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Abstract: Quantum key distribution (QKD) assures the theoretical information security from the
physical layer by safely distributing true random numbers to the communication parties as secret keys
while assuming an omnipotent eavesdropper (Eve). In recent years, with the growing applications of
QKD in realistic channels such as satellite-based free-space communications, certain conditions such
as the unlimited power collection ability of Eve become too strict for security analysis. Thus, in this
invited paper, we give a brief overview of the quantum key distribution with a geometrical optics
restricted power collection ability of Eve with its potential applications.

Keywords: quantum key distribution; satellite; free-space channel

1. Introduction

There has been a long history of cryptography [1–6]. Before the 20th century, cryptog-
raphy was considered as an art that mainly relies on personal skills to construct or break
codes, without proper theoretical study [7]. Focused on message confidentiality, classical
cryptography was known to ensure secrecy in communications under different situations
such as military or diplomat use or between spies. An important representative of classic
cryptography is transposition ciphers, which rearrange the message to hide the original
meanings. After the early 20th century, following the establishment of the information
theory by Harry Nyquist, Ralph Hartley, and Claude Shannon [8–13], the study of cryptog-
raphy started to exploit the tools of mathematics. Cryptography also became a branch of
engineering, especially after the use of computers, which allows binary encryption of data.
Two major schemes of modern cryptography include symmetric (private-key) cryptogra-
phy, e.g., the Data Encryption Standard (DES) [14] and Advanced Encryption Standard
(AES) [15], and asymmetric (public-key) cryptography, e.g., RSA algorithm [16]. Symmetric
cryptography relies on the shared key between the communication parties (Alice and Bob),
whereas in asymmetric cryptography, the encryption keys are different from decryption
keys. In general, symmetric cryptography is more efficient than asymmetric cryptography
with more concise designs, but it has difficulties when it comes to the safe distribution of
the shared keys. On the other hand, asymmetric cryptography using a public key and a
private key for encryption and decryption, respectively, relies upon mathematical problems
termed one-way functions that are computationally infeasible from one direction (public
key) [17], and are more widely used today for avoiding the risky stage of safe distribution
of keys in symmetric cryptography.

However, with the fast development of quantum computing [18] and its potential
in solving conventional one-way functions, it is possible to break the current encryption
systems [19] with algorithms such as Shor’s algorithm [20] and Grover’s algorithm [21];
thus, the QKD is now becoming more and more important in the new era of information
security. Different from the asymmetric cryptography used today, QKD is based on
symmetric cryptography, guaranteeing the secure distribution of the secret keys with
the laws of quantum mechanics that the measurement process generally disturbs the
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measured system. This can be used to detect eavesdropping actions as any adversaries
would have to perform measurement to eavesdrop. Since the study of the first QKD
protocol BB84 [2], the theory of QKD has vastly developed, with numerous protocols
proposed [3–5,22–32] to improve security and increase secure-key rate (SKR). Combined
with the one-time pad proved to be asymptotically safe in 1949 by Claude Shannon [1],
QKD promises completely secure communication. On the other hand, QKD conventionally
assumes that Eve is only limited by the laws of physics even though some assumptions
might be unrealistic. For example, Eve is always assumed to have the ability to collect
all photons that do not arrive at Bob’s receiver, which would make sense in cases such
as fiber communication but would be too strict for wireless communication cases. Thus,
interest has been rising surrounding the study of QKD with more realistic power collection
assumptions and its potential applications [33–40].

In this invited paper, we present an overview of the geometrical optics restricted
quantum key distribution with certain power collection restrictions applied on Eve. We
start by reviewing the conventional QKD studies in Section 2 with different protocols and
compare the achievable secure-key rate between the famous discrete variable protocol BB84
with decoy states added and the continuous variable Gaussian modulated QKD scheme.
Then, in Section 3, we introduce the geometrical optics restricted model by limiting Eve’s
collectable power with a beam splitter and showcase the lower bound results in this
model. After that, we present some possible applications of this model by studying some
representative scenarios with it.

