
entropy

Article

Machine Learning Algorithms for Prediction of the Quality of
Transmission in Optical Networks

Stanisław Kozdrowski 1,* , Paweł Cichosz 1 , Piotr Paziewski 1 and Sławomir Sujecki 2

����������
�������

Citation: Kozdrowski, S.; Cichosz, P.;

Paziewski, P.; Sujeck, S. Machine

Learning Algorithms for Prediction of

the Quality of Transmission in

Optical Networks. Entropy 2020, 23, 7.

https://doi.org/10.3390/e23010007

Received: 30 November 2020

Accepted: 17 December 2020

Published: 22 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Institute, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland;
p.cichosz@elka.pw.edu.pl (P.C.); piotr.paziewski2.stud@pw.edu.pl (P.P.)

2 Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology,
Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; slawomir.sujecki@pwr.edu.pl

* Correspondence: s.kozdrowski@elka.pw.edu.pl

Abstract: Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing
network traffic prompts an introduction of new solutions that allow increasing the transmission
speed without significant increase of the service cost. In order to achieve this objective simpler and
faster, DWDM network reconfiguration procedures are needed. A key problem that is intrinsically
related to network reconfiguration is that of the quality of transmission assessment. Thus, in this
contribution a Machine Learning (ML) based method for an assessment of the quality of transmission
is proposed. The proposed ML methods use a database, which was created only on the basis of
information that is available to a DWDM network operator via the DWDM network control plane.
Several types of ML classifiers are proposed and their performance is tested and compared for two
real DWDM network topologies. The results obtained are promising and motivate further research.

Keywords: artificial intelligence; machine learning; optical networks; quality of transmission; ma-
chine learning classifiers

1. Introduction

The demand for network bandwidth is constantly growing due to emerging Internet
applications such as high-definition video streaming, cloud, 5G, internet of things (IoT),
virtual reality, etc. As a consequence, backbone traffic is growing exponentially [1]. In addi-
tion, the special circumstances related to Covid-19 prompted many services to move online,
thus further increasing the demand for internet access with high bandwidth and quality
of service (QoS). Therefore, the backbone network must rely not only on high bandwidth
optical links but also on a very good transmission quality. Also, in order to improve the
commercial viability, elastic optical networks (EONs) have been proposed to use physical
layer resources intelligently and efficiently to increase backbone network capacity and
enable dynamic services [2–8]. Currently, commercial optical network equipment providers
offer coherent Dense Wavelength Division Multiplexing (DWDM) technology capable of
establishing optical channels with 100 Gigabit per second (Gbps), 200 Gbps, 400 Gbps, and
even 1 Tbps throughput [9–12].

1.1. Motivation

Due to continuous traffic growth in backbone networks, dynamic or even programmable
optical networks are becoming increasingly important as they allow for more efficient use
of network resources without significant increase in operational and capital expenditure
(Opex/Capex). In modern DWDM networks, which comply with software defined network
(SDN) paradigm, DWDM network reconfiguration is becoming more and more frequent,
making the growing network more robust and faster adapting to real changes in the
bandwidth demand. Ideally, network reconfigurations should closely match changes in the
bandwidth demand. However, bandwidth demand can fluctuate very quickly (fluctuations
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can occur within minutes), whilst network reconfigurations take much more time and thus
reconfigurations that exactly match the bandwidth demand fluctuations are not feasible
yet. This is mainly due to operational processes that are too slow to allow for the re-
optimization of the network in real time. That is why it is so important that DWDM
network reconfiguration is fast, automated and does not incur significant increase in Opex.

Traditional network planning tools estimate Quality of Transmission (QoT) using
static Q-factor models, which are functions of the physical layer parameters [13,14]. The ex-
traction of physical layer parameters is not straightforward from the network operator
point of view. Further, the models assessing QoT perform complex calculations that are
time-consuming, require highly qualified engineers, and purchase of expensive equipment
for performing QoT measurements. This obviously significantly increases network operator
Opex and in practice is hence avoided.

One of the main goals of telecommunication operators is to minimize DWDM net-
work Capex and Opex by introduction of automation, frequent network reconfiguration,
reoptimization and monitoring of network reliability [15]. Currently, a software defined
network (SDN) is used to achieve all these goals. SDN uses a logically centralized con-
trol plane in a DWDM network, which is built using specially for this purpose flexible
hardware, e.g., reconfigurable optical add/drop multiplexers (ROADM), flexible linear
interfaces, etc. [16]. However, today’s DWDM networks are growing rapidly in terms of
the number of connected devices. This in turn results in increasing complexity of a DWDM
network management to a level that is becoming very difficult manage even with SDN
platform in place. Hence, there is a need for new ideas and solutions. One of them is the
knowledge-based network (KDN) is also a next step on the path towards an implemen-
tation of a self-driving network [15,17]. KDN is a complementary solution for SDN that
brings reasoning processes and machine learning (ML) techniques into the network control
plane to enable autonomous and fast operation and minimization of Opex [18].

