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Abstract: In recent years, with the development of wind energy, the number and scale of wind farms
have been developing rapidly. Since offshore wind farms have the advantages of stable wind speed,
being clean, renewable, non-polluting, and the non-occupation of cultivated land, they have gradually
become a new trend in the wind power industry all over the world. The operation and maintenance
of offshore wind power has been developing in the direction of digitization and intelligence. It is of
great significance to carry out research on the monitoring, operation, and maintenance of offshore
wind farms, which will be of benefit for the reduction of the operation and maintenance costs, the
improvement of the power generation efficiency, improvement of the stability of offshore wind
farm systems, and the building of smart offshore wind farms. This paper will mainly summarize
the monitoring, operation, and maintenance of offshore wind farms, with particular focus on the
following points: monitoring of “offshore wind power engineering and biological and environment”,
the monitoring of power equipment, and the operation and maintenance of smart offshore wind farms.
Finally, the future research challenges in relation to the monitoring, operation, and maintenance of
smart offshore wind farms are proposed, and the future research directions in this field are explored,
especially in marine environment monitoring, weather and climate prediction, intelligent monitoring
of power equipment, and digital platforms.

Keywords: smart offshore wind farm; intelligent monitoring; intelligent operation; intelligent
maintenance; status monitoring

1. Introduction

Owing to concerns over the global energy crisis and air pollution, the development
and utilization of wind energy, solar energy, and other renewable energy sources have been
given increasingly more attention all over the world [1–3]. Wind energy is a form of renew-
able energy with mature technology that has developed rapidly in the past decades [4]. By
the end of 2019, the total installed capacity of global offshore wind power reached 29.1 GW.
A report on China’s ability to power a huge growth in global offshore wind energy stated
that the total installed capacity of global offshore wind power will reach over 234 GW by
2030 [5]. Compared with onshore wind power, offshore wind power has the advantages of
high wind speed, regional climate stability, and no significant visual impact. Due to the
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high efficiency of offshore wind power, it is suitable for centralized development, which is
an important development direction for wind power [6].

With the growing emphasis on clean energy, the installed capacity of offshore wind
power has been increasing faster than ever. However, due to the particularity of the offshore
wind farm environment, offshore wind farms are usually accompanied by high temperature,
high humidity, high salt fog, typhoon, lightning, and so on; thus, the probability of power
equipment failure is higher [7]. Meanwhile, the operation and maintenance cost of offshore
wind farms is much higher than that of onshore wind farms, and the accessibility of offshore
wind farms is poor [8]. Traditional operation and maintenance methods are not enough to
meet the operation and maintenance requirements of smart offshore wind farms. Smart
offshore wind farms need to rely on good scientific operation and maintenance strategies,
intelligent fault diagnosis and monitoring technology, stable and efficient operation, and
the use of maintenance ships and other advanced equipment support. Preventive operation
and maintenance technologies will play an important role in the management of smart
offshore wind farms and also represent the future development direction of offshore wind
power operation and maintenance technologies [9]. Therefore, it is of great significance to
study the monitoring, operation, and maintenance of offshore wind farms.

At present, many scholars have studied the construction, monitoring, operation, and
maintenance of smart offshore wind farms [10,11]. Compared with onshore wind farms,
the planning and construction requirements of offshore wind farms are relatively high. It
is necessary to engage in scientific planning before construction so as to minimize their
impact on the marine ecological environment. The early monitoring of safety hazards
and faults of equipment in offshore wind farms is needed so as to reduce operation and
maintenance costs and extend the service life of equipment. In order to reduce the operation
and maintenance costs of offshore wind power, Griffith et al. [10] introduced a structural
health and prognostics management system into the condition-based maintenance process
with the use of a smart load management methodology; health monitoring information and
economics were taken into account, but the research on relevant damage feature extraction
still needed to be strengthened. Shin et al. [12] proposed an efficient methodology to design
the layout of offshore wind farms in which the total cost of construction, maintenance,
power loss, and other factors were considered. The inner grid layout optimizer and offshore
substation location optimizer were proposed based on several optimization algorithms
(k-clustering-based genetic algorithm, pattern search method, etc.), but these ignored the
impact of biological factors and the geographical environment in the actual operation
environment. Tao et al. [13] proposed a bi-level multi-objective optimization framework to
determine the capacity of wind farms, the position of wind turbines, cable topology, etc.,
which consists of two inner-layer models and an outer-layer model; different aging degrees
of wind turbines can be considered in the future. Du et al. [14] discussed the development
process and core technology of the reliability-centered maintenance (RCM) theory and
proposed an improved RCM framework for the operation and maintenance of offshore
wind farms, but the impact of most environmental factors on the maintenance of offshore
wind farms were ignored. Ye et al. [15] proposed a smart energy management cloud
platform based on big data and cloud computing technology, and the topological structure,
equipment, operation, and management of offshore wind farms were effectively integrated
into the platform, which provided valuable experience in the construction and management
of smart offshore wind farms, but still lacked information with regard to the expansion of
the platform. Liu [16] pointed out that data communication of offshore wind farms need to
rely on wireless communication techniques such as the wireless optical communication
technology employed in wireless SCADA systems. However, sufficient attention must
be still be given to the research on data encryption and secure transmission. Since it is
difficult and time-intensive to locate short-distance transmission lines for deep-sea offshore
wind farms, Wang et al. [17] proposed a Stockwell transform and random forest-based
double terminal fault location method, in which the Stockwell transform method was
used to extract the effective features, and random forest was used to train the data-driven
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classifier to classify the fault type and fault branch; however, the influence of load variation
and line parameters should be further studied. Liu et al. [18] discussed some classic
intelligent fault diagnosis methods for power electronic converters and proposed a random
forest and transient fault feature-based fault diagnosis method for the three-phase power
electronics converters, but in-depth research should also be carried out in combination
with the offshore operation environment. Papatheou et al. [19] proposed artificial neural
networks (ANNs) and a Gaussian process-based method to monitor the wind turbines of
offshore wind farms; the proposed method was adopted to build a reference power curve
for each of the wind turbines, but some additional features can be considered to improve
the performance of the method. Li et al. [20] proposed a Stackelberg game-based optimal
scheduling modeling method for integrated demand response-enabled integrated energy
systems with uncertain renewable generations, which can promote the consumption of
renewable energy and reduce energy costs for users, but battery degradation and load
uncertainty were ignored. In order to better realize the construction, monitoring, operation,
and maintenance of offshore wind farms, more practical operation factors should be taken
into account.

Around the world, governments are vigorously developing offshore wind power and
have accomplished a lot in many fields. As shown in Figure 1, the construction and develop-
ment of smart offshore wind farms mainly benefit from cloud computing, big data, Internet
of Things communication, artificial intelligence (AI), and other new technologies [21,22].
This paper mainly summarizes the monitoring, operation, and maintenance of smart off-
shore wind farms (“offshore wind power engineering and biological and environment”),
which includes environmental monitoring, power equipment monitoring, and the operation
and maintenance of offshore wind farms, with some cases given.

Monitoring, operation and maintenance system of smart offshore wind farms
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Figure 1. Monitoring, operation, and maintenance system of smart offshore wind farms.

The remainder of this paper is organized as follows. Section 2 describes the environ-
mental monitoring technologies of offshore wind farms, and some advanced equipment
and technologies are also discussed. Section 3 discusses some power equipment monitor-
ing methods for offshore wind farms; it mainly includes the status monitoring and fault
diagnosis for offshore wind turbines, power electronic converters, submarine cables, and
so on. In Section 4, the operation and maintenance strategies of offshore wind farms are
discussed in detail. Conclusions and prospects are drawn in the last section.

2. Environmental Monitoring for Smart Offshore Wind Farms

With the rapid development of offshore wind power, only offshore wind farms in
coastal waters have had difficulty in meeting the requirements for wind energy develop-
ment; these offshore wind farms have a greater impact on the marine environment [23,24].
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Therefore, the study of monitoring and early warning for the marine environment, climate,
natural disasters, etc., is of great significance for the healthy development of smart offshore
wind farms. This section will mainly introduce some advanced marine environmental
monitoring equipment and technologies in detail.

