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Abstract

The data-embedding process is one of the bottlenecks of quantum machine learning,
potentially negating any quantum speedups. In light of this, more effective
data-encoding strategies are necessary. We propose a photonic-based bosonic
data-encoding scheme that embeds classical data points using fewer encoding layers
and circumventing the need for nonlinear optical components by mapping the data
points into the high-dimensional Fock space. The expressive power of the circuit can
be controlled via the number of input photons. Our work sheds some light on the
unique advantages offered by quantum photonics on the expressive power of
quantum machine learning models. By leveraging the photon-number dependent
expressive power, we propose three different noisy intermediate-scale
quantum-compatible binary classification methods with different scaling of required
resources suitable for different supervised classification tasks.

Keywords: Quantum physics; Machine learning; Quantum photonics

1 Introduction

Machine learning approaches such as artificial neural networks are powerful tools for solv-
ing a wide range of problems including image classification and regression. However, the
scalability of machine learning implemented using general-purpose electronic circuits is
limited by their high power consumption and the end of Moore’s law. These issues mo-
tivate the pursuit of dedicated hardware for machine learning including photonic neural
networks [1-4] and quantum circuits [5-11].

The combination of ideas from the photonic and quantum machine learning commu-
nities may enable further speed-ups and novel functionalities [12—19]. For example, both
classical and quantum photonic neural networks are presently limited by the difficulty of
incorporating nonlinear activation functions. This challenge can be circumvented using
the kernel trick, in which the input data is mapped into a high-dimensional feature space
where simple linear models become effective [13, 20-22]. The simplest quantum feature
map based on repeated application of data-dependent single qubit rotations is already suf-
ficient to serve as a universal function approximator [23-25].

Despite progress in various aspects of near-term quantum machine learning algorithms
[26] including experimental realizations [16, 27-30], proposals for various platforms
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[28, 31] and studies of statistical properties of quantum machine learning models [32—34],
the encoding of input data is still a significant bottleneck for (quantum) photonic machine
learning hardware. For example, the expressive power of quantum circuits based on pa-
rameterized single qubit rotations is limited by the number of encoding gates used [23, 24].
Similarly, some existing quantum machine learning algorithms with proven speedups for
future fault-tolerant quantum computers assume the existence of quantum-random ac-
cess memory (RAM) [35] that can provide the input data in a quantum superposition
with no overhead [36-42]. Yet, the sources of the speedup of these algorithms are still
under active debate [43, 44]. Thus, a pressing goal is to develop machine learning algo-
rithms that avoid encoding large input datasets [45—47] or more efficient data-encoding
methods. This article addresses the latter problem.

Specifically, we generalize the qubit-based circuit architecture analyzed in Refs. [23, 24]
to quantum photonic circuits (QPCs) constructed using linear optical components such
as beam splitters and phase shifters, photon detectors, and Fock state inputs. We con-
sider parameterized linear QPCs [Fig. 1(a)] consisting of two trainable circuit blocks with
one data encoding block sandwiched between them. We show that for a fixed number
of encoding phase shifters, the expressive power of the parameterized quantum circuit is
improved by embedding the classical data into the higher-dimensional Fock space. This
enables the approximation of classical functions using fewer encoding layers while cir-
cumventing the need for nonlinear components. The origin of this improved encoding
efficiency is that each phase shifter simultaneously uploads the input data onto multiple
Fock basis states simultaneously.

Similar to Ref. [24], n-photon quantum machine learning models can be expressed as a

Fourier series

P00 = Y (@0, (1)
wey
wo@,) 5(x) w®(@,)
[n) :

L
(21 : Phase shifter S(x): Data encoding circuit block
D~ : Detector w®(8,): Trainable circuit block

Figure 1 Circuit diagram of parameterized linear quantum photonic circuit with m-spatial modes and
encoding data x using a single phase shifter. The expectation value with respect to observables of
photon-number resolving (PNR) or threshold detectors can be written as a Fourier series ", Co€®, with
frequencies w determined by the number of photons fed into the circuit, while the coefficients ¢, are
determined by the trainable circuit blocks and the observable
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where Q, € Nis the frequency spectrum and {c,,} are the Fourier coefficients that depend
on trainable circuit block’s parameters ® = (61,6,) and observable’s parameters L. The
expressive power of the Fourier series is determined by two components: the spectrum of
frequencies w, and the Fourier coefficients ¢,. We show that the frequency spectrum of
the circuit can be controlled by the number of input photons. Thus, a rich frequency spec-
trum can be generated by providing sufficient number of input photons to linear QPCs
with a constant number of spatial modes. In contrast, qubit-based circuits require deeper
or wider circuits to increase the size of their frequency spectrum. When generalized to
arbitrary input states and observables the QPCs can also generate arbitrary set of Fourier
coefficients that combine the frequency dependent basis functions ¥, allowing them
to approximate any square-integrable function on a finite interval to arbitrary precision
[24, 48, 49].

As an application of the parameterized linear quantum photonic circuits, we consider
three different machine learning approaches for supervised data classification: (1) A vari-
ational classifier based on minimizing a cost function by training the circuit parameters.
(2) Kernel methods, which employ fixed circuits, with training carried out on observables
only. (3) Random kitchen sinks, which use a set of random circuits to approximate a de-
sired kernel function. Each of these methods has different scaling with the dimension of
the data and number of training points used, and so each is better-suited to different types
of supervised learning problems.

The outline of this paper is as follows. Section 2 introduces our proposed linear quan-
tum photonic circuit architecture and analyzes how its expressive power depends on the
number of spatial modes and input photons. Next, Sect. 3 illustrates the photon number-
dependent performance of the circuit for supervised classification problems. Section 4
concludes the paper.

2 Parametrized linear quantum photonic circuit model

To demonstrate the Fock state-enhanced expressive power of linear quantum photonic cir-
cuits, in this Section we consider the encoding of univariable functions onto circuit’s out-
put. For simplicity we consider the circuit architecture illustrated schematically in Fig. 1,
consisting of a single data-dependent encoding layer S sandwiched between two trainable
beam splitter meshes /2, described by the unitary transformation

U(x, 8) = W(0,)Sx)WP(8,), )

where ® = (0,,0,) parameterizes transformations applied by trainable beam splitter
meshes and x is the input data. The n-photon quantum model (circuit’s output) is de-
fined as the expectation value of some observable M (L) with respect to a state prepared
via the parameterised linear QPC,

76 0,1) = U (x, ®)MWU(x, ©) n"), 3)
where |n%¥) = In(li),n(zi),...,nﬁf;)) is the input n-photon Fock state with n = )" ngi) and
A parameterizes the observable. We consider measurements made using either photon
number-resolving (PNR) detectors or single photon (threshold) detectors, corresponding
to M being diagonal in the Fock state basis with d or d’ distinct parameterized eigenvalues
(A e k};”z(/l), respectively.
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The multi-mode Fock state unitary transformation U (x, ®) is constructed from perma-
nents of submatrices of the m-mode linear transformation matrix U(x,®) =
WP(0,)S(x) W (8,) using the scheme of Ref. [50] with W as the programmable trans-
fer matrix, describing the universal multiport interferometer that realizes arbitrary linear
optical input-output transformations [51-53]. Each trainable unitary W (@;) is parame-
terized by a vector 6; of m(m — 1) phase shifter and beam splitter angles constructed using
the encoding of Reck et al. [51]. The data encoding block S(x) employs a single tunable
phase shifter placed at the first spatial mode.

2.1 n-photon quantum models as Fourier series

In this Section we will show how to express the n-photon quantum models as a Fourier
series. For simplicity, we consider arbitrary unitary operations Y}(#) = W, an arbitrary pa-
rameterized observable obtained using PNR detectors M(L) = M, and |n®?) = |,0,...,0)
as the initial Fock state. The component of the output quantum state with photon numbers
nY) can be written as [24]

(n12() 100 = 3 W W ()
n/

where the summation runs over the basis of d = (”*”"1)

Fock states corresponding to
different combinations of # photons in the m spatial modes. The data encoding block
imposes a phase shift proportional to the number of photons in the first mode following
the first beam splitter mesh.

The output of full model Eq. (3) is obtained by taking the modulus square of Eq. (4),
multiplying by the corresponding observable weight, and then summing over all output

Fock basis states. This yields an expression of the form

f(n)(x) = Z an”,n/ei(n/l_n/l/)x: (5)

n’.n

where a7y contain the matrix elements from the unitaries YW and measurement’s ob-

servable M,

_ #(1) *(2) (2) (1)
'y = Z W WaraManWan Wi - (6)
n

This expression can be simplified by grouping the basis function with the same frequency

w = ny —ny. This gives

fP@) =) e, @)

wey

where the coefficients ¢, are obtained by summing over all ap,”,y contributing to the same

frequency

Co = Z an’ n'» (8)
n,n

,
I
Vllfl’ll =W
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with ¢, = ¢*, and Eq. (7) is a real-value function, as it should be. The frequency spectrum
Q, = {n] — nj|n}, n] € [0,n]} contains all frequencies that are accessible to the n-photon
quantum model. For general trainable circuit blocks YW (@;), measurement observable
@ (@

)

M(L) and n-photon Fock state |n®) = In(li),n2 ,...,/y), the n-photon quantum model

reads

fP®0,1) =" c,(0,1)", )

wey

2.2 Expressive power and trainability of linear quantum photonic circuits

Since the n-photon quantum model can be represented by a Fourier series, its expressive
power can be studied via two properties: its frequency spectrum and Fourier coefficients.
The former tells us which functions the quantum model has access to, while the latter
determines how the accessible functions can be combined [24].

