
����������
�������

Citation: Liu, Y.; Deng, H.; Zhang, Z.;

Xu, Q. A Fast Circle Detector with

Efficient Arc Extraction. Symmetry

2022, 14, 734. https://doi.org/

10.3390/sym14040734

Academic Editor: José Carlos

R. Alcantud

Received: 27 February 2022

Accepted: 1 April 2022

Published: 3 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Fast Circle Detector with Efficient Arc Extraction
Yang Liu , Honggui Deng *, Zeyu Zhang and Qiguo Xu

School of Physics and Electronics, Central South University, Lushan South Road, Changsha 410083, China;
liuyang999@csu.edu.cn (Y.L.); 192211038@csu.edu.cn (Z.Z.); 202211045@csu.edu.cn (Q.X.)
* Correspondence: denghonggui@csu.edu.cn

Abstract: Circle detection is a crucial problem in computer vision and pattern recognition. Improving
the accuracy and efficiency of circle detectors has important scientific significance and excellent
application value. In this paper, we propose a circle detection method with efficient arc extraction.
In order to reduce edge redundancy and eliminate crossing points, we present an edge refinement
algorithm to refine the edges into single-pixel-wide branchless contour curves. To address the contour
curve segmentation difficulty, we improved the CTAR (Chord to Triangular Arms Ratio) corner
detection method to enhance corner point detection and segment the contour curves based on corner
points. Then, we used the relative position constraint of arcs to improve the circle detection accuracy
further. Finally, we verified the feasibility and reliability of the proposed method by comparing our
approach with five other methods using three datasets. The experimental results showed that the
presented method had the advantages of anti-obscuration, anti-defect, and real-time performance
over other methods.

Keywords: circle detection; corner detection; edge refinement; curve segmentation

1. Introduction

Shape analysis is a crucial problem in image processing and computer vision. Cir-
cles, as one of the simplest shapes in our daily life, have attracted the attention of many
researchers. In the past decades, circle detection has been applied in various scenarios,
such as cell segmentation [1–3], PCB hole detection [4,5], ring traffic sign detection [6,7],
spacecraft attitude analysis [8,9], iris detection [10–12], and ball detection [13,14]. The
demand for circle detection accuracy and efficiency continues to increase as these usage
scenarios change. However, many circle detection methods fail because of complex back-
grounds, noise, occlusions, and defects. As pointed out in [15], these solutions are far from
satisfactory compared to human perception.

Early classical circle detection methods were based on Circle Hough Transform
(CHT) [16,17]. These methods search circles by mapping 2D coordinates to 3D coordi-
nates. Any three points on the edge are mapped to a point in 3D space, and this point
represents a circle. Then, the candidate circles are determined by voting for these points.
CHT-based circle detectors have to traverse and iterate over a large number of edge points,
so such detectors are time-consuming. Moreover, these methods are more susceptible to
interference from noise, which leads to a decrease in accuracy. Some researchers corrected
the shortcomings of the noise resistance of CHT by hypothesis filtering [18]. However,
there is still a problem of long processing time, though its accuracy is better. Xu et al. [19]
proposed Randomized Hough transform (RHT). This method does not completely traverse
all of the edge points, but samples them for processing, which greatly reduces the process-
ing time. Later methods, such as curvature-aided HT (CACD) [20], also use RHT to detect
circles with good results. Unfortunately, the generation of candidate circles in complex
backgrounds or noisy scenes still requires several attempts. Su et al. [21] improved the
operation speed by reducing the redundant computation of voting through a min/max

Symmetry 2022, 14, 734. https://doi.org/10.3390/sym14040734 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040734
https://doi.org/10.3390/sym14040734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4301-7895
https://doi.org/10.3390/sym14040734
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040734?type=check_update&version=2

Symmetry 2022, 14, 734 2 of 19

voting approach and a sparse structure for batch computation. However, the efficiency
decreases rapidly once it is interfered with by noise, similar to other CHT-based methods.

Unlike the CHT-based methods with complete traversal at the edge, RCD [22] uses
four points randomly sampled in each iteration. Three of the points determine a circle, and
the fourth point is used to check the compatibility of the circle. Although the detection
speed is improved compared to CHT-based methods, it still requires more iterations to
generate candidate circles, because the probability that the sampled points are from the
same circle is small, especially in the case of more noise. Chung et al. [23] improved RCD by
efficient sampling and using refinement strategies to obtain lower time consumption and
higher accuracy. Although the precision, recall, and time consumption of these RCD-based
methods have improved, they are still far from real-time detection.

The main reason why CHT-based and RCD-based methods are time-consuming is the
large number of iterations and traversal computations. To solve this problem, another type
of method uses the geometric properties of circles to perform detection. These methods
extract the arcs first and then estimate the circle parameters by least-squares circle fitting,
circle-inscribed triangles, or perpendicular bisector intersections. The key to these methods
based on geometric properties is extracting the arc efficiently and accurately. Le et al. [24]
used a line segment detector [25] to extract the circular curve and then performed least-
squares circle fitting to obtain the circle parameters. Although this method achieved good
performance, there was the problem of useless least-squares fitting and redundant calcula-
tions caused by straight lines. This causes the detection time to become longer. Akinlar
et al. [26] proposed an approach based on Edge Drawing Parameter Free (EDPF) [27–29].
They converted the edge into line segments and converted the line segments into arcs. Then,
they estimate circle parameters by continuously calling least-squares circle fitting, where
arcs with similar circle parameters were clustered together. However, a significant devia-
tion occurs when the circle has defects or occlusions. On the basis of EDPF, Zhao et al. [30]
constrained arcs of the same circle by estimating the circle parameters using the inscribed
triangle. It takes advantage of the fact that area calculation is more robust to noise [31],
which significantly improves the accuracy of circle detection. The circle parameters esti-
mation method has equivalent accuracy to the least-squares fitting method because they
also used a linear error compensation algorithm to exact circle parameters, which was not
faster than that of least-squares fitting. Lu et al. [32] determined whether the curve is an
initial circle using the criterion of area restriction, radius, gradient polarity analysis, and
inside diameter. Then, the initial circles were clustered to generate candidate circles. This
was more accurate in complete circles, but often failed to identify occluded circles. The
common problem with these methods is that their detection speed is far from real-time as
they have more redundant computations.

There are other approaches. Dasgupta et al. [33] proposed a population intelligence
technique with adaptive bacterial foraging optimization for circle detection. This method
was more sensitive to noise, though it could produce better results on images with clean
backgrounds. Ayala-Ramirez et al. [34] proposed a genetic algorithm for circle detection,
and the method also failed in detecting circles with defects or occlusions. Moreover, these
methods have the same disadvantage of having prolonged time consumption.

To improve the accuracy and time efficiency of circle detection, we removed the
redundant pixels and split out the useless contour curves. Candidate circle parameters
were derived using least-squares circle fitting, and the relative position constraints of the
arcs were added to improve the circle detection accuracy. Finally, genuine circles were
extracted by a rigorous candidate circle validation. The main contributions of this paper are

1. A method of image edge refinement that reduces edge redundancy while effectively
eliminating intersections;

2. An improved CTAR [35] corner-detection algorithm that ensures complete corner
detection of contour curves by adding positive–negative point detection, adaptive
sampling interval, and adaptive thresholds;

Symmetry 2022, 14, 734 3 of 19

3. One complete circle dataset and one incomplete circle dataset are constructed, and the
circle detection algorithm was fully tested on these datasets.

The steps of the proposed method are given in Section 2. Section 3 reports the experi-
mental results and provides a comparative analysis. Section 4 concludes this paper.

2. Methodology

Given an image, the circle detection steps of our proposed method are shown in
Figure 1. A detailed description of the framework is presented in the following.

Symmetry 2022, 14, 734 3 of 20

2. An improved CTAR [35] corner-detection algorithm that ensures complete corner
detection of contour curves by adding positive–negative point detection, adaptive sam-
pling interval, and adaptive thresholds;

3. One complete circle dataset and one incomplete circle dataset are constructed, and
the circle detection algorithm was fully tested on these datasets.

The steps of the proposed method are given in Section 2. Section 3 reports the exper-
imental results and provides a comparative analysis. Section 4 concludes this paper.

2. Methodology
Given an image, the circle detection steps of our proposed method are shown in Fig-

ure 1. A detailed description of the framework is presented in the following.

Figure 1. Flowchart of the proposed method.

2.1. Arc Extraction
2.1.1. Image Preprocessing

The purpose of image preprocessing is to reduce the image noise and extract edges.
We used a 5 × 5 median filter to reduce the noise. Then, we adopted the Canny [36,37]
edge detector to obtain contour curves, as used by most circle detectors. Figure 2a shows
a test image, and Figure 2b shows its contour curves.

Figure 2. (a) A test image. (b) The contour curves. (c) Contour curves refinement. (d) Contour
curves segmentation.

2.1.2. Contour Curve Refinement
The contour curves were multiple pixels wide, because Canny evaluated the pixels

in an isolated manner to extract edges [29]. These curves contained many crossing points.
Figure 3a shows a simple case. A one-pixel-wide contour curve can accurately describe a
circle, while multi-pixel-wide curves will lead to computational redundancy. Therefore,
the multi-branched contour curves with crossing points needed to be transformed into
non-branched contour curves to facilitate the extraction of the arc. Deleting redundant
pixels and crossing points can solve the two problems, as shown in Figure 3b.

Figure 1. Flowchart of the proposed method.

2.1. Arc Extraction
2.1.1. Image Preprocessing

The purpose of image preprocessing is to reduce the image noise and extract edges.
We used a 5 × 5 median filter to reduce the noise. Then, we adopted the Canny [36,37]
edge detector to obtain contour curves, as used by most circle detectors. Figure 2a shows a
test image, and Figure 2b shows its contour curves.

Symmetry 2022, 14, 734 3 of 20

2. An improved CTAR [35] corner-detection algorithm that ensures complete corner
detection of contour curves by adding positive–negative point detection, adaptive sam-
pling interval, and adaptive thresholds;

3. One complete circle dataset and one incomplete circle dataset are constructed, and
the circle detection algorithm was fully tested on these datasets.

The steps of the proposed method are given in Section 2. Section 3 reports the exper-
imental results and provides a comparative analysis. Section 4 concludes this paper.

2. Methodology
Given an image, the circle detection steps of our proposed method are shown in Fig-

ure 1. A detailed description of the framework is presented in the following.

Figure 1. Flowchart of the proposed method.

2.1. Arc Extraction
2.1.1. Image Preprocessing

The purpose of image preprocessing is to reduce the image noise and extract edges.
We used a 5 × 5 median filter to reduce the noise. Then, we adopted the Canny [36,37]
edge detector to obtain contour curves, as used by most circle detectors. Figure 2a shows
a test image, and Figure 2b shows its contour curves.

