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Abstract: In this paper, a general overview regarding neural recording, classical signal processing
techniques and machine learning classification algorithms applied to monitor brain activity is pre-
sented. Currently, several approaches classified as electrical, magnetic, neuroimaging recordings
and brain stimulations are available to obtain neural activity of the human brain. Among them,
non-invasive methods like electroencephalography (EEG) are commonly employed, as they can
provide a high degree of temporal resolution (on the order of milliseconds) and acceptable space
resolution. In addition, it is simple, quick, and does not create any physical harm or stress to patients.
Concerning signal processing, once the neural signals are acquired, different procedures can be
applied for feature extraction. In particular, brain signals are normally processed in time, frequency,
and/or space domains. The features extracted are then used for signal classification depending on its
characteristics such us the mean, variance or band power. The role of machine learning in this regard
has become of key importance during the last years due to its high capacity to analyze complex
amounts of data. The algorithms employed are generally classified in supervised, unsupervised
and reinforcement techniques. A deep review of the most used machine learning algorithms and
the advantages/drawbacks of most used methods is presented. Finally, a study of these procedures
utilized in a very specific and novel research field of electroencephalography, i.e., autobiographical
memory deficits in schizophrenia, is outlined.

Keywords: signal processing; machine learning; deep learning; electroencephalography (EEG);
schizophrenia; autobiographical memory

1. Introduction

The brain is the most complex organ and is composed of billion neurons and trillions
of connections called synapses. Its main functions include the interpretation of exter-
nal information and governing many aspects, such as intelligence, creativity, emotion,
and memory. As a consequence of all this activity, neurons produce ionic currents and
electric signals resulting in small voltage fluctuations. These signals are generally time-
varying, non-Gaussian, non-stationary, random, and are often non-linear in nature [1,2].
Therefore, the measuring and monitoring of electrical activity in the brain is of primary
importance as it can provide profound information related to the physiological, functional,
and pathological status of the brain. It can be very useful for the identification of brain
rhythms, diagnosis of brain disorders, detection of brain impairments, and consequently
the possibility to provide, in some cases, precise treatment to correct or improve certain
brain-health conditions in patients [3–5].

In this regard, the general process followed in medical studies to extract, analyze,
and classify the brain signals can be observed in Figure 1. This process is commonly divided
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into four steps, signal acquisition, preprocessing, feature extraction, and classification [6],
which are described as follows.
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First, brain signals should be acquired for a later analysis. As will be shown, different
methods can be employed by means of the use of several electrodes situated on the surface
of the scalp or inside the brain. Thereafter, the stored data have to be preprocessed as
it surely is modified by noise and external interferences. The noise present in the signal
is due to the electrical distribution network, surrounding electronic equipment, or may
be due to body functions, e.g., body movements, eye-blinking, breathing, or sweating.
To remove noise components present in the signal proper filtering techniques can be
used [7–9]. Once the brain signal is clear of interference and artifacts, feature extraction is
performed [10–12] due to the huge volume of EEG signal data collected, which makes its
direct processing extremely complicated. Feature extraction aims to reduce the amount of
data by creating new features from the initial measured dataset that are non-redundant,
contain the relevant information of the input data, and permit better classification by means
of reduced representation obtained instead of the complete initial set of raw data [12].
Feature extraction is required to decrease the data dimensionality, thus transforming
a set of data from a high-dimensional space into a low-dimensional space. This low-
dimensional representation preserves the more significant properties of the original data.
In this regard, operating in high-dimensional spaces is normally undesirable as raw data are
often sparse, present redundant information, and take up a lot of hard drive resources. Then,
the characteristics of the measured simplified signal can be tested, either in the time and/or
frequency domain for classification during the execution of machine learning methods.
Machine learning procedures involve the use of training data collection, with or without
known results to develop algorithms that can learn from historical data and improve
the system through experience. As a result, a classification method to compare certain
feature signal characteristics can be developed to make predictions or decisions [13–18],
for instance, to provide diagnosis of mental diseases/impairments.

In this paper, the digital techniques and machine learning methods generally em-
ployed during brain signal processing are presented. In addition, autobiographical memory
and a deep analysis of different studies devoted to signal processing in this research field
are shown. More specifically, the paper is divided into the following sections: In Sections 2
and 3, the methods employed for signal acquisition and signal processing are presented,
respectively. First, the methods and arrangements used to obtain the brain signals and
how to treat the data acquired are considered to demonstrate EEG principle and basic
properties. Next, the most popular techniques employed in EEG signal processing are
studied. Section 4 shows the machine learning techniques that can be applied in EEG
applications for classification. Section 5 presents how all these processes, i.e., EEG signal
processing and machine learning, have been applied to determine the main characteristics
of autobiographical memory up to the present. It also describes the experimental results
and their interpretation, as well as experimental outlines obtained in previous research.
Finally, the conclusions of the work are summarized in Section 6.

