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Abstract—This article developed a scalable deep-learning model,
the AlgaeNet model, for floating Ulva prolifera (U. prolif-
era) detection in moderate resolution imaging spectroradiometer
(MODIS) and synthetic aperture radar (SAR) images. We la-
beled 1055/4071 pairs of samples, among which 70%/30% were
used for training/validation. As a result, the model reached an
accuracy of 97.03%/99.83% and a mean intersection over union
of 48.57%/88.43% for the MODIS/SAR images. The model was
designed based on the classic U-Net model with two tailored mod-
ifications. First, the physics information input was a multichan-
nel multisource remote sensing data. Second, a new loss func-
tion was developed to resolve the class-unbalanced samples (algae
and seawater) and improve model performance. In addition, this
model is expandable to process images from optical sensors (e.g.,
MODIS/GOCI/Landsat) and SAR (e.g., Sentinel-1/GF-3/Radarsat-
1 or 2), reducing the potential biases due to the selection of ex-
traction thresholds during the traditional threshold-based segmen-
tation. We process satellite images containing U. prolifera in the
Yellow Sea and draw two conclusions. First, adding the 10-m high-
resolution SAR imagery shows a 63.66% increase in algae detection
based on the 250-m resolution MODIS image alone. Second, we
define a floating and submerged ratio number (FS ratio) based on
the floating and submerged parts of U. prolifera detected by SAR
and MODIS. A research vessel measurement confirms the FS ratio
to be a good indicator for representing different life phases of U.
prolifera.

Index Terms—Deep learning (DL), green algae detection,
satellite remote sensing.
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I. INTRODUCTION

HARMFUL algal blooms, including red/brown tides caused
by microalgae and green/golden tides caused by macroal-

gae, are disastrous ecological events in coastal oceans. For
example, in the waters along the coast of China in the Yellow Sea,
macroalgae blooms formed by massive floating green alga Ulva
prolifera (U. prolifera) have been recorded in the spring–summer
season since 2007 [1]–[3]. The rapid biomass increase severely
impacts the environment, coastal ecosystems, public health, ship
traffic, the local tourism industry, and even the 2008 Olympic
regatta games [4]–[11].

Satellite remote sensing is the primary U. prolifera detection
approach due to the advantages of frequent data acquisition and
broad coverage area [3], [12]. Existing studies mostly use mod-
erate resolution imaging spectroradiometer (MODIS) images
acquiring the visible and infrared bands at a spatial resolution
of 250–1000 m. The floating U. prolifera modulates the ocean
color properties and shows the prominent algae features in
MODIS images that lead to significant progress in evaluation
and prediction of the blooming mechanism of the algae [3],
[13]–[15]. However, previous articles have pointed out that the
algae biomass extracted from coarse-resolution images has a
certain degree of error [3], [16], making it difficult to quantify
the algae patches missed in an optical image. Evaluating and
reducing this extraction error through image resolution have
become a bottleneck problem for algae detection in optical
remote sensing.

Synthetic aperture radar (SAR) is an active remote sensing
radar that provides sea surface roughness images at tens of
meters in spatial resolution, an order of a magnitude higher
than MODIS, under all weather conditions, day and night. SAR
does not have in-water penetration capability and receives the
surface normalized radar cross-section (NRCS) backscattering
signal related to the Bragg wave spectrum modulated by ocean
surface wind, waves, and currents. The floating algae on the
sea surface behave like a hard object. The NRCS is no longer
a backscattering signal but a reflected signal due to the double-
or triple-bounce effect. As a result, the algae patch area’s
reflected signal is much stronger than that backscattered one
from the surrounding water, which appears as brighter regions
in SAR images. Currently, the European Space Agency (ESA)
Sentinel-1 and Chinese GF-3 SAR data have become accessible
and open, making SAR another option for detecting algae
and other marine targets like ships and oil spills [17]–[19].
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The disadvantage of SAR mainly lies in the limited temporal
coverage. Nevertheless, SAR and MODIS can accommodate
each other for algae detection. SAR has a higher spatial
resolution than MODIS and avoids the influence of mixed
pixels containing both algae and seawater in the MODIS image.

There are many different methods to detect algae. For optical-
sensor images, biological index methods, e.g., NDVI (normal-
ized difference vegetation index) and FAI (floating algae index),
are commonly used [12], [20]. For SAR-sensor images, we
usually use grey or backscatter coefficient differences to identify
the target [17], [19]. These traditional methods have advantages,
but they cannot effectively fuse the two data sources. To perform
data fusion based on the algae’s characteristics captured by the
two sensors, deep learning (DL) offers one possibility [21]. In
recent years, DL has been extensively applied in the fields of
ocean oil spills [22], internal waves [23], ocean ships [24], sea
ice [25], and time-space prediction [26], [27].