2.1. Sea–Sky Monitoring

Sea–sky monitoring mainly includes the climate, meteorology, floating pollutants,
wind information, and some bird species, and can provide experience and optimization
strategy information for the construction and operation of smart offshore wind farms in the
future [25]. Sea–sky monitoring is mainly advantageous in site selection for wind farms,
the planning of transmission lines, the planning of wind power generation production, the
maintenance of wind turbine equipment, in considering the impact on birds, considering
the safety of workers, and so on.

The machine noise, light, and magnetic field produced by offshore wind farms will
have a certain impact on the foraging, breeding, and migration of birds [26,27]. For example,
the offshore wind farms may directly occupy the habitat of seabirds, thus affecting their
nesting and reproduction. According to [25], the research on the impact of offshore wind
farms on birds mainly focuses on the behavioral, physical habitat, and direct demographic
elements. According to the study in [28], the probability of a bird colliding directly with
a wind turbine is very low. Fijn et al. [29] found that many birds were flying at risk
height in the vicinity of the Dutch Offshore Wind farm Egmond aan Zee, but that these
birds could avoid collision with the wind turbines; relevant research can also be seen
in [30]. Drewitt et al. [31] studied the potential impact of wind energy developments on
birds; offshore wind farms may affect the breeding, wintering, and migration of birds. The
collision risk also depends on the factors related to the bird species, their number and be-
havior, weather conditions, and the environments of offshore wind farms (such as lighting,
etc.), but the impacts of human activities should also be considered. Furness et al. [32]
assessed the vulnerability of marine bird populations (especially gulls, white-tailed eagles,
and northern gannets, etc.) to offshore wind farms, which found that the marine birds’
long-time flight (whether they were breeding, migrating, wintering, or as prebreeders)
were more likely to face the risk of collision. Niemi et al. [33] proposed an automatic
bird identification system based on a fusion of radar data and image data. The data were
adopted to train the classifier based on the small convolutional neural network (CNN);
the classifier could then be used to monitor the bird species’ behavior in the vicinity of
the wind turbines, but more untrained data should be adopted to test the trained model.
Gauthreaux et al. [34] proposed a fixed-beam radar and a thermal imaging camera-based
method to monitor bird migration, which can be adopted to estimate the potential risk
of collision between migratory birds and wind turbines, but the impact of wind turbine
operation on birds should also be further considered. Plonczkier et al. [35] monitored the
behavioral responses and flight changes of pink-footed geese in relation to bird detection
radar so as to provide data for wind farm construction and bird protection in future, but
the migration routes of other similar species still need to be studied and considered. Many
scholars have put forward the use of technology for monitoring birds in order to study
the birds around the offshore wind farms and give the corresponding information based
on their experience for an improved construction of smart offshore wind farms and for
biological protection in the future.

It is not only necessary to protect the local ecological environment, but also to monitor
the local weather, wind speed, and other information in order to provide effective historical
data for better operation and production in the future. Trombe et al. [36,37] performed a
weather radar-based pioneer experiment to monitor the weather at the Horns Rev offshore
wind farm in the North Sea, but data mining technology still needs to be considered in
order to improve monitoring performance. Brusch et al. [38] analyzed severe weather by
analyzing satellite images taken by space-borne radar sensors so as to provide reliable
support for the operation and maintenance of offshore wind farms; more measurement data
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and more data fusion algorithms can be used to improve the accuracy of prediction methods
in the future. Zen et al. [39] proposed an innovative use of second-level satellite products
to analyze the wind speed and wave height measurements, which could help the offshore
wind farm managers to make more effective strategic decisions; however, the research
on the aging prediction method for offshore wind farms should also be considered. The
research institute (Institute of Oceanographic Instrumentation, Shandong Academy of Sci-
ences (IOISAS), Qingdao, China) is mainly engaged in basic research, which it has applied
in the marine monitoring scientific innovation platform, the BCF handheld anemometer,
scanning aerosol lidar, ship meteorological instruments, the SXZ2-2 hydrometeorological
automatic observation system, underwater acoustic communication machines, and so on.
Figure 2 shows some meteorological monitoring equipment, with Figure 2a showing a
BCF handheld anemometer that can measure wind direction, wind speed, temperature,
humidity, orientation, atmospheric pressure, and GPS coordinates at the same time [40].
Figure 2b shows the scanning aerosol lidar, which can realize the observation of dust, haze,
rainfall, and other types of weather. Figure 2c shows the ship meteorological instrument,
which can measure and display meteorological parameters such as wind speed, wind direc-
tion, air temperature, relative humidity, air pressure, visibility, and cloud bottom height in
real time. Figure 2d shows the SXZ2-2 hydrometeorological automatic observation system,
which can be installed on various marine stations and offshore observation platforms, and
can realize the automatic observation of tide, wave, surface temperature, salt, air pressure,
temperature, relative humidity, precipitation, visibility, water quality, and other parameters.
Figure 3 shows the long-term observation system of air-sea coupling in Greenland, which
can obtain air-sea coupling data, improve the long-term prediction level of ocean and
climate, and improve the accuracy of climate prediction [40]. In addition, the establishment
of a marine meteorological characteristics data acquisition station in offshore wind farms is
very important; the wind anemometer, wind vane, and other related marine equipment are
used to collect marine meteorological data so as to more effectively guide the operation
and maintenance of smart offshore wind farms, wind turbine group work safety level
assessment, and other marine operations in the future.

(b)

(c)

(a)

(d)

Figure 2. Some meteorological monitoring equipment: (a) BCF handheld anemometer; (b) Scan-
ning aerosol lidar; (c) Ship meteorological instrument; (d) SXZ2-2 Hydrometeorological automatic
observation system.
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Figure 3. Long-term observation system of air-sea coupling in Greenland.

2.2. Sea Surface Monitoring

Monitoring of the sea surface mainly includes the measurement and evaluation of
offshore wind energy resources, marine ecological protection and construction planning,
global marine environmental protection, maritime search and rescue, emergency monitor-
ing for red tide and sea ice, and other measures in disaster prevention [41–46]. It is of great
importance to optimize the production scheduling, operation, and maintenance strategy of
offshore wind farms and to protect the safety of workers.

Wind energy resource is an important factor affecting the economy of offshore wind
farms, and the measurement and evaluation of wind energy resources is the key to the
success of wind farm construction [47,48]. Sea surface roughness is an important parameter
affecting the evaluation of offshore wind energy [49,50]. Different from land roughness, sea
surface roughness is unstable, which mainly depends on the size of real-time waves [51–53].
The interaction between wind and waves is affected by water depth, wind speed, offshore
distance, and other factors [54]. Figure 4 shows the SBF series coastal telemetering wave
gauge, which can realize automatic wave measurement in coastal stations, ports, islands,
offshore platforms, and ships, among others [40]. Lin et al. [54] proposed a new parame-
terization based on observations to estimate sea surface roughness variations according
to wind speed and sea state, but there are many other factors that should be considered
(such as other parameterizations for the drag coefficient). Bao et al. [55] introduced the
multi-incidence maximum likelihood estimation method to the inversion of sea surface
wind speed by precipitation radar, whose error is very close to that of the buoy, while
the AI-based methods can be further considered for wind speed prediction. Li et al. [56]
proposed a surface current inversion method based on the high-frequency distributed
hybrid sky–surface wave radar, in which the unknown ionospheric state was regarded as
a black box, and the key parameters are extracted to calculate the surface current on the
basis of the scattering model; however, the real-time ionospheric model still needs to be
considered. Wu et al. [57] studied the relationship between sea surface wind speed changes
and sea surface temperature in the South China Sea region during the passage of typhoons
from May to October in 2000–2010; the Atmospheric profiles should be taken into account
in the future. Li et al. [58] proposed a new Geophysical Model Function XMOD2, which
can deduce the sea surface wind speed based on the TerraSAR-X data, but the comparison
between the scatterometer and microwave radio measurements needs to be further studied.
Ebuchi et al. [59] evaluated the all-weather sea surface wind speed product with airborne
Stepped Frequency Microwave Radiometers data, but the effect of negative bias needs to be
further eliminated. Bi et al. [60] proposed a method based on feature-selective validation
to extract and evaluate one-dimensional dynamic sea surface features, in which the Monte
Carlo method was employed to establish the dynamic sea surface model, and the relation-
ship between sea surface height fluctuation and different wind speed was simulated and
analyzed; rough sea surface electromagnetic scattering can be studied in the future. Tauro
et al. [61] proposed a microwave radiometer’s (MWR) sea surface wind speed retrieval
algorithm, which can use the numerical weather prediction estimation of wind direction
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to correct the MWR surface brightness temperatures; nevertheless, the standard deviation
of the retrieved wind speed can be further eliminated. Galas et al. [62] introduced some
GNSS-based precise technologies in which the GNSS-equipped surface buoys could be
applied to monitor the sea surface roughness and sea level, but the accurate reflection
analysis of ocean altimetry is limited by ocean roughness; an accurate observation of ocean
roughness can be considered to solve this problem. Hou et al. [63] adopted a marine buoy
that was placed within the radar coverage to monitor the sea states (wind speed, surface
current, etc.), but the model accuracy still needs further verification in more complex sea
conditions, and an even longer-term field observation is required. Zhou et al. [64] found
that sea surface wind speeds (SSWS) are usually related to wind-induced oriented tex-
tures and proposed an SSWS retrieval model to retrieve sea surface wind directions, but a
more complete hurricane model should be used for in-depth research so as to improve the
performance of the method. Ren et al. [65] proposed an empirical Ku-band low incidence
model-2(KuLMOD2), which can be used to retrieve and verify sea surface wind speeds
form the interferometric imaging radar altimeter (InIRA) data; the retrieval errors can be
further eliminated, and the validation data are also limited. Through research and the
monitoring of sea surface roughness, the locations of smart offshore wind farms can be
better selected. However, we should also strengthen the monitoring of complex marine
environments and improve the monitoring accuracy.