One of the key problems in implementing a self-driving optical network is an auto-
matic provisioning of optical channels (lightpaths). The lightpaths accumulate impairments
that can degrade channel QoT to such an extent that the transmitted information cannot
be accurately extracted at the receiver. Therefore, to quickly deliver a new lightpath or
redirect an existing one, for instance in response to a physical link failure, an accurate
and quick QoT assessment is required. However, as already mentioned QoT evaluation
is associated with complex and time-consuming calculations. Further, the estimation of
QoT of an optical channel before its deployment is a step of great importance for optical
network operators, which has to be carried out with great caution in order to avoid an
immediate link establishment failure [19–26]. Therefore, in this article we propose applying
machine learning methods to estimate the QoT of optical channels. It is noted that ML
has been already used to address the problem of optical link QoT assessment by other
authors [8,15,27–29], also for non-coherent networks [30]. However, our approach is based
on real data that is easily available to a DWDM network operator through the control plane
and does not use data that is only available to DWDM equipment providers and fiber
providers. Therefore, the main advantage of the presented approach is that it can be easily
implemented by a network operator. As will be explained in the next paragraph, such an
approach imposes some constraints on the selection of suitable ML methods, which makes
the ML problem considered in this contribution distinctly different from the one addressed
in [8,15,27–29].

1.2. Machine Learning Challenges

Using only real data that is easily accessible through a DWDM network control plane
when applying machine learning algorithms to support optical network management poses
substantial challenges. These challenges are associated with data representation, data size,
and especially with class imbalance.

General-purpose machine learning algorithms are designed to work with tabular data,
with each instance or observation represented by a fixed-length vector of a attribute values.
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Optical networks, or any other graph structures, are not normally represented in such a
way and need some feature engineering to be converted to a vector representation. The
approach adopted in this work is to consider each network channel as a single instance
and to derive a fixed, uniform set of attributes describing all hops in network channels
independently of the number of hops.

One of the most important problems in many machine learning applications is the risk
of overfitting, i.e., obtaining apparently good models fitting the training data very well,
but with poor generalization capabilities. It is an obvious intuition, fully confirmed by the
results of computational learning theory [31], that the risk of overfitting increases with the
size and complexity of the model space, which is typically directly related to the training
data dimensionality (the number of attributes), and decreases with the training data size
(the number of instances). Unfortunately, real datasets gathered by network operators tend
to be small (hundreds rather than thousands of instances), but the number of attributes
needed to adequately describe network channels may be quite large (dozens rather than
a few). This is why the experimental study presented in this article uses a set of diverse
learning algorithms, with different overfitting prevention mechanisms, and several nested
attribute subsets. All these algorithms can be seen to take inspirations from information
theory.

Real optical network data for channel classification are more than likely to suffer from
severe class imbalance because the number of channels that were not established due to
optical impairments (which we will refer to as “bad” in the remainder of the article) is
typically less than of those that were allocated (referred to as “good”) by at least an order of
magnitude. This is because it is not a standard practice to preserve and archive unsuccessful
channel configurations. While this situation may gradually become less severe as network
operators become aware of the prospects of machine learning applications to network
reconfiguration and the associated data requirements, yet for the foreseeable future one
has to deal with datasets where only a tiny fraction of instances represent the minority
class. This requires special care when creating predictive models and evaluating their
quality. The extreme dominance of one class over the other makes it easy to come up with
apparently accurate models with little or no actual predictive utility. To avoid this, in our
experimental study we increase the sensitivity of the learning algorithms to the minority
class by weighting or altering prior class probabilities, assess prediction quality using ROC
and precision-recall curves rather than misclassification error or classification accuracy, and
apply the cross-validation procedure with stratified sampling to preserve class distribution
and ensure low evaluation bias and variance.

Thus, in this contribution a database is created using only information that is available
to a DWDM network operator via the control plane. The data is collected from 2 distinct
networks that use equipment coming from 3 different hardware families. Therefore, our
intention is to provide an effective tool for assessing QoT in a DWDM network, which can
be easily implemented by a network operator. We propose several types of ML classifiers
and their performance is tested and compared for the two considered real DWDM network
topologies.

1.3. Article Organization

The article is organized as follows: in Section 2 we briefly describe the data and
analyzed networks. Section 3 provides a detailed description of applied machine learning
algorithms, and Section 4 presents the results of the experimental study. Contributions of
this work are summarized and future work directions are discussed in Section 5.

2. Data and DWDM Network Description

Two DWDM networks have been considered for the application of ML algorithms:

1. The first network consists of 187 nodes, in which a mixture of non-coherent and co-
herent transponders were installed. Such a network is quite representative of DWDM
networks used by operators nowadays whereby legacy non-coherent transponders
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are still in use whilst modern coherent transponders are gradually introduced. The
non-coherent transponders belong to Nokia 1626 family whilst the coherent ones
are from Nokia PSS 1830 family. The non-coherent transponders have 2.5G and 10G
transmission rate and use NRZ modulation. The coherent transponders operate at
either 100G or 200G transmission rate and use three types of modulation: QPSK,
8QAM and 16QAM. In the remainder of the article the dataset corresponding to the
187-node network will be referred to as dataset 1.