U. prolifera algae is bright or dark green due to a large amount
of chlorophyll in the cells. Some parts of the algae body are
exposed above the sea surface during its blooms, while others are
submerged. An optical sensor can collect spectral information
at a certain sea depth to effectively capture the floating and
underwater parts of the algae [16], [28]. By contrast, the SAR
sensor captures only the floating part on the sea surface. Thus,
the floating and submerged algae ratio (FS ratio=SAR/MODIS)
can be estimated. The FS ratio may become an indicator to
differentiate the life phases of U.prolifera [29], [30].

The objectives of this article include 1) developing a DL
network to better mine U. prolifera information from optical and
SAR images, 2) evaluating the degree of algae underestimation
in coarse-resolution optical images, and 3) estimating their life
stages using the algae FS ratio. The article is organized as
follows. Section II introduces related datasets, including opti-
cal MODIS data, microwave SAR data, and the relevant ship
survey data. Section III introduces the proposed DL network
model, including training labels, physical model optimization,
and model performance verification. Section IV introduces our
findings after using the proposed DL model for multisource
optical and SAR data fusion. Discussions and conclusions are
in Sections V and VI.

II. DATA USED

A. Satellite Observations

MODIS is a key sensor aboard the National Aeronautics and
Space Administration Terra and Aqua satellites with a sweeping
2330-km wide viewing swath. We collected 112 MODIS images
containing algae patches under clear sky conditions in the Yellow
Sea from 2008 to 2021, shown in Fig. 2(a)–(c). These MODIS
images are geometrically and radiometrically corrected 250-m
spatial resolution true-color imagery (Bands: 1/4/3). Of course,
the NIR band is useable. However, we use true-color images as
the data source for the following reasons:

1) True-color image is relatively easy for manual labeling.
Using the labeling results of true-color images as the
ground truth to train the model is typical for neural net-
work classification. Especially, true-color image product

is usually standard product from MODIS-like sensors.
Therefore, our model can be readily applied to similar
images without modification.

2) The proposed model framework can also be extended to
include data from different satellites and sensors (e.g., NIR
and IR) without significant modification.

3) Our model can also find small algae patches in satellite im-
ages. Still, small algae patches will have more significant
uncertainty when calculating the FS ratio, so we pay more
attention to the big algae patches. Inevitably, some tiny
algae pixels may be missed in coarse resolution optical
images. Therefore, the algae-containing pixels were ex-
tracted, and the fractional areal coverages were quantified
using a simple unmixing method of the DL model’s output
possibility.

The SAR images are from the ESA’s Sentinel-1 (92 images)
and Chinese GF-3 (31 images) satellites, shown in Fig. 2(d). We
used Sentinel-1 Level-1 ground range detected dual-polarization
(VV and VH) interferometric wide images with 10-m spatial
resolution and 250-km swath and the Chinese GF-3 SAR fine
stripe mode Ⅱ dual-polarization (HH and HV) image with
10-m resolution and 100-km swath. All SAR images were
acquired between 2015 and 2019. We applied speckle filter
and geometric/radiometric/orthometric corrections to the SAR
images. The Sentinel Application Platform 7.0 software is used.
In addition, we also performed a standard deviation stretch
with the gamma value of the SAR image to give the image an
acceptable dynamic range.

B. Ship Survey Data

The U. prolifera bloom at various life stages may show
considerable differences in different morphological character-
istics [30], [31]. We tried to use the FS ratio as an indicator
to distinguish the life phases of U. prolifera blooms. To verify
the FS ratio’s feasibility, data acquired during a comprehensive
ship survey along the 35°N cross-transect in the Yellow Sea on
June 9, 10, 20, and 21, 2017, shown in Fig. 1(a) and (d), were
used. The research vessel, “Science-III,” traveled at 2.5 nautical
miles/h and trawled floating algae at various stations along the
survey transect for 5 min. Once the floating alga picked up by the
trawler were transferred to the deck and wiped dry, they weighed
immediately on beam scales of different specifications. Finally,
the total biomass of the floating algae along the 35°N section is
obtained. The algae biomass at various stations shows different
spatial distribution characteristics. When algae bloom on a large
scale, the algae bodies gather together, resulting in high algae
density per unit area. The survey ship is sailing to collect the
algae slicks. When the ship travels to an area with a high (low)
density, the collected algae biomass will be large (small), so the
biomass in each station also shows the distribution characteris-
tics of algae [Fig. 1(b)–(d)]. Meanwhile, the density (biomass)
of different algae is also related to their life state [14]. The life
process of U. prolifera in the Yellow sea is well known in the
research community, originating in Jiangsu coast, drifting north-
ward, and disappearing along the coast of Shandong. This article
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Fig. 1. Yellow Sea U. prolifera macroalgal detection and life status indicator changes of macroalgal bloom. (a) Time series of detected macroalgae patches
coverage based on the AlgaeNet model. The green solid lines are the northern boundary of the algae distribution range along the drifting direction throughout the
algae bloom cycle in 2013. The brown dash line is the Subei Shoal’s location, and the black dash boxes are the estimated FS ratio. (b)–(c) Largest algae coverage
in 2021 and coverage changes in the initiation (1), rapid development (2), maintenance (3), and diminishing (4) phases from 2019 to 2021. (d) Algae biomass at
various stations [the eight numbers in Fig. 1(a)] by ship survey in the maintenance and diminishing phase of the U. prolifera bloom.

found that FS ratios in different areas are different in the entire
drift path. As a result, we used the FS as a life-stage indicator.