2. Brain and EEG Signal Acquisition

The brain is composed of the cerebrum, cerebellum, and brainstem. More specifically,
the cerebrum has two hemispheres, the left and the right hemisphere, which perform higher
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functions, such as vision, touch, hearing, as well as learning and reasoning, [19–22]. On the
other hand, the cerebellum is underneath the cerebrum and its tasks are to control balance
and posture. The brainstem acts as a relay center, connecting the cerebrum and cerebellum
to the spinal cord. It accomplishes automatic functions, such as sleep cycles, digestion, and
breathing, to name a few. Both hemispheres are joined by a group of fibers called the corpus
callosum that communicates between one side and the other. The right hemisphere is
related to spatial orientation, non-verbal expression, feelings, creativity, intuition, emotions,
and artistic manifestations. The left hemisphere, which is more complex, is mainly related
to oral and verbal expression, symbols, the abstract, logic and science.

In addition, the hemispheres are divided into four lobes, i.e., frontal, parietal, temporal,
and occipital, as shown in Figure 2. Again, the lobes are divided into areas that perform
precise functions. The brain does not function independently, and there are many complex
relationships between lobes and between the right and left hemispheres.
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The frontal lobe is located in the frontward area of the brain, extending to the central
sulcus. It is involved in language, emotion, reasoning, and motor control. The frontal lobe
also comprises the motor cortex (involved in movement), the prefrontal cortex (responsi-
ble for cognitive functions), and the Broca’s area, located within the left hemisphere (essen-
tial for language production). The parietal lobe is situated proximately behind the frontal
lobe. It processes data coming from the senses. The parietal lobe holds the somatosensory
cortex (necessary for managing sensory information). The temporal lobe is located on the
side of the head and it is associated with memory, emotion, hearing, and some aspects of
language. The temporal lobe includes the auditory cortex (responsible for processing audi-
tory information) and Wernicke’s area (key for speech comprehension). At last, the occipital
lobe is situated in the back zone of the brain and comprises the visual cortex (required for
visual data).

In principle, any type of brain signal could be used to provide information about
the physiological, functional, and pathological status of the brain, as well as for control.
Regarding this last point, brain–computer interfaces (BCI) acquire brain signals and trans-
late them into commands that can carry out desired actions to enhance, replace, restore,
or improve human functions. Important advanced BCI research programs and projects
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have been encouraged by new understanding of brain functions, through the develop-
ment of powerful low-cost computer equipment. These projects, e.g., Neuralink [24],
OpenBCI [25], or Tobii [26], concentrate on developing new augmentative communication
and control technology. For instance, Neuralink is creating the future of brain interfaces,
developing fully implanted devices that will help people with paralysis. OpenBCI is an
open-source brain–computer interface platform working on hardware boards that can be
used to measure and record electrical activity produced by the brain that is compatible with
standard EEG electrodes. Tobii creates new insights into human behavior and intuitive
user interfaces with eye tracking.

Brain control and monitoring is possible due to the small voltage waves and impulses
that can be measured and monitored by means of different techniques. Presently, nu-
merous invasive and noninvasive recordings methodologies are employed to store large
amounts of images and signals [26–30], summarized in Table 1. In general, numerous
complementary approaches are available for recording and imaging the patterns of the
brain, such as magnetic, electrical, neuroimaging, and brain stimulations recordings.

Table 1. Neuronal recording techniques.

Recording Technique Specific Methods

Electrical recordings

• Electroencephalography (EEG)
• Electrocorticography (ECoG)
• Local field potential (LFP)
• Single-unit recordings (spikes)

Magnetic recordings • Magnetoencephalography (MEG)

Neuroimaging recordings
• Functional near-infrared recordings (fNIR)
• Functional magnetic resonance imaging (fMRI)
• Positron emission tomography (PET)

Brain stimulations
• Transcranial magnetic stimulation (TMS)
• Transcranial direct current stimulation (tDCS)
• Deep brain stimulation (DBS)

Invasive technologies are significantly less susceptible to artifacts, and have higher
voltage amplitudes and resolution. In addition, invasive measurement techniques where
electrodes are implanted deep in the brain can allow the recording of individual neu-
rons. Arrays of electrodes provide measurements from multiple neurons, increasing the
spatial resolution, giving associated data conversely to single recordings. However, inva-
sive recording technologies present risks of surgery and are invasive for patients. Alter-
natively, several noninvasive recording technologies, where surface electrodes are placed
on the scalp are employed, have also been proposed. In this particular case, information
acquired present a higher degree of external interference and artifacts (such as 50-Hz
power distribution, eye movements, facial movements, briefing, chewing, swallowing,
etc.), but measurements do not require surgery. In addition, surface recordings provide
high temporal resolutions (on the order of milliseconds) and complete descriptions of the
anatomy and physiology of underlying brain structures. Due to interference and the low
amplitude in the acquired signals, it is important to augment neural activity.