Figure 2. (a) A test image. (b) The contour curves. (c) Contour curves refinement. (d) Contour
curves segmentation.

2.1.2. Contour Curve Refinement
The contour curves were multiple pixels wide, because Canny evaluated the pixels

in an isolated manner to extract edges [29]. These curves contained many crossing points.
Figure 3a shows a simple case. A one-pixel-wide contour curve can accurately describe a
circle, while multi-pixel-wide curves will lead to computational redundancy. Therefore,
the multi-branched contour curves with crossing points needed to be transformed into
non-branched contour curves to facilitate the extraction of the arc. Deleting redundant
pixels and crossing points can solve the two problems, as shown in Figure 3b.

Figure 2. (a) A test image. (b) The contour curves. (c) Contour curves refinement. (d) Contour
curves segmentation.

2.1.2. Contour Curve Refinement

The contour curves were multiple pixels wide, because Canny evaluated the pixels
in an isolated manner to extract edges [29]. These curves contained many crossing points.
Figure 3a shows a simple case. A one-pixel-wide contour curve can accurately describe a
circle, while multi-pixel-wide curves will lead to computational redundancy. Therefore,
the multi-branched contour curves with crossing points needed to be transformed into
non-branched contour curves to facilitate the extraction of the arc. Deleting redundant
pixels and crossing points can solve the two problems, as shown in Figure 3b.

Symmetry 2022, 14, 734 4 of 19Symmetry 2022, 14, 734 4 of 20

Figure 3. (a) A multi-pixel wide contour curve with crossing point. (b) One-pixel wide contour
curves with non-crossing point.

Point P is deleted from the contour curve if it satisfies any one of the following con-
ditions:

(1) (3) (3) (5) (5) (7) (7) (1) & () 2+ + + = =N N N N N N N N true N P , (1)

((1) (5))((3) (7)) & () 2+ + = >N N N N true N P , (2)

(1) (4) (6) (3) (6) (8) (2) (5) (8) (2) (4) (7)N N N N N N N N N N N N true+ + + = , (3)

() 2Nc P > . (4)

Where N(p) is the number of foreground points in the eight-neighbor of P, N(1~8) is the
eight-neighbor of P, as shown in Figure 4, and Nc(P) is the number of foreground pixels in
N(2), N(4), N(6), and N(8). We specified that the contour curve pixel logical value is 1
(true), and the background pixel logical value is 0 (false). Conditions (1)–(4) should be
applied in a logical order. The part without pixels is treated as background pixels when P
is on the image’s border. The effect of contour curve refinement is shown in Figure 2c.

Figure 4. Location of N(1~8) around P.

2.1.3. Contour Curve Segmentation
To speed up the subsequent process, similar to Jia et al. [38], contour curves with less

than 25 pixels are removed, regardless of the image resolution. After that, the image con-
tains four kinds of contour curves: single arc, interference curves, curves with multiple
arcs, and a combination of arc and interference curves. As shown in Figure 5, except for
the single arc, the other three curves include several corner points distributed at the inter-
section of arcs, the intersection of arcs and interference curves, and the intersection of in-
terference curves.

Figure 3. (a) A multi-pixel wide contour curve with crossing point. (b) One-pixel wide contour
curves with non-crossing point.

Point P is deleted from the contour curve if it satisfies any one of the following conditions:

N(1)N(3) + N(3)N(5) + N(5)N(7) + N(7)N(1) = true & N(P) = 2, (1)

(N(1) + N(5))(N(3) + N(7)) = true & N(P) > 2, (2)

N(1)N(4)N(6) + N(3)N(6)N(8) + N(2)N(5)N(8) + N(2)N(4)N(7) = true , (3)

Nc(P) > 2 . (4)

where N(p) is the number of foreground points in the eight-neighbor of P, N(1~8) is the
eight-neighbor of P, as shown in Figure 4, and Nc(P) is the number of foreground pixels in
N(2), N(4), N(6), and N(8). We specified that the contour curve pixel logical value is 1 (true),
and the background pixel logical value is 0 (false). Conditions (1)–(4) should be applied in
a logical order. The part without pixels is treated as background pixels when P is on the
image’s border. The effect of contour curve refinement is shown in Figure 2c.

Symmetry 2022, 14, 734 4 of 20

Figure 3. (a) A multi-pixel wide contour curve with crossing point. (b) One-pixel wide contour
curves with non-crossing point.

Point P is deleted from the contour curve if it satisfies any one of the following con-
ditions:

(1) (3) (3) (5) (5) (7) (7) (1) & () 2+ + + = =N N N N N N N N true N P , (1)

((1) (5))((3) (7)) & () 2+ + = >N N N N true N P , (2)

(1) (4) (6) (3) (6) (8) (2) (5) (8) (2) (4) (7)N N N N N N N N N N N N true+ + + = , (3)

() 2Nc P > . (4)

Where N(p) is the number of foreground points in the eight-neighbor of P, N(1~8) is the
eight-neighbor of P, as shown in Figure 4, and Nc(P) is the number of foreground pixels in
N(2), N(4), N(6), and N(8). We specified that the contour curve pixel logical value is 1
(true), and the background pixel logical value is 0 (false). Conditions (1)–(4) should be
applied in a logical order. The part without pixels is treated as background pixels when P
is on the image’s border. The effect of contour curve refinement is shown in Figure 2c.

Figure 4. Location of N(1~8) around P.

2.1.3. Contour Curve Segmentation
To speed up the subsequent process, similar to Jia et al. [38], contour curves with less

than 25 pixels are removed, regardless of the image resolution. After that, the image con-
tains four kinds of contour curves: single arc, interference curves, curves with multiple
arcs, and a combination of arc and interference curves. As shown in Figure 5, except for
the single arc, the other three curves include several corner points distributed at the inter-
section of arcs, the intersection of arcs and interference curves, and the intersection of in-
terference curves.

Figure 4. Location of N(1~8) around P.

2.1.3. Contour Curve Segmentation

To speed up the subsequent process, similar to Jia et al. [38], contour curves with
less than 25 pixels are removed, regardless of the image resolution. After that, the image
contains four kinds of contour curves: single arc, interference curves, curves with multiple
arcs, and a combination of arc and interference curves. As shown in Figure 5, except
for the single arc, the other three curves include several corner points distributed at the
intersection of arcs, the intersection of arcs and interference curves, and the intersection of
interference curves.

Symmetry 2022, 14, 734 5 of 19

Symmetry 2022, 14, 734 4 of 20

Figure 3. (a) A multi-pixel wide contour curve with crossing point. (b) One-pixel wide contour
curves with non-crossing point.

Point P is deleted from the contour curve if it satisfies any one of the following con-
ditions:

(1) (3) (3) (5) (5) (7) (7) (1) & () 2+ + + = =N N N N N N N N true N P , (1)

((1) (5))((3) (7)) & () 2+ + = >N N N N true N P , (2)

(1) (4) (6) (3) (6) (8) (2) (5) (8) (2) (4) (7)N N N N N N N N N N N N true+ + + = , (3)

() 2Nc P > . (4)

Where N(p) is the number of foreground points in the eight-neighbor of P, N(1~8) is the
eight-neighbor of P, as shown in Figure 4, and Nc(P) is the number of foreground pixels in
N(2), N(4), N(6), and N(8). We specified that the contour curve pixel logical value is 1
(true), and the background pixel logical value is 0 (false). Conditions (1)–(4) should be
applied in a logical order. The part without pixels is treated as background pixels when P
is on the image’s border. The effect of contour curve refinement is shown in Figure 2c.

Figure 4. Location of N(1~8) around P.

2.1.3. Contour Curve Segmentation
To speed up the subsequent process, similar to Jia et al. [38], contour curves with less

than 25 pixels are removed, regardless of the image resolution. After that, the image con-
tains four kinds of contour curves: single arc, interference curves, curves with multiple
arcs, and a combination of arc and interference curves. As shown in Figure 5, except for
the single arc, the other three curves include several corner points distributed at the inter-
section of arcs, the intersection of arcs and interference curves, and the intersection of in-
terference curves.

Figure 5. Four kinds of contour curves. (a) Single arc contour curve. (b) Interference contour curve.
(c) Contour curve with multiple arcs coexisting. (d) Combination of arc and interference
contour curve.

The curves shown in Figure 5c,d can be transformed into arcs and interfering contour
curves by dividing them at the corner points. Here, we addressed the CTAR [35] corner
detector to improve the corner detection capability when used for circle detection. The
original CTAR estimates the curvature of point Pi, as shown in Figure 6, based on

R(Pi) =
‖Pi+k − Pi−k‖2

‖Pi − Pi−k‖2 + ‖Pi+k − Pi‖2
, (5)

where Pi+k is the point reached by traversing k points in the positive direction from Pi and
Pi−k is the point reached by traversing k points in the negative direction from Pi.

Symmetry 2022, 14, 734 5 of 20

Figure 5. Four kinds of contour curves. (a) Single arc contour curve. (b) Interference contour
curve. (c) Contour curve with multiple arcs coexisting. (d) Combination of arc and interference
contour curve.

The curves shown in Figure 5c,d can be transformed into arcs and interfering contour
curves by dividing them at the corner points. Here, we addressed the CTAR [35] corner
detector to improve the corner detection capability when used for circle detection. The
original CTAR estimates the curvature of point Pi, as shown in Figure 6, based on

2

2 2

() i k i k
i

i i k i k i

P P
R P

P P P P
+ −

− +

−
=

− + −
, (5)

where Pi+k is the point reached by traversing k points in the positive direction from Pi and
Pi−k is the point reached by traversing k points in the negative direction from Pi.

Figure 6. Curvature estimation measure used in CTAR.

The value of k and the corner points determination threshold are fixed in CTAR. The
point is determined as a corner point when k = 3 and R(Pi) < 0.989. However, a fixed k and
fixed threshold do not detect very well due to the complex contour curve. To solve this
problem, we used auto-adaptive k and the corner threshold, positive–negative point de-
termination, large-scale coarse localization, and small-scale fine localization to enhance
the accuracy of the CTAR.

Considering the demand for subsequent adaptive threshold setting, we modified
Equation (5) as follows:

2 2

2

() i i k i k i
i

i k i k

P P P P
R P

P P
− +

+ −

− + −
=

−
. (6)

Adjusting Equation (5) does not change the detection performance. All of the k values
in different contour curves are different. k is determined by the curve length and the image
size. As shown in Equation (7), for the calculation of k:

min(,)(3) (1) (3)
100 100
S width heightk πη η ×= × + + − × + , (7)

Where 0 ≤ η ≤ 1 is the weight parameter, S is the length of the curve, and min(,)width height
is the smaller value of the image length and image width. Equation (7) limits k to a mini-
mum of 3, which is the same as the fixed sampling interval of CTAR. In order to balance
the impacts of curve length and image size on k, η is set to adjust the weights to accom-
modate different types of images.