2. Quantum Key Distribution (QKD)

With the fast development of potential applications of QKD such as quantum net-
works [41,42] and satellite-based quantum secure communication [43–47], various protocols
have been proposed aimed at improved security while assuming an all-powerful eavesdrop-
per. For example, the first QKD protocol BB84 was studied in 1984 by Charles H. Bennett et al.
to use polarization states to securely distribute secret keys [2]. It was also known as the
first prepare-and-measure (PM) model as it exploits the result of quantum indeterminacy
that measuring an unknown quantum state in general changes the state. It was then
simplified to the B92 protocol by using two non-orthogonal states [3] before extending to
its entanglement-based (EB) version BBM92 [4] in 1992.

Different from the PM models, the EB models use entangled pairs in the transmission
stage to distribute secret keys to the two communication parties. BBM92 was also consid-
ered as an improvement to the first EB model E91 [5], which uses three mutually unbiased
bases instead of two in BBM92. There was also an important equivalence established
between PM and EB models in [4] that the security proof of one implies the same for
the other.

However, when it comes to device-independent (DI) studies, EB models have advan-
tages over PM models [23] since the security proofs of DI-QKD are mainly based on the
violation of Bell inequalities [48–51]. Some PM models are proven to be partially DI [52]
The device independence study was first proposed in [6] using internal operations to
“self-test” quantum apparatus. Different protocols have since been studied [22–24].

Another important category of quantum key distribution protocols is the continuous-
variable (CV-) QKD. Different from most protocols described above, which are called
discrete-variable (DV) protocols that rely on single photon sources and single photon
detectors, CV protocols encode keys into CV observables of light fields [53]. This enabled
CV protocols to be more easily implementable as it is compatible with most current
communication devices. The first protocol using squeezed states [25] was proposed in 2000,
which generalizes the BB84 protocol using squeezed states. In 2002, another important CV
protocol GG02 using Gaussian modulated coherent states [26] was proposed as coherent
states are much easier to generate experimentally.

Other interesting directions in QKD research include using decoy states [27–29,54]
against photon number splitting (PNS) attack [55] where the eavesdropper exploits the



Entropy 2021, 23, 1003 3 of 11

loophole of a non-ideal single photon transmission; finite-size analysis [56] where the trans-
mitted sequence is not large enough for asymptotic security analysis; measurement-device-
independent (MDI-) QKD [57] that comes from DI-QKD but assumes perfect preparation of
the states; and high-dimensional QKD that exploits high dimensional degrees of freedom
such as the orbital angular momentum (OAM) [30–32] and the temporal-spectral [58,59]
aimed at increasing key rates, etc. Here we present introductions to two representatives in
DV and CV protocols:

2.1. BB84

BB84 protocol uses single photons to distribute secret keys. First, Alice randomly
prepares a sequence chosen from two sets of orthogonal bases as in Figure 1 and sends
them to Bob.
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Next, Bob would also randomly choose from these two sets of orthogonal bases to
measure the received photons. After completing the measurements, Bob would report his
basis of measurement. If Alice’s preparing basis is the same as Bob’s measurement basis,
then the result should be the same, which would be the sifted keys.

If Eve intercepts the photons transmitted, performs a measurement of her own, and
resends the photons to Bob, then when Eve’s measurement basis is not the same as Alice’s
and Bob’s, the polarization state would be changed so that the sifted keys would be different
on Alice’s and Bob’s side. Thus, either Alice or Bob can reveal some of the sifted keys
publicly for the other party to compare and detect possible eavesdropping. An illustrative
example of this process is shown in Table 1.

Table 1. BB84 protocol process illustration.

Random Bits 0 1 0 0 1 1 1 0 1

Alice basis a a b a b a b b a

Polarization state sent
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2.2. GG02

GG02 protocol uses Gaussian modulated coherent states, as in Figure 2, to distribute
secret keys. First, Alice generates random real number pairs (ax, ap) from two independent
Gaussian distributions with given modulation variances and sends them to Bob. Next, Bob
randomly chooses to measure either x or p quadrature components.
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After all the transmission and measurements are done, Bob discloses for each mea-
surement whether he measured x or p components. Then, Alice retains the corresponding
ax and ap values. Secret keys can then be extracted with certain reconciliation and pri-
vacy amplification.

