs, such as the
first, third, and fourth images. RCD, EDCircles, CACD, and Zhao M Y recognized bright
spots as circles to varying degrees, as shown in the first and sixth images. This suggests
that their detection may be more sensitive. Especially in Figure 19, the image 7, Zhao M Y
recognized many figures as circles. The proposed method had a small number of FPs on
the second and third images, which was because the shorter curves generated in the curve
segmentation stage had fewer fitting points when performing circle fitting. This resulted in
the fitted circles not being very accurate. Although there was a relative position constraint
of the curves to improve the accuracy, it did not achieve complete constraint success.

Next, we performed more complex experiments, including experiments with the
Complete-circle dataset and the Incomplete-circle dataset. They contained 308 images
with more complex backgrounds, drastic circle radius changes, and more occlusions and
noise. The results are shown in Tables 2 and 3. Overall, the geometry-based circle detector
outperformed both the random sampling-based and RHT-based methods in terms of
detection time. The iterative nature of the RCD and complex background of the images
caused the RCD to perform poorly on all four metrics. In particular, the time consumption
was almost 10 to 80 times higher than that of the other methods. CACD had normal
performance for the two datasets, and none of the four metrics were completely superior to
the other methods. The AS had the highest precision in both datasets. However, its recall
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did not have a significant advantage over that of the others, so it was slightly lower than
that of EDCircles and our method in terms of the F-measure. Zhao M Y had the higher
recall in the Complete-circle dataset, but the precision was lower, indicating that it lacked
strict candidate circle validation. Furthermore, its recall on the Incomplete-circle dataset
was poor again, ranking only fourth, which indicates that its resistance to defects and
occlusions was also weak. The precision of our method was average for both datasets. As
analyzed in the Mini dataset experiments, the curve segmentation led to fewer fitting points
for the circle fitting, which resulted in not very accurate fitted circles, but more circles could
be detected. Therefore, although the proposed method was inferior to EDCircles and AS in
terms of precision, it had the highest recall. The F-measure and detection time were also
the best on both datasets. In general, this indicates that the proposed method had strong
comprehensive strength.
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Table 2. Circle detection result of all methods for the Complete-circle dataset.

Method Precision Recall F-Measure Time (ms)

RCD 0.2756 0.2075 0.1952 6.1543
EDCircles 0.8209 0.8313 0.7952 0.3321

CACD 0.7511 0.7488 0.7242 0.9485
AS 0.8364 0.7675 0.7868 0.0986

Zhao M Y 0.7489 0.8497 0.7885 0.3624
Ours 0.8116 0.8569 0.8067 0.0859
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Table 3. Circle detection result of all methods for the Incomplete-circle dataset.

Method Precision Recall F-Measure Time (ms)

RCD 0.2452 0.1887 0.1836 5.5795
EDCircles 0.8115 0.6484 0.6784 0.2836

CACD 0.6805 0.5016 0.5205 0.5975
AS 0.8456 0.6175 0.6899 0.0895

Zhao M Y 0.6597 0.7544 0.6767 0.3495
Ours 0.7341 0.7759 0.7151 0.0688

3.5. Discussion

As can be seen in Tables 2 and 3, the proposed method had some advantages over
other methods, but had similarities to AS, especially in terms of the F-measure and average
detection time. Although the performance of the proposed method and AS were opposite
in terms of precision and recall, they had similar F-measure values because the F-measure
is a combination of precision and recall. The reason for the opposite precision and recall
is that AS uses an arc-supported line segment detector to extract arcs. It extracts as many
real arcs as possible; however, some correct arcs are removed due to the noise and the
limitations of the algorithm. This results in a lower recall, but the retained curves have a
higher probability of being arcs; therefore, their precision is higher. The proposed method
uses corners to split the curves and retain the curves as much as possible to make the circle
detection complete, which sacrifices precision but effectively improves the recall.

For the average detection time, the proposed method also had similar performance
to AS. Since the remaining steps of the two were similar, except for the arc extraction step,
the average detection time comparison was mainly discussed for arc extraction. In arc
extraction, AS calculated the gradient of the whole image and removed the points with
small gradients according to the threshold firstly, then extracted the arcs. We extracted
the edges using Canny firstly, which also calculated the image gradient and removed the
non-edge points according to the threshold, and the subsequent edge refinement only
needed to traverse once. Therefore, the time consumption of the preliminary process of
arc extraction was similar, and the comparison evolved into the time consumption of the
arc-supported line segment detection in AS and the improved CTAR corner detection in
the proposed method. AS extracts the arcs based on the contrary approach and Helmholtz
principle. The time complexity of this method was O(n2). The proposed method used
curvature statistics and positive and negative point detection to detect the corners to further
extract the arcs. Its time complexity was also O(n2). Therefore, the average detection time
of both methods was similar.

Although the proposed method and AS had similar performances in terms of the
F-measure and average detection time, the proposed method was higher in terms of recall.
This means that the proposed method is more suitable to be recommended for applications
that require higher integrity of circle detection and allow some false detection.

4. Conclusions

In this paper, we proposed a fast circle detector with efficient arc extraction and
analyzed its performance. First, we proposed an edge refinement method that reduced the
computational workload of the subsequent steps while effectively eliminating crossing and
redundant points. Next, we improved the original CTAR corner point detection algorithm
to improve the completeness of corner point detection. The contour curves were then
segmented by these corner points. Then, we used KASA to estimate candidate circle
parameters and enhance the detection accuracy by the relative position constraints of arcs.
Furthermore, we applied a rigorous circle validation process to ensure that the circles
were genuine.

The proposed method was compared with five methods on three datasets. The results
showed that our method had average performance in terms of precision due to the curve
segmentation step. However, it was also due to curve segmentation that the number of
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detected correct circles was greatly increased; therefore, it performed the best in terms of
recall and the F-measure. In the proposed method, curves with lengths of less than 25 were
directly removed. There is a greater possibility that the curves were split into lengths less
than 25 on small-radius circles. Therefore, sometimes circles with smaller radii could not be
fully detected. The edge refinement and curve segmentation steps reduced a large amount
of redundancy and effectively increased the detection speed, so that our method took the
shortest time of all of the compared methods. In general, our method was more suitable
for cases with less stringent accuracy requirements and slightly larger circle radii, but
with an emphasis on real-time and complete detection. In the future, we will continue to
improve the curve screening step and the curve segmentation step to improve the detection
of small-radius circles.
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