Figure 4. SBF series coastal telemetering wave gauge.

The monitoring of marine natural disasters and environmental pollution is of great
significance to the construction of smart offshore wind farms, especially of storm surges,
red tide, oil spills, sea ice, and so on [66–69]. Figure 5 shows images of natural disasters
and environmental pollution [40]. Figure 5a shows how a sea ice disaster affects human
activities and the safe operation of facilities on the coast and sea, especially events that
cause the loss of life, resources, and property such as channel blocking, marine facilities and
coastal engineering damage, harbor and wharf freezing, aquaculture damage, etc. Sea ice
monitoring is very important for vessel navigation, equipment maintenance planning, and
weather forecasting in smart offshore wind farms. Shen et al. [70] studied and evaluated
the sea ice detection method based on some machine learning methods and selected the
more suitable features and algorithms; in addition, feature engineering should be deeply
studied to improve the accuracy and adaptability of classification methods. Gelis et al. [71]
proposed a Fully Convolutional Network-based method to monitor the sea ice concen-
tration; it could generate sea ice concentration maps from Sentinel-1 Synthetic Aperture
Radar (SAR) images, but more validation data sets in different situations need to be used
to validate the method so as to ensure the effectiveness of the method. Ren et al. [72] pro-
posed a deep learning model-based method to classify the sea ice and open water from SAR
images. The SAR images were employed to train the deep learning model, but more SAR
images should be collected to evaluate the model. Song et al. [73] proposed a combined
learning of temporal and spatial features, residual CNN, and long short-term memory
(LSTM) network-based method to classify the SAR images of sea ice; however, the data
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of coastal land should be considered to improve the adaptability of the model, and the
model parameters can also be optimized. Figure 5b shows an oil spill in the process of
offshore wind farm construction; the foundation of the wind turbine is driven directly into
the sea floor. The laying of the submarine power transmission cable also requires deep
trench excavation, which can lead to suspended sediment on the sea floor; meanwhile,
some sediment may be agitated, causing the water to be turbid. Consequently, the water
quality of the sea area will be polluted due to the careless spill of some oily wastewater.
Ren et al. [74] proposed a one dot fuzzy initialization strategy to detect marine oil spill
regions, which did not need to label multiple pixels to initialize energy minimization. The
method can be used to process SAR polarimetric feature maps in the future so as to detect
oil leakage more effectively. Singha et al. [75] developed an offshore monitoring platform
in which the extracted features from SAR images were used to train the support vector
machine-based (SVM) classifier in order to detect the oil spills; nevertheless, the method
of removing redundant features should be considered to be able to select more effective
features so as to improve the computational performance. Mdakane et al. [76] developed a
monitoring system based on a gradient-boosting decision tree (GBT) classifier in which mul-
tiple oil spill features were used to train the GBT classifier to automatically detect oil spills,
but the impact of instrument-dependent and spatial resolution-dependent parameters still
need to be further studied. Garcia-Pineda et al. [77] proposed a Textural Classifier Neural
Network algorithm (TCNNA) to detect oil spills; here, the SAR data and wind model
outputs were each processed by two neural networks. Lee et al. [78] proposed a recursive
neural network-based method that can eliminate the pixels corresponding to the ship and
ship shadows in the satellite images and subsequently detect the oil spill. However, more
external environmental factors should be considered to improve the adaptability of the
method in [77,78]. Figure 5c shows a storm surge; storm surge disasters are usually caused
by typhoons, extratropical cyclones, cold fronts, sudden change in air pressure, and so on,
which can easily cause the loss of life and property. Storm surge monitoring will allow for
the better planning of operation and maintenance strategies as well as protect the lives of
the workers. Geng et al. [79] adopted 2-h GPS positions at 26 stations around the southern
North Sea to identify the loading displacements caused by the storm surge. Wang et al. [80]
proposed a deep reinforcement learning-based storm surge flood simulation method, which
provides reliable data for preventing storm disasters, but more actual data are needed and
should be used to verify the effectiveness of the method. Figure 5d shows the red tide; the
main harm inflicted by the red tide is the destruction it causes in the marine environment,
the death of many marine and mariculture organisms, and the damage created in fisheries
and aquaculture. It may cause huge economic losses and seriously affect people’s lives.
Huang et al. [81] established a loop-mediated isothermal amplification (LAMP) and lateral
flow dipstick (LFD) method, which can quickly detect the Karenia mikimotoi (a common
nearshore red tide alga). Qin et al. [82] proposed a red tide time series forecasting method
on the basis of the Autoregressive Integrated Moving Average (ARIMA) and the deep belief
network. More actual complex operation scenario data should also be used to improve
the effectiveness of the method in [81,82]. In addition to monitoring the natural disasters
and environmental pollution, many scholars have studied the methods of maritime search
and rescue and have had some achievements [83–86]. For example, Yang et al. [83] pro-
posed a search and rescue solution based on exploration path planning and ad hoc group
networking methods, in which unmanned aerial vehicles and unmanned surface vehicles
were adopted in co-operative search and rescue activities. Through sea surface monitoring,
a better operation and maintenance plan can be made, which can thus reduce economic
losses and protect the lives of workers.
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(a) (b) 

(c) (d)

Figure 5. Natural disasters and environmental pollution: (a) sea ice; (b) oil spill; (c) storm surge;
(d) red tide.

2.3. Sea Floor Monitoring

The offshore wind farms may damage the sea floor environment and cause the death
of benthos. This section will discuss the advanced monitoring equipment for the sea
floor environment, earthquake monitoring, benthos monitoring, large marine organism
monitoring (dolphins, etc.), and other advanced technologies [87–90].

Some researchers have found that offshore wind turbines do cause some damage to
marine organisms [91,92]. For example, (1) the sound of piling during the construction of
wind turbine infrastructure may cause damage to the hearing of marine animals; (2) the
noise of the wind turbine may affect the communication or sense of direction of marine
animals or fish, causing them to get lost; (3) in the process of offshore wind power con-
struction and maintenance, the operation of vessels may also interfere with the habitat of
marine fish. Figure 6 shows the underwater acoustic modem (IOISAS Seatrix), which can
be used in underwater communication, earthquake monitoring, biological monitoring, and
other fields [40,93,94].