The curvature set R of a curve is obtained by Equation (8). Mean plus or subtract
two standard deviations are based on the typical distribution characteristics, where
95.44% of the data appear in this range [39]. Therefore, using the mean curvature plus two
standard deviations as a threshold can judge corner points. Therefore, the corner point
threshold is calculated based on

Figure 6. Curvature estimation measure used in CTAR.

The value of k and the corner points determination threshold are fixed in CTAR. The
point is determined as a corner point when k = 3 and R(Pi) < 0.989. However, a fixed k
and fixed threshold do not detect very well due to the complex contour curve. To solve
this problem, we used auto-adaptive k and the corner threshold, positive–negative point
determination, large-scale coarse localization, and small-scale fine localization to enhance
the accuracy of the CTAR.

Considering the demand for subsequent adaptive threshold setting, we modified
Equation (5) as follows:

R(Pi) =
‖Pi − Pi−k‖2 + ‖Pi+k − Pi‖2

‖Pi+k − Pi−k‖2
. (6)

Adjusting Equation (5) does not change the detection performance. All of the k values
in different contour curves are different. k is determined by the curve length and the image
size. As shown in Equation (7), for the calculation of k:

k = η × (
S

100
+ 3) + (1− η)× (

min(width, height)× π

100
+ 3), (7)

where 0≤ η≤ 1 is the weight parameter, S is the length of the curve, and min(width, height)
is the smaller value of the image length and image width. Equation (7) limits k to a minimum
of 3, which is the same as the fixed sampling interval of CTAR. In order to balance the

Symmetry 2022, 14, 734 6 of 19

impacts of curve length and image size on k, η is set to adjust the weights to accommodate
different types of images.

The curvature set R of a curve is obtained by Equation (8). Mean plus or subtract two
standard deviations are based on the typical distribution characteristics, where 95.44% of
the data appear in this range [39]. Therefore, using the mean curvature plus two standard
deviations as a threshold can judge corner points. Therefore, the corner point threshold is
calculated based on

Tc = R + 2

√√√√√ n
∑

i=1
(Ri − R)2

n
(8)

where R is the mean of R. Points with curvature greater than Tc are determined to be corner
points and form the set C1.

According to Equation (7), k will be larger when a contour curve has multiple arcs, as
shown in Figure 5c. Since a larger k value will smooth the curve, it makes the corner points
among the arcs remain undetected. It is more likely to occur when the curvature of the
corner points is similar to that of the arc. Therefore, we introduce the positive–negative
point detection scheme [40] to improve the corner detection ability. As shown in Figure 7,
line li is formed by Pi−k and Pi. The relative position of Pi+k and li is used to determine
the symbol of Pi. Pi+k is defined as a positive point when Pi+k is in the clockwise rotation
direction of li or on li. The symbol of Pi is set as ‘+’ when Pi+k is a positive point. Figure 7
shows the four positive point cases. Similarly, it is defined as a negative point when Pi+k is
in the counterclockwise direction of li, and the symbol of Pi is ‘−’.

Symmetry 2022, 14, 734 6 of 20

2

1
()

2

n

i
i

c

R R
T R

n
=

−
= +

(8)

where R is the mean of R . Points with curvature greater than Tc are determined to be
corner points and form the set 1C .

According to Equation (7), k will be larger when a contour curve has multiple arcs,
as shown in Figure 5c. Since a larger k value will smooth the curve, it makes the corner
points among the arcs remain undetected. It is more likely to occur when the curvature of
the corner points is similar to that of the arc. Therefore, we introduce the positive–negative
point detection scheme [40] to improve the corner detection ability. As shown in Figure 7,
line li is formed by Pi−k and Pi. The relative position of Pi+k and li is used to determine the
symbol of Pi. Pi+k is defined as a positive point when Pi+k is in the clockwise rotation direc-
tion of li or on li. The symbol of Pi is set as ‘+’ when Pi+k is a positive point. Figure 7 shows
the four positive point cases. Similarly, it is defined as a negative point when Pi+k is in the
counterclockwise direction of li, and the symbol of Pi is ‘−’.

Figure 7. Positive points.

According to the definition of positive and negative points, we used

, ()*() ()*() 0
, ()*() ()*() 0

i i k i k i k i k i i k i k

i

i i k i k i k i k i i k i k

P P P P P P P P
P

P P P P P P P P

x x y y y y x x
s

x x y y y y x x
− + − − + −

− + − − + −

+ − − + − − <== − − − + − − >
 (9)

to determine the symbol of iP . A sequence of symbols was obtained after traversing the
entire curve. Then, we performed the same window smoothing operation twice for the
symbol sequence to reduce the noise.

For the analysis of contour curves shown in Figure 2c, there were only a small num-
ber of corner points on these curves. A curve had a high number of positive or negative
points, and corners existed in the region where a smaller number of symbol points were
located. These points with a smaller number of symbols are called support points. Each
section of consecutive support points is called the support area, as shown in Figure 8. For
each support area, set k to 3 to finely locate the corner points. The point with the largest
R(Pi) in the support area was determined as the corner point and formed set 2C .

Figure 8. Support points and region of support.

Figure 7. Positive points.

According to the definition of positive and negative points, we used

sPi =

{
+, (xPi − xPi−k)× (yPi+k − yPi−k) + (yPi−k − yPi)× (xPi+k − xPi−k) <= 0
−, (xPi − xPi−k)× (yPi+k − yPi−k) + (yPi−k − yPi)× (xPi+k − xPi−k) > 0

(9)

to determine the symbol of Pi. A sequence of symbols was obtained after traversing the
entire curve. Then, we performed the same window smoothing operation twice for the
symbol sequence to reduce the noise.

For the analysis of contour curves shown in Figure 2c, there were only a small number
of corner points on these curves. A curve had a high number of positive or negative points,
and corners existed in the region where a smaller number of symbol points were located.
These points with a smaller number of symbols are called support points. Each section
of consecutive support points is called the support area, as shown in Figure 8. For each
support area, set k to 3 to finely locate the corner points. The point with the largest R(Pi) in
the support area was determined as the corner point and formed set C2.

Symmetry 2022, 14, 734 7 of 19

Symmetry 2022, 14, 734 6 of 20

2

1
()

2

n

i
i

c

R R
T R

n
=

−
= +

(8)

where R is the mean of R . Points with curvature greater than Tc are determined to be
corner points and form the set 1C .

According to Equation (7), k will be larger when a contour curve has multiple arcs,
as shown in Figure 5c. Since a larger k value will smooth the curve, it makes the corner
points among the arcs remain undetected. It is more likely to occur when the curvature of
the corner points is similar to that of the arc. Therefore, we introduce the positive–negative
point detection scheme [40] to improve the corner detection ability. As shown in Figure 7,
line li is formed by Pi−k and Pi. The relative position of Pi+k and li is used to determine the
symbol of Pi. Pi+k is defined as a positive point when Pi+k is in the clockwise rotation direc-
tion of li or on li. The symbol of Pi is set as ‘+’ when Pi+k is a positive point. Figure 7 shows
the four positive point cases. Similarly, it is defined as a negative point when Pi+k is in the
counterclockwise direction of li, and the symbol of Pi is ‘−’.

Figure 7. Positive points.

According to the definition of positive and negative points, we used

, ()*() ()*() 0
, ()*() ()*() 0

i i k i k i k i k i i k i k

i

i i k i k i k i k i i k i k

P P P P P P P P
P

P P P P P P P P

x x y y y y x x
s

x x y y y y x x
− + − − + −

− + − − + −

+ − − + − − <== − − − + − − >
 (9)

to determine the symbol of iP . A sequence of symbols was obtained after traversing the
entire curve. Then, we performed the same window smoothing operation twice for the
symbol sequence to reduce the noise.

For the analysis of contour curves shown in Figure 2c, there were only a small num-
ber of corner points on these curves. A curve had a high number of positive or negative
points, and corners existed in the region where a smaller number of symbol points were
located. These points with a smaller number of symbols are called support points. Each
section of consecutive support points is called the support area, as shown in Figure 8. For
each support area, set k to 3 to finely locate the corner points. The point with the largest
R(Pi) in the support area was determined as the corner point and formed set 2C .

Figure 8. Support points and region of support. Figure 8. Support points and region of support.

Then, the contour curve was segmented according to C1 and C2. In summary, each
contour curve segmentation was carried out in the following steps.

(a) Calculate k according to Equation (7);
(b) The curvature of the point on the curve is estimated;
(c) Calculate Tc based on Equation (8);
(d) Derive the corner set C1 based on Tc;
(e) Positive–negative point detection, sliding window filtering of positive–negative point

sequence, and statistical support area determination;
(f) The curvature is estimated by k = 3 in the support area, and the maximum curvature

point of each support area is the corner point; thus, C2 is derived;
(g) Split the curve according to C1 and C2.

If the original CTAR corner point detection method is followed, then steps (a), (c), (e),
and (f) above are not needed. In this paper, we improved CTAR corner point detection by
adding steps (a), (c), (e), and (f). Algorithm 1 shows the whole contour curve segmentation
process. The new contour curves for Figure 2c are shown in Figure 2d, and each contour
curve is shown with different colors.

2.2. Circle Fitting
2.2.1. Arc Screening

Contour curves with less than 25 pixels are removed, as in Section 2.1.3. Curves whose
ratio of arc length to circumference is greater than τ are used to fit the circle. It can easily
deduce that, when the curve length is constant, the straighter the curve is, the smaller the
ratio. Thus, we defined a curve whose ratio was below or equal to τ, was a straight line,
and did not participate in circle fitting. τ was set to 0.2 in the proposed method, and the
analysis of the choice is given in Section 3.3.2. See Figure 9a for reference; it should satisfy
α > 72◦ when the ratio of arc length to the circumference is greater than 0.2. We took line
L1 and line L2 to calculate θ. L1 was formed by the starting point Ps and the midpoint Pm
of the curve. L2 was formed by the midpoint Pm and the endpoint Pe. θ was 0.5 times α
according to the simple principle of geometry. Therefore, it was calculated that θ should be
greater than 36◦.

For Figure 9b, when the arc occupies a more significant proportion, it may also
cause θ ≤ 36◦. In this case, we chose the difference between ‖Pm − Ps‖2 + ‖Pe − Pm‖2 and
‖Pe − Ps‖2 to judge whether the curve was a straight line. Since ‖Pm − Ps‖2 ≈ ‖Pe − Pm‖2,
the problem can be expressed to

minimize ξ = 2‖Pm − Ps‖2 − ‖Pe − Ps‖2 = 2‖Ps − Pm‖2(1− sin θ
2)

subject to θ ≤ 36◦
(10)

We obtained ξmin = 1.38‖Ps − Pm‖2 according to a simple calculation. Therefore, if
ξ ≤ 1.38‖Ps − Pm‖2, the curve was judged to be a straight line.