More specifically, electric recordings are based on measurements of electric fields
(and therefore associated electric currents) emanating from active populations of neu-
rons that happen in the brain during its activity. These electronic recordings include
different precise methods, making use of electrodes, like in electroencephalography (EEG)
(where the electrodes are positioned on the surface of the scalp), electrocorticography
(ECoG) (where the implanted electrodes are positioned on the upper layers of cerebral
cortex), local field potential (LFP) (where arrays of electrodes are positioned inside the
brain), and single unit recordings or spikes (where arrays of microelectrodes are inserted



Electronics 2021, 10, 3037 5 of 19

close to neurons). Concerning magnetic recordings, the magnetoencephalography (MEG)
technique is usually used, and it measures the magnetic field induced by electrical activ-
ity in the brain. Among noninvasive technologies, imaging methods analyze metabolic
changes. The activation of neurons requires oxygen, which is absorbed from surrounding
blood vessels. As a consequence, this higher level of oxygen is detected and represented.
The blood flow and uptake of oxygen by neurons is relatively slow, on the order of seconds.
Hence, this method offers good spatial resolution but a very reduced temporal resolu-
tion. The commonly used imaging methods can be defined as functional near-infrared
recordings (fNIR) (this method measures near-infrared light absorbance of hemoglobin),
functional magnetic resonance imaging (fMRI) (this method detects the variations in oxy-
genated and deoxygenated hemoglobin in the blood), and positron emission tomography
(PET) (this method identifies radioactive substances due to the metabolic activity caused
by the brain).

In addition to previous neural recording technologies, neural stimulation technologies
can be used. In this case, a specific region of the brain is excited by means of an external
electrical or magnetic stimulation to obtain a desired brain response. It is worthwhile to
mention that recording electrodes can also be employed for stimulations. The techniques
used in brain stimulations are transcranial magnetic stimulation (TMS) (this method is
based on the magnetic field changes of a coil situated next to the skull), transcranial direct
current stimulation (tDCS) (this method excites precise portions of the brain by means of
small currents), and deep brain stimulation (DBS) (this method uses electrodes fixed in
specific brain areas). Depending on the target application, temporal and spatial resolutions
require different acquisition techniques, as can be seen in Figure 3.
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More precisely, penetrating electrodes used in brain stimulation have the highest
spatial and temporal resolutions, but the invasive nature of this technique reduces its
application to limited number of cases. Regarding non-invasive techniques, EEG and
MEG have one of the highest temporal resolutions with spatial resolutions of the order
of centimeters. On the other hand, fMRI has the highest spatial resolution compared to
EEG and MEG; nonetheless, it possesses lower temporal resolution. Finally, fNIR and PET
present the lowest spatial and temporal resolutions, respectively.

In practice, EEG is one of the most commonly used methods for capturing neural
signals compared to other techniques, as it provides low costs, simplicity, tolerance to
motion from subjects, and no radiation exposure risks (the only disadvantages are related
to its low spatial resolution or poor signal-to-noise ratio). It was proposed in 1927 by Hans
Berger, who defined EEG as a technique for functional exploration the central nervous
system by means of recording the brain’s electrical activity in real time [31]. In order
to record and store the electrical activity of the brain, the subject wears an EEG cap on
top of the head, which requires regular spatial location of electrodes on the scalp for
capturing this electrical activity in the form of waves. The 10-20 EEG placement system
is an internationally recognized method (by the International Federation of Societies for
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Electroencephalography and Clinical Neurophysiology or the American EEG Society)
employed for this purpose, and is shown in Figure 4.
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The 10–20 system settings specify a constant distance of 20% and 10% between elec-
trodes (21 electrodes in total, excluding the earlobe electrodes) by using specific anatomic
landmarks. In addition, the odd electrodes are on the left side and the even ones are on
the right side. In order to set a larger number of electrodes, the 10–20 system settings
recommend placing the rest of the electrodes equidistantly. In Figure 4c, the locations of the
75 electrodes, counting the reference electrodes established by the American EEG Society,
can be observed.

The EEG signals obtained during measurements are normally divided into frequency
bands, see Figure 4d. Mainly, based on the frequency band and signal amplitude, five
major brain waves can be distinguished. First, the delta band is the slowest wave with
the highest amplitude (between 20 and 200 µV), lying within the frequency range of 0.5 to
4 Hz. It is related with deep sleep and can also appear in a waking state. Theta waves are
within the range of 4 to 7.5 Hz, have relatively high amplitude (>20 µV) and are mainly to
signifying drowsiness in young children or arousal in adults. These waves are also related
to creative inspiration and deep meditation.

Alpha waves are normally located in the occipital region, but can be present in
posterior lobes. These waves present frequencies in the range of 8 to 13 Hz, have low
to moderate amplitudes (between 30 and 50 µV) and commonly appears as a round- or
sinusoidal-shaped signal. This brain rhythm can be associated with relaxed awareness
without any attention or concentration. Finally, beta waves present frequencies within the
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range of 14 to 26 Hz (sometimes higher frequencies are mentioned) with small amplitudes
(between 5 and 30 µV). These waves are generated principally over the frontal and central
regions of the brain and can be associated with thinking. Frequencies exceeding 30 Hz
(mainly up to 45 Hz) correspond to the gamma band (occasionally designated as fast beta
waves) characterized by their tiny amplitudes (<5 µV).

The identification and understanding of the aforementioned brain rhythms obtained
from measured EEG signals are not trivial (the nature of EEG signals is highly non-linear,
non-Gaussian, random, and non-correlated). Therefore, in many cases, advanced signal
processing tools are used to quantify the information and to help with the identification
of brain rhythms and in the diagnosis of brain disorders and impairments. The next
section describes the EEG signal processes that are generally employed to obtain complete
neurofeedback analyses.

