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����������
�������
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Abstract: Underwater mines pose extreme danger for ships and submarines. Therefore, navies
around the world use mine countermeasure (MCM) units to protect against them. One of the measures
used by MCM units is mine hunting, which requires searching for all the mines in a suspicious area.
It is generally divided into four stages: detection, classification, identification and disposal. The
detection and classification steps are usually performed using a sonar mounted on a ship’s hull or on
an underwater vehicle. After retrieving the sonar data, military personnel scan the seabed images
to detect targets and classify them as mine-like objects (MLOs) or benign objects. To reduce the
technical operator’s workload and decrease post-mission analysis time, computer-aided detection
(CAD), computer-aided classification (CAC) and automated target recognition (ATR) algorithms
have been introduced. This paper reviews mine detection and classification techniques used in the
aforementioned systems. The author considered current and previous generation methods starting
with classical image processing, and then machine learning followed by deep learning. This review
can facilitate future research to introduce improved mine detection and classification algorithms.

Keywords: mine detection; mine classification; sonar imagery; mine countermeasure; mine-like object

1. Introduction

Underwater mines are a strategic military tool to protect any country’s naval borders.
They constitute fully autonomous devices composed of an explosive charge, sensing device
and fuse mechanism. Previous generation mines needed physical contact with the ship
to trigger an explosion. The newly developed mines, on the contrary, are equipped with
sophisticated sensors, usually detecting some combinations of acoustic and magnetic
signals. Some of them are smart mines equipped with artificial intelligence to detect any
false signals that attempt to release them. These mines need to pose extreme danger for
ships and submarines. However, their small operational range makes their effectiveness
minimal. To maximise effectiveness, a group of mines—a minefield—is deposited in a
specific seabed area. In this formation, they pose a tactical threat for all types of ships.

Navies around the world use mine countermeasure (MCM) units to protect against
mines that involve both passive and active tactics. Passive countermeasures modify the
specific target vessel characteristics or signatures which are used to trigger mines. These
include building vessels with fibreglass or altering a steel vessel’s magnetic field through
degaussing. Alternatively, active countermeasures aim to find mines using specially
designed ships or underwater vehicles. The first active measure, minesweeping, utilises a
contact sweep or wire drag to cut the mooring wires of floating mines. In other scenarios, it
uses a distance sweep to mimic a ship. The second active measure, mine hunting, requires
searching for all the mines in a suspicious area. It is generally divided into four stages:

• Detection—finding targets from different signals (acoustic, magnetic);
• Classification—determining if the target is a mine-like object (MLO) or a benign object;
• Identification—using additional information (diver, underwater vehicle equipped

with a camera) to validate classification results;
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• Disposal—neutralising a mine.

The detection and classification steps are usually performed using a sonar mounted on
a ship’s hull or on an underwater vehicle. After retrieving the sonar data, military personnel
scan the seabed images to detect targets and classify them as MLOs or benign objects. This
procedure is tedious and time consuming due to the difficult task of differentiating a
multitude of received sonar images. Since a human factor is involved in scrutinising these
images, fatigue and stress could lead to misclassification errors.

As mine technology becomes more advanced, MCM, as a result, has become more
complex and sophisticated. Currently, navies employ a range of different mine counter-
measures that include the human factor. Navies’ primary target is to have less human lives
involved, such as divers, in risky underwater operations of minefield detection. For this
purpose, MCM units use either autonomous underwater vehicles (AUVs), remotely oper-
ated vehicles (ROVs), or unmanned surface vehicles (USVs). The vehicles often perform
their missions autonomously, equipped with high-resolution sensors (sonars, magnetome-
ters, optical cameras). After the mission, the data gathered by the vehicles are analysed
by a sonar technical operator aboard the ship to detect, classify and identify objects in a
verified area.

To reduce the technical operator’s workload and decrease post-mission analysis time,
computer-aided detection (CAD), computer-aided classification (CAC) and automated
target recognition (ATR) algorithms have been introduced. They are based on the analysis
of different types of image characteristics, which can be grouped into three categories [1]:

• Texture-based features—patterns and local variations of the image intensity;
• Geometrical features—e.g., length, area;
• Spectral features—e.g., colour, energy.

Two attempts for utilising image features in the aforementioned algorithms are de-
picted in Figure 1.

Figure 1. Mine detection and classification (a) based on segmentation, and (b) on texture
feature extraction.

The first attempt employs an image segmentation method, which uses geometrical
and spectral features to divide the image into homogeneous regions: seabed, highlights
and shadows. In the first step, the image is enhanced to facilitate the retrieval of distinctive
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geometrical features. Then, the image is segmented; all areas that differ from the seabed
are marked as regions of interest (ROIs) and analysed, considering the geometrical features
of the included regions. Finally, if the geometrical features of the ROI correspond to
pre-defined mine features, the object is classified as an MLO. In the second attempt, ROI
detection and classification are performed using texture-based features. In this case, the
parameters of the features and their mutual localisation are analysed to detect ROIs and
classify them as MLOs or benign objects. It also demands image enhancement to recognise
the most distinctive features. Finally, the features are compared with pre-defined mine
features in the classification step.

Even though extensive research has been devoted to developing CAD, CAC and
ATR algorithms, they are still not efficient enough to perform their task autonomously.
Their responsibilities mainly focus on notifying a technical operator about a potential
target in the form of visual cues. Consequently, the operator is responsible for making the
final decision regarding classification. This situation stems from the low quality of sonar
images. Sonar images are complicated to analyse due to speckle noise and environmental
conditions causing spurious shadows, sidelobe effects and multipath return [2]. This results
in significant variability in targets, clutter and background signatures. Additionally, mines
constitute small objects, often partially buried in the seabed, which makes them difficult to
distinguish, even for a highly skilled technical operator. Therefore, the task of developing
efficient detection and classification methods is very challenging.