2.2.1 Photon-number dependent frequency spectrum
The frequency spectrum can be easily shown to be

an{—l’l;—l’l+1,.--;”1—1’”}' (10)

which is solely determined by the number of photons fed into the circuit. It always contains
the zero frequency, i.e: 0 € 2, while the non-zero frequencies occur in pairs, i.e: w,—w €
2,,. This motivates us to define the size of the frequency spectrumas D, = (|2,| - 1)/2=n
to quantify the number of independent non-zero frequencies the #n-photon quantum
model has access to. In comparison to Ref. [24], where the size of frequency spectrum
is determined by the spectrum of the data encoding Hamiltonian, here the size of the fre-
quency spectrum can be increased by feeding more photons into the circuit, while keeping
the number of spatial modes and encoding phase shifters constant.

This implies that n-photon quantum models with more input photons can be more ex-
pressive, because they have access to more basis functions, and hence can learn Fourier
series with higher frequencies. In the limit of n — oo, i.e: continuous variable quan-
tum systems, n-photon quantum models can support the frequency spectrum Qo =
{-00,...,-1,0,1,...,00} of a full Fourier series, in agreement with Ref. [24]. For a fixed
number of input photons, the frequency spectrum can be broadened further using multi-
ple encoding phase shifters, either in parallel or sequentially [23, 24] (see Appendix A).

As an example, we consider training a linear QPC with three spatial modes shown in
Fig. 2(a) using a regularized squared loss cost function. The cost function C(®, 1) is con-
structed using the measurement results and a training set of N desired input/output pairs

fxr = g},

N
C(O,)) = % > (glw) —f (i, 0, V) +ak-2, (11)

i=1

that is variationally minimized over ® and A to learn the function g(x). Here, f(x, ®,1) is
the n-photon quantum model in Eq. (9), while A - A = >_; A7 is the sum of squared observ-
able parameters, forming a regularization term with weight . The regularization term
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Figure 2 Different linear quantum photonic circuit configurations for supervised machine learning.

(@) Parameterized circuit comprising three spatial modes for fitting of Fourier series and binary classification.
One encoding phase shifter is used per classical data feature. (b, ¢) Two spatial mode circuits for
implementing kernel-based machine learning using Gaussian kernels with photon number-resolving
detectors. Here H denotes a 50-50 beamplitter, with matrix elements the same as the Hadamard transform
[54, 55]. In other words, (b) is a (c) Mach-Zehnder interferometer. Direct implementation of the kernel method
can be done by using the phase shifter to encodes the squared distance between pairs of data points,

¢ =8 = (x - x')2, while random kitchen sink approach approximate a Gaussian kernel using a set of
randomized input features ¢ =x,; =y (w, - x; + b,)

has a two-fold role: it prevents model over-fits, and ensures that the model prediction is
not based on output photon combinations that occur with very low probability. The latter
is important for QPC-based machine learning models, because the number of measure-
ments required to obtain all of the required expectation values scales with the number of
spatial modes and photons.

We train the three mode linear QPC using the gradient-free algorithm in the NLopt
nonlinear-optimization python package [56], i.e: BOBYQA algorithm [57] to fit a de-
gree three Fourier series g(x) with x € [-37,37] using input states of up to 3 photons.
We consider input states for which each spatial mode contains at most one photon, i.e.
In) = |100), |110), or |111). Figure 3(a) shows how the number of observable frequency
components and hence the expressive power of the circuit grows with the number of input
photons. Perfect fitting is achieved with three photons. In contrast, the frequency spec-
trum of similar qubit-based architectures cannot fit a degree two Fourier series using a
single encoding block, requiring either a deeper or wider circuits with multiple encoding
gates [23, 24].
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Figure 3 Photonic number-dependent expressive power of the variational linear quantum photonic circuit.
(@) Optimal fits of a degree three Fourier series g(x) = 2,37:,3 cpe” ™ with coefficients co = 0.2, ¢; = 0.69 + 0.52/,
¢, =081 4041/ and ¢3 = 0.68 + 0.82i using a three mode circuit with photon number-resolving (PNR)
detectors and different input Fock states, i.e. |100), |110), and |111). A perfect fit is achieved using at least
three input photons, since a sufficient number of non-zero frequencies are encoded, i.e. D, = 3. (b) The
number of real degrees of freedom of the three mode parameterized quantum photonic circuit with PNR
detectors (black) and threshold detectors (red). The former is always larger than the minimum number of
parameters Mmin required to control all the circuit's Fourier coefficients (blue), and hence, arbitrary Fourier
coefficients can be realized by this circuit. In contrast, the expressive power of the threshold detectors (red)
can only be enhanced for up to 9 input photons

2.2.2 Trainability of Fourier coefficients

Even if the parametrized QPC can generate the frequency spectrum required to fit the
desired function, this does not necessarily imply that the optimal Fourier coefficients are
accessible [24]; the linear circuits we consider cannot perform arbitrary Fock state trans-
formations. However, we do not need to generate arbitrary Fock states and only require
control over one real and D,, complex Fourier coefficients {c,}. For # input photons and
taking D, = n, this requires at least M,,;, = 2D, + 1 real degrees of freedom.

Each trainable circuit blocks has m(m — 1) controllable parameters [51], while the num-
ber of controllable degrees of freedom of the parameterized observable depends on type of
detector. For photon number resolving (PNR) detectors the number of degrees of freedom
is
(n+m-1)!

nlm—-1)!" (12)

MPNR = Zm(m - 1) +

while threshold detectors have

min(7,m)
m!
Mrpg =2m(m-1)+ Y ——— (13)
— k!'(k — m)!

degrees of freedom.
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For a fixed number of spatial modes and photons, threshold detectors have fewer con-
trollable degrees of freedom compared to PNR detectors, and hence their expressive
power saturates beyond a certain number of input photons. For example, Fig. 3(b) illus-
trates the expressive power of a circuit with three spatial modes. Using threshold detectors
the expressive power is only enhanced by increasing the number of photons up to nine;
beyond this, the number of controllable degrees of freedom is less than Mp,. On the other
hand, using PNR detectors the circuit may in principle be trained to fit arbitrarily large fre-
quencies by increasing the number of input photons. Of course, in practice the range of
frequencies accessible using a single encoding gate will be limited by sensitivity to losses,

which grows exponentially with the photon number.

2.2.3 Universality of the linear quantum photonic circuit

It is well known that a Fourier series can approximate any square-integrable function g(x)
on a finite interval to arbitrary precision [48, 49]. Thus, expressing the n-photon quantum
model in term of a Fourier series allows us to demonstrate the universality of the quantum
model by studying its ability to realise arbitrary Fourier series. Universality of a Fourier se-
ries is determined by two important ingredients: a sufficiently-broad frequency spectrum
and arbitrary realizable Fourier coefficients. The analysis in Sect. 2.2.1 implies that the
frequency spectrum €2, accessible by z-photon quantum models asymptotically contains
any integer frequency if enough input photons are used, satisfying one of the criteria to
achieve universality.

To realize arbitrary set of Fourier coefficients, at least M > My, = 2n + 1 degrees of
freedom in the linear QPC are required. Here, we consider a linear QPC with PNR de-
tectors. The PNR detectors are used because the expressive power of threshold detectors
saturated beyond some threshold number of photons. One of the unique advantages of
photonic system is the exponentially growing dimension of the Fock space with number
of spatial modes and photons. For a linear QPC with constant number of spatial modes
m, the dimension of the Fock space and Mpny scales in the order of O(#"!), hence con-
tributing O(#"!) of degrees of freedom. On the other hand, the degrees of freedom from
the trainable circuit blocks scale with O(#2), which is negligible when 7 >> m. By exploit-
ing this advantage, it can be seen that Mpng is always larger than My, as the size of the
frequency spectrum D, and Mp, scale linearly with photon number, i.e: O(n). This is a
necessary condition for the n-photon quantum model being able to realize arbitrary set of
Fourier coefficients, which in the examples we consider also seems to be sufficient. More
rigorously, following the arguments in Ref. [24] a universal function approximator may be
obtained by generalizing our circuits to arbitrary (entangled) input states and observables
by incorporating nonlinear elements into the circuits.!

As an example, we consider a linear QPC with 3 spatial modes. In this case, Eq. (12) is

reduced to

(n+2)(n+1)

MPNR =12+ Y

(14)

!The nonlinear optical elements enables the realization of two qubit entangling gates, while arbitrary single qubit rota-
tions can be realized using linear optics such as beam splitter and phase shifters. By considering the dual-rail photonic
qubit, our circuit could perform universal quantum computation, and the Fourier coefficients arguments follows from
Ref. [24].
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which is always larger than My, = 21 + 1 for n € N, as shown in Fig. 3(b). Hence, the n-
photon quantum model with 3 spatial modes and a single phase shifter can act as a univer-
sal function approximator. In contrast, the qubit-type variational quantum circuits require
deep or wide circuits and many encoding gates to ensure a rich frequency spectrum, and

arbitrary global unitaries to realize arbitrary sets of Fourier coefficients [24].