Figure 6. IOISAS Seatrix.
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Figure 7 shows the underwater junction box observation network system, which
mainly includes the docking of underwater vehicles, data communication relay, underwater
data acquisition, control command transmission, etc. [40]. The application fields of the
system include marine environmental monitoring, marine disaster prediction, marine
geological mapping, marine resource exploration, and so on [95]. Huang et al. [96]
designed a pressure self-adaptive water-tight junction box (PSAWJB) in which a redundancy
design method was employed to improve its reliability. Huang et al. [97] proposed a pre-
compression method to improve the pressure compensation performance of the film-type
pressure self-adaptive watertight junction box. More activities should also be carried out in
the marine environment so as to improve the designed instruments in [96,97].

Shore base-stations

Biological resources 
monitoring

Environmental 
monitoring

Activity monitoring

Disaster prevention 
and mitigation

Emergency rescue

Buoy

UAV

CTD-chain

underwater 

junction box
Data acquisition 

platform

Observation 
instrument

Data acquisition 
platform

Underwater 
junction box

Figure 7. Underwater junction box observation network system.

Although the harsh marine environment brings a lot of inconvenience to the operation
and maintenance of smart offshore wind farms, the application of underwater robots and
unmanned aerial vehicles (UAVs) improves the convenience of operation and maintenance
activities as well as reduces the safety risk for workers. Therefore, a robotic system is also
a key part of smart offshore wind farms. The underwater environment is dangerous and
complex, and robots can stay in the water for a longer time or work in a deeper environment
as compared with human beings [98]. Figure 8 shows some robots with different functions,
which are supported by Alphaer (Shenzhen, China) Technology Co., Ltd. Figure 8a shows a
spraying robot, which can replace the manual delivery of goods, target testing, monitoring,
operation, processing, and so on. Figure 8b shows a small diameter pipe robot, which
can carry relevant equipment and sensors to detect or clean the environment inside of
the cable ducts. Figure 8c shows an underwater vehicle ROV II, which can be used to
explore the underwater environment, check on resources, hydrology, fishery as well as to
investigate the underwater coral reef ecology and other underwater operations. Figure 8d
shows a ROS robot, which can build a map and detect a specific environment in the room,
and can complete the regular inspection task. Xu et al. [99] developed an uncalibrated
visual servoing scheme, which can be used for the precise positioning of underwater soft
robots. Debruyn et al. [100] proposed robust technology for a multirotor and underwater
micro-vehicle-based method, which can be used for automated water sampling in difficult-
to-reach locations. Cai et al. [101] proposed a sphere cross section-based 3-D obstacle
avoidance algorithm, which can be used for an autonomous underwater robot. However,
the problem of communication between multiple underwater robots still needs to be further
studied in [99–101]. Thus, the automated monitoring of the sea floor is an ideal means of
protecting the marine ecological environment as well as the workers’ lives.
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 (a)   (b) 

 (c) (d)

Figure 8. Some robots with different functions: (a) Spraying robot; (b) Small diameter pipe robot;
(c) ROV II; (d) ROS robot.

3. Power Equipment Monitoring for Smart Offshore Wind Farms

Since the offshore wind farm environment is harsh and complex, the equipment fault
rate of offshore wind farms is significantly higher than that of onshore wind farms [102–104].
Therefore, strengthening the research on monitoring and fault diagnosis for offshore wind
farm equipment can improve the utilization rate of equipment, prolong the service life
of equipment, reduce down time, increase the operation safety, and greatly improve
the competitiveness of offshore wind power [105,106]. Monitoring and fault diagnosis
for offshore wind turbines, power electronics converters, submarine cables, and other
equipment will be discussed in detail in this section.

3.1. Monitoring for Offshore Wind Turbines

The structure of an offshore wind turbine is basically the same as that of an onshore
wind turbine, which is mainly composed of a foundation, tower, nacelle, hub, wind wheel,
drive train system, gearbox, generator, brake system, pitch system, yaw system, sensors
system, electrical system, control system, communication system, and so on [107]. As
shown in Figure 9, the common faults are mainly concentrated in several key components
such as the gearbox, generator, tower, blades, and foundation. Once any of the components
has a functional fault, the wind turbines may shut down, which will affect power generation
and cause economic losses. Therefore, it is necessary to carry out the condition monitoring
and fault diagnosis for offshore wind turbines to reduce the fault rate and maintenance
cost, and to ensure the safe and efficient operation of offshore wind turbines [108–110].
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Figure 9. Downtime distribution of each part.

The monitoring data source is composed of all kinds of sensors installed on the
equipment, and the main signals monitored are the vibration, acoustic emission, generator
speed, stress, torque, temperature, oil, electrical signal, SCADA data, and so on [111–113].

The gearbox is an important part which often causes the downtime of wind turbines,
and the fault diagnosis of gearboxes has been a concern of many scholars. Cheng et al. [114]
proposed a deep learning-based fault diagnosis method for wind turbine drivetrain gear-
boxes, in which a stacked autoencoder and a support vector machine were used to train the
fault classification; the fault diagnosis flowchart is as shown in Figure 10. Cheng et al. [115]
proposed a fault diagnosis method based on a doubly fed induction generator (DFIG) stator
current envelope analysis for wind turbine drivetrain gearboxes, in which the synchronous
resampling algorithm was the Hilbert transform; power spectral density analysis was used
to extract fault features. Yu et al. [116] proposed a fault diagnosis method based on a fast
deep graph convolutional network for wind turbine gearboxes, in which the original vibra-
tion signals were decomposed by a wavelet packet, and graph convolutional networks were
used to extract the features. In [114–116], it is also necessary to consider more information
such as operating conditions and equipment parameters in order to ensure the effectiveness
of the method. Cheng et al. [117] proposed an adaptive neuro-fuzzy inference system
(ANFIS) and particle filtering (PF)-based fault prognostic and remaining useful life (RUL)
prediction method, in which the ANFIS was adopted to extract fault features, and the PF
algorithm was used to predict the RUL of the gearbox; the noise-to-signal ratio features
can be considered to improve the performance of the method in future. Yang et al. [118]
proposed a deep joint variational autoencoder (JVAE)-based method to detect gearbox
faults, in which the wind farm supervisory control and SCADA data were used to train
the data-driven classifier, but the JVAE network architecture needs to be further improved
to enhance the performance of fault diagnosis. Jiang et al. [119] proposed a multiscale
convolutional neural network (MSCNN)-based fault diagnosis method for a wind turbine
gearbox, in which the vibration signals were used to train the MSCNN classification model.
Jiang et al. [120] proposed a feature representation learning method (stacked multilevel
denoising autoencoders), which can be used to extract features and classify them according
to the complex vibration signals of wind turbine gearboxes. In [119,120], the data sets
under different operating conditions and the problems of imbalanced data distribution
can be further studied in the future so as to ensure the practicability of the algorithm.
Yoon et al. [121] proposed a piezoelectric strain sensor-based fault diagnosis method for
planetary gearboxes, which has been validated on sun gear, planetary gear, ring gear, and so
on; however, the effects of electrical faults should also be considered in subsequent studies.
Du et al. [122] proposed a fault diagnosis method on the basis of the union of redundant
dictionary for wind turbine gearboxes, in which an adaptive feature identification method
was used to extract multiple components from the superimposed signals. Pu et al. [123]
proposed a deep enhanced fusion network (DEFN)-based fault diagnosis method for wind
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turbine gearboxes, in which the fused three-axis features were used to train the DEFN
model. In [122,123], the scalability and generality of the algorithm should be considered
in future. Lu et al. [124] proposed a current-based fault diagnosis method for drivetrain
gearboxes, in which a statistical analysis algorithm was used to extract the fault features
from the nonstationary stator current signals; nevertheless, the fault type identification,
different fault locations, and the remaining useful life prediction should also be considered.
He et al. [125] proposed an unsupervised feature learning-based fault diagnosis method
for gearboxes; meanwhile, a multiview sparse filtering (MVSF) method was adopted to
extract current features. Fault feature extraction under non-stationary conditions still needs
to be studied so as to improve the practicability of the diagnosis methods. Through the
monitoring and fault diagnosis of gearboxes, maintenance for gearboxes can be carried out
in time to avoid downtime and huge economic losses.
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Figure 10. Gearbox fault diagnosis flowchart.