III. DL-BASED ALGAE DETECTION MODEL

A. Training Labels

In MODIS images, the U. prolifera algae pixels show more
prominent green slick/patch features compared to the surround-
ing seawater pixels [Fig. 2(a)]. Therefore, we can label sample
image slices containing different algae shapes (banded, lumpy,
and dotted) using the Lableme software (Fig. 2(b), [32]) for
DL algorithm development. To expand the sample size, we

followed a common practice in the artificial intelligence field
and rotated the labels 90°, 180°, and 270° to create new labels.
Among the 1055 pairs of MODIS image slices and correspond-
ing labels, 972/83 pairs were used as training/testing sets. The
training set was divided into 70% for training and 30% for
validation in the training process. We found that the composite
false-color image (with infrared, red, and green bands) and
the true-color image (with red, green, and blue bands) have
almost the same algae–seawater contrast characteristics under
cloud-free and high image quality conditions. Therefore, it is
sufficient to annotate the training/testing dataset using true-color
images. In particular, some “suspected algae pixels” with low
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Fig. 2. U. prolifera macroalgae detection in MODIS and SAR images at the pixel level in a bloom period: (a) Randomly selected MODIS true-color image slice
in the Yellow Sea on June 23, 2019; (b) Manual ground truth based on the MODIS image clip; (c)–(f) Corresponding predicted value of the AlgaeNet, classic UNet,
RF, and VGG16 models; (g) Corresponding SAR slice on June 23, 2019; (h) Manually marked ground truth based on the SAR image clip; (i)–(l) Predicted value
based on the AlgaeNet, classic UNet, RF, and VGG16 models for SAR imagery, respectively. In subfigures (b)–(l), The white dots are algae pixels, and the black
color is the background ocean.
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Fig. 3. Flowchart of the proposed AlgaeNet model to assess missing macroalgae and distinguish life stages. The specially tailored modifications to U-Net are
highlighted. GA-1 represents the algae pixels identified in the optical image, GA-2 represents the algae pixels identified in the SAR image, and GA-3 represents
the fusion result of GA-1 and GA-2.

algae–seawater contrast were excluded when labeling. Although
the contrast of algae–seawater is much more prominent in the
infrared band than in the green band, the composite true-color
image is more robust than a pure one-band channel image.

In SAR images, the algae patches show bright white spots and
slicks shown in Fig. 2(g). We marked the algae’s image slices and
corresponding labels [Fig. 2(h)]. A total of 4071 pairs of image
slices and their related labels were obtained, 2981 pairs were
used as training sets (70% for training and 30% for validation),
and 1090 pairs were used as testing sets.

We have considered the possible overlap between the
labeling training/validation/testing sets. Therefore, MODIS
data from 2008–2018/2019-2020/2021 are used as the train-
ing/validation/testing set. Similarly, for SAR, the 2015–
2017/2018/2019 data for the training/validation/testing data.
Thus, in the train/validation set, there is no overlap and spatial
adjacency, and it does not affect the training and validation of
the DL model.

B. DL-Based Algae Detection Network (AlgaeNet)

We propose a comprehensive multisource data processing
and fusion method based on the DL technique to detect the
algae areas better. DL has unique advantages in the image
classification and segmentation field. Robust DL models include
Random forest (RF), U-Net, Densenet, GoogleNet, ResNet,
VGG, and others [21], [33]–[36]. The U-Net framework can
integrate features of different levels and avoid the large sample
training requirements. Fig. 3 shows our customized model’s
system diagram based on the U-Net framework [21], [33].

Optical and SAR data are input separately, and the model can
perform data fusion based on the difference between the two
sensors’ detection results. All pixels of the entire area are divided
into four categories: 1) seawater pixels; 2) algae pixels that
can only be identified in the optical image; and 3) algae pixels
that can only be identified in SAR images. The FS ratio can
be calculated by the two pixels of (2) and (3); (4) is the small
algae patches pixels that can be recognized by only SAR but not
optical image, and it corresponds to the missing algae detection
in the optical image. Our model has a freely expandable design to
process data from other optical sensors like GOCI and Landsat,
and SAR sensors like Envisat and Radarsat-1/2. To make a
distinction, the model trained using MODIS imagery is called
AlgaeNet-MODIS and that for SAR is AlgaeNet-SAR. We refer
to the overall DL architecture as AlgaeNet.