2.2.4 Effect of noise on the expressive power of linear quantum photonic circuits

For noiseless linear quantum photonic circuits, we have shown that its expressive power
will improve with the increasing number of photons and spatial modes. In this section, we
will discuss the role of optical losses on the expressive power of linear quantum photonic
ciruits. For real quantum photonic hardware, the optical loss sensitivity will grows expo-
nentially with the circuit depth and number of input photons. The typical noise sources
are (1) inefficient collection optics, (2) losses in the optical components due to absorption,
scattering, or reflections from the surfaces, (3) inefficiency in the detection process due to
using detectors with imperfect quantum efficiency, and they can be modelled using beam
splitters [58]. These noises will obviously affect the frequency spectrum, where the higher
frequency term cannot be distinguished from the lower frequency term, hence reducing
the size of the frequency spectrum. We anticipate the noises to have a minimum impact
on the Fourier coefficients, as they depend only on the physical components such as linear
optics in trainable blocks and the detectors. Therefore, the output observables can still be
written as Fourier series, just with reduced expressivity. This will place a practical limit on
the complexity of the QML models using this scheme, unless one can include some kind
of error correction scheme. When the losses are low enough, the detectors should have a
sufficiently high signal to noise ratio that other noise sources can be neglected. Apart from
the error correction scheme, the regularization term in the cost function should be able
to help to minimize the detrimental influence of noise. It penalizes models including co-
efficients with huge weights, hence no particular output state should have a huge weight,
reducing the model’s sensitivity of noise in final prediction. Finally, the photonic circuit
considered here are based on variational approach, therefore, they are robust against vari-
ations in the beam splitter ratios, tuning, and etc. The quantitative noise modelling of the

linear photonic quantum circuits will be a subject for future research.

3 Supervised learning using linear quantum photonic circuits

As an application of the trainable linear QPCs we now consider different strategies for
binary classification. In the first strategy the linear QPCs are directly used as variational
quantum classifiers, classifying data directly on the high-dimensional Fock space by opti-
mizing a regularized squared loss cost function. In this case, as the circuit becomes more
expressive it becomes harder to train. Second, we consider kernel methods as a means of
avoiding the costly circuit optimization step. We show how linear circuits can be used to
implement Gaussian kernels either directly or using the random kitchen sinks algorithm,
sampling kernels with different resolutions in parallel. Note that we are mainly interested
in what kinds of kernel functions can be efficiently implemented using linear QPCs, in-
stead of providing quantum kernels that might offer quantum advantages, motivated by

ongoing interest in classical photonic circuits for machine learning [1-4].
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3.1 Linear quantum photonic circuit as variational quantum classifiers
We perform binary classification of two-dimensional classical data. Each data dimension
is encoded using a single phase shifter, as shown in Fig. 2(a). The mapping of the data
into the high-dimensional Fock space is nonlinear, circumventing the need for nonlinear
optical elements.

The n-photon supervised classification model for two-dimensional data £ (x, ®,1) is
defined as

P 0,0) = ) cu(©,1)e%, (15)

weR,

where x = (x1,x,) is the 2-dimensional data feature, @ = (w1, w») is the 2-dimensional fre-

quency vector, and 2, = {-w,0,w|w1, wy € [0,n], w1 + wy < n} is the frequency spectrum

of the model. This encoding scheme will not generate a full frequency spectrum for multi-

dimensional Fourier series but it suffice for the example considered here. See Appendix B

for schemes that generate full frequency spectrum for multi-dimensional Fourier series.
The model is trained by minimizing the cost function

N
C(O,1) = ZLN > (gx) - (x;, 0, M) +ak-d (16)

i=1

using the BOBYQA algorithm, with the decision boundary defined as
s(gnrz(x) = sgn[f(”) (X, ®opt: xopt)]; (17)

where @, and A are the optimized circuit’s and observable’s parameters and sgn is the
sign function. Thus, the class of the data points is assigned by the sign of circuit output.

As an example, we trained the linear QPC to classify three different types of datasets
from the scikit-learn machine learning library [59]: linear, circle, and moon. Figure 4 illus-
trates the trained models. The contour plots show that z-photon supervised classification
models with higher photon number have more complicated classification boundaries, in
agreement with previous analysis on the expressive power of quantum models. Since the
linear data set can be separated by a linear decision boundary, unsurprisingly a single
model photon is sufficient to learn the classification boundary. On the other hand, over-
fitting can occur when the model expressive power is too large, as can be seen for the
degraded performance for the circle dataset for the |221) input state. The classification
performance for the more complicated moon dataset improves with the number of input
photons. These examples illustrate the impact of a higher expressive power on classifica-
tion using linear QPCs.

3.2 Linear quantum photonic circuits as Gaussian kernel samplers

Similar to the standard noisy and large scale variational circuits, the variational machine
learning approach becomes more difficult to train as the dimension of the Fock space
increases, likely due to the issue of vanishing cost function gradients [60—64], requiring
exponentially-growing precision to optimize the circuit parameters in-situ [65]. In ad-
dition, it is expensive to train the quantum gates (in this case the tunable beam splitter
meshes) in the noisy-intermediate scale quantum (NISQ) era as it is time-consuming to
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Figure 4 Binary classification using the three mode linear quantum photonic circuit of Fig. 2(a) with different
input Fock states |100), |111), and |221), training using 60 points with a regularization weight o = 0.2. First
row: linearly-separable dataset. Middle row: circle dataset. Bottom row: moon dataset. The performance on a
test set (red and blue solid cross) of 40 points is given in the upper left corner of each respective subplot. The
classification boundaries for all datasets become more complicated as the number of input photons increases,
illustrating the increasing expressive power. Increase of expressive power does not affect the trainability of the
linear dataset, since a linear classifier suffices. The performance for the circle dataset degrades for larger input
photons due to over-fitting, demonstrating that a larger expressive power is not necessarily better. On the
other hand, a higher expressive power is necessary in order to accurately classify the moon dataset

X1

reprogram quantum circuits [46]. Due to these limitations, it is more efficient to use NISQ
devices as sub-routines for machine learning algorithms, e.g. to sample quantities that are
useful for classical machine learning models but time-consuming to compute. In particu-
lar, variational quantum circuits can be used to approximate kernel functions for classical
kernel models such as support vector machines [10, 13, 16, 20, 66]. Here, we show how the
linear QPCs can be designed to approximate Gaussian kernels with a range of resolutions

determined by the number of input photons.

3.2.1 Kernel methods

Kernel methods allow one to apply linear classification algorithms to datasets with non-
linear decision boundaries [67, 68]. The idea is to leverage feature maps ¢ (x) that map the
nonlinear dataset from its original space into a higher dimensional feauture space in which

a linear decision boundary can be found, enabling classification via a linear regression

f(X) =w- ¢(X),

using suitably-trained weights w. Instead of computing and storing the high-dimensional
feature vector ¢, the kernel trick [68, 69] is employed by introducing a kernel function
k(x,x"), which measures the pairwise similarity between the data points in the feature

space. Formally, the kernel functions is defined as the inner product of two feature vectors

k(x,x") = ¢(x) - p(x'). (18)

Page 11 of 23
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According to representer theorem [70], the solution to the decision boundary can then be
expressed in term of the kernel functions as

N
SO0 =Y Bikixi,x), (19)

i=1

converting the optimization problem into a convex optimization problem of finding the
parameters f;. In the case of a regularized squared loss cost function such as Eq. (16) the
optimal parameters f; can be obtained analytically [71, 72] as

B =K +ahly, (20)

where N is the number of training data, K is the N x N kernel matrix with matrix elements
Kij = k(x;,x;), I is the N-dimensional identity matrix, « is the regularization parameter, and
y is the N x 1 vector of the training data labels.

Although we currently have an example that shows rigorous performance guarantees
of quantum kernel methods on artificial dataset [47], it is still unclear whether quantum
machine learning models can achieve improved performance compared to classical ma-
chine learning approaches in practical problems by sampling from kernels that are hard to
compute classically [13, 21, 73, 74]. Even in the absence of a rigorous quantum advantage,
special-purpose electronic and photonic machine learning circuits are being pursued in
order to increase the speed and energy-efficiency of well-established classical machine
learning models [1-4]. Therefore, here we will focus on implementing the widely-used
Gaussian kernel

with controllable resolution o. The Gaussian kernel is a universal, infinite-dimensional

kernel that can learn any continuous function in a compact space [75].

