
Citation: Zou, B.; Li, W.; Hou, X.;

Tang, L.; Yuan, Q. A Framework for

Trajectory Prediction of Preceding

Target Vehicles in Urban Scenario

Using Multi-Sensor Fusion. Sensors

2022, 22, 4808. https://doi.org/

10.3390/s22134808

Academic Editor: Felipe Jiménez

Received: 14 May 2022

Accepted: 21 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Framework for Trajectory Prediction of Preceding Target
Vehicles in Urban Scenario Using Multi-Sensor Fusion
Bin Zou 1,2,3 , Wenbo Li 1,2,3 , Xianjun Hou 1,2,3,*, Luqi Tang 1,2,3 and Quan Yuan 1,2,3

1 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of
Technology, Wuhan 430070, China; zoubin@whut.edu.cn (B.Z.); sea_rivers@sina.com (W.L.);
tlq20080804@whut.edu.cn (L.T.); 231943@whut.edu.cn (Q.Y.)

2 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of
Technology, Wuhan 430070, China

3 Hubei Research Center for New Energy and Intelligent Connected Vehicle, Wuhan 430070, China
* Correspondence: houxj@whut.edu.cn

Abstract: Preceding vehicles have a significant impact on the safety of the vehicle, whether or not it
has the same driving direction as an ego-vehicle. Reliable trajectory prediction of preceding vehicles
is crucial for making safer planning. In this paper, we propose a framework for trajectory prediction
of preceding target vehicles in an urban scenario using multi-sensor fusion. First, the preceding target
vehicles historical trajectory is acquired using LIDAR, camera, and combined inertial navigation
system fusion in the dynamic scene. Next, the Savitzky–Golay filter is taken to smooth the vehicle
trajectory. Then, two transformer-based networks are built to predict preceding target vehicles’ future
trajectory, which are the traditional transformer and the cluster-based transformer. In a traditional
transformer, preceding target vehicles trajectories are predicted using velocities in the X-axis and
Y-axis. In the cluster-based transformer, the k-means algorithm and transformer are combined to
predict trajectory in a high-dimensional space based on classification. Driving data from the real-
world environment in Wuhan, China, are collected to train and validate the proposed preceding
target vehicles trajectory prediction algorithm in the experiments. The result of the performance
analysis confirms that the proposed two transformers methods can effectively predict the trajectory
using multi-sensor fusion and cluster-based transformer method can achieve better performance than
the traditional transformer.

Keywords: trajectory prediction; transformer; cluster; multi-sensor fusion; detection and tracking;
different driving direction

1. Introduction

Automated vehicles and advanced driver assistance systems (ADAS) have received
a surge of attention in recent years as they are considered to be an effective solution for
traffic congestion and safety [1–3]. Reliable trajectory prediction of preceding vehicles is
crucial for the planning and decision-making of automated vehicles. Compared to studies
of surrounding vehicles trajectory prediction [4], preceding target vehicles (PTVs) should
receive more attention, which in turn has a higher possibility of risk to the automated
ego-vehicle (EV). Based on the future trajectory of PTVs, the EV can generate a more
comfortable and safe path, avoiding or mitigating the risk of collision [5].

A major reason for the prosperity of vehicle trajectory prediction algorithms is the
availability of public datasets [6,7], which assists researchers in quickly validating their
algorithms. Despite these favorable results on public datasets, when the vehicle trajectory
prediction system evaluated, not only should the accuracy of the prediction should be
considered, but also the generalization ability of the established model should be evaluated;
that is, whether the model can accurately predict the trajectory of the vehicle in real road
driving. Vehicle-to-vehicle (V2V) is also a source for trajectory prediction input. However,

Sensors 2022, 22, 4808. https://doi.org/10.3390/s22134808 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134808
https://doi.org/10.3390/s22134808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0064-7424
https://orcid.org/0000-0003-2123-5151
https://doi.org/10.3390/s22134808
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134808?type=check_update&version=1

Sensors 2022, 22, 4808 2 of 15

in the case that the V2V communication technique is unavailable, autonomous vehicles
cannot receive accurate information from surrounding vehicles, and the autonomous vehi-
cles have to deduce the trajectory of other vehicles through various onboard sensors [8–10].
Currently, a lot of research has captured PTVs using cameras, LIDAR, and other sensors in
real road driving [10–12]. However, the sensor is moving because it is fixed to EV, which
results in PTV positions that are not in the same coordinate system. Figure 1 shows the
results of the PTV in a moving EV vehicle coordinate system and a stationary EV vehicle
coordinate system, respectively, where the green points represent the EV position, the gray
points represent observed PTV history position, and the red points represent real PTV
position. When EV and PTV are driving at the same speed in the X-axis, PTV is traveling in
the Y-axis as observed by the EV sensor. For this reason, when predicting vehicle trajectories
in real roads, it is necessary to focus not only on excellent prediction algorithms to predict
future trajectories but also on methods to obtain historical trajectories of PTVs. The goal of
this paper is to develop such a system.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 16