The detection and classification methods presented in the literature can be divided
into classical image processing, machine learning (ML) and deep learning (DP) tech-
niques [3]. Classical image processing demands expert supervision to select the required
features [4]. The features are mostly based on background, highlight and shadow combina-
tions (Figure 2). Considering the depiction of MLOs in images, the object can be recognised
as the following background (A–B), highlight (B–C), background (C–D) and shadow (D–E)
regions. For this purpose, the techniques employing geometrical or spectral feature analy-
ses are applied. Classical signal processing needs a lot of time and resources, as well as
being expensive to implement. Therefore, researchers have attempted to replace it with
intelligent techniques such as machine learning or deep learning [3].

Figure 2. Background, shadow and highlight combination.

Machine learning is when a computer uses data to detect or predict hidden charac-
teristics or patterns automatically. The detection or prediction needs to be preceded by
a supervised or unsupervised learning process. In the supervised option, the input and
output data pair is used to teach the system. In unsupervised learning, the system is taught
utilising input data only. In both cases, the imaging data should be high quality, which
is difficult to achieve using sonar images. ML also has other weaknesses. It needs to
divide the problem statement into several parts and then combine the result, which is a
time-consuming process. Additionally, it considers only the object’s features and does not
include all background information. Furthermore, the substantial amount of data reduces
its reliability [3]. These problems can be solved using deep learning.
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Deep learning is a subfield of machine learning, providing algorithms inspired by
the structure of the brain’s neuron connections called artificial neural networks (ANNs).
It constitutes computational models composed of multiple layers to process data with
different levels of abstraction. Deep learning works with unstructured and structured data
and performs automatic feature extraction. Its algorithms work excellently with a vast
amount of data, performing efficiently and overcoming machine learning’s weaknesses
described above, meaning it is more reliable [3]. Figure 3 presents the working process
of machine learning and deep learning algorithms and the performance in relation to the
quantity of data provided.

Figure 3. (a) Working process of ML; (b) working process of DL; (c) performance of ML and DP as a
function of the amount of data.

Deep learning algorithms are classified into supervised, semi-supervised, unsuper-
vised and reinforcement learning. A supervised learning approach trains a model with
the categorised data or labels to predict the mapping function, while unsupervised learn-
ing identifies patterns in datasets containing data points that are neither classified nor
labelled. As for semi-supervised learning, it combines a small amount of labelled data with
a large amount of unlabelled data. Finally, reinforcement learning learns in an interactive
environment by trial and error using feedback from its own actions and experiences.

Deep learning algorithms demand a vast quantity of data. However, due to the lack of
publicly available datasets and confidentiality issues connected with the military character
of mine detection tasks, the problem of having high-quality data necessary for training
neural networks still exists. To deal with this problem, some techniques to collect the sonar
data are deployed. One of them is sonar data simulation, which plays an essential role in
tuning, detection and classification methods. Various simulators have been presented in
the literature. Cerqueira et al. [5] developed a GPU-based sonar simulator for real-time
applications. A different approach was presented in [6,7], where the tube ray-tracing
method was utilised to generate realistic sonar images. The research in [8] proposed
a simulation method called uSimActiveSonar to simulate an active sonar system with
hydrophone data acquisition. In [9], the authors used a definite difference time-domain
approach for pulse propagation simulation.

Data augmentation (DA) is also applied to create data for deep learning algorithms. It
is a technique that artificially expands a training set’s size by creating modified data from
the existing data. Its main task is to prevent overfitting when an initial dataset is too small
to train on. DA comprises image processing methods such as flipping, rotation, scaling,
translation, cropping or generative adversarial networks. Other techniques used by DA
constitute colour space transformation, kernel filtering, random erasing or mixing images.

Transfer learning is also used to deal with insufficient training data. It is based on
gaining knowledge from solving one problem and applying it to a different but related
task. For instance, a network trained to detect wrecks on the seabed transfers this training
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to a network dedicated to mine detection. In this case, a smaller database can be applied in
the training procedure.

Another concept to improve the reliability of mine detection and classification methods
is algorithm fusion [10,11]. Algorithm fusion combines the detection and classification
outputs from two or more algorithms. This is beneficial because the performance of the
individual method depends on many factors, such as the image quality, environmental
conditions or object’s characteristics. By fusing two or more algorithms, the probability of
mine detection and proper classification increases.

Another fusion technique is to combine classical image processing with deep learn-
ing [3]. A classical method distinguishes ROIs in the detection step while deep learning
classifies ROIs as MLOs or benign objects in this technique. This combination can improve
the performance of the classification step since the neural network analyses only the ROIs’
areas in the image. It can also reduce the negative impact of unbalanced data, which
appears while using sonar images for mine detection. Unbalanced data result from unequal
representations of mine and seabed areas in the image. Mines are depicted as small objects
on any seabed area. Therefore, their presence in the given data is hardly noticeable, while
the seabed areas have a significant articulation.

A detailed overview of underwater mine detection and classification in sonar imagery
is presented in this paper. In Section 2, a sonar device is described, taking into consideration
the ability to generate underwater images. Section 3 briefly introduces the concept of
highlights and shadows in sonar imagery. This concept is crucial since most classical image
processing methods utilise highlights and shadows to detect and classify objects. Section 4
presents target detection methods, while Section 5 describes object classification techniques.
In the review, the author focused on methods that were implemented in mine detection and
classification algorithms. This is because mines constitute complicated objects to detect and
classify due to their size and characteristics. Consequently, object detection algorithms that
detect various seabed objects with sonar imagery are the least reliable for mine detection.

This review includes the most recent methods as well as previous generation ones.
The latter, even though they very often achieved low efficiency, should still be considered in
newly developed algorithms. This is because their past training was based on low-quality
and low-resolution images, but they should perform better given the latest high-resolution
images. Consequently, their implementation in up-to-date applications is a positive aspect.
This is especially important because of the actual joining of classical image processing with
deep learning algorithms.