3.2.2 Linear quantum photonic circuits as sub-routine of kernel methods

We approximate the Gaussian kernel using the two mode QPC shown in Fig. 2(b), where
50-50 beamsplitters 7 are used for both trainable circuit blocks and the squared Euclidean
distance between pairs of data points § = (x — x’)? is encoded using a single phase shifter.
The output of this circuit can be written as

FU(8,X) = (m, 01U (§) MA)U(S) |1, 0)
= Z)Lij| (ni, m;|U(8) |, 0)

J

| 2

=’ W) +2) V() cos(ks),
k=1

where U(8) = HS(8)H and the trainable observable M(L) = Zij Aij|ny, mj) (my, my| with m; +
n; = n. Similar to Sect. 3.1, the observable is trained to approximate the Gaussian kernel of
resolution ¢ by minimizing the squared loss cost function using the BOBYQA algorithm

£ (5,09 ~ 7307
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Figure 5 Approximating Gaussian kernels with different resolutions o = 0.25,0.33,0.50, 1.00 using the two
mode linear quantum photonic circuit of Fig. 2(b) with different numbers of input photons n =2,4,6,8, 10.
Two photons are sufficient to approximate a low resolution kernel with o = 1.00 (curves for all photon
numbers overlap), while higher resolutions require more photons to approximate. For example, a circuit with
four photons can fit Gaussian kernels with o = 0.50, but not o = 0.33 or 0.25

This approach has two advantages: Different kernel resolutions can be accessed using the
same photon detection statistics | (n;, 1| U(8) |1,0) |* by taking different linear combina-
tions of the output observables M(A(”)). Second, this training only needs to be performed
once; the tunable circuit blocks do not need to be reconfigured if the training data set
changes.

We note that the domain of the input data, in this case the norm squared distances be-
tween pairs of data points, must lie within the interval that defines the circuit’s Fourier
series. This imposes an upper bound on the kernel resolution that the linear QPC has ac-
cess to. The circuit with higher expressive power, i.e: higher number of input photons, can
more precisely approximate kernels with higher resolution o. Kernels with lower resolu-
tion can already be well-approximated by a circuit with only two input photons. Figure 5
shows the kernel training result for different desired resolutions and input photon num-
bers. Once the kernel has been trained, classification can be performed by feeding the
measured similarity matrix into a classical machine learning model such as a support vec-

tor machine [76].

3.3 Quantum-enhanced random kitchen sinks

One limitation of kernel methods is their poor (quadratic) scaling with the size of the
training data set. To circumvent this issue, the random kitchen sinks (RKS) algorithm was
developed, which uses randomly-sampled feature maps in order to controllably approxi-
mate desired kernels and more efficiently train classical machine learning models [77-79].
In particular, sampling from random Fourier features enables approximation of the Gaus-
sian kernel. This motivates us to propose a quantum-enhanced RKS algorithm, where
the subroutine of RKS algorithm, i.e: the random feature sampler is replaced by linear
QPCs. The linear QPCs can simultaneously sample random Fourier features of different
frequencies, providing a unique advantage compare to the qubit-based architecture. Our
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approach differs from previous proposals for quantum random kitchen sinks by directly
constructing the kernel functions using the random Fourier features, instead of perform-
ing linear regression with random feature bit strings sampled from variational quantum
circuits [80, 81].

3.3.1 Random kitchen sinks
The randomized R-dimensional vectors known as the random Fourier features are defined

as

2w, (x)
2(x) = % wa'('x) , 21)
Zwpy (x)

where each zy, (x) is a randomized cosine function
Zw, (%) = v/2cos(y [w, - x + b,]), (22)

x is the D-dimensional input data, w, are D-dimensional random vector sampled from a
spherical Gaussian distribution, and b, are random scalars sampled from a uniform dis-

tribution,

w ~ ND(Or l);

b ~ Uniform(0, 27).

The random Fourier features approximate the Gaussian kernel [77, 78]

2

z(x) - z(x') ~ k(x,x') = ol =X

(23)

with y acting as a hyperparameter that controls the kernel resolution. Note that other
commonly-used kernels including Laplacian and Cauchy kernels can be approximated
using the RKS algorithm using different sampling distributions [77].

Substituting Eq. (23) into Eq. (19) yields

N
o0~ Biz(x:) - 2(x) = ¢ - 2(x), (24)

i=1

where ¢ = )", Biz(x;). The optimal solution for a supervised learning problem using train-
ing data {(x;, yj)}]ﬁ[ , that minimizes the regularized squared loss cost function [71, 72, 82]
in Eq. (24) is

ST () = €opt - 2(x), (25)
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where €op = ZX)Tz(X) + alz)'z(X)Ty, z(X) is an N x R matrix of the training data

z(xy)"

z(x)"
z(X) = ) ) (26)

z(xy)"

and I is the R-dimensional identity matrix.

The RKS algorithm addresses the poor scaling of kernel methods with the number of
data points by mapping the data into a randomized low-dimensional feature space, turn-
ing Eq. (19) into a linear model on the R-dimensional vectors z(x). The complexity of
finding the analytical solution for the coefficients is reduced from O(N3) to O(R®), sav-
ing enormous amounts of resources when R <« N while maintaining model performance
comparable to standard classification methods [77, 78].

3.3.2 Linear quantum photonic circuits as random Fourier feature samplers
Using the same circuit as in Sect. 3.2.2 with a randomized input encoding [Fig. 2(b)], i.e.
xy; =y (W, - X; + b,), the circuit output becomes

SO x) =g’ (M) +2 ) ¢ (1) cos(ky,). 27)
k=1

Constructing different observables M(A®)) from the same photon detection statistics

| (n;, mjl U(x,,;) |1, 0) |* allows one to isolate cosine functions with different frequencies k
(%A 0) = V2 cos(ky [w, - x; + b,]), (28)

which has the same structure as Eq. (22) with y — ky. Thus, constructing the random
Fourier features in Eq. (21) with the randomized cosine functions Eq. (28) enables us to
approximate the kernel

_/<21/2 /)2

k(x,x') = e 2 &x (29)

with resolution o = ﬁ In other words, Gaussian kernels with different resolutions can be
accessed using a single QPC and the same set of measurements by considering different
observables. The number of kernel resolutions accessible by the circuit is equal to the
size of the frequency spectrum, i.e: circuits with more input photons have access to more
resolutions. Here, the photon-number dependent expressive power of the linear QPCs is
leveraged to produce a linear combination of cosine functions of different frequencies,
simultaneously producing multiple random Fourier features that approximate Gaussian
kernels of different resolutions.

Figure 6 illustrates the performance of moon dataset classifiers using circuits with 10
input photons and random Fourier features of different dimensions, i.e: R = 1,10, 100 and
the same decision boundary as in Eq. (17). The circuit with input 10 photons can probe a
range of kernel resolutions within one order of magnitude, e.g: for y = 1, the accessible res-

olutions are o = {1/n|1 < n < 10}; six of these are shown in Fig. 6 to illustrate the working
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Figure 6 Binary classification of the moon dataset of Fig. 4 using the two mode linear quantum photonic
circuit of Fig. 2(c) which implements a quantum-enhanced random kitchen sink with 10 input photons, base
(single input photon) resolution y = 1, regularization parameter & = 0.2, and random Fourier feature
dimensions R=1,10,100. The circuit with 10 input photons can probe 10 different kernel resolutions
simultaneously, i.e: o = {1/n|1 < n < 10}; six resolutions are illustrated here. When R = 1 the feature vectors
reduce to a cosine-like kernel whose frequency increases with the number of input photons and k. The
classification results improve with R because the kernels are better approximated by random Fourier features
of higher dimension with o = 0.25 and 1/7 (R = 100), which are the optimal resolutions for the moon dataset.
For a given R, the decision boundaries for higher resolutions are noisier because the corresponding
approximated kernel has a narrower peak, thus meaningful predictions cannot be made for points that are far
(relative to the kernel resolution) from the training set

Table 1 Quantum resource requirements for different schemes. The resource requirements for
performing training and prediction are defined in term of the number of linear optical element (i.e.
beam splitters and phase shifters) settings required, where N is the number of training data, D is the
dimension of the data features, M is the number of trainable circuit and observable parameters, and
R is the number of random Fourier features

Schemes Training Prediction
Variational methods O(NDM) D
Kernel methods O(N?) N
Random kitchen sinks O(NR) R

principle of quantum-enhanced RKS. The decision boundary of smaller ¢ is considerably
noisier than for larger o. This is because the kernel with smaller resolution has a narrower
peak, and hence, predictions far away from the training data points cannot be made. The
random Fourier features with higher dimensionality provides a better approximation to
the kernel, thus suppressing the noise around training data points while improving the
classification accuracy. The optimal resolution for the moon dataset is 0 = 0.25 and 1/7
for R = 100.

3.4 Resource requirements for each scheme

Each of the classification methods has different strengths and limitations in terms of the
resource requirements, i.e: number of distinct circuit evaluations for performing training
and predictions, summarized in Table 1. Here, we are concerned only with number of
distinct circuit evaluations required to perform training and prediction, since the quantum
resources are much more precious than the classical resources in the NISQ era. For the
variational circuit, the data features are directly encoded, but the beam splitters and phase
shifters in the trainable circuit blocks need to be optimized in the training step. Hence, the
training resource per optimization loop is O(NDM), where N, D, and M are the number
of training data, the dimension of the data features, and the number of trainable circuit
and observable parameters, respectively. More Fourier frequencies can be obtained with
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larger photon numbers but require larger M for universality, increasing the training time.
Prediction requires reconfiguration of the D encoding phase shifters, which can however
be performed in parallel.