In conclusion, only curves that satisfy either condition θ ≤ 36◦ or ξ > 1.38‖Ps − Pm‖2
can be fitted to the circle. Figure 10a shows the result after contour curve screening.

Symmetry 2022, 14, 734 8 of 19

Algorithm 1 Contour Curve Segmentation

Input: Curve set Ψ = {c1, c2, . . . , cn}
Output: Curve group set Θ
1 Initialize parameters
2 while Ψ 6= ∅ do
3 for ci ∈ Ψ do
4 Initialize curvature set CR ← ∅
5 Initialize direction set D ← ∅
6 Initialize corner set C ← ∅
7 Calculate k by Equation (7) and then limit the maximum value to 15
8 for P ∈ ci do
9 Calculate R by Equation (6) and then push it in CR
10 Calculate S by Equation (9) and then push its coordinate in D
11 end for
12 Twice smoothed the D
13 Obtain the set of support area H form D
14 Set k = 2
15 Initialize C2 ← ∅
16 for cn ∈ H do
17 Initialize CH ← ∅
18 for P ∈ cn do
19 Calculate R by Equation (6) and then push it in CH
20 end for
21 Find the maximum value in CH and then push its coordinate in C2
22 end for
23 Calculate corner threshold Tc by Equation (8)
24 Initialize C1 ← ∅
25 for P ∈ CR do
26 if P > Tc then
27 Push coordinate of P in C1
28 end if
29 end for
30 Push the set of curves obtained by dividing ci by C1 and C2 into Θ
31 end for
32 end while
33 Return

Symmetry 2022, 14, 734 8 of 20

15 Initialize 2C ← ∅

16 for nc H∈ do

17 Initialize HC ← ∅

18 for nP c∈ do

19 Calculate R by Equation (6) and then push it in HC

20 end for
21 Find the maximum value in HC and then push its coordinate in 2C

22 end for
23 Calculate corner threshold cT by Equation (8)

24 Initialize 1C ← ∅

25 for RP C∈ do

26 if cP T> then

27 Push coordinate of P in 1C

28 end if
29 end for
30 Push the set of curves obtained by dividing ic by 1C and 2C into Θ

31 end for
32 end while
33 Return

Figure 9. Arcs in the two limit states. (a) Short arc. (b) Long arc.

For Figure 9b, when the arc occupies a more significant proportion, it may also cause
θ ≤ 36°. In this case, we chose the difference between

2 2− + −m s e mP P P P and
2−e sP P

to judge whether the curve was a straight line. Since
2 2m s e mP P P P− ≈ − , the problem

can be expressed to

2 2 22 2 (1 sin)
2

36

m s e s s mminimize P P P P P P

subject to

θξ

θ

= − − − = − −

≤ °
. (10)

We obtained min 21.38 s mP Pξ = − according to a simple calculation. Therefore, if

21.38 s mP Pξ ≤ − , the curve was judged to be a straight line.
In conclusion, only curves that satisfy either condition θ ≤ 36° or

21.38 s mP Pξ > −
can be fitted to the circle. Figure 10a shows the result after contour curve screening.

Figure 9. Arcs in the two limit states. (a) Short arc. (b) Long arc.

Symmetry 2022, 14, 734 9 of 19Symmetry 2022, 14, 734 9 of 20

Figure 10. Circle detection for Figure 2. (a) Arc screening. (b) Grouped co-circle arcs. (c) Before
verification. (d) Result image.

2.2.2. Arc Relative Position Constraint
KASA circle fitting [41] is one of the implementations of least-squares circle fitting.

We estimated the circle parameters (x, y, r) for each curve by KASA, where (x, y) is the
circle center, and r is the radius. We selected the fitted points by equally spaced sampling
on the curve to improve the fitting speed. The sampling interval was determined by

/ 50 1n S= +

where S is the curve length. An initial circle set can be obtained by KASA.
We considered two circles to be congruent when circle i and circle j have at least 80%

overlap, as suggested by Jia et al. [38], Zhao et al. [30], and Lu et al. [32]. We defined the
overlap ratio between Ci and Cj in the following manner:

() ()
 (,)

() ()
i j

i j
j j

area C area C
Overlap Ratio C C

area C area C
=

, (11)

where *()area C denotes the area of *C . When (,) 0.8i jOverlap Ratio C C >= , curves i and
j are on the same circle. Then, the two curves are combined into one curve. The same is
true for the operation of multiple curves on the same circle.

Different curves on the same circle are constrained to one curve, which improves the
accuracy of circle detection. KASA with equally spaced sampling is then performed for
each combined curve. We labeled the curves on the same circle with the same color in
Figure 10b.

2.3. Circle Validation
Identifying the true or false of the fitting circles is a crucial process to improve the

accuracy of circle detection. Figure 10c shows an image containing the two error circles.
The distribution of points on the wrong circle curve was very different from the distribu-
tion of points on the correct circle curve. We reflected it in the standard deviation of the
distance between points on the curve and the center of the fitted circle. It was quickly
concluded that the standard deviation of the interference curve was much larger than that
of the arc. To simplify the calculation, we replaced the standard deviation with the sum of
absolute values of li − r. li is a line segment from Pi to circle center O. li − r is shown in Figure
11.

Figure 10. Circle detection for Figure 2. (a) Arc screening. (b) Grouped co-circle arcs. (c) Before
verification. (d) Result image.

2.2.2. Arc Relative Position Constraint

KASA circle fitting [41] is one of the implementations of least-squares circle fitting. We
estimated the circle parameters (x, y, r) for each curve by KASA, where (x, y) is the circle
center, and r is the radius. We selected the fitted points by equally spaced sampling on the
curve to improve the fitting speed. The sampling interval was determined by

n = S/50 + 1

where S is the curve length. An initial circle set can be obtained by KASA.
We considered two circles to be congruent when circle i and circle j have at least 80%

overlap, as suggested by Jia et al. [38], Zhao et al. [30], and Lu et al. [32]. We defined the
overlap ratio between Ci and Cj in the following manner:

Overlap Ratio(Ci, Cj) =
area(Ci) ∩ area(Cj)

area(Cj) ∪ area(Cj)
, (11)

where area(C∗) denotes the area of C∗. When Overlap Ratio(Ci, Cj) >= 0.8, curves i and j
are on the same circle. Then, the two curves are combined into one curve. The same is true
for the operation of multiple curves on the same circle.

Different curves on the same circle are constrained to one curve, which improves the
accuracy of circle detection. KASA with equally spaced sampling is then performed for
each combined curve. We labeled the curves on the same circle with the same color in
Figure 10b.

2.3. Circle Validation

Identifying the true or false of the fitting circles is a crucial process to improve the
accuracy of circle detection. Figure 10c shows an image containing the two error circles.
The distribution of points on the wrong circle curve was very different from the distribution
of points on the correct circle curve. We reflected it in the standard deviation of the distance
between points on the curve and the center of the fitted circle. It was quickly concluded
that the standard deviation of the interference curve was much larger than that of the arc.
To simplify the calculation, we replaced the standard deviation with the sum of absolute
values of li − r. li is a line segment from Pi to circle center O. li − r is shown in Figure 11.

A true or false circle is defined as follows:

circle =

true,

S
∑

i=1
|li − r| < λrS

f alse,
S
∑

i=1
|li − r| ≥ λrS

, (12)

where S is the length of the curve and λ is the allowable curve deviation degree coefficient.
The smaller the λ, the tighter the circle verification. The final circle detection result for
Figure 2a is shown in Figure 10d.

Symmetry 2022, 14, 734 10 of 19

Symmetry 2022, 14, 734 9 of 20

Figure 10. Circle detection for Figure 2. (a) Arc screening. (b) Grouped co-circle arcs. (c) Before
verification. (d) Result image.

2.2.2. Arc Relative Position Constraint
KASA circle fitting [41] is one of the implementations of least-squares circle fitting.

We estimated the circle parameters (x, y, r) for each curve by KASA, where (x, y) is the
circle center, and r is the radius. We selected the fitted points by equally spaced sampling
on the curve to improve the fitting speed. The sampling interval was determined by

/ 50 1n S= +

where S is the curve length. An initial circle set can be obtained by KASA.
We considered two circles to be congruent when circle i and circle j have at least 80%

overlap, as suggested by Jia et al. [38], Zhao et al. [30], and Lu et al. [32]. We defined the
overlap ratio between Ci and Cj in the following manner:

() ()
 (,)

() ()
i j

i j
j j

area C area C
Overlap Ratio C C

area C area C
=

, (11)

where *()area C denotes the area of *C . When (,) 0.8i jOverlap Ratio C C >= , curves i and
j are on the same circle. Then, the two curves are combined into one curve. The same is
true for the operation of multiple curves on the same circle.

Different curves on the same circle are constrained to one curve, which improves the
accuracy of circle detection. KASA with equally spaced sampling is then performed for
each combined curve. We labeled the curves on the same circle with the same color in
Figure 10b.

2.3. Circle Validation
Identifying the true or false of the fitting circles is a crucial process to improve the

accuracy of circle detection. Figure 10c shows an image containing the two error circles.
The distribution of points on the wrong circle curve was very different from the distribu-
tion of points on the correct circle curve. We reflected it in the standard deviation of the
distance between points on the curve and the center of the fitted circle. It was quickly
concluded that the standard deviation of the interference curve was much larger than that
of the arc. To simplify the calculation, we replaced the standard deviation with the sum of
absolute values of li − r. li is a line segment from Pi to circle center O. li − r is shown in Figure
11.

Figure 11. Difference between li and r.

3. Experimental

This section shows the results of the proposed method on many datasets and compares
them with the results of other methods. Furthermore, all experiments were performed on
an Intel Core i5-9400 2.9 GHz desktop with 8 G RAM.

3.1. Performance Metrics

We used the average detection time and three well-known metrics in the information
retrieval area to assess the proposed method: precision, recall, and F-measure. Except
for the average detection time, the other metrics are defined as precision = TPs

TPs+FPs ,

recall = TPs
TPs+FNs , and F−measure = 2×precision×recall

precision+recall , where TPs is the number of correct
predictions, FPs is the number of incorrect predictions, and FNs is the number of omissions.
All three indicators are within the range [0, 1].