2. Underwater Sonar

Sonar is an acronym for SOund Navigation And Ranging. Sonar’s basic principle is
to locate objects via transmitting acoustic waves. Acoustic waves constitute mechanical
vibrations produced by longitudinal waves through an elastic medium at a certain speed.
Their speed is measured, and a target distance can be estimated based on the time between
echo transmission and the return. However, when in water, acoustics waves spread faster
than when in air. The sound velocity connected to this speed differs when in water
compared to when it is in air. The factors that contribute to this speeding up process are
depth, temperature, pH and salinity. It is estimated that the speed of sound in underwater
conditions varies from 1405 to 1550 m/s (in the air, it is approximately 340 m/s) [12].

Acoustic signals produce vibrations. They are characterised by frequency f (expressed
in Hz) or by period T (linked to the frequency by the relation T = 1/ f ). In airborne
conditions, the frequency used in communication can reach 300 GHz. The frequencies
utilised in underwater applications vary between 10 Hz and 1 MHz [13]. The main
constraints on the frequencies used for a particular application are as follows [12]:

• The sound wave attenuation in water, limiting the maximum usable range;
• The dimensions of the sound sources, which increase at lower frequencies, for a given

transmission power;
• The spatial selectivity related to the directivity of acoustic sources and receivers;
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• The target acoustic response, depending on frequency.

The wavelength of the acoustic signal is the spatial correspondent to time periodicity.
It is described as the spacing between two points in the medium, undergoing the same
successive vibration state. In other words, this is the distance travelled by the wave during
one period of the signal T with velocity c:

λ = cT =
c
f

(1)

This means that when a sound velocity is equal to 1500 m/s, the underwater acoustic
wavelength amounts to 150 m at 10 Hz, then to 1.5 m at 10 kHz and finally to 0.0015 m at
1 MHz.

The sonar equation depicts the relationship amongst all elements of the sound travel-
ling between a transducer and a target. It defines how much energy is demanded to return
to a transducer from a target in order to be detected [13]:

DT ≤ SL − 2 × TL + TS − (NL − DI) (2)

where DT is the detection threshold, which defines the sensitivity of the sonar to detect
acoustic energy; SL is the source level, which defines the initial acoustic energy; TL is
transmission loss caused by distortion and attenuation of water; TS is the target strength
determined by the reflectivity of a target and defined by its shape, size and composition;
NL is the noise level in the water column which may disturb the sonar’s sound waves;
DI is the directivity index, which indicates the narrowness of the sound beam that the
sonar produces.

The main effect of wave propagation is the decreasing signal amplitude caused by
absorption and geometrical spreading. Absorption is connected to the chemical properties
of seawater and is a crucial factor in the propagation of underwater acoustic waves, which
limits the reachable range at high frequencies. The approximation of propagation losses
is crucial in the evaluation of sonar system performances. Since the aquatic propagation
medium is restricted by two well-marked interfaces (the seabed and the sea surface), the
propagation of a signal is often accompanied by a series of multiple paths generated by
unwanted reflections at these two interfaces. Furthermore, the velocity of acoustic waves
varies spatially in the depths of the ocean. Due to temperature and pressure, the paths of
sound waves are thus refracted depending on the velocity variations encountered. This
phenomenon complicates the modelling and interpretation of the sound field’s spatial
structure. Consequently, the most manageable and most efficient modelling technique is
geometrical acoustics, based on the local values of the wave propagation direction and
velocity according to the well-known Snell–Descartes law [13].

The acoustic wave is characterised by three factors [14]:

• The local motion amplitude of each particle in the propagation medium around its
position of equilibrium;

• The fluid velocity corresponding to this motion;
• The acoustic pressure, which is the variation around the average hydrostatic pressure.

Practically, acoustic pressure is the most often used quantity in underwater acoustics,
and it is measured using hydrophones, the marine equivalent of aerial microphones.

The range is defined as the radial distance between the sonar and the reflector. It can
be estimated according to the following procedure:

• Transmitting a short pulse of duration Tp in the direction of the reflector;
• Recording the signal by the receiver until the echo from the reflector has arrived;
• Estimating the time delay τ from time series.

The range to the target is then calculated as

R =
cτ

2
(3)
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The accuracy of the range is related to the pulse length Tp. Shorter pulses offer a better
resolution but have less energy, which limits the propagation range. Another approach is
based on modulated (phase-coded) pulses. In this case, the resolution is reduced by the
bandwidth of the acoustic signal.

Underwater sonar is composed of hydrophones that transmit and receive acoustic
waves, in this case, known as active sonar. Alternatively, it only receives echoes from
underwater; the term passive sonar is used to describe this operation. When a hydrophone
transmits an acoustic wave, it propagates and is reflected by any interface with a different
characteristic impedance Z = ρc, where ρ is the density of the interface (in Rayl), and c is
the speed of sound in water.

A transmitting hydrophone emits acoustic waves to a scene containing acoustic
reflecting material characterised by a reflectivity function γ(x, y). The scattered acoustic
field is received by one or more hydrophones (Figure 4). Sonar imaging poses the inverse
problem of estimating the reflectivity function from the received data. It can be divided
into angular and range processing, which is called data beamforming. Beamforming is a
processing method that focuses the signal from several receivers in a specific direction. It
can be employed in all types of sonars. Range processing includes signal processing that is
applied to separate time events. The processing is a function of transmitting waveforms.
Various types of signals are used to construct waveforms. Basic sonar often uses gated
continuous-wave pulses, sometimes referred to as pings. The latest generation of sonar uses
phase-coded transmit signals where the phase coding establishes the signal bandwidth.
This is because phase-coded waveforms increase the transmit signal energy and maintain a
large signal bandwidth. The range processing conducted on phase-coded signals is called
pulse compression or matched filtering [4].