Generator fault is one of the main factors that lead to the wind turbine shutdown, which
is why generator fault diagnosis has been a hot research topic [126,127]. The early detection
of generator fault is very important for the complex system, which can save time and
cost and also help to take the necessary measures to avoid dangerous situations [128,129].
Because of the lack of early warning time and fault samples of the offshore SCADA system,
Wei et al. [130] proposed a stacking fusion algorithm framework for the early warning
and diagnosis of offshore DFIG (as shown in Figure 11); a fault-tolerant operation is
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worthy of further research. Zhang et al. [131] proposed a SCADA data-driven method
in which the subspace reconstruction-based robust kernel principal component analysis
(SR-RKPCA)-based method was used to extract nonlinear features from the SCADA data.
Wang et al. [132] proposed a multiscale filtering spectrum-based fault diagnosis method
in which the current and vibration signals were used in the diagnosis of bearing fault of
direct-drive wind turbines. Jin et al. [133] proposed an ensemble fault diagnosis method
for wind turbine generators in which the ensemble method was adopted to analyze the
SCADA time series data. In [131–133], the influence of equipment parameters on fault
features should be considered in the future. Watson et al. [134] proposed a condition
monitoring method for DFIG in which the wavelet was used to extract fault features, but
the study should also consider the impact of different operating environments and different
equipment on the samples. Gong et al. [135] proposed a current-based mechanical fault
diagnosis method in which an impulse detection algorithm was adopted to detect the
faults, but the actual operation data should be considered to improve the method so as
to improve its practical application value. Wang et al. [136] proposed a time-varying
cosine-packet dictionary-based fault diagnosis method for wind turbine bearings in which
the shaft rotating frequency was used to extract fault features form the vibration signals; the
domain knowledge can be considered to extract more adaptive fault features to improve
the effectiveness of diagnosis methods in the future. Gong et al. [137] analyzed generator
stator fault currents and proposed a current-based bearing fault diagnosis method in which
only a one-phase stator current signal was used. Wang et al. [138] proposed a current-aided
vibration order tracking-based bearing fault diagnosis method in which the reference signal
was extracted from the stator current signal. In [137,138], more fault problems in actual
complex operation conditions should be considered. Jin et al. [139] proposed a generator
current signal and correlation dimension analysis-based quantitative health condition
evaluation method in which the fault features were extracted from the current signals,
but the scalability of the method to different types of wind turbines should be considered.
Wang et al. [140] proposed a PCA and ANN-based condition monitoring method that can
locate the faults of wind turbines (the gearbox fault and the generator-related fault); a real-
time online monitoring method should be considered in the future. With large-scale wind
turbines put into operation, the number of generator faults increases. In order to ensure
the safe and efficient operation of smart offshore wind farms, it is of great significance to
conduct further research on state monitoring and fault diagnosis for generators.

In addition, some scholars have studied condition monitoring and fault diagnosis
for towers, blades, foundation, sensors, and so on [141–145]. Since the tower bears the
harsh wave and wind loading conditions for a long time, Li et al. [146] proposed an inverse
finite element-based structural health monitoring method for offshore wind turbine towers.
Liu et al. [147] proposed an iterative nonlinear filter-based fault diagnosis method for wind
turbine blade bearings. In [146,147], future research can focus on other components of
offshore wind turbines to realize a complete and practical monitoring system. In order
to improve the stability of the wind turbine system, Peng et al. [148] proposed a wireless
sensor network-based fault diagnosis method for sensor faults, short faults, noise faults,
and so on; however, research on wireless data security encryption should be strengthened
in the future, and advanced encryption technologies such as chaotic encryption can be
considered to ensure data security. Several fault diagnosis methods are conducive to the
improvement of the overall stability of offshore wind turbines and reduce the costs of
operation and maintenance.
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Figure 11. Stacking fusion algorithm framework (RF: Random Forest; SVM: Support Vector Machines;
KNN: K Near Neighbor; GBDT: Gradient Boosting Decision Tree).

3.2. Monitoring for Power Electronic Converters

With the development of large-scale offshore wind power, AC transmission technology
will be limited by the transmission distance. DC transmission technology will become
the development direction of offshore wind power long-distance transmission, especially
the flexible high-voltage direct current transmission, which can automatically adjust the
voltage, frequency, power, and so on [149]. For example, DC transmission technology has
been used in the BorWin1 offshore wind farm in Germany and the Nan’ao VSC-MTDC
Project in China [150,151]. With the wide application of power electronic converters, the
problem of fault diagnosis has become more and more prominent. Therefore, it is of
practical and economic significance to study the monitoring and fault diagnosis technology
of power electronic converters, which can avoid the occurrence of secondary faults and
reduce maintenance time [152,153].

Although there are various means to improve the reliability of the power electronic
converter system, the fault is still difficult to avoid [154,155]. In 2007, the fault rate or
outage rate caused by the electrical system (converters, control system, etc.) was high at
the Egmond aan Zee offshore wind farm in the Netherlands, resulting in huge economic
losses [156]. The faults of power electronic converters are mainly caused by the faults of
power semiconductor devices, which mainly include short-circuit faults and open-circuit
faults [157]. Since a short-circuit fault is very destructive, it is difficult to realize the IGBT
short-circuit fault diagnosis and protection based on the software algorithm, and the short-
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circuit faults are protected by the standard hardware circuit; IGBT open-circuit faults will
not cause serious over-current or over-voltage in a short time, can last for a period of time,
and will not trigger the hardware protection system [158,159].

The short-circuit fault is mainly caused by overheating, over-voltage breakdown,
wrong driving signal, etc. Moreover, it is destructive and easy to burn other components of
power electronic devices. The hardware protection methods for IGBT short-circuit faults
mainly include the desaturation detection method [160], inductance detection method [161],
collector current detection [162], etc. Since a fast fuse has the characteristics of small heat
capacity, it can be fused before the fault current reaches the preset short-circuit current.
In order to reduce the harm of a short-circuit fault, Abdelghani et al. [163] used two fast
fuses to convert the short-circuit fault into an open-circuit fault (as shown in Figure 12).
In this case, it is more significant to improve the diagnosis of open-circuit faults of power
electronic converters.

Generally, the main causes of IGBT open-circuit faults are device fracture, binding
wire fracture or welding off, poor wiring, circuit faults, etc. [164]. According to [165],
when the open-circuit faults happen in IGBTs, the bypass diode can still work normally,
and the power electronics converters will not shut down immediately, which will lead
to the increase of current and voltage harmonic content and reduce the power supply
quality. However, the IGBT open-circuit fault may not be found for a long time, resulting in
secondary damage or catastrophic faults of other equipment. Power electronic converters
are mainly composed of power semiconductor devices, and the systems are not linear,
which limit the application of an open-circuit fault diagnosis method based on a fault
mathematical model [166]. The data-driven fault diagnosis method does not need to
establish an accurate mathematical model of power electronic converters, where the typical
methods include: ANN, time series prediction, SVM, random forests (RFs), PCA, or other
AI-based fault diagnosis methods. AI technology has the self-adaptive learning ability
from fault samples, which can realize the mapping between fault data and fault state and
obtain the mature fault diagnosis classifier (as shown in Figure 13). Then, the mature fault
diagnosis classifier can locate the faults in power electronic converters.
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Figure 12. Short-circuit fault isolation technology with fast fuses: (a) Two-level; (b) NPC.
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Figure 13. AI(Artificial Intelligence)-based open-circuit fault diagnosis methods(ANN: Artificial
Neural Network; CNN: Convolutional Neural Networks).