2. The second network consists of 83 nodes with coherent transponders only. This is a
typical representative of a new network established by an operator. In this instance the
coherent transponders belong to Ciena’s 6500 family of equipment, with transmission
rate of 100G, 200G and 400G and four types of modulation: QPSK, 16QAM, 32QAM
and 64QAM. In the remainder of this article the dataset corresponding to the 83-node
network will be referred to as dataset 2.

The network topology for the 117 node network is presented in Figure 1a while that
for the 63 node network in Figure 1b. Both considered networks use 96 DWDM channels
allocated in band C and geographically are situated in Poland whereby network nodes
correspond to Polish cities. Thus, the network spans approximately an area of 1000 km in
diameter whereby the largest distance between two most spatially separated nodes is 120
km and an average distance between two neighboring nodes is about 60 km.

Figure 1. Analyzed network topology for (a) 117 node network, and (b) 63 node network topologies.

2.1. Channel Attributes

Since the aim of the research is to predict QoT for optical channels, the main data
object is an optical channel that has a set of attributes. Thus, a table is created where each
row corresponds to a channel. The following attributes have been used to characterize each
channel:

1. hop_lenghts (a natural number describing the length of the edge, expressed in kilo-
metres, e.g., 67 km);

2. number_of_paths_in_hops (a natural number representing the number of channels
in the edge, e.g., 17);

3. hop_losses (a real number describing edge suppression, expressed in decibels e.g.,
17.7 dB);

4. number_of_hops (a natural number representing the number of edges of which the
path (channel) consists, e.g., 9);

5. transponder_modulation (description of the transponder modulation that is installed
at the beginning and the end of the path (channel), e.g., QAM);

6. transponder_bitrate (a natural number describing the transmission rate of the
transponder, e.g., 100 Gbps.).
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The information about optical channels active in the network is collected from the
management system via control plane to a dedicated database. The implemented process
of data collection to form a database for machine learning algorithms can be divided into
the following stages: (1) generating reports on network parameters from network elements,
(2) converting text reports and static tables into appropriate data structures, (3) saving
structured data to a database, (4) sharing data with other system modules. Figure 2
illustrates the process of preparing the database for machine learning algorithms.

Figure 2. Data preparation process.

Figure 3 shows a set of example histograms for optical channel attributes of the two
considered data sets. Figure 3a shows how many optical channels we have, consisting of
different numbers of hops. The value of the attenuation of individual hops is presented
in Figure 3b. Then, Figure 3c shows how many hops of different lengths we have, and
the number of hops with different number of optical channels presents the histogram in
Figure 3d.

(a) (b)

(c) (d)
Figure 3. Histograms of optical channel attributes for all data sets under consideration.

Finally, Table 1 gives the information about the number of the optical channels in-



Entropy 2020, 23, 7 6 of 18

cluded in a set that were allocated marked as “good” and the ones that could not be
allocated due to low QoT—marked as “bad” (for dataset 1 these numbers are presented
separately for non-coherent and coherent transponders). It is clearly seen that all sets
considered are unbalanced, i.e., the number of good elements is much larger than the bad
ones. This poses a challenge for the ML algorithms, which is discussed in further detail in
the next section.

Table 1. Data characteristics for the considered data sets.

Dataset 1

Optical Channel Type #Channel

“good” non-coherent optical channels 1046
“good” coherent optical channels 87

“bad” non-coherent optical channels 13
“bad” coherent optical channels 2

Dataset 2

Optical Channel Type #Channel

“good” coherent optical channels 103
“bad” coherent optical channels 3

2.2. Vector Representation

To transform channel descriptions to a vector representation, an aggregation-based
feature engineering technique was applied to channel hops. This technique aggregates
each of the available hop properties (hop_lengths, num_of_paths_in_hops, hop_losses)
over all hops in a path (i.e., an optical channel) by applying the following set of aggregation
functions:

• mean and standard deviation (assuming 0 for one-hop channels),

• minimum and maximum,

• median, the first quartile, and the third quartile,

• linear correlation coefficient with the ordinal number of the hop in the optical channel.

This yields 8 attributes for each of the 3 hop properties, summing up to 24 attributes
derived from hop properties, in addition to the 3 channel attributes unrelated to individual
hops (number_of_hops, transponder_modulation, and transponder_bitrate).

3. Algorithms

An arbitrary classification algorithm can be used to predict channel “good”/“bad”
class labels or probabilities based on available attributes. A selection of the most useful
algorithms known from the literature is applied in this work: logistic regression, support
vector machines, decision trees, random forests, and extreme gradient boosting [32]. Their
main principles of operations as well as properties that make them interesting in the
application area investigated by this article are highlighted in the corresponding subsections
below.