Figure 4. Basic imaging geometry.

The angular resolution defines the quality of sonar imaging. It is defined as the
minimum angle at which two reflectors can be separated in the sonar image. Assuming
that a phased array receiver of length L consists of some elements, as illustrated in Figure 5,
the angular resolution is the angle difference at which the echo from two reflectors causes
destructive interference in the receivers. For small angles, the angular resolution can be
approximated as follows:

β =
λ

L
(4)

where λ is the wavelength, and L is the receiver length.
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Figure 5. Angular resolution (L—receiver length; β/2 —the angle of the reflector; δR —the distance
between two reflectors, R0 and R1).

For high-frequency sonar imaging, beamforming applications can be arranged into
three different types [15]:

• Sectorscan sonar (Figure 6), which generates a two-dimensional image for each pulse.
These images are usually displayed pulse by pulse. Sectorscan sonars are often
mounted to a ship’s hull for forward-looking or broad-swath imaging. In some
applications, 360-degree views are produced by the arrangement of hydrophones into
a cylindrical array.

• Sidescan sonar (Figure 7), which utilises the vehicle motion to cover the seabed area.
It generates one or a few beams to create an image by using repeated pulses. This
method demands a relatively simple hardware architecture; consequently, it is more
affordable than other techniques.

• Synthetic-aperture sonar (Figure 8), which uses multiple pulses to create a sizeable
synthetic array. An image of the seafloor is created from multiple pulses that form
each pixel on the seafloor. This technique can be considered as the combination of
sidescan and sectorscan sonars.

Figure 6. Sectorscan sonar.
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Figure 7. Sidescan sonar.

Figure 8. Synthetic-aperture sonar.

3. Highlights and Shadows

In sonar images, a highlight region is laterally followed by a shadow region for most
targets of interest. The highlight’s brightness and the shadow’s size are determined by the
target’s strength (TS) of the sonar equation. The target’s strength is related to the target’s
reflectivity, and it is built on a complex relationship between the target’s dimension, shape,
roughness and thickness. Additionally, the sonar’s pulse duration, frequency and the
incident angle of the waveform also influence the reflectivity [16].

The target structure is a direct factor; acoustically soft materials are less reflective than
acoustically dense ones. The acoustic resistance relies on the speed of sound into the object
in comparison to the aquatic elastic medium surrounding it. Additionally, the target’s
thickness is essential because the variations in the speed of sound continue for several
wavelengths. The target’s size and the acoustic beam’s incident angle should guarantee
that the entire beam reaches the surface. When an object is smaller than the dimensions of
the beam width, or the incident angle does not hit the target surface entirely, the produced
reflection is insufficient. The shape is also important because it decides the direction of the
reflection. For example, a conic surface will return the waveforms in ripple formations in
many directions [16].

Unlike reflectivity, the acoustic shadow does not depend on the object’s structure
and surface. The shadow is formed because the waveforms, when hitting the object, are
obstructed by the side of the object and do not reach the seabed behind it, which is the
required area. Consequently, no data are returned when the waveforms do not reach the
specified area. This case is depicted in Figure 9, where the cliff blocks the waveforms from
hitting the seabed.
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Figure 9. Acoustic reflection.

The shadow provides data about the vertical shape and characteristics of an object
lying at the bottom. The lateral length of the shadow depends on the distance to the object,
the vehicle’s altitude and the height of the target. Acoustic shadows can also represent
bottom depressions. This happens when the depression’s depth is low enough to affect
the seabed, causing it to prevent acoustic waveforms from reaching the depression. In
this case, the vehicle’s altitude and the size of the depression determine the shape of the
shadow. However, this type of shadow is not preceded by a reflective target, meaning a
highlight before the shadow is not created. This is why the combination of highlights and
shadows is essential when searching for targets of interest.

4. Object Detection

Object detection in sonar imagery is a complicated task due to the nature of the
environment, causing spurious shadows, multipath returns and sidelobe effects [2]. These
obstacles cause significant variability in targets, resulting in clutter and various background
signatures. However, the properties of underwater sound propagation assure that the mine
area can be generally detected in the image. This is because a mine is usually manufactured
using denser material than seabed objects and creates a highlight segment on the image.
Additionally, a shadow segment, which is orthogonal to the sonar, is generated. The
highlight and shadow segments create a spotted cluttered surrounding. As a result, the
ROI has a background segment relating to the reverberation from the sea [17].

4.1. Image Enhancement

The first step of object detection and classification is constituted by the image enhance-
ment technique [18–21]. It is mainly used to normalise images and reduce noise. In an
image normalisation step, both highlights and shadows become distinct from the back-
ground. One method of image normalisation is histogram equalisation, which transforms
an image, making its histogram nearly regular. All intensity bands have a similar number of
pixels in a regular histogram [22]. Another method utilises a serpentine forward-backwards
filter, which considers the neighbourhood of each pixel to normalise its value [18]. Both
methods produce a consistent background and emphasise highlight and shadow pixel
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intensities. Apart from normalisation, noise reduction is essential during the image en-
hancement step. For this purpose, a diamond- or square-shaped median filter is employed.
This operation smooths the image and reduces noise [23].

Similarly, the Wiener filter analyses local mean and variance in order to reduce the
changes in pixels’ intensity [24]. The changes are also reduced by wavelet-based de-noising
via Donoho’s shrinkage, which implies choosing and shrinking a specific level in the
wavelet [25]. Apart from the aforementioned methods, there are the Gaussian filter and
the difference of Gaussians technique. Both are applied to reduce noise and smooth the
image [26]. The image enhancement step is devoted to preparing the image for object
detection and classification. Therefore, the choice of a particular technique should conform
to the detection and classification schemes.