Kernel methods, on the other hand, encode the differences between data inputs using
one phase shifter and the training is outsourced to a classical computer, therefore the re-
sources for training scale only with the number of training data, i.e: O(N?). The Gaussian
kernel with different resolutions can be accessed with a fixed circuit by considering dif-
ferent observables; Gaussian kernels with higher resolutions are better approximated for
circuits with larger numbers of input photons. In contrast to the variational methods, N
different phase shifter settings are required to make predictions on new data. Random
kitchen sinks have similar advantages to kernel methods, i.e: fixed circuit and different
resolutions can be accessed by different observables, but have a better scaling O(NR) with
number of input data points, where R is the number of random features chosen. The pre-
dictions require R circuit settings regardless of the dimension of the data features.

4 Conclusion

The data-embedding process is a bottleneck which must be addressed [46] in order to
fully leverage the potential of quantum machine learning algorithms. In this paper, we ad-
dressed the data encoding problem by proposing a more gate-efficient bosonic encoding
method. Our method has three potential advantages. First, it allows for a more efficient
data encoding by modulating all Fock basis simultaneously using only one phase shifter,
regardless of the input photon number. Second, the circuits employed a kernel-like trick,
where nonlinearity is outsourced to quantum feature maps, i.e: the data-encoding phase
shifter that encode the classical data into the high-dimensional Fock space [13, 20], avoid-
ing the need of the experimental hard-to-implement nonlinear optical components. Sub-
sequently, the expressive power of the circuit can be controlled by the number of input
photons, while requiring fewer encoding layers compared to the qubit-based architecture
[23, 24]. Finally, the circuits can be trained to implement commonly-used kernels with
well-understood properties such as the Gaussian kernel.

Even though our photonic models are inspired by the BosonSampling circuits [83], we
do not expect the arguments about the BosonSampling’s classical non-simulability to hold
for our circuits, for three reasons: (1) The model output is expectation values, not samples.
(2) Our phoronic circuits are not sampled from the Haar random distribution. (3) The

2 is relaxed, where 1 is the number of optical modes and # is the

assumption of m = n
number of input photons. Even so, there exist other benefits of studying the use of this
class of circuit as quantum machine learning models. Quantum machine learning is still
in its infancy, and it is still unclear how to rigorously define a quantum advantage for
generic machine learning problems [84]. In this work, we focused on a specific problem
in this field, the data-encoding problem, showing using simple quantum machine learn-
ing models how bosonic circuits may enable more efficient data uploading. We expect
our conclusions to be valid for other classes of quantum machine learning models which
may be hard to classically simulate. In addition, we believe our photonic models will serve
as primitive quantum machine learning model [84] that inspire researchers in the field
to develop other photonic quantum machine learning algorithms that possess quantum
advantages. Recently, the awareness of the importance of the energy aspect of quantum
algorithms has been raised [85]. Although the energy aspect of our quantum circuits is
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not studied, our models could inspire an application-oriented framework to compare the
energy consumption of quantum machine learning based on different platforms.

While the dimension of the Fock space grows (exponentially) with photon number and
spatial modes, improving the expressive power, this is accompanied by higher sensitivity
to optical losses and the need for more detection events in order to accurately sample all of
the required output observables. Moreover, there exists a trade-off between the model’s
expressive power and ability to generalize, where circuits with higher expressive power
can suffer from larger generalization errors, i.e. over-fitting [86, 87] and trainability issue
[33]. One potential way to mitigates these issues is to define the quantum machine learning
models in projected Fock spaces, which may lead to potential quantum advantages [73].

We proposed three different ways with different resource requirements to perform bi-
nary classification using linear quantum photonics circuits (QPCs). (1) Variational quan-
tum classifiers that classify data points directly on the high-dimensional Fock space, while
(2) and (3) implement Gaussian kernel for classical kernel machines directly or using
the random kitchen sinks algorithm, sampling kernels with different resolutions in par-
allel. The random kitchen sink approach could be further improved by sampling the ran-
dom features from a data-optimized distribution using fault-tolerant quantum computers
[88, 89]. A linear QPC with three spatial modes and up to 10 input photons equipped with
photon-number resolving detectors is sufficient to show a proof of concept experiment for
all of the proposed approaches. Therefore, our proposed architecture can be implemented
with current technology, such as integrated photonic circuits [90-92] or bulk optics [93]
used for BosonSampling experiments [94]. Other experimental aspects such as the impact
of the degree of multi-photon distinguishability and exponentially-scaling photon losses
on expressive power are subject for future research.

While this article investigated the expressive power of the linear QPCs, the trainability
and generalization power of the linear QPCs remains an open question. Apart from the
gradient-free method used in this article for QML model training, gradient-based meth-
ods with analytical gradient [95-97] can potentially boost the training speed. However,
current analytical gradient evaluation methods only apply to the photonic circuit with 1-
photon input Fock state [98] or continuous variable quantum photonic systems [99-102].
Hence, more research needs to be done to find the analytical gradient for the quantum
photonic circuits with general input Fock state, which requires the differentiation of the
permanents of the transfer matrix. It will also be interesting to see the effect of different
input states, i.e: coherent states and squeezed states on the expressive power, trainabil-
ity, and generalization power of the linear QPCs [103]. It will be interesting to further
explore the translation of ideas between classical and quantum photonic circuits for ma-

chine learning.

Appendix A: General encoding scheme for 1D frequency spectrum

In Sect. 2.2.1, we have derived the frequency spectrum for linear QPCs with single data en-
coding block that consists only one data encoding phase shifter. In this section, we broaden
the frequency spectrum by adding more data encoding phase shifters into the same layer
(series encoding) and different layers (parallel encoding). In the series encoding scheme
[Fig. 7(a)], we consider linear QPCs with single data encoding block that consists of m — 1
phase shifters, i.e: the highest possible number of phase shifters that can be placed within
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Figure 7 (a) Series encoding scheme that utilised all spatial mode within the data encoding block and
maximize the photon-number dependent expressive power of the linear QPCs. (b) Parallel encoding scheme
that generates the same set of frequency spectrum as in (a). (c) Series encoding scheme and (d) parallel
encoding scheme that generate full frequency spectrum for d-dimensional Fourier series. The former
demands 29 - 1 data encoding phase shifters while the later requires only d phase shifters distributed equally
among d data encoding blocks

a data encoding block. For parallel encoding scheme [Fig. 7(b)], the m — 1 phase shifters
are equally distributed among m — 1 data encoding blocks. One could consider different
combinations of phase shifters in each layers and the expressive power will change accord-
ingly.

As shown in Sect. 2.2.1, the size of the frequency spectrum of a m mode linear QPC
with one data encoding phase shifter is given by Dy, 1,1) = n, where D, ) (two additional
subscripts are added for clarity) denotes the size of frequency spectrum realizable by linear
QPCs with # input photons and L data encoding blocks, each block consists of g data
encoding phase shifters. For series encoding (L = 1), we can place one data encoding phase
shifter per mode on the first m — 1 mode, each encodes phase proportional to its mode
number [Fig. 7(a)], i.e: i - ¥ phase shift with i denotes the mode number. The range of
phases that could pick-up by # photon is [0, (m — 1)n], where the lower (upper) bound is
obtained when all photon passes through the last (second last) mode. Hence, the size of
the frequency spectrum Dy, 1,1y is (m — 1)n. Identical range of phases is also apply to the
parallel encoding scheme, where the lower (upper) bound is achieved when none (all) of
the photon passes through the first mode on each layer, thus, Dy, ,—1,1) = (m — 1)n.

Appendix B: Encoding scheme to generate full frequency spectrum for
multi-dimensional Fourier series

In this section, we will introduce the series and parallel encoding schemes that can gen-
erate a full frequency spectrum for multi-dimensional Fourier series. For series encoding
scheme [Fig. 7(c)], one would need 27 — 1 phase shifters to encode the positive phases of d-
dimensional degree 1 Fourier series, i.e: ({Z‘ii rixi|r, 1, ..., rq € {0, 1}}\{0}). For example,
one can use 7 phase shifters to encode {x;, x5, x3,%1 + X2, %1 + X3, %3 + x3,%1 + %3 +x3}. Then,
the frequency spectrum of d dimensional degree # Fourier series, i.e: Qﬁ,d) = (—w(”), 0, w(”))

Page 19 of 23
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with ©” = (0", 03”,...,0%") and @ € {0,1,...,n} can be generated using # input pho-

tons. On the other hand, the same set of frequency spectrum can be generated using d
data encoding blocks, each consists of one data encoding phase shifter that encodes one
data feature. [Fig. 7(d)].

Acknowledgements
Not applicable.

Funding

This research was supported by the National Research Foundation, Prime Minister's Office, Singapore, the Ministry of
Education, Singapore under the Research Centres of Excellence programme, and the Polisimulator project co-financed by
Greece and the EU Regional Development Fund.

Abbreviations
RAM, random access memory; QPC, quantum photonic circuit; PNR, photon number-resolving; NISQ, noisy-intermediate
scale quantum; RKS, random kitchen sinks.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable
request.

Declarations

Competing interests
Dimitris G. Angelakis is one of the editorial board members of EPJ Quantum Technology Journal.