With the development of the smart grid, the data-driven fault diagnosis technology
of power electronic converters has become a research hotspot in the industry [167–169].
Wang et al. [166] proposed a knowledge data-based fault diagnosis method for three-phase
power electronic energy conversion systems in which the knowledge-based method was
used to extract the fault features, and the data-driven method was used to train the fault
diagnosis classifier; the fault diagnosis schematic is as shown in Figure 14. Xia et al. [167]
proposed a data-driven fault diagnosis method for three-phase PWM converters in which
the three-phase AC current signals, FFT, and ReliefF algorithm were adopted to extract
features, and a sliding-window classification framework was used to improve the diagnosis
performance. In [166,167], the influence of diode faults and sensor faults can be considered
in future research. Cai et al. [168] proposed a Bayesian network-based fault diagnosis
method for three-phase inverters in which the FFT was used to extract the signal features
from the output line-to-line voltages; a wavelet transform can be considered to realize the
signal feature extraction in the future. Li et al. [170] proposed a model data hybrid-driven
fault diagnosis method for power converters in which the model information and ANN
were combined with the diagnosis robustness and diagnosis speed, but the effectiveness
of the method should also be verified and adjusted through different complex topology
applications. Xue et al. [171] proposed a multilayer LSTM network-based fault diagnosis
method for back-to-back converters in which three-phase currents and voltage signals
were used to train the data-driven fault diagnosis classifier; the LSTM network can be
continuously improved to adapt to different systems and new complex fault scenarios in
the future. Kiranyaz et al. [172] proposed a one-dimensional CNN-based fault detection
and identification method for modular multilevel converters (MMC) in which the raw
voltage and current data were used to train the CNN classifier; the method can also be
implemented and verified in larger and more complex topology and validated in real-
time performance in the future. Li et al. [173] proposed a mixed kernel support tensor
machine (MKSTM) fault diagnosis method for MMC in which the AC current and internal
circulation current were used to classify the fault locations, but the method ignores many
nonlinear noises in the actual system; it should be further verified in the actual operation
system. Huang et al. [174] proposed a data-driven fault diagnosis method for photovoltaic
inverters in which the multistate data processing block was used to distinguish different
features, the subsection fluctuation analysis block was adopted to extract fault features,
and ANN was used to realize intelligent classification. Khomfoi et al. [175] proposed an
AI-based fault diagnosis and reconfiguration method in which the PCA, genetic algorithm,
and neural network were used to implement the fault diagnosis classifier for a cascaded
H-bridge multilevel inverter. In [174,175], the influence of load faults and diode faults on
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the fault features should be considered in future research so as to make the method more
practical. Kamel et al. [176] proposed an adaptive fault diagnosis method for a single-phase
inverter based on a neuro-fuzzy inference system algorithm in which the inverter output
current was used as the monitoring signal to locate the faults. Stonier et al. [177] proposed
an ANN based controller to diagnose the open-circuit faults of a solar photovoltaic (PV)
inverter. In [176,177], the grid-connected system was considered in their methods, and the
influence of other system faults on the fault features should be considered in the future.
Monitoring and fault diagnosis technology can avoid secondary faults or catastrophic
faults, which is of great significance to ensure the safe and reliable operation of power
electronic converters systems.
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Figure 14. Fault diagnosis schematic for power electronic energy conversion systems.

3.3. Monitoring for Submarine Cables

Submarine cables are key components of offshore wind power transmission and play
an important role in the development of offshore wind power [178]. The construction of
offshore wind power projects inevitably involves a large number of submarine cables. As a
concealed project, submarine cables are limited by the way the cables are installed and the
uneven environmental temperature. With the increase of marine development activities,
mechanical damage to submarine cables can also be caused by aquaculture, fishing nets,
anchors, and so on. Sea water erosion and other factors can easily cause poor water
resistance performance and insulation aging of submarine cables. Once the submarine
cables are damaged and stop operation, huge economic losses will result. Therefore, in
order to ensure the safe operation of submarine cables, it is necessary to monitor the
operation status of submarine cables in real time.

In order to ensure their safe operation, many scholars have studied the online moni-
toring of submarine cables [179]. Zhu et al. [180] proposed an online monitoring method
for submarine oil-filled cables in the Hainan Interconnection project in which the current of
each phase cable was selected as the measured signal. He et al. [181] proposed a dual ter-
minal voltage video synchronization method to monitor submarine cables in the Zhoushan
500 kV interconnection project. In [180,181], the monitoring systems should also be tested
with other long-distance submarine cables, and the real-time performance of the monitoring
systems should be considered in the future. Chen et al. [182] proposed a Brillouin optical
time domain analysis-based method in which the optical cable was adopted to monitor the
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temperature of submarine cables to ensure the stability of the system, but more actual oper-
ation data should be considered to verify the method. Lux et al. [183] proposed a depth
of burial of submarine power cable formations monitoring method in which distributed
temperature sensing, electric load data, and thermal models were used as the detection
signal, but the influence of ambient temperature should be further studied in the future.
Masoudi et al. [184] proposed a submarine cable condition monitoring method in which a
distributed optical fiber vibration sensor was used to monitor the location and strain level of
each point on the cable. Fouda et al. [185] proposed a time–frequency domain characteristic
and SVM classifier-based method for submarine cables in which the vibration signals of
optical fiber were used to detect malicious attacks. Xu et al. [186] proposed a method
for monitoring submarine cables based on the temperature increase in optical fibers and
developed an online monitoring system based on a BOTDR-based submarine cable online
monitoring system. In [184–186], the interference of the harsh marine environment in the
optical fiber signals should be considered in future research so as to improve the practical
application value of the method. Zhao et al. [187] proposed a monitoring system based on
BOTDR for 110 kV submarine cables in which the temperature/strain information was used
to locate the faults, but the distributed temperature and train simultaneous measurement
technology should be improved to make the method more practical in the future.

3.4. Monitoring for Other Equipment

In addition to offshore wind turbines, power electronic converters, and submarine
cables, some scholars have studied offshore booster stations, sensors, uninterruptible power
supply (UPS), offshore wind power structures, and so on [188,189].

The offshore booster station (as shown in Figure 15) is mainly used for the arrangement
of the electrical system, safety system, auxiliary system, and other equipment, which can
collect power from the offshore wind farm and then output it from the offshore wind
farm after boosting. The marine environment of the offshore booster station requires
the prevention of salt fog, damp and heat, and biological mold. In some places, it also
requires resistance to strong typhoons and strong waves as well as the capacity to deal
with the problem of high ultraviolet radiation. Yang et al. [190] proposed a corresponding
fire protection scheme for offshore booster stations, on-land central control centers, and
offshore wind turbines of the offshore wind farms; more and more comprehensive fire
prevention schemes for equipment should also be considered to avoid immeasurable losses
caused by omissions in the future.

Figure 15. Offshore booster station.

The UPS in offshore wind farms is mainly used in the control system, data acquisition,
monitoring system, communication system, video monitoring system, fire alarm system,
and so on. Figure 16 shows the UPS monitoring system developed by Shanghai Dpin
Electronic Technology Co., Ltd., Shanghai, China.
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Figure 16. UPS (Uninterruptible Power Supply) monitoring system.

4. Operation and Maintenance of Smart Offshore Wind Farms

Compared with onshore wind farms, the environment of offshore wind farms is more
complex as the influence of wind, wave, even extreme ice, typhoon, earthquake, and other
load excitation on the equipment is more complex. Figure 17 shows the operation and
maintenance cost of offshore wind power. Generally, offshore wind farms are far away
from land, the cost of operation and maintenance is higher than that of onshore wind farms,
the management staff of the wind farms cannot evaluate the structure regularly, and the
response time for the accident is far longer than that for onshore wind farms [191,192].
Therefore, it is of great importance to establish a reasonable operation and maintenance
management scheme for the stable development of offshore wind farms.

Large component fault

12%

Administration cost

17%

Insurance

19%

Maintenance of operation 

& maintenance ship 

19%

Wind turbines maintenance 

23%

Monitoring & investigation 1%

Auxiliary 

equipment

9%

Figure 17. Operation and maintenance cost of offshore wind power.