4.2. Image Segmentation

Image segmentation refers to the technique of grouping image pixels into several
classes. The pixels belonging to the same homogeneous regions are assigned the same
labels. Segmentation is a popular technique to separate the highlight and shadow regions
correlated with mines in sonar imagery [27–34]. This is because the pixels representing
mines have higher values than the average pixel intensity in the image, while the pixels
representing shadows created by mines have lower values. The most straightforward
approach to segment the image is determining thresholds in pixel intensities to distinguish
background, highlight and shadow regions. Some improvements can be achieved by
applying adaptive thresholding: for example, the threshold based on the local mean [18] or
based on local histograms [35].

Acosta et al. [31] developed an algorithm to segment objects into two regions: acousti-
cal highlight and seafloor reverberation areas. The proposed solution does not need any a
priori assumption about the nature of sonar images. It constitutes an adaptation of the Cell
Average–Constant False Alarm Rate (CA–CFAR) used in radar technology for detecting
moving objects. The proposed algorithm provides similar results in image segmentation
concerning other frequently used approaches but demands less computational resources
and parameters to set. Due to its simplicity and accuracy, it can be used in real-time
applications.

More complex techniques such as fuzzy functions [27] or Markov random field
(MRF) [19] are also used for segmentation. The first technique, fuzzy functions, con-
stitutes fuzzy k-means clustering, which utilises the mean and variance of luminance
within small windows. This technique also can deploy c-means clustering, which addi-
tionally uses lightness. However, fuzzy clustering is responsive to speckle noise [24]. The
other technique, MRF, enables reliable segmentation since it uses pixel dependencies. It
considers the surrounding pixels’ labels, assuming that a pixel surrounded by shadow
pixels is more likely to belong to the shadow region [19].

In [36], a new unsupervised method of sonar image segmentation was introduced.
This method is based on the amplitude dominant component analysis (ADCA) technique
and comprises a multi-channel filtering and saliency map. The estimated saliency map
is associated with the input from the sonar image, while multi-channel filtering uses the
Gabor filter to reconstruct the input image in the narrowband components. The presented
results indicate the usefulness of exploiting the saliency regions in the sonar images.

The authors in [37] established the efficient convolutional network (ECNet) architec-
ture for semantic segmentation of SSS images, which utilises a novel encoder to learn rich
hierarchical features. The architecture consists of an encoder network to capture context
and a corresponding decoder network to restore full input-size resolution feature maps.
Additionally, it employs a single stream deep neural network with multiple side outputs
to optimise edge segmentation. Their solution performs image-to-image prediction by
leveraging fully convolutional neural networks and deeply supervised nets. The model
uses weighted loss to overcome the imbalanced classification problem, where the target
pixels result in a larger weight in the loss function. According to the authors, ECNet allows
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performing predictions much faster and more efficiently, making it possible to utilise the
limited resources on embedded platforms effectively.

An unsupervised statistically based algorithm for image classification was presented
in [38]. Unlike the other methods, it does not employ a statistical model of the shadow
region. It merges highlight and shadow detection utilising a weighted likelihood ratio
test taking into consideration the spatial distribution of the target. In the next step, the
sonar elevation and scan angle are calculated. Using these acquired data and the statistical
features of the pixels, a support vector machine (SVM) classifies shadow and background
regions. The authors claimed that the algorithm is robust and does not require knowledge
about the target’s shape or size.

McKay et al. [39] used a sparse reconstruction-based classification (SRC), which shows
resiliency to noise, blur and occlusion. Their method incorporates a novel interpretation of
spike and slab probability distributions as Bayesian discrimination combined with a dictio-
nary learning scheme for patch extractions. It also facilitates anomaly detection to avoid
false identifications without additional training implementation. Accessing the database
provided by the U.S. Naval Surface Warfare Center in this method proves robustness by
classifying targets with diverse geometric arrangements, bothersome Rayleigh noise and
background clutter [39].

Deep convolutional neural networks were used to classify underwater targets in
synthetic-aperture sonar (SAS) imagery in [40]. The authors used a massive database of
sonar data collected at sea during different expeditions in various geographical locations.
The database consisted of dummy mine shapes, more realistic mine-like targets, other
human-made objects and calibrated rocks. The authors developed a new training pro-
cedure to augment the training data and avoid overfitting. In this procedure, the deep
networks performed several binary classification tasks in which different objects had to
be discriminated. The results showed that deep networks can learn valuable differences
between similar objects and outperform traditional feature-based classifiers.

4.3. MLO Detection

Segmentation defines ROIs by considering all segments, including highlights, shadows
or combinations. These regions contain potential mine-like objects. To distinguish a
mine, the detection step is needed. Some detection solutions utilise matched or template
filters [17,28,41]. In simple algorithms, the templates are used for detecting highlight and
shadow combinations. More sophisticated procedures take additional steps, including
highlight clutter and shadow clutter region recognition. Some also convolve templates
with distinct areas in the image and employ a threshold to establish if the analysed area
constitutes an MLO [17]. In this attempt, the template covers all possible MLOs but is
able to recognise the bottom clutters [28]. Another template matching method generates a
subspace of shapes with six vertices representing the MLO. Subsequently, it compares the
MLO’s normalised shape with the subspace of defined shapes [42]. As a result, the most
distinct regions are considered for further processing.

The main idea of the template matching technique is briefly described below. As-
suming that the vehicle is moving at a known distance from the seabed and range to the
MLO (see Figure 10), the shadow length can be solved as a function of the range using the
following equation:

S(R) =
O·R

A − O
, (5)

where A is the vehicle’s distance from the seabed, R is the range to the object, O is the
object’s height and S is the shadow length.
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Figure 10. Template’s geometry.

The obtained data can be compared with the characteristics of the known MLOs to
determine similarity. Figure 11 presents the most distinctive regions utilised during the
temple matching test.

Figure 11. Template of an MLO.