Vehicle-to-vehicle (V2V) is also a source for trajectory prediction input. However, in the case

that the V2V communication technique is unavailable, autonomous vehicles cannot receive

accurate information from surrounding vehicles, and the autonomous vehicles have to de-

duce the trajectory of other vehicles through various onboard sensors [8–10]. Currently, a

lot of research has captured PTVs using cameras, LIDAR, and other sensors in real road

driving [10–12]. However, the sensor is moving because it is fixed to EV, which results in

PTV positions that are not in the same coordinate system. Figure 1 shows the results of the

PTV in a moving EV vehicle coordinate system and a stationary EV vehicle coordinate sys-

tem, respectively, where the green points represent the EV position, the gray points repre-

sent observed PTV history position, and the red points represent real PTV position. When

EV and PTV are driving at the same speed in the X-axis, PTV is traveling in the Y-axis as

observed by the EV sensor. For this reason, when predicting vehicle trajectories in real roads,

it is necessary to focus not only on excellent prediction algorithms to predict future trajecto-

ries but also on methods to obtain historical trajectories of PTVs. The goal of this paper is to

develop such a system.

0O 1O 2O

……

nO1nO −2nO −

0Y 1Y 2Y 2nY − 1nY − nY

X

_his obsTarget

EV

obsTarget

Figure 1. Relative motion of the PTV.

In this paper, we propose a PTV trajectory prediction system based on two different

transformer methods using LIDAR, camera, and combined inertial navigation system fu-

sion. First, the relative position of PTV and EV is obtained by LIDAR–camera fusion. This

process consists of vehicle detection, tracking using image, and relative position detection

of lateral and longitudinal positions using LIDAR. Second, a PTV trajectory extraction

method is developed, which converts the PTV in the dynamic EV vehicle coordinate system

to a world coordinates system in order to generate historical trajectories. Third, a Savitzky–

Golay (S-G) filter is employed for moving to smooth trajectory curves. Next, two trans-

former-based methods are built to predict the PTV’s future trajectory. Finally, the models

are trained and validated using the raw longitude and latitude, image and point cloud da-

tasets collected at the real urban road in Wuhan, China. Our main contributions are sum-

marized as follows:

(1) Most trajectory prediction algorithms are validated by public datasets that provide

the location directly. Therefore, the whole process of vehicle trajectory prediction

cannot be systematically considered. We come up with a framework for PTV’s trajec-

tory prediction using the real driving process collected from LIDAR, camera, and

combined inertial navigation system fusion.

(2) Vehicle trajectory prediction algorithms based on LSTM and its variants are difficult

to model due to complex temporal dependencies. Therefore, the other contribution

is two different transformer-based methods built to the PTV’s future trajectory.

The remainder of this paper is organized as follows. Section 2 introduces the pre-pro-

cessing of the raw point cloud from 3D LIDAR, image, and longitude and latitude from EV

Figure 1. Relative motion of the PTV.

In this paper, we propose a PTV trajectory prediction system based on two different
transformer methods using LIDAR, camera, and combined inertial navigation system
fusion. First, the relative position of PTV and EV is obtained by LIDAR–camera fusion. This
process consists of vehicle detection, tracking using image, and relative position detection
of lateral and longitudinal positions using LIDAR. Second, a PTV trajectory extraction
method is developed, which converts the PTV in the dynamic EV vehicle coordinate
system to a world coordinates system in order to generate historical trajectories. Third,
a Savitzky–Golay (S-G) filter is employed for moving to smooth trajectory curves. Next,
two transformer-based methods are built to predict the PTV’s future trajectory. Finally, the
models are trained and validated using the raw longitude and latitude, image and point
cloud datasets collected at the real urban road in Wuhan, China. Our main contributions
are summarized as follows:

(1) Most trajectory prediction algorithms are validated by public datasets that provide the
location directly. Therefore, the whole process of vehicle trajectory prediction cannot
be systematically considered. We come up with a framework for PTV’s trajectory
prediction using the real driving process collected from LIDAR, camera, and combined
inertial navigation system fusion.

(2) Vehicle trajectory prediction algorithms based on LSTM and its variants are difficult
to model due to complex temporal dependencies. Therefore, the other contribution is
two different transformer-based methods built to the PTV’s future trajectory.

The remainder of this paper is organized as follows. Section 2 introduces the pre-
processing of the raw point cloud from 3D LIDAR, image, and longitude and latitude from
EV and generating PTV’s historical trajectory. Section 3 presents two transformer-based
PTV trajectory prediction models. Section 4 describes the process of dataset creating, model
training and results analysis. Finally, Section 5 offers the conclusions and future work.

Sensors 2022, 22, 4808 3 of 15

2. Related Work

Vehicle driving is a continuous, time-varying, and dynamic process. Extensive research
has been conducted on vehicle trajectory prediction. For the PTVs’ trajectories prediction,
prior works can be divided into two categories: model-driven methods and data-driven
methods [13].