It is worthwhile to underline that all these algorithms have direct links to informa-
tion theory. Logistic regression uses the maximum log-likelihood method for parameter
estimation. This is also the case for extreme gradient boosting, which is used for binary clas-
sification with logarithmic loss. While support vector machines employ a linear-threshold
model representation optimized for classification margin maximization rather than an
information-theoretic objective function, they are used with Platt’s scaling to obtain prob-
abilistic predictions. The technique transforms the distance from the decision boundary
by a logistic function with parameters adjusted for maximum log-likelihood. Finally, the
decision tree and random forest algorithms used splits selected to minimize class impurity,
typically measured using the entropy or the Gini index.
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The support vector machines, random forest, and extreme gradient boosting algo-
rithms belong to the most powerful and often used algorithms for learning from tabular
data [33]. This makes them natural and promising candidates for our application domain.
The other two algorithms, logistic regression and decision trees, serve as comparison base-
lines for them, to verify whether simpler and more interpretable model representations are
sufficient to achieve a similar level of predictive performance. The increasingly popular
deep learning approach [34], that has been spectacularly successful for image, video, audio,
or text classification, is not very well suited to tabular data. This is due to the properties
of such data (heterogeneous and often sparse and correlated attributes with substantially
varying predictive utility, both discrete and continuous, imbalanced classes) and due to the
properties of deep learning algorithms (inherent over-parameterization, lack of inductive
bias appropriate for tabular data, high computational demands). Examining the utility
of recent deep learning architectures specifically designed for tabular data that overcome
these limitations [35,36] is postponed to future work.

3.1. Logistic Regression

Logistic regression is an instantiation of generalized linear models which adopts
a composite model representation function, with an inner linear model and an outer
logit transformation [37]. Training a logistic regression model consists in finding model
parameters which maximize the log-likelihood of training set classes.

Due to the probabilistic objective function used for parameter estimation, logistic
regression can generate well-calibrated probability predictions and is often the classification
algorithm of choice where this is required. It is easy to apply and not overly sensitive to
overfitting unless used for high-dimensional data. In our experiments, logistic regression
serves as a natural comparison baseline for the more refined support vector machines
algorithm which extends linear classification, achieving better overfitting resistance and
permitting nonlinear relationships.

3.2. Support Vector Machines

Support Vector Machines (SVM), which often belong to the most effective general-
purpose classification algorithms, can be viewed as a considerably strengthened version of a
basic linear-threshold classifier with the following enhancements [38–40]:

margin maximization: the location of the decision boundary (separating hyperplane) is
optimized with respect to the classification margin,

soft margin: incorrectly separated instances are permitted,

kernel trick: complex nonlinear relationships can be represented by representation trans-
formation using kernel functions.

The SVM algorithm assumes a binary classification scenario with two classes. Class
predictions are generated using a standard linear-threshold rule. Model parameters are
found by solving a quadratic programming problem defined to achieve classification
margin maximization, i.e., placing the decision boundary so as to maximize the distance
from the closest correctly separated instances, with a penalty for constraint violations
controlled by a cost parameter. Non-linear relationships can be represented by an implicit
input transformation using kernel functions. The algorithm is sensitive to the settings of
the cost parameter as well as the kernel function type and its parameters – these may need
to be tuned for the best predictive performance.

Binary linear-threshold SVM predictions are determined based on whether an instance
lies on the positive or on the negative side of the separating hyperplane. Probabilistic
predictions are obtained by Platt’s scaling—applying a logistic transformation to the signed
distance of classified instances from the decision boundary, with parameters adjusted for
maximum likelihood [41].

A noteworthy property of SVM is the insensitivity of model quality to data dimension-
ality, which—unlike for many other algorithms—does not increase the risk of overfitting
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because model complexity is related to the number of instances close to the decision
boundary rather than to the number of attributes.

3.3. Decision Trees

A decision tree [42,43] is a hierarchical structure that represents a classification model.
Internal tree nodes represent splits applied to decompose the domain into regions, and
terminal nodes assign class labels or class probabilities to regions believed to be sufficiently
small or sufficiently uniform.

Decision trees are popular in many applications due to their capability of combining
reasonably good prediction accuracy with the human readability of models. They may re-
quire appropriately tuned stop criteria or pruning to avoid overfitting. In our experiments,
decision trees serve as a natural comparison baseline for the more refined random forest
and extreme gradient boosting algorithms which combine multiple trees to achieve better
prediction quality and overfitting resistance.

3.4. Random Forest

Random forests belong to the most popular ensemble modeling algorithms [44], which
achieve improved predictive performance by combining multiple diverse models for the
same domain. A random forest [45] is an ensemble model represented by a set of unpruned
decision trees, grown based on multiple bootstrap samples drawn with replacement from
the training set, with randomized split selection. It can be considered an enhanced form
of bagging [46], which additionally stimulates the diversity of individual models in the
ensemble by randomizing the decision tree growing algorithm used to create them.

Random forest prediction is achieved by simple unweighted voting of individual trees
from the model. Vote distribution can be also used to obtain class probability predictions.
With sufficiently many diversified trees (typically hundreds) this simple voting mechanism
usually makes random forests extremely accurate and resistant to overfitting. As a matter
of fact, in many cases they belong to the most accurate classification models that can
be achieved. The random forest algorithm is not overly sensitivity to parameter settings,
which makes it easy to use and capable of producing high quality models without excessive
tuning.