In ref. [43], a Gabor-based deep neural network architecture was developed to detect
MLOs. The steerable Gabor filtering modules are embedded within the cascaded layers to
enhance images’ scale and orientation. The proposed Gabor neural network is designed
as a feature pyramid network with a small number of trainable weights. It merges strong
and weak features to detect MLOs at multiple scales accurately. Feature extraction is
performed using a parametrised Gabor layer to improve the generalisation ability and
efficiency. Additionally, the steerable Gabor filter is implemented in the cascade layer to
improve images’ scale and orientation decomposition. The Gabor neural network (GNN)
is taught utilising sonar images with labelled MLOs. The authors compared the detection
performance of their method with others devoted to MLO detection such as the Haar-
like detector [44], LBP cascade detector [4], VGG+GAP [45] and SNN+GAP [46]. The
experimental results indicated that the proposed solution is an effective MLO detection
method for AUVs in terms of accuracy and model size. The obtained results are presented
in Table 1.

Table 1. The performance of MLO detection methods in comparison with a GNN detector [43].

Method Correct
Detections

Incorrect
Detections

Ground Truth
Not Detected Frame/s

GNN detector 174 46 42 3.018
Haar-like
detector 18 319 198 0.053

LBP cascade
detector 23 267 193 0.051

VGG + GAP 46 107 170 0.004
CNN + GAP 9 134 207 0.007
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They also performed a comparison with state-of-the-art object detectors which were
not devoted to mine detection. They considered the following methods: R-CNN [44],
Fast R-CNN [45], Faster R-CNN [46], SSD300 [47] and YOLOv3 [48]. However, it is
worth mentioning that the YOLOv4 and YOLOv5 methods have been introduced recently.
They constitute an improved version of the YOLOv3 algorithm; hence, their accuracy can
probably be higher in mine detection tasks. This implies that the YOLOv4 and YOLOv5
methods should be taken into consideration for newly developed methods.

The obtained results (see Table 2) show that the proposed method outperforms the
others in terms of accuracy. It also achieves a great reduction in size in comparison with
other detectors. The speed performance is worse than that for the R-CNN, Fast R-CNN
and Tiny YOLOv3 methods, but the authors underlined that their main concern was to
improve the detection accuracy for a reliable MLO detection algorithm.

Table 2. The performance of generic object detection methods used for MLO detection [43].

Method AP ± SD (%) Frame/Second Total Trainable
Weights Model Size (KB)

GNN 79.93 ± 7.66 3.01 2,084,880 8305
R-CNN 37.62 ± 11.85 0.3 25,502,912 100,632

Fast R-CNN 18.26 ± 3.9 1.29 25,436,865 100,371
Faster R-CNN 9.41 ± 3.16 2.89 25,703,510 101,423
Tiny YOLOv3 70.54 ± 8.91 28.41 8,669,876 3399
Full YOLOv3 72.76 ± 9.53 15.07 61,523,734 241,082

SSD300 27.08 ± 6.9 7.17 91,427 91,427

The research in [49] deployed a DNN to detect MLOs on the seafloor in sidescan
sonar imagery. The authors analysed the impact of the DNN depth, memory requirements,
calculation requirements and training data distribution on detection efficacy. Additionally,
they incorporated visualisation techniques to facilitate a user’s interpretation of the model’s
behaviour. According to them, more complex DNN models generate better accuracy (98%)
than simple ones (93%) and yield a better performance than SVMs (78%). The most
complicated DNN models achieved a 1% increase in efficacy at the cost of a seventeen-fold
increase in the number of trainable parameters. The presented solution requires fewer
computational resources than DNNs developed for multi-class classification tasks. As a
result, it is suitable for autonomous underwater vehicles.

5. Object Classification

For object classification, a set of features needs to be extracted. Based on the extracted
features, the classification can be performed by calculating distances between them [42].
Other approaches utilise parallel lines via the Hough transform [29] or shape and signal-to-
noise ratio analyses [41]. For example, Dobeck et al. [50] proposed 25 features due to their
uniqueness. The most significant ones are listed below:

• Maximum highlight pixel value in the ROI;
• Minimum pixel value in the ROI;
• Size of highlight region;
• Size of shadow region;
• Mean of highlight region;
• Mean of shadow region;
• Distance from shadow to highlight;
• Number of shadow pixels below threshold;
• Number of highlight pixels above the threshold.

Other techniques employ feature extraction algorithms such as a wavelet packet-based
feature extraction [51] or canonical correlation analysis (CCA), which is able to segment
the image simultaneously [18]. In ref. [52], the k-nearest neighbour (K-NN) technique for
underwater target discrimination was described. It is based on the k-nearest neighbour
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regions, defined by training data and used to classify the candidate region. The neighbour’s
distance to the candidate region determines the belief score. In this approach, smaller
distances generate higher belief scores. Another technique, the cooperating statistical snake
(CSS) model, was used in [19] to recognise the boundaries of highlights and shadows.
In this attempt, two statistical snakes are applied to determine the target highlight and
shadow separately. It is performed by reducing the movement of the snakes by applying
the relationship between the highlight and shadow.

The boundaries of shadows and highlights are often indistinguishable due to noise
in the sonar images. To remedy this problem, the method of fitting a superellipse was
developed in [2]. Superellipses are defined as Lame curves in analytical geometry. They
form shapes such as rectangles, rhomboids and ellipses utilising changes in the squareness
of the superellipse function. In this work, superellipses were used to classify the ROIs.

The change detection technique was applied for mine classification in [28]. This
technique compares identified MLOs to establish any changes that can facilitate the classi-
fication step. Only highlights with matching shadows are taken into consideration. The
mine classification is based on the pixel distribution analysis of each change. Human-made
targets are characterised by a normal pixel distribution in comparison to the regular distri-
bution of other underwater objects. Finally, the classification algorithm employs a finite
state Markov machine, which uses four feature vectors: highlight, shadow, highlight clutter
and shadow clutter. Then, these vectors are compared to four threshold values to perform
the classification step.