In the training samples, algae patch and seawater are two clas-
sification types. Algae detection is essentially a binary classifi-
cation problem—specifically, an unbalanced class problem. The
number of algae pixels is small compared with seawater pixels.
This fact may cause the DL model to learn seawater features
instead of algae features. Therefore, based on U-Net, we made
two special modifications to improve our model performance as
follows:

1) Our model includes a physics information input design.
DL simulates the human visual system and extracts fea-
tures layer by layer from color pictures, generally using
true-color images as direct input, typical in the field of
computer vision [34], [35]. However, for algae detection,
the combination of several MODIS bands is effective,
e.g., the FAI/NDVI biological indices methods [12], [20].
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TABLE I
ACCURACY ASSESSMENT OF ALGAENET MODEL

Therefore, we combine channel and true-color data to
achieve better algae detection. For SAR, we combine the
two polarization channels of VV (HH) and VH (HV) as
input to perform the dual-polarization fusion that leads to
improved algae detection accuracy [36].

2) We implemented a new loss function design. The new
loss function addresses the unbalanced sample problem.
Because algae detection is a binary classification problem,
binary-cross entropy (BCE) is usually used as the loss
function. However, compared with the ocean background,
the algae detection is more of an unbalanced classifica-
tion problem because algae patches may occupy a small
proportion of the overall image. Therefore, using only the
“Accuracy” index cannot wholly evaluate the model [36].
To get a better model, we defined a new loss function for
the AlgaeNet model, shown as formulas 1 and 2, to solve
unbalanced sample categories:

F1 = (2 ∗ P ∗R)/(P +R) (1)

loss = αBCE + (1− α)(1− F1) (2)

where P denotes “precision,” R denotes “recall,” and F1 de-
notes the macro F1 score. When we calculate the F1 score,
we use the probabilities instead of integers 0/1 and this trans-
formation makes the macro F1 score function continuous and
differentiable1 BCE denotes binary-cross entropy, and αdenotes
the balance factor between F1 and BCE. We tried the influence of
different balance factors on the neural network in the experiment,
and the neural network was optimal when the balance factor was
defined as 0.2.

C. AlgaeNet Performance

The performance evaluation of the AlgaeNet model can be
divided into two parts, namely, the assessments of the detection
performance of AlgaeNet-MODIS and AlgaeNet-SAR.

1[Online]. Available: https://www.kaggle.com/rejpalcz/best-loss-function-
for-f1-score-metric

For evaluating the AlgaeNet-MODIS model, we first used 83
MODIS testing labels to quantitatively compare the AlgaeNet-
MODIS model’s accuracy with that of the classic U-Net
model. Table I shows that the performance of the AlgaeNet-
MODIS model is better than the original U-Net model; the
AlgaeNet-MODIS (U-Net) model reached 97.03 (96.37)%,
75.36 (62.96)%, 57.73 (53.84)%, 65.38 (58.04)%, and 48.57
(37.89)% in the five commonly used indicators of Accuracy,
Precision, Recall, F1_Score, and mean intersection over union.
Accuracy refers to the proportion of correctly predicted algae
pixels among all predicted pixels. Precision refers to the pro-
portion of pixels that are true algae and predicted as algae to
all predicted algae pixels. A higher precision value means the
model extracts fewer false alarms. Recall refers to the proportion
of true algae pixels and predicts as algae to all true algae pixels.
A higher recall value means the model misses fewer algae
pixels. Finally, IoU means the proportion of true algae and
predicted algae to the union of true algae and predicted algae
pixels. When the predicted algae pixels coincide entirely with
the true algae pixels, the IoU has the maximum value of 1. The
evaluation indicators are shown in formula (3). Fig. 2(a)–(f)
also shows the algae detection performance in the U. prolifera
blooming period. By comparing the subimages (b) and (c) of the
ground truth and the predicted value of the DL-based models, the
prediction map is very close to the ground truth, which visually
confirms the effectiveness of the proposed method. “Ground
truth” refers to the labels manually annotated based on the
analyst’s visual interpretation using the Lableme software [25],
[32]. This procedure is a common practice in creating labels. We
also compared the AlgaeNet-MODIS model with the traditional
biological index method. After the DL-based model is trained,
the threshold of the proposed AlgaeNet model is determined
and cannot be changed, e.g., the pixels with output probabilities
> 0.5 are determined as algae-containing pixels. Subsequently,
this threshold was applied to other remote sensing images to
detect algae. It cannot be changed. The decision is based on the
optimized model weights learned from the training processes.
Still, the index-based threshold can be changed. For example,

https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric
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Fig. 4. Comparison result of the AlgaeNet model and traditional biological index methods: (a) MODIS imagery; (b) manually marked ground truth based on the
MODIS image clip (red box in figure a); (c) detected algae pixels based on the AlgaeNet model on July 09, 2021; (d) and (f) corresponding algae pixels detected by
the FAI method (threshold: 0 < FAI (Th1) < 0.02; 0.0025 < FAI (Th2) < 0.176); (e) and (g) corresponding algae pixels detected by the NDVI method (threshold:
NDVI (Th1) > 0; NDVI (Th2) > −0.02).