The model-driven methods include the hidden Markov model (HMM), Gaussian
mixture model (GMM), vehicle dynamics model (VDM), and polynomial model (PM).
Ye et al. [14] proposed a novel vehicle trajectory prediction algorithm named double hidden
Markov of trajectory prediction (DHMTP). The algorithm was based on a hidden Markov
model with double hidden states and predicted the vehicle trajectory at multiple subsequent
moments. Wiest et al. [15] built a mixture Gaussian–Bayesian model-based variational
probabilistic trajectory, in which Gaussian and Bayesian methods were jointly utilized
to predict future vehicle coordinates. The validation of real word trajectory showed that
the proposed model could predict future vehicle trajectories within two seconds. VDM
represented a model built using vehicle dynamics data (e.g., velocity, acceleration, steering
angle, and yaw angle) and relevant mathematical methods. Vehicle kinematic data and a
maneuver identification model were combined to trajectory prediction model which was
validated by real driving data [16]. The results indicated that the model was effective in
short-term prediction. However, the accuracy of its long-term prediction was not stable.
PM was usually employed to fit non-linear curves. Guo et al. [17] fitted and predicted the
longitudinal trajectory of a vehicle using a fifth-order polynomial. These approaches only
achieved favorable results on short-term trajectory forecasts. However, it did not show
promising results when predicting long trajectories.

Besides the traditional methods motioned above, a large number of works focused on
vehicle trajectory prediction by using recurrent neural network (RNN) and Long short-term
memory (LSTM). Especially variant LSTM had received a lot of attention from researchers.
Deo and Trivedi [18] used the LSTM encoder to encode the trajectory vectors of surrounding
vehicles to predict the future trajectory and validated the effect on the NGSIM dataset.
In [19], two streams graph LSTM to predict trajectories and driving behavior were adopted
under urban scenarios. The first stream used only a conventional LSTM encoder-decoder
network when the second stream used a weighted dynamic geometric graph. The model
was evaluated on the Argoverse, Lyft, Apolloscape, and NGSIM datasets. Although it
had achieved promising results in long-term trajectory prediction, LSTM normally had
difficulty modeling complex temporal dependencies [20].

Recently, Transformer networks had made ground-breaking progress in Natural Lan-
guage Processing domains (NLP) [21]. Transformers discarded the sequence of language
sequences and only modeled temporal dependencies using a powerful self-attention mech-
anism. The key advantage of the transformer architecture was the significant improvement
in temporal modeling compared to RNN. Several studies had used transformer networks
to model pedestrian trajectory prediction and achieved good results [22–24]. Although the
transformer was excellent at predicting pedestrian trajectories, vehicles had faster speeds
compared to pedestrians. Moreover, these studies had not been able to predict target
trajectory from the raw data because the location of the targets was already provided in the
public dataset. In this work, we generate history trajectories using raw data from sensors
and predict PTV’s future trajectory based on two different transformer methods.

3. Sensors Fusion and History Trajectory Generation
3.1. Detection

Detection and tracking are prerequisites for generating PTV’s historical trajectory.
Moreover, excellent trackers depend largely on a superb detector. You only look once
(YOLO) algorithms can achieve faster performance than the two-stage algorithm by tuning
the backbone network due to the omission of the coarse localization process. In particular,
the YOLOv5 model is faster, more accurate and has a lower number of model parameters
than the YOLOv4 model [25]. Therefore, YOLOv5 is employed as the detector for PTV.

Sensors 2022, 22, 4808 4 of 15

3.2. Tracking

DeepSORT is an improved version of simple online and real-time tracking (SORT).
It integrates a pre-trained neural network to generate feature vectors which are used as
a deep association metric. Specifically, it applies a trained convolutional neural network
(CNN) to detect obstacles on large-scale datasets. By using this network integration,
deepSORT overcomes the shortcomings of SORT while ensuring that the system is easy to
implement, effective, and suitable for real-time situations [26]. Hence, we apply deepSORT
as the tracker.

3.3. Lidar-Camera Fusion

Sensor fusion can enhance sensing capabilities and reduce costs by exploiting the
complementary properties. LIDAR provides accurate PTV geometry information; however,
the LIDAR has low resolution and a low frame rate. On the contrary, monocular cameras
have high frame rates and resolution but difficulty in perceiving 3D geometric information.
Therefore, camera–LIDAR fusion has been more focused on the perception of autonomous
driving [27].

The process of LIDAR-camera fusion is as follows. First, the 3D point cloud is cropped
according to EV’s driving direction. Next, the YOLOv5 detector fetches the PTV’s bounding
box from the image. Then, point clouds are projected and clustered in the pixel coordinate
system according to the joint calibration parameters of the LIDAR and the camera. After
that, the position of PTV relative to EV is extracted based on the clustered point cloud.
Finally, temporal features of the PTV are associated with the deepSORT tracker. Figure 2
displays the effect of LIDAR–camera fusion.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16

3. Sensors Fusion and History Trajectory Generation

3.1. Detection

Detection and tracking are prerequisites for generating PTV’s historical trajectory.

Moreover, excellent trackers depend largely on a superb detector. You only look once

(YOLO) algorithms can achieve faster performance than the two-stage algorithm by tun-

ing the backbone network due to the omission of the coarse localization process. In partic-

ular, the YOLOv5 model is faster, more accurate and has a lower number of model parameters

than the YOLOv4 model [25]. Therefore, YOLOv5 is employed as the detector for PTV.