Underwater object classification methods mainly focus on detecting all possible mine-
like objects (MLOs) and classifying them as mine or not-mine [35]. In classical methods,
model-based or data-driven approaches have been widely utilised. They extract a set of
features from MLOs to a training dataset; however, the obtained results depend on the
similarity between the test and training data [53]. In [19], the authors used the Hausdorff
distance between synthetic shadows and a real object shadow as well as size information to
produce a membership function. They also implemented the object classification step based
on Dempster–Shafer information. The obtained classification efficiency was improved
in [54] using multi-angle view mine simulation and template matching. Apart from
model-based approaches, local feature descriptors without prior knowledge have also
been deployed for mine classification. Among them, the most popular are: the Haar-
like feature [55], the combination of Haar features and learned features from a human
operator’s brain electroencephalogram (EEG) [56] and Haar-like and local binary pattern
(LBP) features [4]. The extracted features are usually analysed using machine learning
techniques, such as boosting [55] and support vector machines (SVMs) [57].

Other feature-based methods use geometric visual descriptors, such as the scale-
invariant feature transform (SIFT) [57–59] and local binary patterns (LBPs) [4,60]. In [57],
the authors applied dense SIFT feature extraction with various window sizes for calculating
orientation histograms. Barngrover et al. [4] considered the detection capabilities using
synthetic data compared to real-world images. For this purpose, they developed an
algorithm based on AdaBoost to distinguish features and an optimised cascade of features
to classify objects. This training algorithm demands many training examples to facilitate the
machine learning module selection of the most distinct features. The authors performed
experiments with the local binary pattern (LBP) features and Haar-like features. The
results showed that semisynthetic training and testing can improve the classification
performance in case of scarcity in real data. Additionally, it can allow determining the most
promising features.

The main disadvantage of feature-based methods is that feature extractors must be
manually designed to generate a feature vector from the input image window. Therefore,
in recent years, MLO detection and classification methods have used deep learning (DL)
to process sonar images in their raw form without manual feature engineering [49,61,62].
In [49], Gebhardt et al. proposed different structures of convolutional neural networks
(CNNs), where a global average pooling (GAP) layer is used before each fully connected
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layer to produce a class activation map. A four-step pipeline of MLO detection, including
synthetic data generation, one-class classification, background extraction and binary clas-
sification, was presented in [62]. The second and fourth steps are accomplished using an
auto-encoder and a pre-trained network, VGG-19, respectively.

Transfer learning with pre-trained CNNs for mine detection and classification was
used in [61], where the feature vectors train a support vector machine (SVM) on a small
sonar dataset. The authors tested several pre-trained CNNs for SVM and modified CNN
problems: VGG16, VGG19, VGG-f and Alexnet. The obtained results showed that the SVM
using CNN features can improve detection in the case of a small training dataset. This
is because, when using a small dataset, CNN is not able to tune its parameters correctly.
Therefore, to obtain reliable results, highly discriminative features should be utilised.
Performance can also be increased using deeper and more detailed networks.

In ref. [63], the authors presented another usage of DL for classifying MLOs in syn-
thetic sonar aperture images. In this work, a fused anomaly detector is deployed to narrow
down the pixels in SAS images and extract target-sized tiles. Then, the detector calculates
the confidence map of the same size as the original image by estimating the target probabil-
ity value for all pixels based on a neighbourhood around it. The confidence map considers
only ROIs for the classification step.

The research in [59] compared feature detection algorithms utilising a synthetic sonar
image dataset. The dataset contains MLOs located on grass, sand ripple and sand. The au-
thors analysed the Shi–Tomasi, Harris, SURF, SIFT, ORB, STAR and FAST feature detectors
and descriptors on each of these backgrounds. In the classification step, the SVM technique
was utilised. The obtained results were assessed with the receiver operating curve (ROC) by
comparing the number of correctly identified object features and the number of incorrectly
identified ones. The authors observed that the SURF method is most suitable for the sandy
seabed. The ORB method indicated the best performance for the rippled seabed, while the
Harris, Shi–Tomasi, SIFT and STAR methods were not applicable for the used dataset.

Fei et al. [64] proposed a filter method for feature selection and an ensemble learning
scheme in the Dempster–Shafer theory framework for underwater mine classification.
The filter method adopts the composite relevance measure. This measure constitutes a
weighted arithmetic average of mutual information, modified relief weight and Shanon
entropy, or a weighted geometric average of these three factors. The features provided by
the maximum composite relevance measure using the sufficient feature set scheme were
tested for a wide range of classifiers. The results showed that the features selected by the
proposed methods deliver better performance without the requirement of manual setting
of parameters. The proposed filter methods are also much faster than the filter methods
in the literature. The authors also concluded that the incorporation of a priori knowledge
about the classifier’s performance increases accuracy.

The reviewed MLO detection and classification methods are listed in Table 3.
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Table 3. Summary of MLO detection and classification methods reviewed in this article.