FAI has two thresholds (0, 0.02) or (0.0025, 0.176), which can be
selected according to the different scenes: the second threshold is
usually used to unmix the algae coverage, only the first threshold
is used to identify the algae pixels. The DL-based model would
reduce the potential biases due to selecting extraction thresholds
of FAI or NDVI. We used the FAI/NDVI method to detect algae
pixels and coverage with the recommended threshold [3], [37],
[38]. We investigated the MODIS data available in July 2021.
Fig. 4(a) shows the MODIS true-color image in the Yellow Sea
on July 9, 2021. The floating algae appear a light green color. Our
method and two index methods (FAI and NDVI) confirmed that
these colored patches are floating green algae [Fig. 4(b)–(d)]. By
our DL model, 6026 algae pixels were identified. The number of
algae pixels identified by the FAI index method was 86 423 and
20 787 when (0, 0.02) and (0.0025, 0.175) were set as thresholds,

and the number of algae pixels identified by the NDVI index
method was 14 954 and 18 861 when >0 and >−0.2 were set
as thresholds. The FAI and NDVI methods have considerable
uncertainty because of the selection of varying thresholds; even
the algal identification results may differ by order of magnitude
[1]–[3], [37]. The AlgaeNet model and index-based methods in
this article detect different algae pixel numbers and correspond-
ing coverage. The main reasons are as follows:

1) Different references give different algae threshold ranges.
For example, with different threshold ranges, the algae
coverage calculated by Xu et al. is about eight times
of Qi’s [2], [37], so some algae pixels detected by the
FAI/NDVI index may be false or fake algae pixels.
We should pay special attention to the fact that the false
or fake pixels mentioned here are only relative to the
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TABLE II
COMPARISON OF ALGAENET/FAI/NDVI

manually marked ground truth. They do not represent
the reality because some studies may more agree with
the index-based result as a ground truth. Therefore, the
prerequisite for our comparison is to admit that the manual
labeling result is credible. This approach is also generally
accepted for the DL-based model and relatively simple
basis for comparison. After all, there is no other more
suitable third party as the ground truth. We also conduct
the metric comparison between AlageNet and indexes
methods on the algae-bloom day. The strength of DL-
based approaches vs. the index-based methods is that DL
methods can get high Precision and Recall simultaneously.
In contrast, index-based methods have to sacrifice one for
the other (Table II).

2) The difference in the number of algae pixels detected
by different methods is also related to different physics
information input. The AlgaeNet neural network model
uses the RED/GREEN/BLUE (1/4/3) bands. In contrast,
FAI uses the other three channels in RED/NIR/SWIR
(1/2/6) bands, and NDVI uses the two channels in the
RED/NIR (1/2) bands. However, the coverage and pattern
of algae patches obtained by the three methods are almost
identical in our selected images.

3) Many small algae pixels were detected by FAI and NDVI
methods but not by the AlgaeNet model. The reason
was when we made the label dataset, we did not label
some “suspected” pixels with great uncertainty due to
low algae–water contrast, and they are directly discarded
or treated as seawater pixels. Therefore, AlgaeNet also
ignores “suspected or fake algae” features. Our goal is
that the algae-containing pixels detected by AlgaeNet are
“real” algae and not suspected algae pixels to reduce
uncertainty

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Accuracy = TP+TN
TP+FP+TN+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1score = 2∗Precision∗Recall
Precision+Recall =

2TP
2TP+FN+FP

IoU = TP
TP+FN+FP

(3)

where TP, FP, FN, and TN are the numbers of true positive
samples, false positive samples, false negative samples, and
true negative samples, respectively. Please note: As a metric,
the regular F1 score is used, while when constructing the loss
function, the macro F1 score is used to make it continuous and
differentiable.

For the evaluation of AlgaeNet-SAR, based on the 1090
pairs of testing labels, the model reached 99.83%, 95.46%,
92.32%, 93.86%, and 88.43% in the five indicators of Ac-
curacy, Precision, Recall, F1 score, and mean IoU, which is
significantly better than AlgaeNet-MODIS. In particular, in
terms of the comprehensive precision index of mean IoU, the
AlgaeNet-SAR model’s mean IoU (88.43%) is twice that of
AlgaeNet-MODIS (48.57%) because the resolution of SAR is
higher, and the “algae–seawater” contrast signal in the image is
more substantial. However, the 48.57% accuracy already means
that AlgaeNet-MODIS is superior for algae detection [39]. There
are two reasons as follows:

1) The algae–seawater contrast in the visible image is weaker
than SAR images due to the different imaging mechanisms
(passive vs. active). Especially in the edge area of algae
distribution and coverage, the overall detection effect is
weaker than that of the SAR image due to coarse resolu-
tion.

2) The lower the resolution, the less the optical image grid
number per unit area and the greater the random error in
the grid.

Under the condition that the data sources are all MODIS,
through the horizontal comparison of DL models (classical
U-Net vs. AlgaeNet), we found that the improvement of IoU
is still pronounced (37.89 ≥ 48.57%). Moreover, when the SAR
image is used as the data source, the AlgaeNet’s IoU reaches
a very high value (88.43%), indicating the model’s superior
performance. Fig. 2(g)–(l) also gives a visual presentation of the
algae detection performance. By comparing subimages (h) and
(i), the prediction map is very close to the ground truth, which
also confirms the effectiveness of the proposed method. We
compared the model’s further quantitative evaluation with the
recent neural networks: RF and CNN-VGG16 models. Table I
and Fig. 2(j)–(l) show that our model has significantly higher per-
formance than the RF model. When we applied the multichannel
combination input and the newly constructed loss function to the
CNN-VGG16 model, we also achieved a high accuracy similar
to AlgaeNet, indicating the excellent portability of our particular
improvement strategy in various convolutional networks.