3. EEG Signal Processing

The measured raw EEG signals can contain interference that is divided into system
artifacts and patient-related (physiological). The patient-related or internal artifacts are
due to body movements, eye-blinking, breathing, or sweating. The system artifacts are due
to 50/60 Hz power-feeding interference, electrical noise from the electronic equipment and
components, impedance fluctuations of the electrodes, or cable defects. Consequently, it is
of key importance to process and retain effective information of EEG signals, removing ar-
tifacts and interference with the aim of obtaining clear information for later classification
and diagnosis. Different filtering schemes for removing EEG artifacts that are commonly
applied to raw EEG signals are summarized in Table 2.

Table 2. EEG filters applied to raw EEG signals.

Filer Type Expected Improvement

High-pass Removes DC (0 Hz) and very low frequency interferences (<0.5 Hz)

Low-pass Removes high frequency interferences (>50–70 Hz)

Notch Removes 50/60 Hz interference

As can be observed, EEG signals are modified using three types of filters. High-pass
filters (cut-off frequency below 0.5 Hz) avoid very low frequency interference, like breath-
ing. Low-pass filters (cut-off frequency of approximately 50–70 Hz) can be employed
to eliminate high-frequency noise, and Notch filters (at 50/60 Hz) are often necessary
to improve rejection of electric power supply artifacts. Once the EEG signal has been
preprocessed and cleaned of noise and external interference, it can be finally treated to
extract its main properties or features for later classification (see Figure 1).

A feature can be defined as a unique characteristic that allows to understand the
neural activity and assess the state of the brain. EEG features depends on various factors,
e.g., age, mental state of subject, or sex, to name a few. Thus, and as can be presumed,
the underlying dynamics happening in the brain involve many aspects (linear as well as
non-linear), which determine these characteristic features. In this regard, several signal
processing methods have been proposed to isolate and extract significant features that help
to diagnose complex features that can take place.

These signal processing methods are divided in four fundamental domains [33–40],
as can be seen in Table 3. Furthermore, various algorithms have been established to
visualize brain activity using restructured images from EEGs. Each domain presents
advantages and problems, where each technique is optimal depending on the information
that one wants to extract.

Temporal analysis permits to identify normal and abnormal wave outlines in the EEG
signal, and it is useful to identify the presence or absence of brain rhythms. In general,
EEG signals are often correlated in time. Consequently, time samples can be estimated
employing previous samples by means of autoregressive models (for stationary signals)
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or adaptive autoregressive models (for nonstationary signals), such as linear prediction
(LP) and independent component analysis (ICA). The main features that can be obtained
from the latter classification are event related potentials (ERP), statistics of signal power
(mean, standard deviation, 1st difference, 2nd difference, entropy), Hjorth features (activity,
mobility, complexity), fractal dimension (FD), and high order crossings (HOC).

Table 3. Domains, extraction methods and features of EEG signals.

Domain of Analysis Feature Extraction Method Feature

Time
• Linear prediction (LP)
• Independent component analysis (ICA)

• Event related potentials (ERP)
• Statistics of signal power (mean, standard

deviation, 1st difference, 2nd difference,
entropy, ANOVAs)

• Hjorth features (activity, mobility, complexity)
• Fractal dimension (FD)
• High order crossings (HOC)

Frequency

• Fast Fourier transform (FFT)
• Short-time Fourier transform (STFT)
• Spectrogram
• Autoregressive method (ARM)
• Eigenvector

• Band power
• High order spectra (HOS)

Time-Frequency

• Wigner Ville distribution
• Scalogram
• Hilbert–Huang spectrum
• Discrete wavelet transform (DWT)
• Wavelet packet decomposition (WPD)

• Combination of time and frequency features

Spatial-Time-Frequency
• In multielectrode analysis spatial

dimension is calculated by the
geometrical position of the electrodes

• Combination of time and frequency features

In some cases, temporal methods cannot provide significant features. This can happen
due to poor temporal or spatial resolutions in a recorded signal, where only oscillatory
activity could be captured. Theoretically, these oscillations may be represented by basic
sinusoid functions making use of the Fourier transform (FT). In these cases, spectral analysis
gives additional information, resolving the dominant frequencies present in the EGG signal.
The main methods employed in this case are fast Fourier transform (FFT), short-time Fourier
transform (STFT), spectrogram, autoregressive method (ARM), and Eigenvectors, where the
main features that are extracted are band power and high order spectra (HOS). Typically,
for neuronal signals, short-time Fourier transform (STFT) or spectrograms offer better
results as short-time windows are employed by dividing the data into small time intervals.

The benefits of temporal and frequency studies can be combined to obtain improved
EEG studies. For nonperiodic signals, time-frequency transformations are usually applied
for signal decomposition, providing a great deal of important information. Signals can
be decomposed into single instantaneous frequencies over time by applying different
methods, i.e., Wigner–Ville distribution, scalogram, Hilbert–Huang spectrum or discrete
wavelet transform (DWT). The advantage of this method is that non-linear, nonstationary
neural information can be converted into linear and stationary components. In addition,
this technique allows to obtain a compromise between time and frequency resolutions to
have an optimum representation of the signals.

Finally, spatial-time-frequency analysis estimates the distribution of brain rhythms
and characteristic features over different brain regions. Spatial referencing methods can be
useful to augment local activity, filtering the noise measured from different electrodes and
approximate the variance of the EEG information.
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4. Machine Learning Algorithms Employed in EEG Signal Classification

This section provides a concise description of machine learning methods used in EEG
analysis for classification. Once feature extraction is successfully carried out, the processed
EEG data are finally ready for classification by means of machine learning algorithms.