4.1. Operation and Maintenance Platform of Smart Offshore Wind Farms

With the rapid development of global offshore wind power, the operation and mainte-
nance demands of offshore wind farms also increase. The survey data, monitoring data,
environmental parameters, and other different types of massive wind power data are
constantly accumulating, which provide more reliable data for the construction, operation,
and maintenance of offshore wind farms. The operation and maintenance management
system, ships, robots, and big data platforms provide the basic guarantee for the stable and
sustainable development of offshore wind power [193–196].
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Artificial intelligence, big data, cloud computing, and several digital technologies
play a very important role in the intelligent operation and maintenance platform of smart
offshore wind farms. Lin et al. [193] proposed a deep learning neural network-based
offshore wind power forecasting method in which data from the SCADA systems were
adopted to construct the forecasting system so as to improve the quality of operation and
maintenance. Yin et al. [194] proposed a deep neural learning (DNL)-based model predic-
tive control (MPC) method (a hybrid CNN-LSTM model) in which the CNN-LSTM model
was used to predict wind speed, wind turbine power, and other parameters. In [193,194],
future research should consider feature extraction methods to eliminate redundant features.
Wu et al. [195] proposed an AI technique-based method to optimize the arrangement of
wind turbines in which the genetic algorithm (GA) and ant colony system algorithm were
adopted to optimize the layout and line connection topology. Japar et al. [197] adopted five
different machine learning methods (Support Vector Regression—SVR, linear regression,
linear regression with feature engineering, ANN, and nonlinear regression) to estimate the
power losses due to waves in large wind farms. In [195,197], the more practical operation
factors (such as climate, environment, and other factors) of offshore wind farms should be
considered in the future. Helsen et al. [198] adopted the big data approach to analyze the
sensor data of different machines and the maintenance data, and the machine learning on
SCADA data and pattern recognition methods were used to monitor offshore wind turbines
to guarantee stable electricity production. However, future research should consider more
data from other wind farms to develop a scalable and easy to promote platform system.
Anaya-Lara et al. [199] adopted the SCADA systems to communicate with the operator,
manufacturer, and maintenance crew as well as to remote control, regulate, and monitor
modern wind farms. Since the faults of the network or sensors in offshore wind farms were
due to harsh weather conditions, the SCADA data were often missing; thus, Sun et al. [200]
proposed a learning framework to impute two missing-data conditions. Lin et al. [201]
proposed an isolate forest (IF) and deep learning neural network-based method to reduce
the impact of abnormal SCADA data. In [199–201], the problems of data encryption and
abnormal data processing should also be deeply studied in the future, which are very
important for the safe operation of offshore wind farms. As shown in Figure 18, the
intelligent dispatching management system of offshore wind farms can integrate wind
turbine monitoring, booster station monitoring, wind power prediction, ship scheduling,
information management, and various equipment monitoring into a unified information
platform, which can realize the integrated monitoring of offshore wind farms, evaluate the
operation of offshore wind farms, provide a health warning, and greatly facilitate operation
and maintenance.

At present, there are two main trends in the development of offshore wind farms.
Wind farms are increasingly farther from the coast, require greater power generation,
experience worse sea conditions, which bring more difficulties to their maintenance. The
existing maintenance tasks for offshore wind turbines mainly include regular maintenance
(inspection, cleaning, etc.), fault repair, equipment spare part management, etc. Therefore,
wind power operation and maintenance ships, helicopters, and so on are essential for the
daily maintenance of offshore wind farms (as shown in Figure 19), where the ship type
directly affects their safety, rapidity, seakeeping, and maneuverability [202,203]. During
the operation and maintenance of offshore wind farms, the transportation system can
provide accommodation to the crew and technicians and can load, transport, and assemble
the fault turbine components. Gundegjerde et al. [204] proposed a three-stage stochastic
programming (SP) model to determine the ship fleet size and mix, and then to execute
maintenance tasks in offshore wind farms. Stålhane et al. [205] proposed a two-stage
SP model to determine which ships to charter and how to support maintenance tasks
according to weather conditions and fault time. In [204,205], the cooperation of multiple
ships and the optimization of the operation and maintenance path can also be considered
in the future. In addition, unmanned intelligent equipment (such as unmanned boats and
UAVs) has been developed rapidly, which provides a new choice for the operation and
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maintenance of smart offshore wind farms, and which has also been the development
direction of offshore wind power operation and maintenance.
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Figure 18. Intelligent dispatching management system of offshore wind farms.

Figure 19. Transportation for the operation and maintenance of smart offshore wind farms.

4.2. Operation and Maintenance Strategy for Smart Offshore Wind Farms

In order to reduce the cost of operation and maintenance and improve the availability
of offshore wind farms, it is necessary to scientifically and reasonably plan the operation
and maintenance work for offshore wind farms so as to improve the quality and efficiency
of operation and maintenance as well as reduce the attendance times and the cost of
operation and maintenance [206].

Compared with onshore wind farms, the operation and maintenance of offshore
wind farms are more affected by the environment and climate, and the operation and
maintenance efficiency are lower. The operation and maintenance of offshore wind farms
need to meet certain marine meteorological conditions. For example, when the wind
speed is too fast or the waves are too high, operation and maintenance tasks cannot be



Sensors 2022, 22, 2822 23 of 36

completed. Martini et al. [207] analyzed the accessibility, approachability, weather win-
dow, and waiting time of offshore wind farms in the North Sea and subsequently made
reasonable arrangements for their operation and maintenance; future research can also
consider extending the research methods to other offshore wind farms so as to better opti-
mize the methods. Lazakis et al. [208] analyzed the main maintenance influential factors
of offshore wind farms (as shown in Figure 20) and proposed a heuristic optimization
technique-based route planning and scheduling optimization framework to reduce the
daily operation and maintenance costs, for which climate data, fault information, crew
pick-up and drop-off tasks, wind farm attributes, and cost-related specifics were considered.
Their research can also be optimized and adjusted according to the type of operation and
maintenance personnel. Guo et al. [209] proposed an anti-typhoon control strategy (as
shown in Figure 21), and the particle swarm optimization (PSO) and GA optimization
algorithms were adopted to optimize the control strategy, which can improve the service
life of wind turbines. Liu et al. [210] adopted a full-set three-dimensional meteorology
simulation technique to simulate artificial typhoon wind fields, which can help with the
design of typhoon-resistant schemes for offshore wind farms. In [209,210], future research
should also consider more factors (such as the wind force and destructive force of typhoons)
in the actual area to adjust the simulation and so as to make the method more practical.
Ma et al. [211] selected a three-hour representative truncated typhoon wind speed data,
and the blade element momentum (BEM) theory was adopted to study the effects of the
NREL (National Renewable Energy Laboratory) 5 MW wind turbine control system and
the floating platform on floating offshore wind turbine system; however, the robust control
strategy for the floating offshore wind turbine systems still needs to be further enhanced
when facing typhoon weather. Besnard et al. [212] proposed a cost-based optimization and
selection model in which the number of technicians, transfer ships, helicopters, and the
transportation strategy were taken into account. Wang et al. [213] proposed an ordered
curtailment strategy for offshore wind farms based on the impact of typhoons, which can
reduce the adverse effects of typhoons and reduce the operation costs. In [212,213], future
research can consider extracting a historical record of an offshore wind farm’s successful
experience in order to optimize the model and strategy.
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Figure 20. Main influential factors in the maintenance of offshore wind farms.
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Figure 21. Anti-typhoon strategy for offshore wind farms.
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The operation and maintenance strategies for offshore wind farms mainly include
preventive maintenance and post repair; preventive maintenance mainly includes regular
maintenance and status maintenance, and post repair mainly includes fault repair and
emergency repair [214]. Li et al. [215] proposed a sound opportunistic maintenance strategy
to reduce the costs of operation and maintenance in which three types of maintenance
opportunities (the age-based opportunity and the opportunities created by incidents and
degradation faults) were integrated to operate and maintain offshore wind farms. However,
the study should also consider the actual operating equipment parameters and histori-
cal data so as to improve the operation and maintenance methods. Zhang et al. [216]
developed a two-stage adaptive robust model to optimize daily maintenance tasks and
production tasks; the column-and-constraint generation (C&CG) algorithm was used to
decompose similar two-stage problems to a master problem and a sub-problem. Differ-
ent transaction models and decision scenarios can be taken into account to optimize the
maintenance method in the future. Kang et al. [217] introduced an opportunistic offshore
wind farm maintenance policy with the consideration of the weather window effect and
imperfect maintenance. Preventive maintenance was carried out for other devices, and
some devices failed or reached the critical degradation states. In order to reduce loss
from accidental faults and the maintenance costs, future research can consider predicting
equipment lifetime by maintaining the equipment in advance. Yeter et al. [218] proposed a
risk-based inspection and maintenance planning for offshore wind farms in which different
inspection policies were studied, and the most cost-effective inspection and maintenance
policy was selected; however, some actual cost components should be taken into account
to better optimize the method in the future. As shown in Figure 22, Dalgic et al. [219]
proposed a comprehensive operation and maintenance strategy to optimize the operation
and maintenance costs, operation and maintenance tasks, transportation systems, revenue
loss, and power production. Considering that the wind turbine systems are usually located
in icy, cold, or remote offshore areas, and that the equipment ages due to long-term wear,
corrosion, erosion, fatigue, and other factors, Shafiee [220] proposed an optimal age-based
group maintenance strategy for offshore wind farms so as to reduce the operation and
maintenance costs of offshore wind power, especially the high transportation and logistics
costs. Sørensen [221] proposed a risk-based life cycle method to optimize the operation
and maintenance plan in which the pre-posterior Bayesian decision theory was adopted for
monitoring before the faults occur and to reduce the costs related to the monitoring, repair,
maintenance, and so on. In [219–221], the aging and fault relationship between different
components can be considered, and relevant information can be used for preventive opera-
tion and maintenance. Martin et al. [222] proposed a sensitivity analysis method to find the
important factors related to operation and maintenance costs and availability; they found
that the minor and major repair costs, operation duration, and the length of maintenance
task were the important factors affecting the total operation and maintenance costs of off-
shore wind farms. Ahsan et al. [223] adopted the stakeholder analysis method to manage
and coordinate with the various stakeholders related to the operation and maintenance
in offshore wind farms; meanwhile, co-operation was adopted to improve the operation
and maintenance efficiency and to reduce operation and maintenance costs. In [222,223],
repair and maintenance can be considered at the same time so as to effectively reduce the
frequency of offshore attendances and reduce operation and maintenance costs.
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Figure 22. Operation and maintenance strategy.