3.2. Tracking

DeepSORT is an improved version of simple online and real-time tracking (SORT). It

integrates a pre-trained neural network to generate feature vectors which are used as a

deep association metric. Specifically, it applies a trained convolutional neural network

(CNN) to detect obstacles on large-scale datasets. By using this network integration,

deepSORT overcomes the shortcomings of SORT while ensuring that the system is easy

to implement, effective, and suitable for real-time situations [26]. Hence, we apply

deepSORT as the tracker.

3.3. Lidar-Camera Fusion

Sensor fusion can enhance sensing capabilities and reduce costs by exploiting the

complementary properties. LIDAR provides accurate PTV geometry information; how-

ever, the LIDAR has low resolution and a low frame rate. On the contrary, monocular

cameras have high frame rates and resolution but difficulty in perceiving 3D geometric

information. Therefore, camera–LIDAR fusion has been more focused on the perception

of autonomous driving [27].

The process of LIDAR-camera fusion is as follows. First, the 3D point cloud is

cropped according to EV’s driving direction. Next, the YOLOv5 detector fetches the PTV’s

bounding box from the image. Then, point clouds are projected and clustered in the pixel

coordinate system according to the joint calibration parameters of the LIDAR and the cam-

era. After that, the position of PTV relative to EV is extracted based on the clustered point

cloud. Finally, temporal features of the PTV are associated with the deepSORT tracker.

Figure 2 displays the effect of LIDAR–camera fusion.

Figure 2. The effect of LIDAR–camera fusion.

3.4. History Trajectory Generation

Predicting the PTV’s trajectory requires the position in continuous time and the same

coordinate system. However, the PTV’s position is captured on a moving EV vehicle co-

ordinate system and PTV coordinates are constantly changing. It means the PTV positions

observed by the sensors are not in the same coordinate system. Therefore, it is necessary

to transform the EV coordinate systems at a different time into a unified the EV vehicle

coordinate system. Figure 3 shows the EV vehicle coordinate systems unification method.

Figure 2. The effect of LIDAR–camera fusion.

3.4. History Trajectory Generation

Predicting the PTV’s trajectory requires the position in continuous time and the same
coordinate system. However, the PTV’s position is captured on a moving EV vehicle
coordinate system and PTV coordinates are constantly changing. It means the PTV positions
observed by the sensors are not in the same coordinate system. Therefore, it is necessary
to transform the EV coordinate systems at a different time into a unified the EV vehicle
coordinate system. Figure 3 shows the EV vehicle coordinate systems unification method.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16

Figure 3. EV vehicle coordinate systems unification method.

Here, we take an example that a trajectory starting point and time 0 of the world

coordinates 0 0 0X O Y , and convert the PTV’s position at time t of the world coordinates

t t tX O Y into 0 0 0X O Y as shown in Figure 3. Where 0O and tO are the position of EV at

time 0 and time t , respectively. P represents the position of PTV relative to EV at time

t . ()t tx , y is the coordinates of the PTV in the EV coordinate system at time t . 0 0()t tx , y+ +

is PTV’s position at time t under the EV coordinate system at time 0. x and y are

Y-axis and X-axis displacement from EV at time 0 and time t which are calculated from

combined inertial navigation system output, respectively. Besides,  represents EV’s

heading angle deviation at time 0 and time t . According to geometry, ()t tx , y is con-

verted to 0 0()t tx , y+ + depending on (1). Additionally, it is translated into matrix form as

(2). The relative distances between the X-axis and Y-axis of the PTV and EV are shown in

Figure 4.

0

0

cos sin

sin cos

t t t

t t t

x x x y

y y x y

 

 

+

+

=  + −

=  + +
 (1)

0

0

cos sin

sin cos

t t

t t

x x x

y y y

 

 

+

+

−        
= +       

       
 (2)

Once the coordinates of the EV have been unified at the same time, it is necessary to

convert all trajectories into the world coordinates using the latitude, longitude and time

information provided by the EV’s combined inertial navigation system. The converted

PTV trajectories are smoothed by the S-G filter [28]. Figure 5 shows the EV trajectory in

blue, the PTV tracking trajectory in red and the filtered PTV trajectory in green. As can be

seen from Figure 5, the filtered data are smooth sufficient to be used in a vehicle trajectory

prediction model.

 Figure 4. Relative distance of PTV and EV.

6 8 10 12 14 16 18 20 22
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

Y
 (

m
)

X (m)

 distance

Figure 3. EV vehicle coordinate systems unification method.

Sensors 2022, 22, 4808 5 of 15

Here, we take an example that a trajectory starting point and time 0 of the world
coordinates X0O0Y0, and convert the PTV’s position at time t of the world coordinates
XtOtYt into X0O0Y0 as shown in Figure 3. Where O0 and Ot are the position of EV at time 0
and time t, respectively. P represents the position of PTV relative to EV at time t. (xt, yt)
is the coordinates of the PTV in the EV coordinate system at time t. (x0+t, y0+t) is PTV’s
position at time t under the EV coordinate system at time 0. ∆x and ∆y are Y-axis and X-axis
displacement from EV at time 0 and time t which are calculated from combined inertial
navigation system output, respectively. Besides, α represents EV’s heading angle deviation
at time 0 and time t. According to geometry, (xt, yt) is converted to (x0+t, y0+t) depending
on (1). Additionally, it is translated into matrix form as (2). The relative distances between
the X-axis and Y-axis of the PTV and EV are shown in Figure 4.