For these protocols, if Bob is the one performing the measurement and Alice is post-
processing its outcomes to infer Bob’s encodings, assisted by classical communications
from Bob to Alice, this is the reverse reconciliation scheme. Otherwise, it is the direct
reconciliation scheme. Here we present a secure key rate lower bound (achievable rate)
comparison between CV Gaussian modulation protocol with coherent states, heterodyne
detection, reverse reconciliation, and DV protocol Decoy-State (DS-) BB84, of which detailed
calculations can be found in [33,60]. We assume that a weak coherent-state source with
signal-state pulses is used which transmits µ photons per pulse on average at a rate R states
per second over an Alice-to-Bob channel with overall transmissivity η. Thermal noise is
denoted as ne per mode.

In Figure 3a,b, the reconciliation efficiency β for CV protocol and fL for DV protocol
are both set to one. By comparing Figure 3a,c, we can see that in a pure loss channel
(ne = 0), the CV protocol always outperforms its DV counterpart. However, when thermal
noise is non-zero, DV can outperform CV, especially when reconciliation is not perfect. We
can also compare DV and CV results with input power optimized, as in Figure 4, where
the input power is optimized correspondingly with perfect reconciliation. We can see that
although Gaussian-modulated CV protocol has advantages over DS-BB84 on the secure
key rate, it does not outperform DS-BB84 when it comes to the transmission distance as
channel loss increases with increasing transmission distance.
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3. Geometrical Optics Restricted Model

In this section, we introduce the geometrical optics restricted model with realistic
power collection restriction on the eavesdropper. In [33], a wiretap channel is used to
denote the power collection restriction on Eve as in Figure 5. Here the beam splitter with
transmissivity κ denotes that Eve can only collect κ fraction of the photons that do not
arrive at Bob’s receiver. The Alice-to-Bob channel is with transmissivity η.
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Similar notations have been seen in broadcast channel studies [61,62]. Starting from
the Hashing inequality [63] the lower bound on the secure key rate for both direct and
reverse reconciliation were derived without a specified detection scheme on one of the
communication parties:

K→ ≥ βg(ne(1− η) + ηµ)−∑
i

g

(
νER

yi
− 1

2

)
− βg(ne(1− η)) + g(ne(1− ηκ)) (1)

K← ≥ βg(µ)−∑i g

(
νER

yi
− 1

2

)
− βg

(
µ− ηµ(1 + µ)

1 + ne− neη + ηµ

)
+ ∑i g

(
νER

yi
− 1

2

)
(2)

g(x) = (x + 1) log2(x + 1)− x log2 x (3)

where detailed expressions of νER
yi

can be found in [33].
Here we reproduce the comparison in Figure 4 between DV protocol DS-BB84 and

CV Gaussian modulation protocol with coherent states, heterodyne detection, and reverse
reconciliation as in Figure 6. We retain the results from Figure 4, as κ = 1 case and plotted
the DV and CV rate with κ = 0.5. We can see an increase in the achievable rate in both CV
and DV protocols and that the CV protocol only holds advantages over the DV protocols
when channel loss is small. We can also see that when κ = 0.5, the rate goes to zero at a
larger channel loss, suggesting larger transmission distance in this case.
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The geometrical optics restricted model has multiple potential applications in different
scenarios of practical importance. Here we present some possible directions.

3.1. Application of Geometrical Optics Restricted Model: Limited Aperture Size Analysis

Different from the assumptions in conventional QKD study that Eve is unlimited
in her ability of power collection, in most realistic application scenarios, especially in
wireless communication, Eve is limited by her receiver aperture size. Taking free-space
optical communication link as an example, the receiver aperture size usually ranges from a
few centimeters to a few decimeters. If we only restrict Eve’s aperture size but grant her
mobility of her aperture, which could be accomplished through unmanned aerial vehicle
(UAV) or usage of a spy satellite during satellite communications, we can study the security
of specific application occasions.

In [35,37,38], the straightforward case scenario of a limited-sized aperture of Eve is
considered where Eve places her aperture beside Bob’s receiver in a satellite-to-satellite
communication scheme as in Figure 7a. It is shown in Figure 7b that the rate tends to be a
constant when the transmission distance is sufficiently large.