IV. RESULTS

A. Small-Patch Algae Not Detected in the MODIS Images and
FS Ratio of the Algae

We used the AlgaeNet model to process the collected 112
MODIS images and 123 SAR images and acquired 12 pairs
of spatiotemporal matching MODIS and SAR images/slicks
(Table III). Fig. 5(a) and (b) shows two MODIS and SAR images
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TABLE III
SMALL-PATCH ALGAE NOT DETECTED IN THE MODIS IMAGES AND FS RATIO OF THE ALGAE

∗The “Mean” refers to the average value of the missing detection rate and FS ratio calculated for the matching MODIS/SAR image
pairs at different times in the Yellow Sea. The “Range” refers to their variation range of the missing detection rate and FS ratios.

during the large-scale U. prolifera bloom in the Yellow Sea.
Fig. 5(c) and (d) shows that the algae patch from both MODIS
and SAR sensors have a highly consistent spatial distribution
pattern (see details in subareas 1 and 2) with two different inter-
esting details. First, some small floating algae patches without
a large aggregation degree can only be detected in the SAR
imagery but not in the MODIS imagery. Second, for the big
algae patches/slicks with a high aggregation degree, the margin
of the algae patches observed by the MODIS sensor is broader
than that observed by the SAR sensor, shown as the overlapping
area inside the selected polygon in Fig. 5(d).

SAR sensors can identify more detailed algae patches due to
their very high resolution. Since MODIS is the primary sensor
for algae monitoring, we need to estimate how much tiny algae
was not detected by MODIS alone. According to the difference
between the two sensors’ detection results, the AlgaeNet model
performs data fusion and divides all image pixels into four
categories: seawater pixels (white), algae pixels simultaneously

detected by both MODIS and SAR (black), by SAR but not
by MODIS (red), and by MODIS (green), shown in Fig. 5(d).
When the number of algae identified by SAR is used as the
actual total number of algae in the sea area (marked as N)
and the number of algae identified by MODIS (marked as M),
the missing detection rate is (N-M)/N. The broader margin of
algae patches observed by MODIS compared to SAR is due
to the two sensors’ different algae detection mechanisms (see
the discussion part, and we eliminated the impact of coarse
resolution and overpass time difference). SAR can only detect
the floating algae patches on the surface, whereas the optical
MODIS sensor can detect the floating and submerged parts
[16], [28]. Therefore, the FS ratio can also be estimated, i.e.,
M/N. Table III shows the statistical analysis of the 10 pairs of
matching MODIS and SAR images/slices in the Yellow Sea.
One can see that adding high-resolution SAR image information
leads to an average increase of 63.66% (48.74%–82.09%) in
algae detection compared to that based on the MODIS image
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Fig. 5. Assessment of missing Yellow Sea macroalgae and FS ratio estimation: (a) and (b) MODIS and Sentinel-1 SAR images on June 23, 2019; (c) detected
algae pixels between MODIS and SAR images, performed algae patch registration due to small drift and deformation using the simple rubber sheeting method;
(d) four types of pixels based on the difference between optical- and SAR-sensor-detected algae to estimate the missing algae inspection rate and FS ratio. The red
dots represent the missing algae pixels in the MODIS image. The figure also corresponds to the enlarged view of two randomly selected subareas (1) and (2).

Fig. 6. Algae FS ratio in Subei Shoal: (a) Less than 5% of exposed portion of floating algae on June 23, 2018; and (b) another exposed portion example in Subei
Shoal on June 11, 2019.
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Fig. 7. Analysis of algae label uncertainty: (a) MODIS true-color image slice; (b) ground truth labels; and (c) predicted value of the AlgaeNet model. The first
row is the label and predicted value before optimization and the second row is the label and predicted value after optimization.

alone. Therefore, the mean algae missing detection rate in 250-m
resolution true-color MODIS imagery is 63.66%.

B. FS Ratio in Different Life Phases in U. Prolifera Blooms

U. prolifera algae rely on the thalli’s hollow tubular structure
to float on the sea surface, and the submerged part does not
exceed 1–2 m [29]. The FS ratio reflects the changing status
of floating U. prolifera in the Yellow Sea well. Based on the
detected algae distribution, coverage, and biomass results of the
112 collected MODIS images from 2008–2021, the U. prolifera
bloom originated from the Subei Shoal to the south of the study
region, drifted northward, and experienced different phases from
initiation to development, maintenance, and diminishing. For
example, Fig. 1(a) and Table III show the algae distribution
and coverage changes throughout the life cycle. The green
polylines represent the general northern boundary of the densely
distributed area in June 2013. At the various stages of the
U. prolifera bloom, the status of floating U. prolifera under-
went morphological changes [14], [40]. At the initiation phase
in the Subei Shoal, the U.prolifera algae had a large propor-
tion submerged in seawater and rare algae biomass, shown on
June 02, 2013, in Fig. 1(a). Based on the two matching image
pairs in Fig. 6, the FS ratio of the algae body was less than 5%
(Figs. 1 and 6). During the later development phase in the Yellow
Sea, the biomass of U. prolifera rapidly increased when they
started blooming, shown on June 13 and 20, 2013, in Fig. 1(a).
Moreover, a large proportion of U. prolifera became floating due
to the optimal illumination and temperature, and the FS ratio