x0+t = ∆x + xt cos α− yt sin α
y0+t = ∆y + xt sin α + yt cos α

(1)

[
x0+t
y0+t

]
=

[
cos α − sin α
sin α cos α

][
xt
yt

]
+

[
∆x
∆y

]
(2)

Once the coordinates of the EV have been unified at the same time, it is necessary to
convert all trajectories into the world coordinates using the latitude, longitude and time
information provided by the EV’s combined inertial navigation system. The converted
PTV trajectories are smoothed by the S-G filter [28]. Figure 5 shows the EV trajectory in
blue, the PTV tracking trajectory in red and the filtered PTV trajectory in green. As can be
seen from Figure 5, the filtered data are smooth sufficient to be used in a vehicle trajectory
prediction model.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16

Figure 3. EV vehicle coordinate systems unification method.

Here, we take an example that a trajectory starting point and time 0 of the world

coordinates 0 0 0X O Y , and convert the PTV’s position at time t of the world coordinates

t t tX O Y into 0 0 0X O Y as shown in Figure 3. Where 0O and tO are the position of EV at

time 0 and time t , respectively. P represents the position of PTV relative to EV at time

t . ()t tx , y is the coordinates of the PTV in the EV coordinate system at time t . 0 0()t tx , y+ +

is PTV’s position at time t under the EV coordinate system at time 0. x and y are

Y-axis and X-axis displacement from EV at time 0 and time t which are calculated from

combined inertial navigation system output, respectively. Besides,  represents EV’s

heading angle deviation at time 0 and time t . According to geometry, ()t tx , y is con-

verted to 0 0()t tx , y+ + depending on (1). Additionally, it is translated into matrix form as

(2). The relative distances between the X-axis and Y-axis of the PTV and EV are shown in

Figure 4.

0

0

cos sin

sin cos

t t t

t t t

x x x y

y y x y

 

 

+

+

=  + −

=  + +
 (1)

0

0

cos sin

sin cos

t t

t t

x x x

y y y

 

 

+

+

−        
= +       

       
 (2)

Once the coordinates of the EV have been unified at the same time, it is necessary to

convert all trajectories into the world coordinates using the latitude, longitude and time

information provided by the EV’s combined inertial navigation system. The converted

PTV trajectories are smoothed by the S-G filter [28]. Figure 5 shows the EV trajectory in

blue, the PTV tracking trajectory in red and the filtered PTV trajectory in green. As can be

seen from Figure 5, the filtered data are smooth sufficient to be used in a vehicle trajectory

prediction model.

 Figure 4. Relative distance of PTV and EV.

6 8 10 12 14 16 18 20 22
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

Y
 (

m
)

X (m)

 distance

Figure 4. Relative distance of PTV and EV.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16

Figure 5. Historical trajectory generation.

4. Proposed Model

In urban scenes, there is wide variation in speed and direction of PTV under the

world coordinate system, especially opposite lanes and intersections. In this case, the tra-

ditional Transformer (TF) and cluster-based Transformer (C-TF) models are developed,

respectively, to predict PTV’s future trajectory.

4.1. Transformer Network

There are two modules (the encoding block and the decoding block) in the trans-

former network. The encoding block mainly consists of multi-head attention, add & norm,

and feed-forward. The decoding block is mainly made up of masked multi-head-atten-

tion, multi-head attention, add & norm, and feed-forward. The transformer network cap-

tures the dependencies of time-series data and the non-linear features of spatial data pri-

marily through the attention mechanism, which includes the self-attention mechanism

and multi-head attention mechanism [23].

4.1.1. Self-Attention Mechanism

Self-attention takes query matrix 𝑄, key matrix 𝐾, value matrix 𝑉, dimension of que-

ries and keys as input, which is calculated by a dot product of 𝑄 and 𝐾, and scaled factor

of 1 k/ d . Then, a softmax function is employed to obtain the weights of V. Self-attention

mechanism is formulated as in (3).

Q K V
i i i i i iQ QW ,K KW ,V VW= = =

(3)

() 1T
i i i kAttention Q ,K ,V soft max(QK / d),i ,...,n= =

4.1.2. Multi-head Attention Mechanism

Instead of learning a single attention function, [21] has found that it is more profitable

to map the queries, keys, and values for h times to learn different contextual information,

respectively. In this case, the self-attention function is run in parallel on each projected

version of queries, keys, and values. Next, the results are concatenated and projected

again to produce the weight of final values. Therefore, the transformer structure can

jointly produce a full-scale latent feature of trajectory data from different representation

subspaces based on the multi-head attention. The multi-head attention mechanism is cal-

culated by (4).

() 1i i i ihead Attention Q ,K ,V ,i ,...,n= = (4)

−5 0 5 10 15 20
−50

−40

−30

−20

−10

0

Y
 (

m
)

X (m)

 EV

 PTV

 S-G

Figure 5. Historical trajectory generation.

Sensors 2022, 22, 4808 6 of 15

4. Proposed Model

In urban scenes, there is wide variation in speed and direction of PTV under the world
coordinate system, especially opposite lanes and intersections. In this case, the traditional
Transformer (TF) and cluster-based Transformer (C-TF) models are developed, respectively,
to predict PTV’s future trajectory.