An additional capability of the random forest algorithm is providing measures of
attribute predictive utility, referred to as variable importance. The most reliable of those
is based on the decrease of prediction accuracy resulting from random attribute value
permutation, estimated using out-of-bag training instances [47]. This measure is used in
the experiments reported in this article.

3.5. Extreme Gradient Boosting

The extreme gradient boosting or xgboost algorithm is another ensemble modeling
algorithm that has gained high popularity and turned out highly successful in many
applications. It belongs to the family of boosting algorithms the main principle of which is
to create ensemble components sequentially in such a way that each subsequent model
best compensates the imperfections of the previously created ones [48,49]. Being an
enhanced version of gradient boosting machines [50,51], xgboost is a unified algorithm for
classification and regression that internally uses regression trees for model representation
and creates trees so as to optimize an ensemble quality measure that includes a loss term
representing the level of fit to the training data and a regularization term penalizing model
complexity [52].

Extreme gradient boosting applied to binary classification is typically used with
logarithmic loss, which is the negated log-likelihood of training set classes. The numeric
predictions of individual trees are summed up transformed by a logistic link function to
obtain class probability predictions.
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The extreme gradient boosting algorithm usually delivers excellent prediction quality,
sometimes superior to that obtained by random forest models. It can overfit, however, if the
number of trees grown is too large and therefore requires tuning at least of this parameter.

3.6. Increasing Sensitivity to the Minority Class

The datasets used in our experimental studies suffer from an extreme form of class
imbalance. This may cause algorithms designed to minimize the misclassification error
produce apparently highly accurate but useless models that fail to correctly classify most
instances of the minority class. Most of the algorithms described above have mechanisms
for increasing the sensitivity of the minority class that help one to avoid this pitfall.

The SVM algorithm can be made more sensitive to the minority class by specifying
class weights, applied when calculating the penalty for constraint violations. Higher
penalties for the minority class make the algorithm find a separating hyperplane that
classifies these instances correctly and with a high margin, as far as possible.

A standard way of dealing with class imbalance in decision tree modeling is to use
instance weights to make the algorithm more sensitive to the minority class. An equivalent
effect can be also achieved by specifying a prior class distribution, to be used when selecting
splits, checking stop criteria, and determining leaf classes and probabilities instead of the
actual unbalanced class distribution observed in the training data. The latter approach is
used in the experiments reported in this article.

The random forest algorithm, as most ensemble modeling algorithms, tends to be
more robust with respect to class imbalance. There are two mechanisms that may still
sometimes improve model quality when learning from highly unbalanced training set.
One is stratified sampling applied to drawing bootstrap samples, with different selection
probabilities for particular classes. In the extreme case, a bootstrap sample may contain
all instances from the minority class and the sample of the same size from the dominating
class. Another approach is to specify instance weights, similarly as for decision trees. Since
in our case classes are extremely imbalanced and there are only a few instances of the
minority class, the weighting technique is preferred to the stratified sampling technique,
since the latter would have to severely undersample the dominating class, with a possibly
negative effect on model performance.

The logistic regression and xgboost algorithms which minimize the logarithmic loss
rather than the misclassification error, are generally resistant to the impact of class imbalance
as long as class probability predictions are used rather than class label predictions. This is
the case in our experiments, where prediction quality is evaluated using ROC and precision-
recall curves. When class label predictions are needed, an appropriate probability cutoff
threshold can be determined (e.g., corresponding to some selected operating point on the
ROC or PR curve) and used instead of the default 0.5 threshold, which would only make
sense for balanced classes. With that being said, the extreme gradient boosting algorithm can
use user-specified instance weights when growing trees, and this mechanism for increasing
its sensitivity to the minority class is used in our experimental study.

3.7. Classification Model Evaluation

The most common classification quality measures such as the misclassification error
or classification accuracy are not very useful whenever classes are unbalanced or likely to
have different predictability. This is why a quality measure sensitive to misclassification
distribution is required. In the experiments reported in this article classification quality is
visualized using ROC curves, presenting possible tradeoff points between the true positive
rate and the false positive rate [53,54]. The former is the share of instances of the positive
class which are correctly predicted to be positive and the latter is the share of instances of
the negative class which are incorrectly predicted to be positive. The performance across
all possible tradeoffs can be summarized using the area under the ROC curve (AUC).
The decision which of the two classes is considered positive and which is considered
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negative is arbitrary to some extent, but it is a common convention to consider positive the
class that is less frequent and harder to predict—in our case, it is the “bad” class.

The area under the ROC curve can be interpreted as the probability that a randomly
chosen positive instance has a higher predicted probability of the positive class than a
randomly chosen instance of a negative class. Random guess and constant predictions both
correspond to an AUC value of 0.5, indicating no predictive power. This clear interpretation
is an additional benefit of the ROC analysis. Under severe class imbalance, however, with
the vast majority of instances being negative, the false positive rate will not decrease
substantially even if a large share of positive class predictions is incorrect, because the
number of false positives may be still small relative to the negative class count. This
is why it may be reasonable to additionally consider the precision, which is the share of
positive class predictions that are correct, and examine its tradeoff with the recall, which is
another term for the true positive rate. The range of possible tradeoffs is then visualized by
precision-recall (PR) curves and can be summarized by the area under the PR curve (PR
AUC), which can be interpreted as the average level of precision achieved across the whole
range of recall values.