Machine learning can be defined as computer models and algorithms that are able to
automatically learn and adapt from data and experience without explicit instructions or
human intervention [41–48]. As can be seen in Figure 5, machine learning methods can be
classified into four categories: supervised learning, unsupervised learning deep learning,
and reinforcement learning— the first three being more common.
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Supervised learning algorithms utilize predefined inputs and known outputs to con-
struct a model using data points with known outcomes. Thereafter, the system is able
to make decisions or predictions (predict forthcoming outputs using new data) from the
acquired training and experience. Supervised learning can be divided into two categories
i.e., regression and classification. Representative regression learning algorithms are linear
regression, non-linear regression, Gaussian process regression, and regression trees, gener-
ally used for the prediction of continuous variables. Classification algorithms like support
vector machines (SVM), logistic regression, decision trees, naïve Bayes, discriminant analy-
sis, and k nearest neighbor (kNN) are employed for categorical output variables; only two
classes of values are possible, such as yes–no, male–female, true–false, etc.

On the contrary, in unsupervised learning, algorithms involve only input datasets but
no outputs, inferring the outcome patterns without any reference, so that the machine does
not need any external supervision to learn from the data. This method is classified into
clustering and dimensionality reduction. Clustering algorithms, such K-means, k-medoids,
hierarchical clustering, self-organizing map, fuzzy c-means and Gaussian mixture, typ-
ically match the input data that presents similarities into clusters and categorizes them
according to the presence or absence of those similarities. Dimensionality reduction is ob-
tained by reducing the number of input variables in a dataset to simplify the classification
and better fit a predictive model while minimizing the loss of information; for instance,
principal component analysis, factor analysis, independent component analysis, and ran-
dom projection. Unsupervised learning can carry out more complex tasks than supervised
learning, but it is essentially more difficult to implement.

In reinforcement learning, the employed algorithms learn from their own experiences;
an agent learns from an unidentified environment to achieve a purpose. That is, the al-
gorithms are capable of making the best decision according to a procedure in which the
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correct decisions are rewarded. The main elements of a reinforcement learning system are
the agent, the environment, the action, the policy and the reward. The agent is the program
that is trained with the objective of achieving a specific task. The environment is the world,
real or virtual, in which the agent executes actions. The action is a change made by an
agent that modifies the status of the environment and the policy are the criterions that the
agent follows when making actions. The reward is the evaluation of an action that can be
positive or negative. Reinforcement learning procedures are classified as model-free and
model-based algorithms. Model-free algorithms do not construct an explicit model of the
environment, but rather runs actions with the environment to directly derive the optimal
policy, similar to trial-and-error algorithms. Model-free algorithms are either value-based
or policy-based, where value-based algorithms (like Q-learning, deep Q neural network
(DQN) and state-action-reward-state-action (SARSA)) reflect an optimal strategy as a result
of exactly guessing the value function in every state. Policy-based algorithms (like policy
gradient) evaluate the optimal policy without modeling the value function. Model-based
algorithms (like learn/given model) construct a concrete model of the environment and the
agent explores that environment to learn it. For each state and action, the model estimates
the expected reward and the future state.

At last, it is worthwhile to highlight a specific subset of machine learning algorithms,
known as deep learning, due to their interesting characteristics [14,49]. Deep learning is
mainly based on multi-layered (input, hidden and output layers) neural networks that
learn from large amounts of data, emulating the functions and workings of the human
brain, computing information using millions of neurons. The input layer has input features
of the dataset introduced to the neural network. The hidden layers, that can vary from
a few to several layers depending on the complexity of the problem to solve, are placed
between input layers and output layers and each layer creates an output from a set of
weighted inputs. The output layer produces the final results for given inputs. In this
way, deep learning algorithms repeatedly perform calculations and predictions in each
layer, progressively learning and gradually improving the accuracy of the results over
time. Commonly, deep learning can be categorized into three types of algorithms, i.e.,
artificial neural networks (ANN), convolutional neural networks (CNN), and recurrent
neural networks (RNN). Artificial neural networks (ANNs), also known as simulated
neural networks (SNNs), are the core of deep learning algorithms and their structure is
inspired by the human brain, simulating the behavior of biological neurons. ANNs are
capable of learning any nonlinear function, based on an activation function that helps the
network to learn any complex relationship between inputs and outputs. These networks
are also widely known as universal function approximators. CNNs (or ConvNets) are
neural networks mainly used for auto-correlated data processing. The basic element of
CNNs are filters, also known as kernels, employed to acquire relevant features from the
input by means of convolutional operations. CNNs generally present several specialized
hidden layers showing different functions and hierarchies, i.e., first hidden layers can
detect simple patterns, the next layers can identify patterns, and the final hidden layers
are specialized and can recognize complex patterns. RNNs are neural networks that
have recurrent connections between hidden layers. This recurrent feedback ensures that
sequential information is captured in the input data. Therefore, RNNs can normally be
used in problems related to time series data. The most employed algorithms to develop
RNNs are long short-term memory (LSTM), side-output residual network (SRN) and gated
recurrent unit (GRU).