According to the expressions of precision and recall, we can learn that precision
evaluates the percentage of correct circles among the detected circles, while recall indicates
the percentage of correctly detected circles among all ground truth circles. We would
certainly like to have greater precision and recall, but the two are contradictory in most
cases. For example, given an image containing multiple circles, in the extreme case, only
one circle is detected and it is true. Therefore, the precision is 1, but the recall is low. If
we detect all circles, but more false circles, then the recall is 1 and the precision is very
low. A single precision or recall metric does not directly reflect the strength of the detector.
The F-measure was generated to consider these two metrics, which reflected the overall
detection performance. The larger the F-measure, the better the detection effect.

We considered the detected circle correct when the detected circle had at least 80%
overlap with the ground truth circle. It was the same definition as that in Section 2.2.2 for
two circles being the same circle.

3.2. Dataset

We performed experiments using three datasets, which were used to analyze the per-
formance of the circle detector for complete circles and circles with occlusions. Additionally,
the size of all images was less than 1000 × 1000.

Mini. For this dataset, eight common images were used to test circle detectors over the
years [26,42–44], as shown in Figure 12: Stability-ball (236 × 236 pixels), Coin (256 × 256),
Plates (400 × 390), Cake (231 × 231), Ball (231 × 232), Gobang (239 × 237), Swatch
(236 × 272), and Insulator (204 × 150).

Complete-circle. This included 183 images that contained different scenes. These
images were obtained from [30,32], and the internet. Some of the PCB images inside
contained different noise levels. As a result, more circles were included in each image,
and the background was more complex. Some images may have had near-elliptical circles
because the camera view was not perfectly perpendicular to the scene. Nevertheless, all
the circles in this dataset were complete circles with no defects and no occlusions.

Symmetry 2022, 14, 734 11 of 19

Incomplete-circle. This also included 125 images, such as eyes, balls, plates, and
cartoon images. The sources of the images were the same as those of the Complete-circle
dataset. Unlike the Complete-circle dataset, the images in this dataset contained some
circles with defects or obscurities, making detection more difficult.

Symmetry 2022, 14, 734 11 of 20

3.2. Dataset
We performed experiments using three datasets, which were used to analyze the per-

formance of the circle detector for complete circles and circles with occlusions. Addition-
ally, the size of all images was less than 1000 × 1000.

Mini. For this dataset, eight common images were used to test circle detectors over
the years [26,42–44], as shown in Figure 12: Stability-ball (236 × 236 pixels), Coin (256 ×
256), Plates (400 × 390), Cake (231 × 231), Ball (231 × 232), Gobang (239 × 237), Swatch (236
× 272), and Insulator (204 × 150).

Figure 12. Images commonly used in other circle detection methods. (a) Stability-ball. (b) Coin. (c)
Plates. (d) Cake. (e) Ball. (f) Gobang. (g) Swatch. (h) Insulator.

Complete-circle. This included 183 images that contained different scenes. These im-
ages were obtained from [30], [32], and the internet. Some of the PCB images inside con-
tained different noise levels. As a result, more circles were included in each image, and
the background was more complex. Some images may have had near-elliptical circles be-
cause the camera view was not perfectly perpendicular to the scene. Nevertheless, all the
circles in this dataset were complete circles with no defects and no occlusions.

Incomplete-circle. This also included 125 images, such as eyes, balls, plates, and car-
toon images. The sources of the images were the same as those of the Complete-circle
dataset. Unlike the Complete-circle dataset, the images in this dataset contained some cir-
cles with defects or obscurities, making detection more difficult.

3.3. Method Analysis
3.3.1. Ablative Analysis

To test the performance of the improved CTAR corner detector, we conducted a com-
parison experiment with the original CTAR. We added Gaussian noise with zero mean
and 1–12% variance to the images separately to test the robustness. The experimental re-
sults are shown in Figure 13. The results showed that many non-corners were also de-
tected as corners, because the original CTAR used fixed sampling intervals and a fixed
corner point threshold. Although the detection could be improved by modifying these
two parameters, the radius of the circle was not equal on each image, which needed to use
different parameters for different images to achieve better results. Even in the same image,
the radii of the different circles were not equal.

Figure 12. Images commonly used in other circle detection methods. (a) Stability-ball. (b) Coin.
(c) Plates. (d) Cake. (e) Ball. (f) Gobang. (g) Swatch. (h) Insulator.

3.3. Method Analysis
3.3.1. Ablative Analysis

To test the performance of the improved CTAR corner detector, we conducted a
comparison experiment with the original CTAR. We added Gaussian noise with zero mean
and 1–12% variance to the images separately to test the robustness. The experimental
results are shown in Figure 13. The results showed that many non-corners were also
detected as corners, because the original CTAR used fixed sampling intervals and a fixed
corner point threshold. Although the detection could be improved by modifying these
two parameters, the radius of the circle was not equal on each image, which needed to use
different parameters for different images to achieve better results. Even in the same image,
the radii of the different circles were not equal.

In contrast, the sampling interval and corner point threshold of our improved CTAR
was different for each curve. It effectively reduced the detection error of corners. The
smoothness of the contour curve decreased as the noise increased, and the original CTAR
became more sensitive. Therefore, the result was that the curves retained after curve
splitting and filtering became sparser, which led to a smaller number of correct circles
in the end. In comparison, the improved CTAR algorithm had higher anti-interference
performance and more robust adaptability.

We also used the same images as in Figure 13 to perform experiments on the relative
position constraint. The experimental results are shown in Figure 14. We used the colors
in the second and third rows to distinguish the curves on different circles, and curves on
the same circle were identified with the same color. Curves without color were considered
invalid curves. The quantitative analysis is shown in Figure 15. The results show that
the relative position constraint effectively improved the detection. Because it constrained
the curves on the same circle to one curve, this increased the number of points involved
in KASA circle fitting; i.e., it improved the precision of the circle fitting. The recall with
and without the relative position constraint had smaller difference. Therefore, from the
comprehensive performance F-measure, the experimental results after the relative position
constraint were better than those without the relative position constraint.

Symmetry 2022, 14, 734 12 of 19Symmetry 2022, 14, 734 12 of 20

Figure 13. CTAR and our improved CTAR algorithm for the corner point detection experiments.
From left to right are the original image, and the 1%, 2%, 4%, 8%, and 12% Gaussian noise levels.
From top to bottom are the experimental image, the contour curve image, the CTAR corner point
detection result, our improved CTAR corner point detection result, the circle detection result of
CTAR, and the circle detection result of the improved CTAR.

In contrast, the sampling interval and corner point threshold of our improved CTAR
was different for each curve. It effectively reduced the detection error of corners. The
smoothness of the contour curve decreased as the noise increased, and the original CTAR
became more sensitive. Therefore, the result was that the curves retained after curve split-
ting and filtering became sparser, which led to a smaller number of correct circles in the
end. In comparison, the improved CTAR algorithm had higher anti-interference perfor-
mance and more robust adaptability.

We also used the same images as in Figure 13 to perform experiments on the relative
position constraint. The experimental results are shown in Figure 14. We used the colors
in the second and third rows to distinguish the curves on different circles, and curves on
the same circle were identified with the same color. Curves without color were considered
invalid curves. The quantitative analysis is shown in Figure 15. The results show that the
relative position constraint effectively improved the detection. Because it constrained the
curves on the same circle to one curve, this increased the number of points involved in
KASA circle fitting; i.e., it improved the precision of the circle fitting. The recall with and
without the relative position constraint had smaller difference. Therefore, from the com-
prehensive performance F-measure, the experimental results after the relative position
constraint were better than those without the relative position constraint.

Figure 13. CTAR and our improved CTAR algorithm for the corner point detection experiments.
From left to right are the original image, and the 1%, 2%, 4%, 8%, and 12% Gaussian noise levels.
From top to bottom are the experimental image, the contour curve image, the CTAR corner point
detection result, our improved CTAR corner point detection result, the circle detection result of CTAR,
and the circle detection result of the improved CTAR.

The projection distortion may cause the circle to take on an elliptical shape. Therefore,
we also tested whether the proposed method could detect ellipse-like circles. We selected
ellipse images with eccentricity e from 0 to 0.54 for the experiment, as shown in the first
row of Figure 16. The results are shown in the second row. The results show that our
method can accept ellipses with e ≤ 0.47 as circles. This condition is limited by the λ of
circle validation in Equation (12). We can accept larger e by slightly increasing λ. However,
as the eccentricity increased, the detected circle was also more off the ellipse’s center, and
the precision decreased rapidly. Therefore, our method was more suitable for cases where
the degree of distortion is not very large.

3.3.2. Threshold Analysis

There were three parameters in the proposed method, namely η, τ, and λ. Due to
the complexity of the images, it was not possible to obtain the best results for each image
with a fixed set of parameters. In order to reveal the effect of these three parameters on the
proposed method, a series of experiments for the F-measure were conducted. We conducted
experiments for each parameter separately using the control variable method.

In the curve segmentation stage, η was used to determine how much the sampling
interval was affected by the curve length and the image size, and a larger η indicated that
the sampling interval was more affected by the curve length. Figure 17a shows that better
results could be obtained when η = 0.7 or 0.8. The Mini and Complete-circle datasets had

Symmetry 2022, 14, 734 13 of 19

the highest F-measure when η = 0.7, and only the Incomplete-circle dataset had the highest
F-measure when η = 0.8. Therefore, we chose to use η = 0.7. We used τ to determine
whether a curve was a straight line or not. As τ increased, more curves were judged to
be straight lines. The highest F-measure was found on all three datasets when τ = 0.2
according to Figure 17b. Therefore, τ was set to 0.2. λ was used to determine the true and
false circles in the circle verification stage, and a smaller value indicated more stringent
circle verification. From Figure 17c, the best results were obtained when λ = 0.06. Therefore,
λ was set to 0.06 in the proposed method.

Symmetry 2022, 14, 734 13 of 20

Figure 14. Comparison with and without relative position constraints. From left to right are the
original image, and the 1%, 2%, 4%, 8%, and 12% Gaussian noise levels. From top to bottom are the
experimental image, the circular curve without the relative position constraint, the circular curve
with the relative position constraint, the circle detection result without the relative position con-
straint, and the circle detection result with the relative position constraint.

Figure 15. F-measure of the experimental results after constraining and without constraining.

The projection distortion may cause the circle to take on an elliptical shape. Therefore,
we also tested whether the proposed method could detect ellipse-like circles. We selected
ellipse images with eccentricity e from 0 to 0.54 for the experiment, as shown in the first
row of Figure 16. The results are shown in the second row. The results show that our
method can accept ellipses with e ≤ 0.47 as circles. This condition is limited by the λ of
circle validation in Equation (12). We can accept larger e by slightly increasing λ. How-
ever, as the eccentricity increased, the detected circle was also more off the ellipse’s center,
and the precision decreased rapidly. Therefore, our method was more suitable for cases
where the degree of distortion is not very large.