This was also derived in detail as in Equations (4) and (5), where m is the ratio of Eve’s
aperture size versus Bob’s aperture size.

lim
µ→∞,L→∞

K→ ≥ − log2 m (4)

lim
µ→∞,L→∞

K← ≥ − log2
m

m + 1

1+m
e (5)

In [36,40], the case with dynamically positioned eavesdropper aperture is considered
with Eve’s position being optimized, as in Figure 8a. In Figure 8b, both CV and DV lower
bounds are presented with optimized Eve’s position. Assuming the Gaussian beam is
transmitted, because of the cylindrical symmetry of a Gaussian beam, the distance D
between Eve’s aperture to the beam transmission axis can be used to denote Eve’s position
combined with Bob-to-Eve distance LBE. It is clear that by optimizing Eve’s position,
advantages over Alice and Bob can be further obtained by Eve compared with Figure 7b.
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Figure 7. (a) Setup of the limited aperture scenario. Aa, Ab, Ae respectively refer to the aperture area of Alice (radius ra),
Bob (radius rb), and Eve (radius re). L is the distance between Alice’s aperture and Bob’s. (b) CV and DV SKR lower bounds
versus transmission distance with optimized input power. Gaussian beam with beam waist W0 = ra and wavelength
λ = 1550 nm is transmitted. The space temperature is set to T = 3 K.
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Figure 8. (a) Setup of the dynamic positioning of Eve. Aa, Ab, AEve respectively refer to the aperture area of Alice (radius
ra), Bob (radius rb), and Eve (radius re). LAB is the distance between Alice’s aperture and Bob’s. LBE is the distance between
Bob’s aperture and Eve’s. (b) CV and DV lower bound secret keys versus Bob-to-Eve distance LBE with Alice-to-Bob
distance LAB = 50 km. Gaussian beam with beam waist W0 = ra = rb = re = 10 cm and wavelength λ = 1550 nm is
transmitted. The space temperature is set to T = 3 K.

3.2. Application of Geometrical Optics Restricted Model: Exclusion Zone Analysis

From the defense point of view, one of the most effective ways to suppress Eve’s
power collection ability is to set an exclusion zone around the legitimate receiver. In [39]
an exclusion zone is assumed to be set surrounding the legitimate receiver, excluding the
eavesdropper Eve from collecting photons in this region, as in Figure 9a. In Figure 9b, an
exclusion zone is shown to increase the secure key rate for both CV and DV protocols, but
this is more effective when the transmission distance is not too large.
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4. Discussion 
In this paper, we provided a brief overview of the geometrical optics restricted QKD 

and discussed its potential applications. We started by reviewing some of the existing 
QKD schemes before going into the geometrical optics restricted model notation in a wire-
tap channel that can better characterize the power collection state of some realistic scenar-
ios instead of attributing too much power to Eve. After we introduced the lower bound 
results in this model, we then presented some of the application directions of this model, 
mostly in free-space channels such as satellite communication. We showcased selected 
results from both Eve’s side with her optimized position strategy and the communication 
parties’ side with an exclusion zone as a defense strategy. 
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Figure 9. (a) Setup of exclusion zone scenario. Aa, Ab, Aex respectively refer to the area of Alice’s aperture (radius ra), Bob’s
aperture (radius rb), and the exclusion zone (radius rex). L is the distance between Alice’s aperture and Bob’s. (b) CV and
DV lower bound of secret keys versus transmission distance L with or without an exclusion zone. Gaussian beam with
beam waist W0 = ra and wavelength λ = 1550 nm is transmitted. The space temperature is set to T = 3 K.

4. Discussion

In this paper, we provided a brief overview of the geometrical optics restricted QKD
and discussed its potential applications. We started by reviewing some of the existing QKD
schemes before going into the geometrical optics restricted model notation in a wiretap
channel that can better characterize the power collection state of some realistic scenarios
instead of attributing too much power to Eve. After we introduced the lower bound results
in this model, we then presented some of the application directions of this model, mostly in
free-space channels such as satellite communication. We showcased selected results from
both Eve’s side with her optimized position strategy and the communication parties’ side
with an exclusion zone as a defense strategy.
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