4.1. Transformer Network

There are two modules (the encoding block and the decoding block) in the transformer
network. The encoding block mainly consists of multi-head attention, add & norm, and
feed-forward. The decoding block is mainly made up of masked multi-head-attention,
multi-head attention, add & norm, and feed-forward. The transformer network captures
the dependencies of time-series data and the non-linear features of spatial data primarily
through the attention mechanism, which includes the self-attention mechanism and multi-
head attention mechanism [23].

4.1.1. Self-Attention Mechanism

Self-attention takes query matrix Q, key matrix K, value matrix V, dimension of queries
and keys as input, which is calculated by a dot product of Q and K, and scaled factor of 1/dk.
Then, a softmax function is employed to obtain the weights of V. Self-attention mechanism
is formulated as in (3).

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i

Attention(Qi, Ki, Vi) = so f tmax(QKT/
√

dk), i = 1, . . . , n
(3)

4.1.2. Multi-Head Attention Mechanism

Instead of learning a single attention function, [21] has found that it is more profitable
to map the queries, keys, and values for h times to learn different contextual information,
respectively. In this case, the self-attention function is run in parallel on each projected
version of queries, keys, and values. Next, the results are concatenated and projected
again to produce the weight of final values. Therefore, the transformer structure can jointly
produce a full-scale latent feature of trajectory data from different representation subspaces
based on the multi-head attention. The multi-head attention mechanism is calculated by (4).

headi = Attention(Qi, Ki, Vi), i = 1, . . . , n
MultiHead(Q, K, V) = Conc

(
head1, . . . , headn)W

o (4)

4.1.3. Feed-Forward Networks

The fully connected feed-forward networks are composed of two linear transforma-
tions with a ReLU activation and applied to each attention sub-layers. In addition, the
residual dropout module is set to improve the transformer network efficiency. Feed-forward
networks are given by Equation (5).

Feed f orward(x) = max(0, xW1 + b1)W2 + b2 (5)

4.1.4. Positional Encoding

The transformer does not include any processing of the sequences, so it requires
positional encoding to allow time series features to be expressed in the network. In
other words, with the positional encoding, each input embedding is assigned a time
feature. [21] employed trigonometric functions to construct position vectors which have
equal dimension for different positions. The formula is as follows:

p(t)i =


sin(t

10000i/d), for i even

cos(t
10000i/d), for i odd

(6)

Sensors 2022, 22, 4808 7 of 15

where d is mapping dimensions, i represents positions where PTV’s velocity value appears.

4.2. TF Model

The transformer network predicts PTV’s future trajectories by processing history tra-
jectories and current positions. For PTV observation points P, we define the historical tra-
jectory Phis =

(
p(1), p(2), . . . , p(t)

)
, predicted trajectory Phis =

(
p(t+1), p(t+2), . . . , p(t+n)

)
,

where t is observation time step and n is the prediction time step. p(t) is represented by
p(t) =

(
vt

x, vt
x
)
. When new trajectory features Phis =

(
p(1), p(2), . . . , p(t)

)
are fed into the

transformer network, input embedding maps the velocity p(t) to a higher space d at time
t before positional encoding. Next, position encoding is employed to supplement the
timing characteristics. The feature vectors are transferred to the encoder and successively
pass through two residual networks to extract features, which are the multi-head atten-
tion mechanism residual network and the feed-forward neural network residual network,
respectively. Each residual network is followed by layer normalization. The encoding
process is repeated six times. The future trajectory PC

pred = {ki|i = t + 1, t + 2, . . . , t + n}
will also be mapped with output embedding and positional encoding, but it is immediately
followed by the masked multi-headed attention mechanism residual network and layer
normalization. These feature vectors are then fused with the output vectors of the encoder.
Then, the features are further extracted by the same head attention mechanism residual
network and feed-forward neural network residual network. The decoding process is also
repeated six times. Finally, after the linear and softmax layers, the final result is output.
The TF network is presented in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm Linear

Output
Embedding

Input
Embedding

x1, y1

x2, y2

xt, yt

...

xt+1, yt+1

xt+2, yt+2

xt+n, yt+n

...

xt+1, yt+1

xt+2, yt+2

xt+n, yt+n

...

Positional
Encoding

Positional
Encoding

Transformer

N

N

Decoder

Encoder

Softmax

Figure 6. The TF network.

4.3. C-TF Model

Transformer network architecture for C-TF is the same as TF. However, there is a

great difference in what is trained. Firstly, the k -means clustering algorithm clusters the

trajectory features in the training dataset. Then, when new trajectory features
(1) (2) ()()t

hisP p , p ,..., p= are fed into the equation, the k -means algorithm matches ()tp to

the centroid each cluster of train dataset. In this way, ()tp is converted to cluster space

{ | 1 2 }C
iP k i , ,...,t n= = + . In the transformer network, the historical trajectories

{ | 1 2 }C
his iP k i , ,...,t= = in the cluster space are mapped again by the input embedding, then

position encoding is employed to supplement the timing characteristics. The feature vec-

tors in the cluster space are transferred to the encoder and successively pass through two

residual networks to extract features, which are the multi-head attention mechanism re-

sidual network and the feed-forward neural network residual network, respectively. Each

residual network is followed by layer normalization. The encoding process is repeated six

times. The future trajectory { | 1 2 }C
pred iP k i t ,t ,...,t n= = + + + will also be mapped with out-

put embedding and positional encoding, but will be immediately followed by the masked

multi-headed attention mechanism residual network and layer normalization. These fea-

ture vectors are then fused with the output vectors of the encoder. Next, the features are

further extracted by the same head attention mechanism residual network and feed-for-

ward neural network residual network. The decoding process is also repeated six times.