Figure 14. Comparison with and without relative position constraints. From left to right are the
original image, and the 1%, 2%, 4%, 8%, and 12% Gaussian noise levels. From top to bottom are the
experimental image, the circular curve without the relative position constraint, the circular curve
with the relative position constraint, the circle detection result without the relative position constraint,
and the circle detection result with the relative position constraint.

Symmetry 2022, 14, 734 13 of 20

Figure 14. Comparison with and without relative position constraints. From left to right are the
original image, and the 1%, 2%, 4%, 8%, and 12% Gaussian noise levels. From top to bottom are the
experimental image, the circular curve without the relative position constraint, the circular curve
with the relative position constraint, the circle detection result without the relative position con-
straint, and the circle detection result with the relative position constraint.

Figure 15. F-measure of the experimental results after constraining and without constraining.

The projection distortion may cause the circle to take on an elliptical shape. Therefore,
we also tested whether the proposed method could detect ellipse-like circles. We selected
ellipse images with eccentricity e from 0 to 0.54 for the experiment, as shown in the first
row of Figure 16. The results are shown in the second row. The results show that our
method can accept ellipses with e ≤ 0.47 as circles. This condition is limited by the λ of
circle validation in Equation (12). We can accept larger e by slightly increasing λ. How-
ever, as the eccentricity increased, the detected circle was also more off the ellipse’s center,
and the precision decreased rapidly. Therefore, our method was more suitable for cases
where the degree of distortion is not very large.

Figure 15. F-measure of the experimental results after constraining and without constraining.

Symmetry 2022, 14, 734 14 of 19Symmetry 2022, 14, 734 14 of 20

Figure 16. Oval-shaped circle detection. The first row is the original image and the second row is
the result of the detection. The eccentricities e from left to right are 0, 0.34, 0.41, 0.47, and 0.54.

3.3.2. Threshold Analysis
There were three parameters in the proposed method, namely η, τ, and λ. Due to the

complexity of the images, it was not possible to obtain the best results for each image with
a fixed set of parameters. In order to reveal the effect of these three parameters on the
proposed method, a series of experiments for the F-measure were conducted. We con-
ducted experiments for each parameter separately using the control variable method.

In the curve segmentation stage, η was used to determine how much the sampling
interval was affected by the curve length and the image size, and a larger η indicated that
the sampling interval was more affected by the curve length. Figure 17a shows that better
results could be obtained when η = 0.7 or 0.8. The Mini and Complete-circle datasets had
the highest F-measure when η = 0.7, and only the Incomplete-circle dataset had the highest
F-measure when η = 0.8. Therefore, we chose to use η = 0.7. We used τ to determine
whether a curve was a straight line or not. As τ increased, more curves were judged to be
straight lines. The highest F-measure was found on all three datasets when τ = 0.2 accord-
ing to Figure 17b. Therefore, τ was set to 0.2. λ was used to determine the true and false
circles in the circle verification stage, and a smaller value indicated more stringent circle
verification. From Figure 17c, the best results were obtained when λ = 0.06. Therefore, λ
was set to 0.06 in the proposed method.

Figure 17. (a) Effects of parameters η on the F-measure. (b) Effects of parameters τ on the F-meas-
ure. (c) Effects of parameters λ on the F-measure.

3.4. Performance Comparison
On the three datasets, the proposed method was compared with several methods: the

four-point random sampling-based method RCD [22], the geometry-based method
EDCircles [26] with pseudo circle detection control, the improved RHT-based method
CACD [20], the AS method [32] with arc-supported line segments, and Zhao M Y’s [30]
method using inscribed triangles. All comparison methods are available and open-source
on the Internet. Note that, regarding the application of the circle detectors, we considered
all of the parameters as default parameters. These parameters were set only once and then
kept constant in all of the experiments reported below. The parameters of our method

Figure 16. Oval-shaped circle detection. The first row is the original image and the second row is the
result of the detection. The eccentricities e from left to right are 0, 0.34, 0.41, 0.47, and 0.54.

Symmetry 2022, 14, 734 14 of 20

Figure 16. Oval-shaped circle detection. The first row is the original image and the second row is
the result of the detection. The eccentricities e from left to right are 0, 0.34, 0.41, 0.47, and 0.54.

3.3.2. Threshold Analysis
There were three parameters in the proposed method, namely η, τ, and λ. Due to the

complexity of the images, it was not possible to obtain the best results for each image with
a fixed set of parameters. In order to reveal the effect of these three parameters on the
proposed method, a series of experiments for the F-measure were conducted. We con-
ducted experiments for each parameter separately using the control variable method.

In the curve segmentation stage, η was used to determine how much the sampling
interval was affected by the curve length and the image size, and a larger η indicated that
the sampling interval was more affected by the curve length. Figure 17a shows that better
results could be obtained when η = 0.7 or 0.8. The Mini and Complete-circle datasets had
the highest F-measure when η = 0.7, and only the Incomplete-circle dataset had the highest
F-measure when η = 0.8. Therefore, we chose to use η = 0.7. We used τ to determine
whether a curve was a straight line or not. As τ increased, more curves were judged to be
straight lines. The highest F-measure was found on all three datasets when τ = 0.2 accord-
ing to Figure 17b. Therefore, τ was set to 0.2. λ was used to determine the true and false
circles in the circle verification stage, and a smaller value indicated more stringent circle
verification. From Figure 17c, the best results were obtained when λ = 0.06. Therefore, λ
was set to 0.06 in the proposed method.

Figure 17. (a) Effects of parameters η on the F-measure. (b) Effects of parameters τ on the F-meas-
ure. (c) Effects of parameters λ on the F-measure.

3.4. Performance Comparison
On the three datasets, the proposed method was compared with several methods: the

four-point random sampling-based method RCD [22], the geometry-based method
EDCircles [26] with pseudo circle detection control, the improved RHT-based method
CACD [20], the AS method [32] with arc-supported line segments, and Zhao M Y’s [30]
method using inscribed triangles. All comparison methods are available and open-source
on the Internet. Note that, regarding the application of the circle detectors, we considered
all of the parameters as default parameters. These parameters were set only once and then
kept constant in all of the experiments reported below. The parameters of our method

Figure 17. (a) Effects of parameters η on the F-measure. (b) Effects of parameters τ on the F-measure.
(c) Effects of parameters λ on the F-measure.

3.4. Performance Comparison

On the three datasets, the proposed method was compared with several methods:
the four-point random sampling-based method RCD [22], the geometry-based method
EDCircles [26] with pseudo circle detection control, the improved RHT-based method
CACD [20], the AS method [32] with arc-supported line segments, and Zhao M Y’s [30]
method using inscribed triangles. All comparison methods are available and open-source
on the Internet. Note that, regarding the application of the circle detectors, we considered
all of the parameters as default parameters. These parameters were set only once and then
kept constant in all of the experiments reported below. The parameters of our method were
set to η = 0.7, τ = 0.2, λ =0.06. On the other hand, we used the default parameters from the
other methods to obtain the initial detection results. These parameters were the better ones
illustrated in the literature on these methods. For example, for CACD, we set the number
of iterations to 60,000, as described in the literature [20]. Meanwhile, the CACD and AS
methods were run in Matlab R2018b, and the other three methods and our method were
run in VS2019.

For the Mini dataset, the detection time is shown in Table 1 in milliseconds, and
the comparison of the F-measure is shown in Figure 18. RCD required a lot of iterative
operations because it used random sampling, which resulted in a much longer detection
time than that of the other methods. In comparison, the proposed method had a better
performance in terms of the detection time. This was because redundant pixels were
removed when performing edge refinement. Moreover, we removed the interference curves
segmented in the curve segmentation stage. This effectively reduced the computational
effort of circle fitting. The detection time of our method and AS was closer, but the F-
measure of the AS was more volatile and even decreased to 0 at the seventh image, as

Symmetry 2022, 14, 734 15 of 19

shown in Figure 18. Additionally, the detection times of the other methods were two to
four times higher than those of our method.

Table 1. Time consumption of the Mini dataset.

Images RCD EDCircles CACD AS Zhao MY Ours

Stability-ball 2237 80.80 59.50 29.40 97.70 24.67
Coin 2648 126.1 105.1 45.90 131.3 37.78
Plates 3276 234.8 316.7 68.80 207.3 73.45
Cake 2357 79.30 81.00 27.00 123.7 28.85
Ball 2473 84.40 58.90 34.20 112.0 29.45

Gobang 1921 70.80 56.60 17.50 84.30 30.12
Swatch 4485 47.70 33.90 19.10 66.70 19.97

Insulator 1442 95.10 52.40 28.70 108.3 27.68

Symmetry 2022, 14, 734 15 of 20

were set to η = 0.7, τ = 0.2, λ =0.06. On the other hand, we used the default parameters
from the other methods to obtain the initial detection results. These parameters were the
better ones illustrated in the literature on these methods. For example, for CACD, we set
the number of iterations to 60,000, as described in the literature [20]. Meanwhile, the
CACD and AS methods were run in Matlab R2018b, and the other three methods and our
method were run in VS2019.

For the Mini dataset, the detection time is shown in Table 1 in milliseconds, and the
comparison of the F-measure is shown in Figure 18. RCD required a lot of iterative oper-
ations because it used random sampling, which resulted in a much longer detection time
than that of the other methods. In comparison, the proposed method had a better perfor-
mance in terms of the detection time. This was because redundant pixels were removed
when performing edge refinement. Moreover, we removed the interference curves seg-
mented in the curve segmentation stage. This effectively reduced the computational effort
of circle fitting. The detection time of our method and AS was closer, but the F-measure
of the AS was more volatile and even decreased to 0 at the seventh image, as shown in
Figure 18. Additionally, the detection times of the other methods were two to four times
higher than those of our method.

Table 1. Time consumption of the Mini dataset.

Images RCD EDCircles CACD AS Zhao MY Ours
Stability-ball 2237 80.80 59.50 29.40 97.70 24.67

Coin 2648 126.1 105.1 45.90 131.3 37.78
Plates 3276 234.8 316.7 68.80 207.3 73.45
Cake 2357 79.30 81.00 27.00 123.7 28.85
Ball 2473 84.40 58.90 34.20 112.0 29.45

Gobang 1921 70.80 56.60 17.50 84.30 30.12
Swatch 4485 47.70 33.90 19.10 66.70 19.97

Insulator 1442 95.10 52.40 28.70 108.3 27.68

Figure 18. F-measure for 8 images from the Mini dataset.