The main difference between deep and machine is how data is processed and how
algorithms learn from them. While all machine learning procedures can work and learn
from structured and tagged data, deep learning can also process unstructured and unla-
beled data. Rather than relying on labels within the data to identify and classify objects and
information, deep learning uses a multi-layered neural network to extract characteristics
from the data and increasingly improve the identification and classification of the data
itself. Table 4 summarizes the main differences between both classification approaches,
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where several properties, i.e., data format, database size, training, algorithm, and applica-
tions, are analyzed. Finally, deep learning models are also capable of reinforcing learning,
which is a more advanced unsupervised learning process in which the model “learns” to
be more accurate based on positive feedback from previous calculations.

Table 4. Machine learning and deep learning main differences.

Machine Learning Deep Learning

Data format Structured data Unstructured data

Database size Manageable database Over a million data points

Training A human trainer is needed The system learns on its own

Algorithm Variable algorithm Neural network of algorithms

Application Simple routine tasks Complex tasks

Next, in Table 5, a summary of the most known algorithms employed in machine
learning is shown. The main characteristics of each algorithm, as well as the advantages
and disadvantages of the methods, are also presented in the table.

Table 5. Machine learning algorithms used in EEG analyses.

Category Algorithm Main Characteristics

Supervised/
Regression

Linear Regression
Statistical modelling technique that describes a continuous
output as a linear function of one or more input variables.
Simple to interpret and easy to train.

Non-Linear Regression
Statistical modelling technique that describes a continuous
output as a non-linear function of one or more input variables.
Simple to interpret and easy to train.

Gaussian Regression Non-parametric models that predict the value of a continuous
output variable.

Regression Trees

Predicts output responses by following the decisions in the tree,
from the root down to a leaf node. A tree consists of
ramification conditions where the value of a predictor is
compared to a trained weight. The number of branches and the
values of weights are determined in the training process

Supervised/
Classification

Support Vector Machines (SVM)

Classifies data by finding the linear decision boundary
(hyperplane) that divides all data points of one class from those
of the other class. If the data is not linearly separable, a loss
function is employed to penalize points on the erroneous side of
the hyperplane

Logistic Regression
Predicts the probability of a response belonging to a binary
class (yes or no). Because of its simplicity, it is commonly used
as a starting point for binary classification problems

Decision Trees Decision trees are similar to regression trees, but they are
adjusted to be able to predict discrete responses

Naïve Bayes

A naïve Bayes classifier assumes that the presence of a
particular feature in a class is unrelated to the presence of any
other feature. It classifies new data based on the highest
probability of its belonging to a particular class

Discriminant Analysis
Classifies data by finding linear combinations of features, where
the training involves finding the parameters for a Gaussian
distribution for each class
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Table 5. Cont.

Category Algorithm Main Characteristics

Supervised/
Classification k Nearest Neighbor (kNN)

Categorizes objects based on the classes of their nearest
neighbours in the data set. Distance metrics, such as Euclidean,
cosine, and Chebychev, are used to find the nearest neighbor

Unsupervised/
Clustering

k-Means
Divides data into k number of mutually exclusive clusters,
where points are included in the clusters depending on the
distance from that point to the cluster’s centre

k-Medoids Similar to k-means, but with the requirement that the cluster
centres coincide with points in the data

Hierarchical Clustering
Produces nested sets of clusters by analysing similarities
between pairs of points and grouping objects into a binary,
hierarchical tree

Self-Organizing Map Neural network-based clustering that transforms a dataset into
a topology that keeps a 2D map distribution

Fuzzy c-Means Partition-based clustering employed when data points may
belong to more than one cluster

Gaussian Mixture
Partition-based clustering where data points come from
different multivariate normal distributions with
certain probabilities

Unsupervised/
Dimensionality
Reduction

Principal Component Analysis
Finds the directions of maximum variance in high-dimensional
dataset and projects this data into a new subspace with the
same or fewer dimensions than the original one

Factor analysis
Identifies underlying correlations between variables in data set
to provide a representation in terms of a smaller number
of factors

Independent Component Analysis

Identifies independent features in data set to reduce
dimensionality. While principal component analysis maximizes
variance, independent component analysis assumes that the
features are mixtures of independent sources

Random Projection
Reduces the number of dimensions of our data set by
multiplying it to a random matrix. Which will project the
dataset into a new subspace of features

Reinforcement/
Model-Free/
Value-Based

Q-Learning
Follows the policy that perform actions to obtain the highest
possible reward, maximizing thus the value of Q (derived from
the Bellman equation)

Deep Q Neural Network (DQN) Is used in big space environments, where neural network
approximates the Q-values for each action and state

State-Action-Reward-State-
Action (SARSA)

Interacts with the environment and updates the policy based on
taken actions. The Q-value for a state-action is updated by
an error

Reinforcement/
Model-Free/
Policy-Based

Policy Gradient

Instead of learning a value function providing information
about the expected sum of rewards given a state and an action,
it learns directly the policy function that maps state-to-action
(select actions without using a value function). Optimizes the
policy function without worrying about a value function

Reinforcement/
Model-Based Learn/Given Model

Incorporates a model of the environment that influences how
the agent’s overall policy is determined. Model may be known
or learned. Model-based tends to emphasize planning, whereas
model-free tends to emphasize learning
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Table 5. Cont.