The feature vectors output by the decoder are mapped into temporal cluster space features

after the linear and softmax layers. The cluster space features are matched with the clus-

ters of train dataset to obtain the corresponding centroid. The final predicted trajectory is

represented by the centroid of the time series. The C-TF network is shown in Figure 7.

Figure 6. The TF network.

4.3. C-TF Model

Transformer network architecture for C-TF is the same as TF. However, there is
a great difference in what is trained. Firstly, the k-means clustering algorithm clus-
ters the trajectory features in the training dataset. Then, when new trajectory features
Phis =

(
p(1), p(2), . . . , p(t)

)
are fed into the equation, the k-means algorithm matches

p(t) to the centroid each cluster of train dataset. In this way, p(t) is converted to cluster
space PC = {ki|i = 1, 2, . . . , t + n}. In the transformer network, the historical trajectories

Sensors 2022, 22, 4808 8 of 15

PC
his = {ki|i = 1, 2, . . . , t} in the cluster space are mapped again by the input embedding,

then position encoding is employed to supplement the timing characteristics. The feature
vectors in the cluster space are transferred to the encoder and successively pass through
two residual networks to extract features, which are the multi-head attention mechanism
residual network and the feed-forward neural network residual network, respectively. Each
residual network is followed by layer normalization. The encoding process is repeated
six times. The future trajectory PC

pred = {ki|i = t + 1, t + 2, . . . , t + n} will also be mapped
with output embedding and positional encoding, but will be immediately followed by
the masked multi-headed attention mechanism residual network and layer normalization.
These feature vectors are then fused with the output vectors of the encoder. Next, the
features are further extracted by the same head attention mechanism residual network and
feed-forward neural network residual network. The decoding process is also repeated six
times. The feature vectors output by the decoder are mapped into temporal cluster space
features after the linear and softmax layers. The cluster space features are matched with the
clusters of train dataset to obtain the corresponding centroid. The final predicted trajectory
is represented by the centroid of the time series. The C-TF network is shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm Linear

Output
Embedding

One
hot

One
hot

Input
Embedding

x1, y1

x2, y2

xt, yt

...

xt+1, yt+1

xt+2, yt+2

xt+n, yt+n

...

xt+1, yt+1

xt+2, yt+2

xt+n, yt+n

...

Positional
Encoding

Positional
Encoding

k -means

k -means

Transformer

N

N

Decoder

Encoder
-meansk

Train Dataset

Softmax

Figure 7. The C-TF network.

k -means is an algorithm that regards distance as the feature, which considers clus-

ters to be composed of objects that are close in distance. Some research has employed k -

means in vehicle trajectory clustering [29]. k -means clustering identifies which cluster is

belonged to every element in the dataset with the nearest mean. The number of means, k

to be generated is equal to the number of clusters, k . It runs iteratively by finding the

minimum squared error between the means, c of the cluster and the observed data. In

each round of iteration, there is a new set of means generated and it stops when the con-

vergence of squared error minimization in k -means as (7).

2

1 1

N k

i j

i j

min o c
= =

− (7)

where N denotes the number of observations and o represents observed data.

5. Experiment and Result Analysis

In this section, the trajectory prediction methods are evaluated in real driving data

compared with LSTM using naturalistic driving data under the urban scenario.

5.1. Driving Data Collection

We have collected a large amount of vehicle trajectory data on an urban scenario in

Wuhan, China. Routes are shown in Figure 8. We have collected over 90 km of naturalistic

driving data including as many road conditions as possible, at different times of the day.

The test vehicle (see Figure 9) is equipped with OXTS RT3002 combined inertial naviga-

tion system, Velodyne VLP-32C LIDAR, and FLIR Grasshopper3 GS3-U3-23S6C camera.

All sensors are time-synchronized at 10 Hz. In addition, the camera is calibrated with an

intrinsic matrix and then all sensors are calibrated with an extrinsic matrix to space-syn-

chronization. All data are collected based on the ROS Melodic version of the operating

system under the Ubuntu 18.04 system. Same length settings as Argoverse’s Motion Fore-

casting dataset [6], we selected PTVs that are recorded for longer than 5 s, and the trajec-

tories are cropped to 5 s per set that the first 2 s are as input and the last 3 s are prediction.

There are 727 PTVs, with a total of 58,185 sets of trajectory data extracted. The data are

divided into a training set, a validation set, and a test set using 6:2:2.