Figure 19 displays the result for the Mini dataset. The CACD lost many TPs, which
reflected the disadvantage of the HT-class circle detection methods: only circles with a
small range of radii could be detected in a limited time. Although the scan radius could
be increased, the detection time would be significantly longer. In contrast, RCD had a
sufficient number of circles, but its lack of adequate circle validation led to more FPs. Alt-
hough EDCircles had satisfactory performance, it also lacked a small number of TPs, such
as the first, third, and fourth images. RCD, EDCircles, CACD, and Zhao M Y recognized
bright spots as circles to varying degrees, as shown in the first and sixth images. This
suggests that their detection may be more sensitive. Especially in Figure 19, the image 7,

Figure 18. F-measure for 8 images from the Mini dataset.

Figure 19 displays the result for the Mini dataset. The CACD lost many TPs, which
reflected the disadvantage of the HT-class circle detection methods: only circles with a
small range of radii could be detected in a limited time. Although the scan radius could be
increased, the detection time would be significantly longer. In contrast, RCD had a sufficient
number of circles, but its lack of adequate circle validation led to more FPs. Although
EDCircles had satisfactory performance, it also lacked a small number of TPs, such as the
first, third, and fourth images. RCD, EDCircles, CACD, and Zhao M Y recognized bright
spots as circles to varying degrees, as shown in the first and sixth images. This suggests
that their detection may be more sensitive. Especially in Figure 19, the image 7, Zhao M Y
recognized many figures as circles. The proposed method had a small number of FPs on
the second and third images, which was because the shorter curves generated in the curve
segmentation stage had fewer fitting points when performing circle fitting. This resulted in
the fitted circles not being very accurate. Although there was a relative position constraint
of the curves to improve the accuracy, it did not achieve complete constraint success.

Next, we performed more complex experiments, including experiments with the
Complete-circle dataset and the Incomplete-circle dataset. They contained 308 images
with more complex backgrounds, drastic circle radius changes, and more occlusions and
noise. The results are shown in Tables 2 and 3. Overall, the geometry-based circle detector
outperformed both the random sampling-based and RHT-based methods in terms of
detection time. The iterative nature of the RCD and complex background of the images
caused the RCD to perform poorly on all four metrics. In particular, the time consumption
was almost 10 to 80 times higher than that of the other methods. CACD had normal
performance for the two datasets, and none of the four metrics were completely superior to
the other methods. The AS had the highest precision in both datasets. However, its recall

Symmetry 2022, 14, 734 16 of 19

did not have a significant advantage over that of the others, so it was slightly lower than
that of EDCircles and our method in terms of the F-measure. Zhao M Y had the higher
recall in the Complete-circle dataset, but the precision was lower, indicating that it lacked
strict candidate circle validation. Furthermore, its recall on the Incomplete-circle dataset
was poor again, ranking only fourth, which indicates that its resistance to defects and
occlusions was also weak. The precision of our method was average for both datasets. As
analyzed in the Mini dataset experiments, the curve segmentation led to fewer fitting points
for the circle fitting, which resulted in not very accurate fitted circles, but more circles could
be detected. Therefore, although the proposed method was inferior to EDCircles and AS in
terms of precision, it had the highest recall. The F-measure and detection time were also
the best on both datasets. In general, this indicates that the proposed method had strong
comprehensive strength.

Symmetry 2022, 14, 734 16 of 20

Zhao M Y recognized many figures as circles. The proposed method had a small number
of FPs on the second and third images, which was because the shorter curves generated
in the curve segmentation stage had fewer fitting points when performing circle fitting.
This resulted in the fitted circles not being very accurate. Although there was a relative
position constraint of the curves to improve the accuracy, it did not achieve complete con-
straint success.

Figure 19. Test result of different algorithms for the Mini dataset. From left to right: original image,
ground truth, RCD, EDCircles, CACD, AS, Zhao M Y, and Ours.

Next, we performed more complex experiments, including experiments with the
Complete-circle dataset and the Incomplete-circle dataset. They contained 308 images
with more complex backgrounds, drastic circle radius changes, and more occlusions and
noise. The results are shown in Tables 2 and 3. Overall, the geometry-based circle detector
outperformed both the random sampling-based and RHT-based methods in terms of de-
tection time. The iterative nature of the RCD and complex background of the images
caused the RCD to perform poorly on all four metrics. In particular, the time consumption
was almost 10 to 80 times higher than that of the other methods. CACD had normal per-
formance for the two datasets, and none of the four metrics were completely superior to
the other methods. The AS had the highest precision in both datasets. However, its recall
did not have a significant advantage over that of the others, so it was slightly lower than
that of EDCircles and our method in terms of the F-measure. Zhao M Y had the higher
recall in the Complete-circle dataset, but the precision was lower, indicating that it lacked
strict candidate circle validation. Furthermore, its recall on the Incomplete-circle dataset
was poor again, ranking only fourth, which indicates that its resistance to defects and

Figure 19. Test result of different algorithms for the Mini dataset. From left to right: original image,
ground truth, RCD, EDCircles, CACD, AS, Zhao M Y, and Ours.

Table 2. Circle detection result of all methods for the Complete-circle dataset.

Method Precision Recall F-Measure Time (ms)

RCD 0.2756 0.2075 0.1952 6.1543
EDCircles 0.8209 0.8313 0.7952 0.3321

CACD 0.7511 0.7488 0.7242 0.9485
AS 0.8364 0.7675 0.7868 0.0986

Zhao M Y 0.7489 0.8497 0.7885 0.3624
Ours 0.8116 0.8569 0.8067 0.0859

Symmetry 2022, 14, 734 17 of 19

Table 3. Circle detection result of all methods for the Incomplete-circle dataset.

Method Precision Recall F-Measure Time (ms)

RCD 0.2452 0.1887 0.1836 5.5795
EDCircles 0.8115 0.6484 0.6784 0.2836

CACD 0.6805 0.5016 0.5205 0.5975
AS 0.8456 0.6175 0.6899 0.0895

Zhao M Y 0.6597 0.7544 0.6767 0.3495
Ours 0.7341 0.7759 0.7151 0.0688

3.5. Discussion

As can be seen in Tables 2 and 3, the proposed method had some advantages over
other methods, but had similarities to AS, especially in terms of the F-measure and average
detection time. Although the performance of the proposed method and AS were opposite
in terms of precision and recall, they had similar F-measure values because the F-measure
is a combination of precision and recall. The reason for the opposite precision and recall
is that AS uses an arc-supported line segment detector to extract arcs. It extracts as many
real arcs as possible; however, some correct arcs are removed due to the noise and the
limitations of the algorithm. This results in a lower recall, but the retained curves have a
higher probability of being arcs; therefore, their precision is higher. The proposed method
uses corners to split the curves and retain the curves as much as possible to make the circle
detection complete, which sacrifices precision but effectively improves the recall.

For the average detection time, the proposed method also had similar performance
to AS. Since the remaining steps of the two were similar, except for the arc extraction step,
the average detection time comparison was mainly discussed for arc extraction. In arc
extraction, AS calculated the gradient of the whole image and removed the points with
small gradients according to the threshold firstly, then extracted the arcs. We extracted
the edges using Canny firstly, which also calculated the image gradient and removed the
non-edge points according to the threshold, and the subsequent edge refinement only
needed to traverse once. Therefore, the time consumption of the preliminary process of
arc extraction was similar, and the comparison evolved into the time consumption of the
arc-supported line segment detection in AS and the improved CTAR corner detection in
the proposed method. AS extracts the arcs based on the contrary approach and Helmholtz
principle. The time complexity of this method was O(n2). The proposed method used
curvature statistics and positive and negative point detection to detect the corners to further
extract the arcs. Its time complexity was also O(n2). Therefore, the average detection time
of both methods was similar.

Although the proposed method and AS had similar performances in terms of the
F-measure and average detection time, the proposed method was higher in terms of recall.
This means that the proposed method is more suitable to be recommended for applications
that require higher integrity of circle detection and allow some false detection.

4. Conclusions

In this paper, we proposed a fast circle detector with efficient arc extraction and
analyzed its performance. First, we proposed an edge refinement method that reduced the
computational workload of the subsequent steps while effectively eliminating crossing and
redundant points. Next, we improved the original CTAR corner point detection algorithm
to improve the completeness of corner point detection. The contour curves were then
segmented by these corner points. Then, we used KASA to estimate candidate circle
parameters and enhance the detection accuracy by the relative position constraints of arcs.
Furthermore, we applied a rigorous circle validation process to ensure that the circles
were genuine.

The proposed method was compared with five methods on three datasets. The results
showed that our method had average performance in terms of precision due to the curve
segmentation step. However, it was also due to curve segmentation that the number of

Symmetry 2022, 14, 734 18 of 19

detected correct circles was greatly increased; therefore, it performed the best in terms of
recall and the F-measure. In the proposed method, curves with lengths of less than 25 were
directly removed. There is a greater possibility that the curves were split into lengths less
than 25 on small-radius circles. Therefore, sometimes circles with smaller radii could not be
fully detected. The edge refinement and curve segmentation steps reduced a large amount
of redundancy and effectively increased the detection speed, so that our method took the
shortest time of all of the compared methods. In general, our method was more suitable
for cases with less stringent accuracy requirements and slightly larger circle radii, but
with an emphasis on real-time and complete detection. In the future, we will continue to
improve the curve screening step and the curve segmentation step to improve the detection
of small-radius circles.

Author Contributions: Conceptualization, Y.L., H.D., Z.Z. and Q.X.; methodology, Y.L., H.D., Z.Z.
and Q.X.; software, Y.L., H.D., Z.Z. and Q.X.; validation, Y.L., H.D., Z.Z. and Q.X.; formal analysis,
Y.L., H.D., Z.Z. and Q.X.; investigation, Y.L., H.D., Z.Z. and Q.X.; resources, Y.L., H.D., Z.Z. and Q.X.;
data curation, Y.L., H.D., Z.Z. and Q.X.; writing—original draft preparation, Y.L., H.D., Z.Z. and
Q.X.; writing—review and editing, Y.L., H.D., Z.Z. and Q.X.; visualization, Y.L., H.D., Z.Z. and Q.X.;
supervision, Y.L., H.D., Z.Z. and Q.X.; project administration, Y.L., H.D., Z.Z. and Q.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the High Performance Computing Center of Central South
University for assistance with the computations.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, H.; Deng, R.; Lu, Y.; Zhu, Z.; Chen, Y.; Roland, J.T.; Lu, L.; Landman, B.A.; Fogo, A.B.; Huo, Y. CircleNet: Anchor-

Free Glomerulus Detection with Circle Representation, Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 35–44.