Category Algorithm Main Characteristics

Deep Learning/
Recurrent Neural
Networks

Long Short-Term Memory (LSTM)

Can accomplish learning of long-term series data avoiding
dependency problem. It can process not only single data points
(such as images), but also complete sequences of data
(such as speech)

Side-Output Residual Network (SRN) Process sequential inputs and outputs. Used for static
functional mapping

Gated Recurrent Unit (GRU)
Newer generation of recurrent neural networks. Employs two
vectors (update gate and reset gate) to decide the information
sent to the output

It can be concluded that supervised learning views output values based on the re-
ceived training. Unsupervised learning groups together data depending on similarity and
creates clusters. Reinforcement learning, which is a subgroup of unsupervised learning,
completes learning differently, and it employs a method of cause and effect by means of
rewards. Deep learning techniques are particularly well-suited for complex data classifica-
tions tasks and, thus, are particularly well-suited to solve problems related to brain signals.

Current machine learning classification methods used in EEG applications have
shown that supervised algorithms, either regression or classification, such naïve Bayes,
decision tree, KNN or SVM are on average of higher accuracy than their unsupervised
counterparts. In addition, individually applied methods are limited in their accuracy
but, the combination of methods when implemented properly, can have higher overall
classification accuracy. Concerning deep learning, it has recently shown notable results and
progress across EEG signals, such as patient classification, diseases diagnosis, or patient
treatment [49–52]. However, some challenges remain, for instance the vanishing gradient
in ANN, such as in networks with a large number of hidden layers; the weights of a
neural network (updated finding gradients) vanish as it propagates through the layers.
Consequently, ANNs cannot capture sequential information in the input data. In the case
of RNNs, they also suffer from the vanishing gradient drawback.

Furthermore, other general problems detected in the revised research are mainly
related to small datasheets that were recorded or few existing relevant data in datasheets.
As is well known, the quality and amount of data are of primary importance in machine
learning. Different approaches can be used to improve predictive models from small
datasets. The use of simple classifier models like naïve Bayes, regression models, short de-
cision trees is less susceptible to overfitting as they essentially are trying to learn less.
Additionally, the use of ensemble methods, where the decisions between classifiers can
compensate for learning.

In the particular case of few existing relevant data in datasheets, transfer learn-
ing [53–56], data augmentation [57–60], or synthetic data [61–64] techniques are usually
applied to generate improved machine learning training and models. Transfer learning
is based on the knowledge acquired from another existing learned task to improve the
performance of a new machine learning model; thus, reducing the amount of required
training data. Simply combining different datasets may not always improve input data if
the existing datasets are different from the target data as the new model would be trained
inaccurately. In addition, the lack of quality labeled data can be overcome through transfer
learning. Data augmentation is based on an increase in representative data. By these
means, the prediction accuracy of the model can be improved as training data is increased,
overfitting is reduced, and scarcity is prevented. Some of the most common data aug-
mentation techniques used in practice are the generative adversarial networks (GAN)
employed to generate new data samples or neural style transfer (NST) used to combine
datasets. The GAN method divides its main algorithm into two sub-models, the generator
model and the discriminator model. Both models are trained together by means of a
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zero-sum game. Finally, synthetic data, on the contrary, generate new false data that have
equivalent representation and statistical properties of its real counterpart. Particularly,
synthetic minority over-sampling technique (SMOTE) and modified-SMOTE are the most
used techniques.

In summary, the presented results prove that machine learning can successfully im-
plement practical complementarity for enhanced feature extraction and classification,
especially in EEG signal analysis. More specifically, these results show that deep learn-
ing provides a significant breakthrough in the classification of EEG data, outperforming,
in many cases, traditional machine learning methods. In addition, a great deal of work
should be carried out in many new research areas, such as autobiographical memory.

5. EEG Neurofeedback in Autobiographical Memory Analyses

Recent advances in signal processing and machine learning, as well as improvements
in the ability to collect, store, and process massive amounts of data, have provided sig-
nificant progress and new insights into neurological computerized analysis. EEG signals
are intrinsically complex with non-Gaussian, non-stationary, and often non-linear natures.
Therefore, the help of both signal processing and machine learning offers the possibility to
obtain objective clinical diseases diagnoses, predictions, and the monitoring of treatment
(in addition to the subjective interpretation of EEG recordings). Significant uses of EEGs
in neural studies have been applied to a variety of brain disorders, i.e., Parkinson dis-
ease, epilepsy, tremor, strokes, concussions, bipolar disorder, schizophrenia, depression,
and sleep disorders, to name a few, or they have simply been applied to brain monitoring
or brain rhythms detection. Concerning autobiographical memory deficits in schizophrenia
evaluated through EEG, in order to rigorously identify previous publications to date a
preferred reporting items for systematic reviews and meta-analyses (PRISMA) analysis has
been performed and is shown in Figure 6.
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The articles included in the analysis are summarized in Table 6, which provides an
overview and comparison of the most significant published research papers. Particularly,
the assigned reference, the signal processing carried out and the conclusions obtained
are listed.

Table 6. Published research focused on EGG autobiographical memory.