To achieve reliable, low-bias and low-variance predictive performance estimates, the
n × k-fold cross-validation procedure times is applied [55]. It makes an effective use of
the available data for both model creation and evaluation by randomly splitting it into k
equally sized subsets, each of which serves as a test set for evaluating the model created on
the combined remaining subsets, and repeating this process n times to further reduce the
variance. The true class labels and predictions for all n × k iterations are then combined to
determine ROC curves, PR curves, and the corresponding AUC values. Due to the severe
class imbalance, the random partitioning into k subsets is performed by stratified sampling,
preserving roughly the same number of minority class instances in each subset. We use
k = 5 for dataset 1 (with 15 “bad” channels) and k = 3 for dataset 2 (with 3 “bad” channels),
and n = 50 for both the datasets.

4. Experiments

This section presents computational experiments in which the algorithms described
in Section 3 are applied to the two datasets described in Section 2. The primary objective
of the experiments is to assess the best level of prediction quality possible to achieve for
channel classification using real optical network data. It is also interesting to observe how
well particular algorithms cope with the challenges of small and extremely unbalanced
datasets. Attribute predictive utility is also measured to gain possibly useful insights about
which channel properties have the highest impact on the predicted class.

4.1. Attribute Subsets

Since the small data size with many attributes increases the risk of overfitting and not
all attributes may be required for successful channel classification, the following nested
attribute subsets are used:

subset 0: number_of_hops, transponder_modulation, and transponder_bitrate,

subset 1: subset 0 plus all attributes obtained by applying the mean and standard deviation
aggregation functions to hop properties,

subset 2: subset 1 plus all attributes obtained by applying the minimum and maximum
aggregation functions to hop properties,

subset 3: subset 2 plus all attributes obtained by applying the median, first quartile, and
third quartile aggregation functions to hop properties,

subset 4: subset 3 plus all attributes obtained by applying the correlation aggregation
function to hop properties (i.e., the full attribute set).

Determining which attribute subsets works best for particular algorithms is a part of
our configuration tuning process.
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4.2. Algorithm Implementations and Setup

The following algorithm implementations are used in the experiments:

logistic regression: the implementation provided by the standard glm R function [56],

SVM: the implementation provided by the e1071 R package [57],

decision trees: the implementation provided by the rpart R package [58],

random forest: the implementation provided by the ranger R package [59],

extreme gradient boosting: the implementation provided by the xgboost R package [60].

Since the xgboost algorithms does not directly support discrete attributes and one
attribute in the dataset is discrete, it was preprocessed by converting particular discrete
values to binary indicator columns.

For the logistic regression and SVM algorithms parameters controlling the underlying
optimization process were left at default values and the radial kernel was used. The
following SVM parameters specifying the optimization problem were tuned by grid search:

cost: the cost of constraint violation,

gamma: the kernel parameter,

class.weights: class weight for the minority class in constraint violation penalty (a weight
of 1 was used for the dominating class).

For the decision tree algorithm uniform prior probabilities for the two classes were set
via the prior parameter. Parameters specifying the stop criteria were tuned by grid search:

minsplit: the minimum number of instances required for a split,

cp: the complexity parameter,

maxdepth: the maximum tree depth.

For the random forest algorithm, the following parameters were tuned by grid search:

num.trees: the number of trees,

mtry: the number of attributes for split selection at each node,

case.weights: weights for instances of the minority class (weights of 1 were used for
instances of the dominating class).

For the extreme gradient boosting algorithm parameters controlling the boosting
process were left at default values except for the following settings, tuned by grid search:

nrounds: the number of boosting iterations,

weight: weights for instances of the minority class class (weights of 1 were used for
instances of the dominating class).

It is worthwhile to notice that the parameter setups for the SVM, decision tree, random
forest, and extreme gradient boosting algorithms include settings responsible for properly
handling unbalanced classes (ensuring sufficient sensitivity to the minority class), as dis-
cussed in Section 3.6. This is achieved by specifying class weights for SVM (assigning a
higher weight to the minority class when calculating the constraint violation penalty term
in the optimization objective), setting uniform class priors for decision trees, and specifying
higher minority class instance weights for the random forest and xgboost algorithms. These
settings were verified to indeed improve model quality. No form of class rebalancing is
necessary for the logistic regression algorithm, since any class weights or priors would
only shift the default class probability cutoff point used for predicted class label assign-
ment. This would serve no useful purpose given the fact that the ROC analysis used for
predictive performance evaluation is based on predicted class probabilities instead of class
labels anyway.

Since from preliminary experiments we found that precision-recall curves were much
more sensitive to attribute subsets and algorithm parameter setups than ROC curves, we
adopted the following tuning procedure with preference for high PR AUC:
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• apply each algorithm with all attribute subsets and all grid search parameter setups,

• select the attribute subset with the highest maximum PR AUC over all parameter
setups,

• select the parameter setup with both a near-maximum PR AUC and a near-maximum
ROC AUC for the previously selected attribute subset, where ‘near-maximum’ was
technically interpreted as ‘at least 0.99 of the maximum’.