Authors’ contributions
BYG performed the calculations and wrote the first draft of the manuscript. DL and DGA supervised the project. All
authors read and approved the final manuscript.

Author details

'Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore.
2School of Electrical and Computer Engineering, Technical University of Crete, Chania, 73100, Greece. >AngelQ Quantum
Computing, 531A Upper Cross Street, #04-95 Hong Lim Complex, Singapore 051531, Singapore.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 17 December 2021 Accepted: 25 May 2022 Published online: 20 June 2022

References

1. De Marinis L, Cococcioni M, Castoldi P, Andriolli N. Photonic neural networks: a survey. IEEE Access.
2019;7:175827-41. https://doi.org/10.1109/ACCESS.2019.2957245.

2. Hamerly R, Bernstein L, Sludds A, Solja¢¢ M, Englund D. Large-scale optical neural networks based on photoelectric
multiplication. Phys Rev X. 2019;9:021032. https://doi.org/10.1103/PhysRevX.9.021032.

3. Roques-Carmes C, Shen Y, Zanoci C, Prabhu M, Atieh F, Jing L, Dubcek T, Mao C, Johnson MR, Ceperi¢ V et al.
Heuristic recurrent algorithms for photonic Ising machines. Nat Commun. 2020;11:249.
https://doi.org/10.1038/541467-019-14096-z.

4. Shastri BJ, Tait AN, de Lima TF, Pernice WH, Bhaskaran H, Wright CD, Prucnal PR. Photonics for artificial intelligence
and neuromorphic computing. Nat Photonics. 2021;15(2):102-14. https://doi.org/10.1038/541566-020-00754-y.

5. Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O'Brien JL. A variational eigenvalue
solver on a photonic quantum processor. Nat Commun. 2014;5:4213. https://doi.org/10.1038/ncomms5213.

6. Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum circuit learning. Phys Rev A. 2018;98:032309.
https://doi.org/10.1103/PhysRevA.98.032309.

7. Benedetti M, Lloyd E, Sack S, Fiorentini M. Parameterized quantum circuits as machine learning models. Quantum
Sci Technol. 2019;4(4):043001. https://doi.org/10.1088/2058-9565/ab4ebs.

8. Schuld M, Bocharov A, Svore KM, Wiebe N. Circuit-centric quantum classifiers. Phys Rev A. 2020;101:032308.
https://doi.org/10.1103/PhysRevA.101.032308.

9. Fujii K, Nakajima K. Quantum reservoir computing: a reservoir approach toward quantum machine learning on
near-term quantum devices. Singapore: Springer; 2021. p. 423-50. https.//doi.org/10.1007/978-981-13-1687-6_18.

10. Goto T, Tran QH, Nakajima K. Universal approximation property of quantum machine learning models in
quantum-enhanced feature spaces. Phys Rev Lett. 2021;127(9):090506.
https://doi.org/10.1103/PhysRevLett.127.090506.

11. Lloyd S, Schuld M, ljaz A, 1zaac J, Killoran N. Quantum embeddings for machine learning. 2020.
https://doi.org/10.48550/arXiv.2001.03622. arXiv:2001.03622 [quant-ph].

12. Chatterjee R, Yu T. Generalized coherent states, reproducing kernels, and quantum support vector machines. 2016.
https://doi.org/10.48550/arXiv.1612.03713. arXiv:1612.03713 [quant-ph].


https://doi.org/10.1109/ACCESS.2019.2957245
https://doi.org/10.1103/PhysRevX.9.021032
https://doi.org/10.1038/s41467-019-14096-z
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1007/978-981-13-1687-6_18
https://doi.org/10.1103/PhysRevLett.127.090506
https://doi.org/10.48550/arXiv.2001.03622
http://arxiv.org/abs/arXiv:2001.03622
https://doi.org/10.48550/arXiv.1612.03713
http://arxiv.org/abs/arXiv:1612.03713

Gan et al. EPJ Quantum Technology (2022) 9:16

13. Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys Rev Lett. 2019;122:040504.
https://doi.org/10.1103/PhysRevLett.122.040504.

14. Steinbrecher GR, Olson JP, Englund D, Carolan J. Quantum optical neural networks. npj Quantum Inf. 2019;5:60.
https://doi.org/10.1038/541534-019-0174-7.

15. Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S. Continuous-variable quantum neural networks.
Phys Rev Res. 2019;1:033063. https://doi.org/10.1103/PhysRevResearch.1.033063.

16. Bartkiewicz K, Gneiting C, Cernoch A, Jirdkové K, Lemr K, Nori F. Experimental kernel-based quantum machine
learning in finite feature space. Sci Rep. 2020;10:12356. https://doi.org/10.1038/541598-020-68911-5.

17. Taballione C, van der Meer R, Snijders HJ, Hooijschuur P, Epping JP, de Goede M, Kassenberg B, Venderbosch P,
Toebes C, van den Vlekkert H et al. A universal fully reconfigurable 12-mode quantum photonic processor. Mater
Quantum Technol. 2021;1:035002. https://doi.org/10.1088/2633-4356/ac168c.

18. Chabaud U, Markham D, Sohbi A. Quantum machine learning with adaptive linear optics. Quantum. 2021;5:496.
https://doi.org/10.22331/g-2021-07-05-496.

19. Ghobadi R. Nonclassical kernels in continuous-variable systems. Phys Rev A. 2021;104(5):052403.
https://doi.org/10.1103/PhysRevA.104.052403.

20. Havlicek V, Corcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM. Supervised learning with
quantum-enhanced feature spaces. Nature. 2019;567(7747):209-12. https://doi.org/10.1038/541586-019-0980-2.

21. Schuld M, Petruccione F. Machine learning with quantum computers. Switzerland: Springer; 2021.
https://doi.org/10.1007/978-3-030-83098-4.

22. Schuld M. Supervised quantum machine learning models are kernel methods. 2021.
https://doi.org/10.48550/arXiv.2101.11020. arXiv:2101.11020 [quant-ph].

23. Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI. Data re-uploading for a universal quantum classifier.
Quantum. 2020;4:226. https://doi.org/10.22331/q-2020-02-06-226.

24. Schuld M, Sweke R, Meyer JJ. Effect of data encoding on the expressive power of variational
quantum-machine-learning models. Phys Rev A. 2021;103:032430. https://doi.org/10.1103/PhysRevA.103.032430.

25. Pérez-Salinas A, Lopez-Nunez D, Garcia-Sdez A, Forn-Diaz P, Latorre JI. One qubit as a universal approximant. Phys
Rev A. 2021;104(1):012405. https://doi.org/10.1103/PhysRevA.104.012405.

26. Li W, Deng D-L. Recent advances for quantum classifiers. Sci China, Phys Mech Astron. 2022,65(2):1-23.
https://doi.org/10.1007/511433-021-1793-6.

27. Dutta T, Pérez-Salinas A, Cheng JPS, Latorre JI, Mukherjee M. Realization of an ion trap quantum classifier. 2021.
https://doi.org/10.48550/arXiv.2106.14059. arXiv:2106.14059 [quant-ph].

28. Kusumoto T, Mitarai K, Fujii K, Kitagawa M, Negoro M. Experimental quantum kernel trick with nuclear spins in a
solid. npj Quantum Inf. 2021;7(1):1-7. https://doi.org/10.1038/541534-021-00423-0.

29. Peters E, Caldeira J, Ho A, Leichenauer S, Mohseni M, Neven H, Spentzouris P, Strain D, Perdue GN. Machine learning
of high dimensional data on a noisy quantum processor. npj Quantum Inf. 2021;7(1):1-5.
https://doi.org/10.1038/541534-021-00498-9.

30. Ren W, LiW, Xu S, Wang K, Jiang W, Jin F, Zhu X, Chen J, Song Z, Zhang P, et al. Experimental quantum adversarial
learning with programmable superconducting qubits. 2022. https://doi.org/10.48550/arXiv.2204.01738.
arXiv:2204.01738 [quant-ph].

31. Tangpanitanon J, Thanasilp S, Dangniam N, Lemonde M-A, Angelakis DG. Expressibility and trainability of
parametrized analog quantum systems for machine learning applications. Phys Rev Res. 2020;2(4):043364.
https://doi.org/10.1103/PhysRevResearch.2.043364.

32. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S. The power of quantum neural networks. Nat Comput Sci.
2021;1(6):403-9. https://doi.org/10.1038/543588-021-00084-1.

33. Holmes Z, Sharma K, Cerezo M, Coles PJ. Connecting ansatz expressibility to gradient magnitudes and barren
plateaus. PRX Quantum. 2022;3(1):010313. https://doi.org/10.1103/PRXQuantum.3.010313.

34. Caro MC, Huang H-Y, Cerezo M, Sharma K, Sornborger A, Cincio L, Coles PJ. Generalization in quantum machine
learning from few training data. 2021. https://doi.org/10.48550/arXiv.2111.05292. arXiv:2111.05292 [quant-ph].

35. GiovannettiV, Lloyd S, Maccone L. Quantum random access memory. Phys Rev Lett. 2008;100:160501.
https://doi.org/10.1103/PhysRevLett.100.160501.

36. Harrow AW, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett.
2009;103:150502. https://doi.org/10.1103/PhysRevLett.103.150502.