2. Acharya, V.; Kumar, P. Identification and red blood cell automated counting from blood smear images using computer-aided
system. Med. Biol. Eng. Comput. 2018, 56, 483–489. [CrossRef] [PubMed]

3. Safuan, S.N.M.; Tomari, M.R.M.; Zakaria, W.N.W. White blood cell (WBC) counting analysis in blood smear images using various
color segmentation methods. Measurement 2018, 116, 543–555. [CrossRef]

4. Yu, L.; Zhang, D.; Peng, N.; Liang, X. Research on the application of binary-like coding and Hough circle detection technology in
PCB traceability system. J. Ambient. Intell. Humaniz. Comput. 2021, 1–11. [CrossRef]

5. Zhu, W.B.; Gu, H.; Su, W.M. A fast PCB hole detection method based on geometric features. Meas. Sci. Technol. 2020, 31, 095402.
[CrossRef]

6. Berkaya, S.K.; Gunduz, H.; Ozsen, O.; Akinlar, C.; Gunal, S. On circular traffic sign detection and recognition. Expert Syst. Appl.
2016, 48, 67–75. [CrossRef]

7. Fleyeh, H.; Davami, E. Eigen-based traffic sign recognition. Iet. Intell. Transp. Sy. 2011, 5, 190–196. [CrossRef]
8. Wu, B.; Ye, D.; Guo, Y.; Chen, G. Multiple circle recognition and pose estimation for aerospace application. Optik 2017,

145, 148–157. [CrossRef]
9. Xue, P.; Jiang, Y.L.; Wang, H.M.; He, H. Accurate Detection Method of Aviation Bearing Based on Local Characteristics. Symmetry

2019, 11, 1069. [CrossRef]
10. Djekoune, A.O.; Messaoudi, K.; Amara, K. Incremental circle hough transform: An improved method for circle detection. Optik

2017, 133, 17–31. [CrossRef]
11. Soelistio, Y.E.; Postma, E.; Maes, A. Circle-based Eye Center Localization (CECL). In Proceedings of the 2015 14th Iapr International

Conference on Machine Vision Applications (Mva), Tokyo, Japan, 18–22 May 2015; pp. 349–352.
12. Jan, F.; Usman, I.; Khan, S.A.; Malik, S.A. A dynamic non-circular iris localization technique for non-ideal data. Comput. Electr.

Eng. 2014, 40, 215–226. [CrossRef]
13. Wang, S.; Xu, Y.; Zheng, Y.; Zhu, M.; Yao, H.; Xiao, Z. Tracking a golf ball with high-speed stereo vision system. IEEE Trans.

Instrum. Meas. 2018, 68, 2742–2754. [CrossRef]

http://doi.org/10.1007/s11517-017-1708-9
http://www.ncbi.nlm.nih.gov/pubmed/28815426
http://doi.org/10.1016/j.measurement.2017.11.002
http://doi.org/10.1007/s12652-020-02655-y
http://doi.org/10.1088/1361-6501/ab8b21
http://doi.org/10.1016/j.eswa.2015.11.018
http://doi.org/10.1049/iet-its.2010.0159
http://doi.org/10.1016/j.ijleo.2017.07.024
http://doi.org/10.3390/sym11091069
http://doi.org/10.1016/j.ijleo.2016.12.064
http://doi.org/10.1016/j.compeleceng.2014.05.004
http://doi.org/10.1109/TIM.2018.2869180

Symmetry 2022, 14, 734 19 of 19

14. Cornelia, A.; Setyawan, I. Ball Detection Algorithm for Robot Soccer based on Contour and Gradient Hough Circle Transform. In
Proceedings of the 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (Icitacee),
Semarang, Indonesia, 18–19 October 2017; pp. 136–141.

15. Smith, E.H.B.; Lamiroy, B. Circle Detection Performance Evaluation Revisited, Proceedings of the International Workshop on Graphics
Recognition, Sousse, Tunisia, 20–21 August 2015; Springer: Cham, Switzerland, 2015; pp. 3–18.

16. Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 1981, 13, 111–122. [CrossRef]
17. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.

[CrossRef]
18. Schuster, G.M.; Katsaggelos, A.K. Robust circle detection using a weighted MSE estimator. In Proceedings of the Icip: International

Conference on Image Processing, Singapore, 24–27 October 2004; Volume 1–5, pp. 2111–2114.
19. Xu, L.; Oja, E.; Kultanen, P. A new curve detection method: Randomized Hough transform (RHT). Pattern Recogn. Lett. 1990,

11, 331–338. [CrossRef]
20. Yao, Z.J.; Yi, W.D. Curvature aided Hough transform for circle detection. Expert Syst. Appl. 2016, 51, 26–33. [CrossRef]
21. Su, Y.Q.; Zhang, X.N.; Cuan, B.N.; Liu, Y.H.; Wang, Z.H. A sparse structure for fast circle detection. Pattern Recogn. 2020,

97, 107022. [CrossRef]
22. De Marco, T.; Cazzato, D.; Leo, M.; Distante, C. Randomized circle detection with isophotes curvature analysis. Pattern Recogn.

2015, 48, 411–421. [CrossRef]
23. Chung, K.L.; Huang, Y.H.; Shen, S.M.; Krylov, A.S.; Yurin, D.V.; Semeikina, E.V. Efficient sampling strategy and refinement

strategy for randomized circle detection. Pattern Recogn. 2012, 45, 252–263. [CrossRef]
24. Le, T.; Duan, Y. Circle Detection on Images by Line Segment and Circle Completeness. IEEE Image Proc. 2016, 3648–3652.
25. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A Fast Line Segment Detector with a False Detection Control. IEEE

Trans. Pattern Anal. 2010, 32, 722–732. [CrossRef]
26. Akinlar, C.; Topal, C. EDCircles: A real-time circle detector with a false detection control. Pattern Recogn. 2013, 46, 725–740.

[CrossRef]
27. Akinlar, C.; Topal, C. Edpf: A Real-Time Parameter-Free Edge Segment Detector with a False Detection Control. Int. J. Pattern

Recogn. 2012, 26, 1255002. [CrossRef]
28. Topal, C.; Akinlar, C. Edge Drawing: A combined real-time edge and segment detector. J. Vis. Commun. Image Represent. 2012, 23,

862–872. [CrossRef]
29. Topal, C.; Ozsen, O.; Akinlar, C. Real-time Edge Segment Detection with Edge Drawing Algorithm. In Proceedings of

the 7th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 4–6 September
2011; pp. 313–318.

30. Zhao, M.Y.; Jia, X.H.; Yan, D.M. An occlusion-resistant circle detector using inscribed triangles. Pattern Recogn. 2021, 109, 107588.
[CrossRef]

31. Pottmann, H.; Wallner, J.; Huang, Q.X.; Yang, Y.L. Integral invariants for robust geometry processing. Comput. Aided Geom. Des.
2009, 26, 37–60. [CrossRef]

32. Lu, C.S.; Xia, S.Y.; Huang, W.M.; Shao, M.; Fu, Y. Circle Detection by Arc-Support Line Segments. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 76–80.

33. Dasgupta, S.; Das, S.; Biswas, A.; Abraham, A. Automatic circle detection on digital images with an adaptive bacterial foraging
algorithm. Soft Comput. 2010, 14, 1151–1164. [CrossRef]

34. Ayala-Ramirez, V.; Garcia-Capulin, C.H.; Perez-Garcia, A.; Sanchez-Yanez, R.E. Circle detection on images using genetic
algorithms. Pattern Recogn. Lett. 2006, 27, 652–657. [CrossRef]

35. Teng, S.W.; Sadat, R.M.N.; Lu, G.J. Effective and efficient contour-based corner detectors. Pattern Recogn. 2015, 48, 2185–2197.
[CrossRef]

36. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [CrossRef]
37. Kanchanatripop, P.; Zhang, D.F. Adaptive Image Edge Extraction Based on Discrete Algorithm and Classical Canny Operator.

Symmetry 2020, 12, 1749. [CrossRef]
38. Jia, Q.; Fan, X.; Luo, Z.; Song, L.; Qiu, T. A fast ellipse detector using projective invariant pruning. IEEE Trans. Image Process. 2017,

26, 3665–3679. [CrossRef] [PubMed]
39. McClelland, G.H. Nasty Data: Unruly, Ill-Mannered Observations Can Ruin Your Analysis; Cambridge University Press: Cambridge,

UK, 2014.
40. Wang, B.; Wang, D.; Chen, L. Quick Locating Algorithm for Turning Points in Discrete Point Set of Curve. J. Syst. Sci. Inf. 2004,

2, 721–726.
41. Kåsa, I. A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 1976, 8–14. [CrossRef]
42. Lopez-Martinez, A.; Cuevas, F.J. Automatic circle detection on images using the Teaching Learning Based Optimization algorithm

and gradient analysis. Appl. Intell. 2019, 49, 2001–2016. [CrossRef]
43. Zhang, H.Q.; Wiklund, K.; Andersson, M. A fast and robust circle detection method using isosceles triangles sampling. Pattern

Recogn. 2016, 54, 218–228. [CrossRef]
44. Gonzalez, M.R.; Martinez, M.E.; Cosio-Leon, M.; Cervantes, H.; Brizuela, C.A. Multiple circle detection in images: A simple

evolutionary algorithm approach and a new benchmark of images. Pattern Anal. Appl. 2021, 24, 1583–1603. [CrossRef]

http://doi.org/10.1016/0031-3203(81)90009-1
http://doi.org/10.1145/361237.361242
http://doi.org/10.1016/0167-8655(90)90042-Z
http://doi.org/10.1016/j.eswa.2015.12.019
http://doi.org/10.1016/j.patcog.2019.107022
http://doi.org/10.1016/j.patcog.2014.08.007
http://doi.org/10.1016/j.patcog.2011.07.004
http://doi.org/10.1109/TPAMI.2008.300
http://doi.org/10.1016/j.patcog.2012.09.020
http://doi.org/10.1142/S0218001412550026
http://doi.org/10.1016/j.jvcir.2012.05.004
http://doi.org/10.1016/j.patcog.2020.107588
http://doi.org/10.1016/j.cagd.2008.01.002
http://doi.org/10.1007/s00500-009-0508-z
http://doi.org/10.1016/j.patrec.2005.10.003
http://doi.org/10.1016/j.patcog.2015.01.016
http://doi.org/10.1109/TPAMI.1986.4767851
http://doi.org/10.3390/sym12111749
http://doi.org/10.1109/TIP.2017.2704660
http://www.ncbi.nlm.nih.gov/pubmed/28534774
http://doi.org/10.1109/TIM.1976.6312298
http://doi.org/10.1007/s10489-018-1372-2
http://doi.org/10.1016/j.patcog.2015.12.004
http://doi.org/10.1007/s10044-021-01007-6

	Introduction
	Methodology
	Arc Extraction
	Image Preprocessing
	Contour Curve Refinement
	Contour Curve Segmentation

	Circle Fitting
	Arc Screening
	Arc Relative Position Constraint

	Circle Validation

	Experimental
	Performance Metrics
	Dataset
	Method Analysis
	Ablative Analysis
	Threshold Analysis

	Performance Comparison
	Discussion

	Conclusions
	References