Application Authors Year Technique Remarks

Detection Attaf et al. [36] 2016 Classical image
processing

• Uses the amplitude dominant
component analysis

• Exploits the saliency of sonar images

Detection
Classification Reed et al. [19] 2003 Classical image

processing

• Uses unsupervised Markov random
field model

• Utilises a priori information about
the spatial relationship between
highlights and shadows

Detection Acosta et al. [31] 2015 Classical image
processing

• Uses Cell Average–Constant False
Alarm Rate

• Suitable for autonomous underwater
vehicles

Detection
Classification Tucker et al. [18] 2007 Classical image

processing

• Uses canonical correlation analysis
• High accuracy (88%)

Detection Rao et al. [17] 2009 ML

• Used for real-time application
• Good results on the database

provided by the Naval Surface
Warfare Center

Detection Barngrover et al. [56] 2016 ML
• Uses brain–computer interface,

Haar-like feature classifier and SVM

Detection
Classification Saisan et al. [42] 2008 ML

• Treats mine detection as a
two-dimensional object recognition
and localisation problem

• Shows good results on
benchmarking data created from the
mine dataset

Detection Abu et al. [38] 2019 ML

• Uses a support vector machine over
the statistical features

• Does not require knowledge about
the target’s shape or size

Detection McKay et al. [39] 2017 ML

• Uses a sparse reconstruction-based
classification

• Resilient to noise, blur and occlusion

Detection Thanh et al. [43] 2020 DL

• Uses Gabor-based detector
• Achieves competitive performance

compared to the existing approaches
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Table 3. Cont.

Application Authors Year Technique Remarks

Detection
Classification Gebhardt et al. [49] 2017 DL

• High accuracy (93%)
• Suitable for autonomous underwater

vehicles

Detection Wu et al. [37] 2019 DL

• Uses the efficient convolutional
network architecture for semantic
segmentation

• Applicable for real-time processing
tasks

Detection
Classification Williams et al. [40] 2016 DL

• Uses deep networks learned for
several binary classification tasks

Detection
Classification Ciany et al. [41] 2003 Classical image

processing

• Uses signal-to-noise ratio and shape
of the objects

• Suitable for autonomous underwater
vehicles

Classification Neumann et al. [29] 2008 Classical image
processing

• Uses the Hough transformation
• Significantly reduces the number of

false detections

Classification Dobeck et al. [50] 1997 DL

• Uses the k-nearest neighbour
attractor-based neural network
classifier

• Classifies mine-size regions which
are similar to a mine’s signature

Classification Yao et al. [51] 2002 DL

• Uses feature selection and neural
network classifier

• Introduces a sub-band fusion
mechanism for wideband data

Detection
Classification Dura et al. [2] 2008 Classical image

processing

• Uses a superellipse fitting approach
• The classification rate is higher than

80%

Classification Wei et al. [28] 2009 Classical image
processing

• Uses change detection techniques
• Satisfactory results for two sets of

bi-temporal sidescan sonar images

Classification McKay et al. [61] 2017 DL
• Uses convolutional neural networks

and transfer learning
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Table 3. Cont.

Application Authors Year Technique Remarks

Classification Galusha et al. [63] 2019 DL

• Uses convolutional neural networks
for location based on
cross-validation

Classification Fei et al. [64] 2015 DL

• Uses an ensemble learning scheme
in the Dempster–Shafer theory
framework

• Manual setting of parameters is not
required

6. Conclusions

Underwater mine detection and classification in sonar imagery pose a challenging
task due to the low quality of sonar images. Sonar images are complicated to analyse
due to speckle noise and environmental conditions causing spurious shadows, sidelobe
effects and multipath return. This results in significant variability in targets, clutter and
background signatures.

To deal with these obstacles, numerous image processing techniques have been de-
veloped. They can be divided into classical image processing, machine learning and deep
learning techniques.

The most conventional approach to MLO detection and classification is classical
image processing. It incorporates highlight and shadow regions to spot suspicious objects
on the seafloor. This process involves the segmentation step, which divides the image
into highlights, shadows and background regions. Then, the templates are used for
detecting highlight and shadow combinations. The flaw in classical image processing is
that it demands more workforce and training efforts. It requires experts to design image
features necessary for object detection and classification. Additionally, its performance
is image quality dependent. Therefore, an extra enhancement step is needed to ensure
its accuracy. However, a feature that compensates for its flaws is that it does not need an
extensive database.

More advanced image processing techniques employ machine learning, where image
features are used to detect and classify objects automatically. Detection and classification
need a supervised or unsupervised learning process to work. In both modes, an expert
needs to design the image feature specifications. ML detects and classifies objects based on
their characteristics without utilising any of the seabed characteristics. In the ML technique,
the imaging data stipulate a high quality, which is challenging to achieve using sonar
images. Therefore, image enhancement is implemented in this technique as well. Since
ML necessitates the design of image features, it is time demanding and a tiring operation.
However, when trained on small datasets, it provides an appropriate level of accuracy.
Thus, ML is considered one of the more reliable techniques in image processing.

A step further in image processing is deep learning, a subfield of ML that provides
algorithms inspired by the brain’s neuron connection composition. It employs structured
and unstructured data and extracts features automatically. Since DL algorithms demand
a vast quantity of data, a severe problem in its operation path is the lack of publicly
available datasets, alongside military non-disclosure of mine detection tasks. To resolve
this, some techniques including sonar simulators, data augmentation and transfer learning
can be employed. However, these techniques do not compensate for the lack of actual
representative datasets. As a result, the performance of DL algorithms for mine detection
and classification is lower compared to other computer vision applications.
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An added disadvantage of deep learning is that images demand manual labelling,
which requires an additional workload and extended working hours. Furthermore, deep
learning is also susceptible to low-quality data. Therefore, even though the image en-
hancement step is unnecessary for DL as it is in most of the most popular computer vision
applications, researchers often implement it for noise reduction and contrast improvement
of low-quality sonar images.

The upcoming trend is to combine classical image processing with DL. A classical
method distinguishes ROIs in the detection step while DL classifies ROIs as MLOs or
benign objects in this combined technique. This combination can improve the performance
of the classification step since the neural network analyses only the ROIs’ areas in the image.
As a result, the computationally expensive DL algorithms are functional in analysing just
small parts of sonar images.

This paper examined the current and previous generations of classical image pro-
cessing, machine learning and deep learning methods. It can help upcoming research in
developing new detection and classification algorithms, thus laying the groundwork for
the next generation of advanced techniques.

Funding: This paper was funded by the Polish Ministry of Defence Research Grant entitled “Vision
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