4.3. Safety and Management of Offshore Wind Farm Personnel

The harsh environment makes operation and maintenance more difficult in offshore
wind farms, but also brings great challenges to the operation and maintenance personnel.
Offshore wind power maintenance personnel are usually scattered across different wind
turbines or ships, and there are some potential risks such as falling from height, drowning,
asphyxiation, poisoning in semi-enclosed spaces, electric shock, and so on. Therefore, it
is not only necessary to strengthen the ability and quality of operation and maintenance
personnel before taking posts, but attention should also be given to the state of operation
and maintenance personnel during operation and maintenance, and human errors should
be avoided as much as possible in the operation and maintenance process of offshore wind
farms [224].

In order to improve the rescue efficiency and reduce loss due to marine accidents,
many scholars have studied the search scope, rescue methods, etc. As shown in Figure 23,
it is necessary to consider the search areas, resource limitations, and search objects when
designing and optimizing the search and rescue (SAR) activities. Xiong et al. [225] proposed
a three-stage intelligent decision method to optimize the SAR plan in a maritime emergency,
which can speed up SAR activities and reduce the loss of life. Atkinson [226] suggested
strengthening the management of all kinds of ships (including the maximum number
of passengers, working conditions, etc.), and meanwhile, it should cooperate with other
regulatory agencies and industries to formulate unified standards and establish a complete
offshore wind farm operation and maintenance scheme. In [225,226], more maritime
emergencies should be considered in the future research. Zhou et al. [227] proposed a
method for evaluating maritime search and rescue capability, and the response time of
rescue ships was measured by the geographic information system (GIS)-based response
time model; however, the response time of the SAR system must be deeply studied in the
future, especially in extreme weather conditions. Deacon et al. [228] proposed a method
based on major incident investigation and expert judgment techniques to evaluate the risks
of human error in offshore emergency situations, which can reduce the rescue fault rate
caused by human error. Nevertheless, more effective expert experience should be taken into
account in the future. Skogdalen et al. [229] proposed some measures for the improvement
of the evacuation, escape, and rescue operations when faced with offshore accidents, which
can reduce the unnecessary losses caused by human errors. Liu et al. [230] proposed a
helicopter-based maritime search and rescue method, which can better realize low-altitude
search, hovering rescue, and to get people out of danger faster. In [229,230], when carrying
out a rescue operation at sea, the state of the rescued object, weather conditions, and feasible
means of transportation for rescue should be considered before making a comprehensive
analysis and formulating a more reasonable rescue strategy.

The smart dispatching system, the offshore wind power radar multi-source detecting
and tracking system, the boundary warning system, and the operation supervision system
of offshore wind turbine platforms were used to ensure the safety of ships, operation and
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maintenance personnel, wind turbines, and submarine cables. As shown in Figure 24,
Liu et al. [231] proposed a method for monitoring the working state of operation and main-
tenance personnel, which can provide the guidance maintenance strategies according to the
physiological signals of operation and maintenance personnel and reduce human errors;
however, age, gender, and other factors should also be considered when dividing the
tensions of operation and maintenance personnel. Due to the shortage of offshore wind
power operation and maintenance personnel, the operation and maintenance capacity is
insufficient. Additionally, there are many offshore operation types that include the basic
inspection of offshore wind turbines and offshore booster stations, and other equipment
need high professional operation and maintenance ability. Therefore, the comprehensive
ability and technical level of operation and maintenance personnel should be improved.
The offshore wind power industry has a strong particularity, especially as offshore commu-
nication conditions are relatively poor, and there are some blind areas in communication
and exchange which increase the security risks of the operation and maintenance personnel.
Therefore, in the process of employing the operation and maintenance staff, it is necessary
to ensure that they have more professional skills; the safety training for operation and
maintenance staff should also be carried out to improve their awareness of safety and their
ability to investigate potential danger.

Search objects

Search area

Maritime safety 
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Coast Guard

Figure 23. Search and rescue in a maritime emergency.
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5. Conclusions and Prospects

This paper summarized the research on the monitoring, operation, and maintenance
of smart offshore wind farms. The environmental monitoring technologies, some advanced
equipment and technologies, some power equipment monitoring methods, and the opera-
tion and maintenance strategies for smart offshore wind farms were discussed in detail. In
order to improve the stability of offshore wind farms, to improve the quality and efficiency
of operation and maintenance, and to increase the revenue of offshore wind farms, this
paper puts forward the following research points and trends:

1. During the construction of offshore wind farms, it is necessary to monitor the marine
environment and marine organisms for a long time, and to try to avoid or reduce the
impact on the habitats and migration routes of birds, fish, and other marine organisms.
At the same time, the integration of offshore wind farms and marine ranches can be
considered to realize the efficient output of clean energy and safe aquatic products,
which will be an important industrial mode and future development direction.

2. Due to the high cost of operation and maintenance helicopters and ships, the advanced
data analysis platform, model display platform, and visualization platform should be
considered, which can make full use of the accumulated operation data to predict and
analyze the state of the offshore wind power equipment so as to scientifically carry
out the operation and maintenance of offshore wind farms, to fully realize predictive
maintenance and intelligent maintenance for offshore wind power equipment, to
optimize the frequency of operation and maintenance, and to reduce the operation
and maintenance cost.

3. In the power equipment intelligent monitoring field, the current intelligent monitoring
method relies too much on data samples. In addition, the domain knowledge-driven
method can be employed, which can reduce the dependence on data samples. In
particular, some expert experience and knowledge can be used for feature extraction,
which can effectively reduce the dependence on data samples of different operation
conditions.

4. In a long-distance sea voyage, the special operation and maintenance ship is likely
to be affected by the weather and sea conditions. For example, when the operation
and maintenance ship sets out, the sea state is still calm, but it has to turn back
due to the sudden change in weather halfway to the operation site, which creates
unnecessary operation and maintenance costs. Therefore, it is necessary to strengthen
the prediction capabilities for regional climate and weather at the offshore wind farms
and to provide real-time weather information for the reasonable planning, operation,
and maintenance of offshore wind farms so as to reduce unnecessary operation and
maintenance times and costs.
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