4.3. Results

Table 2 displays the best configurations identified by the tuning process. It is inter-
esting to notice that for dataset 1 the random forest algorithm was able to successfully
use the biggest attribute subset 4, the SVM and xgboost worked best with the medium
subset 2, whereas logistic regression and decision trees achieved their best performance
with the smallest subset 0. This is quite consistent with the level of overfitting resistance
of particular algorithms, with the random forest known to have the lowest and decision
trees known to have the highest risk of overfitting. For dataset 2, however, all algorithms
worked best with small attribute subsets: subset 1 for random forest and subset 0 for all
the others. This suggests that the two datasets have not only different sizes and class
distributions, with dataset 2 data being smaller and more unbalanced, but also different
complexity of relationships between classes and attribute values. These relationships are
likely to be more complex for dataset 1 than for dataset 2, if more attributes are needed to
capture them for the former than for the latter. The difference between the datasets is also
reflected by algorithm parameter settings. The more heavily unbalanced dataset 2 requires
larger minority class weights for the SVM, random forest, and xgboost algorithms.

Table 2. Attribute subsets and algorithm configurations identified by tuning.

Dataset 1

Algorithm Attribute Subset Parameter Settings

Logistic regression subset 0 —

Decision trees subset 0 minsplit=10, cp=0.001, maxdepth=2

SVM subset 2 cost=10, gamma=0.15, class.weights=5

Random forest subset 4 num.trees=500, mtry=10, case.weights=2

xgboost subset 2 nrounds=5, weight=5

Dataset 2

Algorithm Attribute subset Parameter settings

Logistic regression subset 0 —

Decision trees subset 0 minsplit=15, cp=0.0002, maxdepth=4

SVM subset 0 cost=5, gamma=0.15, class.weights=20

Random forest subset 1 num.trees=1000, mtry=2, case.weights=20

xgboost subset 0 nrounds=15, weight=20

Figure 4 presents the ROC curves obtained for the best identified attribute subset and
algorithm configurations. One can observe that:

for dataset 1:

• the prediction quality achieved by all the algorithms appears to be very good,
with AUC values between 0.86 and 0.89,

• reasonable model operating points are possible, with the true positive rate of 0.9
or more and the false positive rate of 0.2 or less,
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• the random forest, xgboost, and logistic regression algorithms achieve the best
predictive performance, followed by SVM and decision trees,

for dataset 2:

• all algorithms appear to achieve nearly perfect predictions, with AUC values of
0.97–0.98,

• nearly perfect model operating points are possible, with the true positive rate of
1 and the false positive rate of 0.05 or less,

• the logistic regression, decision trees, random forest, and xgboost peform on
roughly the same level, and SVM is only marginally worse.

ROC curves, dataset 1
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Figure 4. The ROC curves.

As discussion in Section 3.7, ROC curves may not provide a sufficient picture of model
performance under severe class imbalance, because even with many false positives the false
positive rate remains small due to the dominating overall negative class count. Precision
recall curves, presented in Figure 5, do indeed show a more useful view of the predictive
power of models produced by particular algorithms. The following observations can be
made:

for dataset 1:

• the logistic regression, decision trees, and SVM algorithms fail to achieve an
acceptable level of precision, with the PR AUC below 0.1,

• the random forest and xgboost algorithms produce much more useful models,
with the average precision above 0.4,

• even for the best random forest models there is the precision drops quickly when
recall exceeds 0.4,

for dataset 2: • all algorithms manage to achieve average precision of about 0.4 or more,

• a reasonable level of precision can be maintained over a wide range of recall
values,

• the xgboost and random forest algorithms achieve the best predictive power, and
decision tree models are the worst.

From a practitioner’s point of view, it may be interesting to see how essential parameter
tuning was for particular algorithms. Table 3 compares the AUC and PR AUC values of
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the decision tree, SVM, random forest, and extreme gradient algorithms with default and
tuned settings (for xgboost there is no default setting for the nround parameter, so we
arbitrarily used 50 as the default). It is easy to see that parameter tuning improved the
results substantially for all algorithms. Even for the random forest algorithm, which is not
overly sensitive to parameter settings, it was beneficial (particularly on dataset 2), and it
turned out absolutely necessary for SVM to deliver acceptable results.

PR curves, dataset 1
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Figure 5. The precision-recall curves.

Table 3. Results for default and tuned parameter settings.