quickly increased from less than 5% to 24.75%. Some local
areas even reached more than 40%, shown as the dotted box
in Fig. 1(a). During the maintenance phase of the U. prolifera
bloom, the U. prolifera algae as a whole moved northward, and
the biomass and FS ratio remained at a high level, basically
unchanged, shown as the dotted box of ∼21.35% in Fig. 1(a).
During the diminishing phase of the bloom, there were almost
no algae near Subei Shoal, and the algae biomass and FS ratio
in the Yellow Sea decreased rapidly to 14.33%. Therefore, in
the overall life phase, the FS ratio had a parabolic process that
first rose, maintained, and then fell. The rise (initiation phase)
and fall (diminishing phase) were swift compared to the de-
velopment and maintenance phases, shown in Fig. 1(b) and (c).
Fig. 1(d) also shows the two ship surveys in the maintenance and
diminishing phases. As the bloom drifts, the biomass declines
rapidly and concentrates eastward. The limited biomass changes
also reflect and verify the algae’s life state through ship surveys.
These survey results are consistent with satellite observations.
Therefore, the FS ratio can be used to judge the floating algae’s
status at different life phases of the bloom.

V. DISCUSSIONS

The difference of algae detected by MODIS and SAR can
attribute to the difference of two sensors in spatial resolution,
observing time, and principle of measurements. To eliminate the
influence of the first two factors on the FS ratio, we made the
following discussion.



GAO et al.: DEEP-LEARNING FRAMEWORK TO DETECT FLOATING GREEN ALGAE FROM OPTICAL AND SAR IMAGERY 2793

Fig. 8. Algae movement drift and registration: images before (a) and after (b)
registration. The final registration residual error is less than 3 MODIS pixels.

A. Algae Label Uncertainty and the AlgaeNet Model’s
Inhibitory Effect

The AlgaeNet model needs many image labels to train the
network. Although the labeling criterion has been determined
according to the algae features, the labels are subject to human
error. The AlgaeNet model has a particular inhibitory effect
on the image labels’ uncertainty (red box in Fig. 7). We can
further optimize labels to improve the model according to
the difference between the predicted values and the ground
truth labels (yellow box in Fig. 7). DL models and label op-
timization are two complementary tools. High-quality labels to
train the models can improve model accuracy, and DL mod-
els can also be used for label optimization to reduce artificial
uncertainty.

B. Overpass Time Difference Effect

There is usually a time difference of 6–18 h between the
MODIS and SAR images’ acquisition times. As a result, the
algae patches may have some drift and shape deformation shown
in Figs. 2 and 8. Moreover, the rapid development of the algae
itself should also be considered. The maximum overpass time
interval is 18 h. During this long period, the algae could grow or
demise a lot. Therefore, this article adopts the standard rubber
sheeting method to perform image registration of algae patches
in MODIS and SAR images with a registration error of fewer
than three MODIS pixels (<1 km, Fig. 8 and Table IV) based
on the quantitative control points and evaluation points. This
small residual error will not cause a substantial impact on the
accurate estimation of the algae’s missing inspection rate and
the FS ratio.

TABLE IV
IMAGE REGISTRATION ACCURACY EVALUATION

Note: X (Y ) represents the mean of the radial (latitudinal) difference of the feature point
pairs; d represents the mean distance of the feature point pairs; and S represents the root
mean square error RMSE of the distance d between the feature point pairs. After converting
S from angle to distance, the maximum value of 0.0667° is 739.78 m, and the residual error
is less than 3 MODIS pixels (1 pixel = 250 m).

Fig. 9. Algae pixel density (a, most pixels > 0.8) and AlgaeNet output
possibility (b, most pixels are close to 0.9–1.0).

C. Algae Mixed Pixel and Coarse Resolution Effect

A mixed pixel issue exists in all remote sensing images. The
coarser the image resolution, the greater the influence of the
mixed pixels [41], [42]. For MODIS images, the influence of
mixed pixels on the accuracy of algae extraction can be elimi-
nated through the output possibility of AlgaeNet. We found that
the containing-algae proportion in the MODIS pixel, i.e., algae
pixel density, is almost consistent with the output possibility by
the AlgaeNet model.