37. Wiebe N, Braun D, Lloyd S. Quantum algorithm for data fitting. Phys Rev Lett. 2012;109:050505.
https://doi.org/10.1103/PhysRevLett.109.050505.

38. Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. 2013.
https://doi.org/10.48550/arXiv.1307.0411. arXiv:1307.0411 [quant-ph].

39. Lloyd S, Mohseni M, Rebentrost P. Quantum principal component analysis. Nat Phys. 2014;10(9):631-3.
https://doi.org/10.1038/nphys3029.

40. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys Rev Lett.
2014;113:130503. https://doi.org/10.1103/PhysRevLett.113.130503.

41. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature.
2017;549(7671):195-202. https://doi.org/10.1038/nature23474.

42. Dunjko V, Briegel HJ. Machine learning & artificial intelligence in the quantum domain: a review of recent progress.
Rep Prog Phys. 2018;81(7):074001. https://doi.org/10.1088/1361-6633/aab406.

43. Tang E. Quantum principal component analysis only achieves an exponential speedup because of its state
preparation assumptions. Phys Rev Lett. 2021;127(6):060503. https://doi.org/10.1103/PhysRevLett.127.060503.

44. Cotler J, Huang H-Y, McClean JR. Revisiting dequantization and quantum advantage in learning tasks. 2021.
https://doi.org/10.48550/arXiv.2112.00811. arXiv:2112.00811 [quant-ph].

45. Lloyd S, Garnerone S, Zanardi P. Quantum algorithms for topological and geometric analysis of data. Nat Commun.
2016;7(1):1-7. https://doi.org/10.1038/ncomms10138.

46. Harrow AW. Small quantum computers and large classical data sets. 2020.

https://doi.org/10.48550/arXiv.2004.00026. arXiv:2004.00026 [quant-ph].

Page 21 of 23


https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41534-019-0174-7
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1038/s41598-020-68911-5
https://doi.org/10.1088/2633-4356/ac168c
https://doi.org/10.22331/q-2021-07-05-496
https://doi.org/10.1103/PhysRevA.104.052403
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1007/978-3-030-83098-4
https://doi.org/10.48550/arXiv.2101.11020
http://arxiv.org/abs/arXiv:2101.11020
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.104.012405
https://doi.org/10.1007/s11433-021-1793-6
https://doi.org/10.48550/arXiv.2106.14059
http://arxiv.org/abs/arXiv:2106.14059
https://doi.org/10.1038/s41534-021-00423-0
https://doi.org/10.1038/s41534-021-00498-9
https://doi.org/10.48550/arXiv.2204.01738
http://arxiv.org/abs/arXiv:2204.01738
https://doi.org/10.1103/PhysRevResearch.2.043364
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.48550/arXiv.2111.05292
http://arxiv.org/abs/arXiv:2111.05292
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.48550/arXiv.1307.0411
http://arxiv.org/abs/arXiv:1307.0411
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1103/PhysRevLett.127.060503
https://doi.org/10.48550/arXiv.2112.00811
http://arxiv.org/abs/arXiv:2112.00811
https://doi.org/10.1038/ncomms10138
https://doi.org/10.48550/arXiv.2004.00026
http://arxiv.org/abs/arXiv:2004.00026

Gan et al. EPJ Quantum Technology (2022) 9:16 Page 22 of 23

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.

70.
71.
. Theodoridis S. Machine learning: a Bayesian and optimization perspective. 1st ed. San Diego: Academic Press; 2015.
73.
74.

75.
76.

77.
78.

79.

80.

81.
82.

83.

Liu Y, Arunachalam S, Temme K. A rigorous and robust quantum speed-up in supervised machine learning. Nat
Phys. 2021;17(9):1013-7. https://doi.org/10.1038/541567-021-01287-z.

Carleson L. On convergence and growth of partial sums of Fourier series. Acta Math. 1966;116(1):135-57.
https://doi.org/10.1007/BF02392815.

Weisz F. Summability of multi-dimensional trigonometric fourier series. 2012.
https://doi.org/10.48550/arXiv.1206.1789. arXiv:1206.1789 [math.CA].

Scheel S. Permanents in linear optical networks. 2004. https://doi.org/10.48550/arXiv.quant-ph/0406127.
arXiv.quant-ph/0406127.

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett.
1994;73:58-61. https://doi.org/10.1103/PhysRevLett.73.58.

Clements WR, Humphreys PC, Metcalf BJ, Kolthammer WS, Walmsley IA. Optimal design for universal multiport
interferometers. Optica. 2016;3(12):1460-5. https://doi.org/10.1364/0OPTICA.3.001460.

Bell BA, Walmsley IA. Further compactifying linear optical unitaries. APL Photonics. 2021;6:070804.
https://doi.org/10.1063/5.0053421.

Motes KR, Olson JP, Rabeaux EJ, Dowling JP, Olson SJ, Rohde PP. Linear optical quantum metrology with single
photons: exploiting spontaneously generated entanglement to beat the shot-noise limit. Phys Rev Lett.
2015;114:170802. https://doi.org/10.1103/PhysRevLett.114.170802.

Olson JP, Motes KR, Birchall PM, Studer NM, LaBorde M, Moulder T, Rohde PP, Dowling JP. Linear optical quantum
metrology with single photons: experimental errors, resource counting, and quantum Cramér—Rao bounds. Phys
Rev A. 2017;96:013810. https://doi.org/10.1103/PhysRevA.96.013810.

Johnson SG. The NLopt nonlinear-optimization package. 2014.

Powell MJ. The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report
NA2009/06. Cambridge: University of Cambridge; 2009.

Fox AM. Quantum optics: an introduction. vol. 15. London: Oxford University Press; 2006.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in python. J
Mach Learn Res. 2011;12(null):2825-30.

McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H. Barren plateaus in quantum neural network training
landscapes. Nat Commun. 2018,;9:4812. https://doi.org/10.1038/s41467-018-07090-4.

Wang S, Fontana E, Cerezo M, Sharma K, Sone A, Cincio L, Coles PJ. Noise-induced barren plateaus in variational
quantum algorithms. Nat Commun. 2021;12(1):1-11. https://doi.org/10.1038/541467-021-27045-6.

Marrero CO, Kieferova M, Wiebe N. Entanglement-induced barren plateaus. PRX Quantum. 2021;2:040316.
https://doi.org/10.1103/PRXQuantum.2.040316.

Bittel L, Kliesch M. Training variational quantum algorithms is NP-hard — even for logarithmically many qubits and
free fermionic systems. Phys Rev Lett. 2021;127:120502. https://doi.org/10.1103/PhysRevLett.127.120502.
Thanasilp S, Wang S, Nghiem NA, Coles PJ, Cerezo M. Subtleties in the trainability of quantum machine learning
models. 2021. https://doi.org/10.48550/arXiv.2110.14753. arXiv:2110.14753 [quant-ph].

Arrasmith A, Cerezo M, Czarnik P, Cincio L, Coles PJ. Effect of barren plateaus on gradient-free optimization.
Quantum. 2021;5:558. https://doi.org/10.22331/q-2021-10-05-558.

Haug T, Self CN, Kim M. Large-scale quantum machine learning. 2021. https://doi.org/10.48550/arXiv.2108.01039.
arXiv:2108.01039 [quant-ph].

Schélkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond.
Adaptive computation and machine learning. Cambridge: MIT Press; 2002. p. 644.

Hofmann T, Schélkopf B, Smola AJ. Kernel methods in machine learning. Ann Stat. 2008;36(3):1171-220.

Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philos
Trans R Soc Lond A. 1909;209:415-46. https://doi.org/10.1098/rsta.1909.0016.

Scholkopf B, Herbrich R, Smola AJ. A generalized representer theorem. In: Helmbold D, Williamson B, editors.
Computational learning theory. Berlin: Springer; 2001. p. 416-26. https://doi.org/10.1007/3-540-44581-1_27.
Bishop CM. Pattern recognition and machine learning (information science and statistics). Berlin: Springer; 2006.

Huang H-Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H, McClean JR. Power of data in quantum machine
learning. Nat Commun. 2021;12:2631. https://doi.org/10.1038/s41467-021-22539-9.

Wang X, Du Y, Luo Y, Tao D. Towards understanding the power of quantum kernels in the NISQ era. Quantum.
2021;5:531. https://doi.org/10.22331/q-2021-08-30-531.

Micchelli CA, Xu Y, Zhang H. Universal kernels. J Mach Learn Res. 2006;7:2651-67.

Steinwart |, Christmann A. Support vector machines. 1st ed. New York: Springer; 2008.
https://doi.org/10.1007/978-0-387-77242-4.

Rahimi A, Recht B. Random features for large-scale kernel machines. In: Platt J, Koller D, Singer Y, Roweis S, editors.
Advances in neural information processing systems. vol. 20. Red Hook: Curran Associates; 2007.

Rahimi A, Recht B. Uniform approximation of functions with random bases. In: 2008 46th annual allerton conference
on communication, control, and computing. 2008. p. 555-61. https://doi.org/10.1109/ALLERTON.2008.4797607.
Rahimi A, Recht B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning.
In: Proceedings of the 21st international conference on neural information processing systems. NIPS'08. Red Hook:
Curran Associates; 2008. p. 1313-20.