Dataset 1

Algorithm
Default Parameters Tuned Parameters

AUC PR AUC AUC PR AUC

Decision trees 0.77 0.05 0.86 0.06
SVM 0.74 0.06 0.87 0.09
Random forest 0.90 0.43 0.89 0.46
xgboost 0.88 0.20 0.88 0.42

Dataset 2

Algorithm
Default Parameters Tuned Parameters

AUC PR AUC AUC PR AUC

Decision trees 0.94 0.31 0.98 0.37
SVM 0.58 0.09 0.97 0.39
Random forest 0.97 0.29 0.98 0.42
xgboost 0.97 0.30 0.98 0.46

Figure 6 presents the random forest variable importance values, with attributes ranked
from the most useful at the top to the least useful at the bottom. It can be seen that:

for dataset 1:
the most useful attributes are number_of_hops, the minimum of num_of_paths_hops,
as well as attributes derived by aggregating hop_lengths and hop_losses, whereas
transponder_modulation and transponder_bitrate have little or no predictive
utility,

for dataset 2:
transponder_modulation and transponder_bitrate are the most useful attributes
by far.
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Figure 6. The random forest variable importance plots.

4.4. Discussion

The presented results confirm that optical network channel classification using real
data is a challenging learning task. When looking at ROC curves the level of predictive
performance might appear very good or near perfect, with little differences between
algorithms, all of which appear fully capable of delivering predictions with high true
positive rates and low fall positive rates. However, precision-recall curves reveal that false
positive predictions are actually quite frequent, leading to precision values of around 0.4
at best. They also show that the choice of algorithms and parameter settings does indeed
matter a lot. Since the datasets are small and highly unbananced, special care is needed to
prevent overfitting and ensure sufficient sensitivity to the minority class.

The performance level achieved for the best identified configurations for the two
datasets is definitely useful. The AUC values approaching or exceeding 0.9 are high above
the random guess level of 0.5, and the average precision (the area under the precision-recall
curve) of about 0.4, while not perfect, is actually more than satisfactory given the extremely
low share of “bad” channels in the training data. Actually, it is not only the small share, but
also the small absolute number of positive instances that prevents learning algorithms from
creating more successful models. While the skewed class distribution can be compensated
for by weighting or setting prior class probabilities, just a handful of training instances
provides very poor basis for detecting generalizable patterns.

5. Conclusions

A set of machine learning algorithms have been applied to DWDM optical networks
in order to estimate the QoT for an optical channel. The ML algorithms have been applied
to the data sets derived solely from the DWDM network management layer via the control
plane. Thus the proposed approach can be fairly easily implemented by a network operator.
The obtained ROC curves suggest near perfect predictive performance of all implemented
ML algorithms. However, precision-recall curves reveal that the network channel configu-
ration task with small and unbalanced data is indeed quite challenging, and the choice of
algorithms and their configurations matters.
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Of the applied algorithms, random forest and extreme gradient boosting delivered
the best level of predictive performance. While logistic regression, decision trees, and SVM
achieved similar levels of tradeoff between the true positive rate and the false positive
rate, they were less successful in maintaining an acceptable level of precision. Each algo-
rithm benefited from parameter tuning, although random forest—as expected—worked
reasonably well with default settings.

Model operating points were obtained with more than 90% of “bad” channel config-
urations correctly detected, less than 20% of “good” configurations incorrectly predicted
to be “bad”, and at least 40% of channel configurations predicted to be “bad” are actually
bad. This level of classification quality—promising but leaving space for improvement—
provides a strong encouragement for future research on QoT prediction using machine
learning.

One obvious but possibly the most useful future work direction is to gather more data,
particularly including more instances of “bad” channels. This would provide more space
for detecting generalizable, predictively useful relationship patterns, and make model
evaluation results more reliable and convincing. With that being stated, there are still some
interesting enhancements of the modeling procedure possible with the currently available
data. One of those is augmenting the datasets with artificially generated minority class
instances, e.g., using the SMOTE technique [61].

It may be also interesting to combine binary classification models, such as those
presented in this article, with one-class classification models that can be learned from
unlabeled data containing exclusively or mostly instances of a single class. One-class
classification algorithms that could be considered include one-class SVM [62], isolation
forest [63], and one-class random forest [64].
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The following abbreviations are used in this manuscript:

ML Machine Learning
DWDM Dense Wavelength Division Multiplexing
QoT Quality of Transmission
SDN Software Defined Networking
IoT Internet of Things
5G 5G Network Technology
KDN Knowledge-based Network
Gbps Giga bit per second
Tbps Tera bit per second
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
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SVM Support Vector Machines
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7. Kozdrowski, S.; Żotkiewicz, M.; Sujecki, S. Resource optimization in fully flexible optical node architectures. In Proceedings of

the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018.
8. Panayiotou, T.; Manousakis, K.; Chatzis, S.P.; Ellinas, G. A Data-Driven Bandwidth Allocation Framework with QoS Considera-

tions for EONs. J. Lightwave Technol. 2019, 37, 1853–1864. [CrossRef]
9. Gunkel, M.; Mattheus, A.; Wissel, F.; Napoli, A.; Pedro, J.; Costa, N.; Rahman, T.; Meloni, G.; Fresi, F.; Cugini, F.; et al. Vendor-

interoperable elastic optical interfaces: Standards, experiments, and challenges [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2015,
7, B184–B193. [CrossRef]

10. Simmons, J.M. A Closer Look at ROADM Contention. IEEE Commun. Mag. 2017, 55, 60–66. [CrossRef]
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