Paper Processing Domain/Feature/Machine Learning Conclusions Obtained

[65] Time domain/statistics of signal power
(mean)/not applied

• Schizophrenia causes major cognitive impairment such as
autobiographical memory deficits

[66] Time domain/statistics of signal power (mean,
ANOVAs)/Not applied

• Patients with schizophrenia have difficulty accessing
self-defining memories

• Psychotherapeutic interventions may help patients to draw
lessons and to challenge the negative self-schemas

[67] Not applied (review)/not applied
(review)/not applied (review)

• Emotional disorders produce difficulties to retrieve
autobiographical memories due to poor executive functioning
and cognitive regulation of emotions

[68] Time domain/statistics of signal power (mean,
ANOVAs)/not applied

• Left frontal activation in connection with posterior temporal
lobes and occipital lobes (predominantly in the right cortical
hemisphere) is the neurophysiological signature of specific
autobiographical memories

[69]
Frequency and space-time-frequency
domain/band power and statistics of signal
power (mean)/K-means

• Autobiographical memory is associated with an increase of
spectral power in alpha and beta band, whilst it is related to a
decrease in delta band

• Memory-related areas, such as temporal lobe and frontal
regions are activated in autobiographical memory

[70] Frequency domain/band power/not applied
• Theta rhythm modulation helps to increase early

consolidation of episodic memory

[71]
Frequency and space-time-frequency
domain/band power and statistics of signal
power (mean)/not applied

• Autobiographical memory retrieval involves low delta and
high-frequency gamma EEG bands

[72] Time-frequency domain/band power) and
statistics of signal power (mean)/not applied

• First EEG study that explored depressive symptoms during
recall of autobiographical memories

• Medial prefrontal cortex is a significant brain area region
linked with emotional arousal for negative memories in
individuals predisposed to depression

[73] Time domain/statistics of signal power (mean
and standard deviations)/not applied

• Significant differences in the activation of frontal brain areas
between specific and categorical memories are shown

• Specific memory causes an activation of the left prefrontal
cortex, that is less intense in categoric memories

• Elaborating specific memories requires the activation of
prefrontal brain areas

As can be readily observed in several assertions obtained within the research papers
presented in Table 5, memory access mainly implies the usage of frontal and temporal
regions of the brain. Therefore, the delta rhythm is mostly involved in the memory
endeavor (as it is interrelated with the frontal lobe) but theta and gamma rhythms can
also be affected to a lesser extent. In addition, emotional disorders and schizophrenia
generally yield difficulties to memory access, and these difficulties could be reduced by
means of psychotherapeutic treatment. Lastly, most studies presented to date have made
use of neuroimaging (it detects areas that are activated) rather than EEG (that indicates
interconnections between brain areas), and the acquired signals have been processed



Electronics 2021, 10, 3037 16 of 19

employing the techniques described in Tables 3 and 5, but machine learning is still lacking
in most of the analyses performed.

Deeper and more complete studies should be carried out in the specific research area
of autobiographical memory, in particular as related to brain disorders, such schizophrenia,
to provide better insights of the underlying processes that could explain psycopathological
impairments in the brain. It will give answer to issues such as differences in memory re-
trieval connections between controls and patients suffering from schizophrenia, what areas
are activated and connected to each other in specific memories needed to improve social
functioning and adaptation, differences depending on whether the memory is specific
or overgeneral and dysfunctional, the role of depressive symptoms in the specificity of
auto-biographical memory transdiagnostically, or differences depending on whether the
memory is emotionally positive or negative (within patients with schizophrenia and/or
depressive signs). The answer to these and similar questions, and the application of ma-
chine learning and new signal processing methods can provide great advances in the
neurofeedback of autobiographical memory and treatment of its impairment.

6. Conclusions

In this paper, the structure of the brain and methods used for signal acquisition
are presented. After the general introduction, the paper focuses on EEG techniques and
associated signal processing. EEG analyses can be divided into signal acquisition, prepro-
cessing, feature extraction, and classification (usually using simple inspection methods
or more complex procedures such as machine learning). Concerning signal acquisition,
it is usually obtained with EEG nets following the internationally recognized 10–20 EEG
placement criteria. Next, signal preprocessing permits to remove external artifacts due
to power supply interference, electrical noise from the electronic equipment and com-
ponents, impedance fluctuation of the electrodes, or cable defects. On the other hand,
feature extraction methods are typically performed in time, frequency, or space domains
and classification is carried out by applying machine learning algorithms classified as super-
vised, unsupervised, reinforcement systems, or deep learning. In this regard, developments
in machine learning have notably increased the possibility of performing reliable diagnoses
of neurological impairments and disorders. Especially, deep learning algorithms provide
the best classification and understanding of brain signals. However, problems related to
small datasheets or few relevant data points in datasheets have to be improved.

Finally, research devoted to neurofeedback in autobiographical memory to date shows
that patients with brain disorders, e.g., depression or schizophrenia, have difficulty access-
ing memory-related areas of the brain. Mainly, the frontal and temporal lobes, and the
delta rhythm are affected during memory retrieval. Nevertheless, research associated with
autobiographical memory has to yet answer key intrinsic aspects of brain functioning
and therefore a great deal of research efforts remains necessary in this area. Thus, ma-
chine learning insights could show and improve processes involved in the recovery of the
specificity of autobiographical memory, which is undermined under clinical diagnoses,
such as schizophrenia.
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