Wilson C, Otterbach J, Tezak N, Smith R, Polloreno A, Karalekas PJ, Heidel S, Alam MS, Crooks G, da Silva M. Quantum
kitchen sinks: an algorithm for machine learning on near-term quantum computers. 2018.
https://doi.org/10.48550/arXiv.1806.08321. arXiv:1806.08321 [quant-ph].

Noori M, Vedaie SS, Singh |, Crawford D, Oberoi JS, Sanders BC, Zahedinejad E. Analog-quantum feature mapping for
machine-learning applications. Phys Rev Appl. 2020;14:034034. https://doi.org/10.1103/PhysRevApplied.14.034034.
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics.
1970;12(1):55-67. https://doi.org/10.1080/00401706.1970.10488634.

Aaronson S, Arkhipov A. The computational complexity of linear optics. In: Proceedings of the forty-third annual
ACM symposium on theory of computing. 2011. p. 333-42. https://doi.org/10.1145/1993636.1993682.


https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1007/BF02392815
https://doi.org/10.48550/arXiv.1206.1789
http://arxiv.org/abs/arXiv:1206.1789
https://doi.org/10.48550/arXiv.quant-ph/0406127
http://arxiv.org/abs/arXiv:quant-ph/0406127
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1063/5.0053421
https://doi.org/10.1103/PhysRevLett.114.170802
https://doi.org/10.1103/PhysRevA.96.013810
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.48550/arXiv.2110.14753
http://arxiv.org/abs/arXiv:2110.14753
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.48550/arXiv.2108.01039
http://arxiv.org/abs/arXiv:2108.01039
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.22331/q-2021-08-30-531
https://doi.org/10.1007/978-0-387-77242-4
https://doi.org/10.1109/ALLERTON.2008.4797607
https://doi.org/10.48550/arXiv.1806.08321
http://arxiv.org/abs/arXiv:1806.08321
https://doi.org/10.1103/PhysRevApplied.14.034034
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1145/1993636.1993682

Gan et al. EPJ Quantum Technology (2022) 9:16 Page 23 of 23

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Schuld M, Killoran N. Is quantum advantage the right goal for quantum machine learning? 2022.
https://doi.org/10.48550/arXiv.2203.01340. arXiv:2203.01340 [quant-ph].

Auffeves A. Quantum technologies need a quantum energy initiative. 2021.
https://doi.org/10.48550/arXiv.2111.09241. arXiv:2111.09241 [quant-ph].

Banchi L, Pereira J, Pirandola S. Generalization in quantum machine learning: a quantum information perspective.
PRX Quantum. 2021;2:040321. https://doi.org/10.1103/PRXQuantum.2.040321.

Caro MC, Gil-Fuster E, Meyer JJ, Eisert J, Sweke R. Encoding-dependent generalization bounds for parametrized
quantum circuits. Quantum. 2021;5:582. https://doi.org/10.22331/q-2021-11-17-582.

Yamasaki H, Subramanian S, Sonoda S, Koashi M. Learning with optimized random features: exponential speedup
by quantum machine learning without sparsity and low-rank assumptions. In: Advances in neural information
processing systems. vol. 33. Red Hook: Curran Associates; 2020. p. 13674-87.

Yamasaki H, Sonoda S. Exponential error convergence in data classification with optimized random features:
acceleration by quantum machine learning. 2021. https://doi.org/10.48550/arXiv.2106.09028. arXiv:2106.09028
[quant-ph].

Carolan J, Harrold C, Sparrow C, Martin-Lépez E, Russell NJ, Silverstone JW, Shadbolt PJ, Matsuda N, Oguma M, Itoh
M et al. Universal linear optics. Science. 2015;349(6249):711-6. https://doi.org/10.1126/science.aab3642.

Zhong H-S, Li Y, Li W, Peng L-C, Su Z-E, Hu Y, He Y-M, Ding X, Zhang W, Li H, Zhang L, Wang Z, You L, Wang X-L, Jiang
X, Li L, Chen Y-A, Liu N-L, Lu C-Y, Pan J-W. 12-photon entanglement and scalable scattershot boson sampling with
optimal entangled-photon pairs from parametric down-conversion. Phys Rev Lett. 2018;121:250505.
https://doi.org/10.1103/PhysRevLett.121.250505.

Hoch F, Piacentini S, Giordani T, Tian Z-N, luliano M, Esposito C, Camillini A, Carvacho G, Ceccarelli F, Spagnolo N, et
al. Boson sampling in a reconfigurable continuously-coupled 3d photonic circuit. 2021.
https://doi.org/10.48550/arXiv.2106.08260. arXiv:2106.08260 [quant-ph].

Wang H, Qin J, Ding X, Chen M-C, Chen S, You X, He Y-M, Jiang X, You L, Wang Z, Schneider C, Renema JJ, Hofling S,
Lu C-Y, Pan J-W. Boson sampling with 20 input photons and a 60-mode interferometer in a 10'4-dimensional Hilbert
space. Phys Rev Lett. 2019;123:250503. https://doi.org/10.1103/PhysRevLett.123.250503.

Brod DJ, Galvéo EF, Crespi A, Osellame R, Spagnolo N, Sciarrino F. Photonic implementation of boson sampling: a
review. Adv Photonics. 2019;1(3):034001. https://doi.org/10.1117/1.AP1.3.034001.

Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N. Evaluating analytic gradients on quantum hardware. Phys Rev
A.2019;99(3):032331. https://doi.org/10.1103/PhysRevA.99.032331.

Banchi L, Crooks GE. Measuring analytic gradients of general quantum evolution with the stochastic parameter shift
rule. Quantum. 2021;5:386. https://doi.org/10.22331/9-2021-01-25-386.

Wierichs D, Izaac J, Wang C, Lin CY-Y. General parameter-shift rules for quantum gradients. Quantum. 2022;6:677.
https://doi.org/10.22331/g-2022-03-30-677.

Kerenidis I, Landman J, Mathur N. Classical and quantum algorithms for orthogonal neural networks. 2021.
https://doi.org/10.48550/arXiv.2106.07198. arXiv:2106.07198 [quant-ph].

Banchi L, Quesada N, Arrazola JM. Training Gaussian boson sampling distributions. Phys Rev A. 2020;102(1):012417.
https://doi.org/10.1103/PhysRevA.102.012417.

Miatto FM, Quesada N. Fast optimization of parametrized quantum optical circuits. Quantum. 2020;4:366.
https://doi.org/10.22331/g-2020-11-30-366.

Yao Y, Miatto FM. Fast differentiable evolution of quantum states under gaussian transformations. 2021.
https://doi.org/10.48550/arXiv.2102.05742. arXiv:2102.05742 [quant-ph].

Yao Y, Cussenot P, Wolf RA, Miatto F. Complex natural gradient optimization for optical quantum circuit design. Phys
Rev A. 2022;105:052402. https://doi.org/10.1103/PhysRevA.105.052402.

Afek |, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light. Science.
2010;328(5980):879-81. https://doi.org/10.1126/science.1188172.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.48550/arXiv.2203.01340
http://arxiv.org/abs/arXiv:2203.01340
https://doi.org/10.48550/arXiv.2111.09241
http://arxiv.org/abs/arXiv:2111.09241
https://doi.org/10.1103/PRXQuantum.2.040321
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.48550/arXiv.2106.09028
http://arxiv.org/abs/arXiv:2106.09028
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1103/PhysRevLett.121.250505
https://doi.org/10.48550/arXiv.2106.08260
http://arxiv.org/abs/arXiv:2106.08260
https://doi.org/10.1103/PhysRevLett.123.250503
https://doi.org/10.1117/1.AP.1.3.034001
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.22331/q-2021-01-25-386
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.48550/arXiv.2106.07198
http://arxiv.org/abs/arXiv:2106.07198
https://doi.org/10.1103/PhysRevA.102.012417
https://doi.org/10.22331/q-2020-11-30-366
https://doi.org/10.48550/arXiv.2102.05742
http://arxiv.org/abs/arXiv:2102.05742
https://doi.org/10.1103/PhysRevA.105.052402
https://doi.org/10.1126/science.1188172

	Fock state-enhanced expressivity of quantum machine learning models
	Abstract
	Keywords

	Introduction
	Parametrized linear quantum photonic circuit model
	n-photon quantum models as Fourier series
	Expressive power and trainability of linear quantum photonic circuits
	Photon-number dependent frequency spectrum
	Trainability of Fourier coefﬁcients
	Universality of the linear quantum photonic circuit
	Effect of noise on the expressive power of linear quantum photonic circuits


	Supervised learning using linear quantum photonic circuits
	Linear quantum photonic circuit as variational quantum classiﬁers
	Linear quantum photonic circuits as Gaussian kernel samplers
	Kernel methods
	Linear quantum photonic circuits as sub-routine of kernel methods

	Quantum-enhanced random kitchen sinks
	Random kitchen sinks
	Linear quantum photonic circuits as random Fourier feature samplers

	Resource requirements for each scheme

	Conclusion
	Appendix A: General encoding scheme for 1D frequency spectrum
	Appendix B: Encoding scheme to generate full frequency spectrum for multi-dimensional Fourier series
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