We use ENVI software’s image mixed-pixel decomposition
function to the optical image, including data dimensionality re-
duction, endmember selection, and spectral separation. Finally,
we obtain the containing-algae proportion in each pixel. Fig. 9
also shows that the containing-algae pixel density is almost
consistent with the output possibility of the AlgaeNet model.
Therefore, the output possibility of the AlgaeNet model can
be directly regarded as the containing-algae proportion of the
algae pixel to eliminate the mixed effect. After extracting the
algae-containing pixels, the corresponding pixel density can
also be quantified directly using the simple unmixing method.
Finally, the fractional areal coverages were estimated from all
algae-containing pixels.

The above-described effect, “the broader margin of algae
patches observed by MODIS compared to SAR,” may be af-
fected by the coarse resolution of MODIS (250 m) [43], [44],
rather than the effect of optics (penetration) versus microwave.
To verify the dependence of the FS ratio on the satellite image
resolution, we added two new experiments.

Experiment 1: First, to ensure the accuracy of the FS ratio,
we selected the largest possible algae patches. Then, we applied
the AlgaeNet to Sentinel-2 optical images (4/3/2/8 bands and
10-m resolution), similar to Sentinel-1 and Gaofen-3 SAR res-
olutions. Fig. 10(a) shows that the edge of the algae patches



2794 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 10. Sentinel-2 (green), MODIS (black), and SAR (red) algae patches
detection on June 23, 2019. It was found that the hypothesis of the “FS ratio” is
valid. The figure is a part of Fig. 5.

Fig. 11. MODIS (black) and resampled 250-m resolution SAR (yellow) algae
patches detection. The figure is part of Fig. 5.

detected by the sentinel-2 image is larger than that by the
SAR image, which preliminary proves the reliability of the
“FS ratio” hypothesis we put forward. Fig. 10(a) and (b) also
shows a particular difference in the algae detection results of
the two optical satellite sensors, MODIS (250-m resolution) and
Sentinel-2 (10-m resolution). The FS ratio estimated by MODIS
has a slight difference compared with Sentinel-2 (22.01%. vs.
25.31%), which can be negligible because of such a slight
difference.

Experiment 2: We resampled the SAR image from 10-m
resolution to 250-m resolution, and then redetected the algae
pixels on the 250-m resolution SAR image, compared it with the
detection results on 250-m resolution MODIS image, and also
found the broader margin of algae patches observed by MODIS
compared to SAR (Fig. 11). Therefore, these two experiments
proved the reliability of our model.

VI. CONCLUSION

U. prolifera bloom to form green tides is a disastrous eco-
logical event in the coastal sea. Satellite remote sensing is the
primary U. prolifera detection approach due to the frequent
data acquisition and broad coverage area. In this article, a DL
model, AlgaeNet, is established for detecting U. prolifera algae
in MODIS and SAR images. We modified the model with the
unique physical multichannel combination input and a new
loss function design. This tailored modification improved the
detection accuracy to 97.03%/99.83% and the Mean IoU to
48.57%/88.43% for MODIS/SAR images based on the labeled
1055/4071 samples pairs, among which 70%/30% were used
for training/validation. The detection result of the AlgaeNet
model is purely made with the optimized model weights learned
from the training processes model, reducing the potential biases
due to the selection of extraction thresholds during the tradi-
tional threshold-based segmentation. The other DL methods
and biological indices also verified the high reliability of the
AlgaeNet model. When we applied the physical input and the
newly constructed loss function to the other DL models, we
also achieved high accuracy, indicating the excellent portability
of our unique improvement strategy in various convolutional
networks.

We used the AlgaeNet model to process processed satellite
images containing U. prolifera in the Yellow Sea and acquired
12 pairs of spatiotemporally matching MODIS and SAR im-
ages/slicks. However, due to different resolutions, observation
mechanisms, and asynchronous observation (overpass time dif-
ference), the algae detection results obtained from optical and
radar satellites are not entirely consistent. Compared with the tra-
ditional biological indices, the AlgaeNet model provides a more
convenient fusion method to obtain two new scientific discover-
ies: the missing detection rate in coarse images and the FS ratio
of floating algae patches. For the missing detection rate, adding
high-resolution SAR image information leads to a 63.66% in-
crease in algae detection compared to that based on MODIS
imagery alone. Such a high missing inspection shows the impor-
tance of revising historical results in coarse images. On the other
hand, the FS ratio of algae patches (∼5%–48.54% in different
bloom phases) can be used to reflect the life status of floating U.
prolifera algae due to the two sensors’ different algae detection
mechanisms.

In future article, we can further improve algae detection as
follows:

1) In the 2017 ship survey, we did not conduct timely in-situ
measurement of FS ratio due to insufficient scientific target
setting. Therefore, we plan to perform the necessary ship
survey and compare it with the FS ratio obtained by the
AlgaeNet model to verify the constructed model further.

2) Since 2007, Sargassum golden tide and green tide have
also frequently occurred together in the Yellow Sea. There-
fore, the AlgaeNet model can be applied to detecting
Sargassum golden tide. Furthermore, we will try to use
the FS ratio to distinguish and separate the two kinds of
macroalgae.
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3) We can directly apply the constructed model to other
marine disasters such as oil spills and further expand the
applications of the AlgaeNet model.
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