Figure 7. The C-TF network.

k-means is an algorithm that regards distance as the feature, which considers clusters
to be composed of objects that are close in distance. Some research has employed k-means
in vehicle trajectory clustering [29]. k-means clustering identifies which cluster is belonged
to every element in the dataset with the nearest mean. The number of means, k to be
generated is equal to the number of clusters, k. It runs iteratively by finding the minimum
squared error between the means, c of the cluster and the observed data. In each round
of iteration, there is a new set of means generated and it stops when the convergence of
squared error minimization in k-means as (7).

min
N

∑
i=1

k

∑
j=1

∥∥oi − cj
∥∥2 (7)

where N denotes the number of observations and o represents observed data.

Sensors 2022, 22, 4808 9 of 15

5. Experiment and Result Analysis

In this section, the trajectory prediction methods are evaluated in real driving data
compared with LSTM using naturalistic driving data under the urban scenario.

5.1. Driving Data Collection

We have collected a large amount of vehicle trajectory data on an urban scenario in
Wuhan, China. Routes are shown in Figure 8. We have collected over 90 km of naturalistic
driving data including as many road conditions as possible, at different times of the
day. The test vehicle (see Figure 9) is equipped with OXTS RT3002 combined inertial
navigation system, Velodyne VLP-32C LIDAR, and FLIR Grasshopper3 GS3-U3-23S6C
camera. All sensors are time-synchronized at 10 Hz. In addition, the camera is calibrated
with an intrinsic matrix and then all sensors are calibrated with an extrinsic matrix to
space-synchronization. All data are collected based on the ROS Melodic version of the
operating system under the Ubuntu 18.04 system. Same length settings as Argoverse’s
Motion Forecasting dataset [6], we selected PTVs that are recorded for longer than 5 s, and
the trajectories are cropped to 5 s per set that the first 2 s are as input and the last 3 s are
prediction. There are 727 PTVs, with a total of 58,185 sets of trajectory data extracted. The
data are divided into a training set, a validation set, and a test set using 6:2:2.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16

As the algorithms in this paper are trained by velocity, we present the PTV velocity

distribution in the X-axis and Y-axis as Figure 10 where Figure 10a,b show the velocity

distribution in the X-axis and Y-axis, respectively. It can be noticed from Figure 10 that

the speed data are with a uniform distribution of direction and value.

Figure 8. Data collection routes.

Figure 9. Test vehicle.

(a) (b)

Figure 10. Velocity distribution. (a) Velocity distribution of X-axis. (b) Velocity distribution of Y-

axis.

5.2. Implementation Details

We perform all our experiments in PyTorch with CUDA 10.2 and the cuDNN

backend. All experiments run on two NVIDIA GTX-1080Ti GPUs and have a maximum

batch size of 200. For TF, we set six layers and eight attention heads. In addition, we adopt

an L2-loss function and Adam optimizer. Besides this, we normalize the PTV’s velocity in

the train dataset. For C-TF, we cluster the velocities in the X-axis and Y-axis directions in

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

7×104

C
o
u
n
t

X (m/s)
−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

C
o
u
n
t

Y (m/s)

Figure 8. Data collection routes.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16

As the algorithms in this paper are trained by velocity, we present the PTV velocity

distribution in the X-axis and Y-axis as Figure 10 where Figure 10a,b show the velocity

distribution in the X-axis and Y-axis, respectively. It can be noticed from Figure 10 that

the speed data are with a uniform distribution of direction and value.

Figure 8. Data collection routes.

Figure 9. Test vehicle.

(a) (b)

Figure 10. Velocity distribution. (a) Velocity distribution of X-axis. (b) Velocity distribution of Y-

axis.

5.2. Implementation Details

We perform all our experiments in PyTorch with CUDA 10.2 and the cuDNN

backend. All experiments run on two NVIDIA GTX-1080Ti GPUs and have a maximum

batch size of 200. For TF, we set six layers and eight attention heads. In addition, we adopt

an L2-loss function and Adam optimizer. Besides this, we normalize the PTV’s velocity in

the train dataset. For C-TF, we cluster the velocities in the X-axis and Y-axis directions in

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

7×104

C
o
u
n
t

X (m/s)
−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

C
o
u
n
t

Y (m/s)

Figure 9. Test vehicle.

Sensors 2022, 22, 4808 10 of 15

As the algorithms in this paper are trained by velocity, we present the PTV velocity
distribution in the X-axis and Y-axis as Figure 10 where Figure 10a,b show the velocity
distribution in the X-axis and Y-axis, respectively. It can be noticed from Figure 10 that the
speed data are with a uniform distribution of direction and value.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16

As the algorithms in this paper are trained by velocity, we present the PTV velocity

distribution in the X-axis and Y-axis as Figure 10 where Figure 10a,b show the velocity

distribution in the X-axis and Y-axis, respectively. It can be noticed from Figure 10 that

the speed data are with a uniform distribution of direction and value.

Figure 8. Data collection routes.

Figure 9. Test vehicle.

(a) (b)

Figure 10. Velocity distribution. (a) Velocity distribution of X-axis. (b) Velocity distribution of Y-

axis.

5.2. Implementation Details

We perform all our experiments in PyTorch with CUDA 10.2 and the cuDNN

backend. All experiments run on two NVIDIA GTX-1080Ti GPUs and have a maximum

batch size of 200. For TF, we set six layers and eight attention heads. In addition, we adopt

an L2-loss function and Adam optimizer. Besides this, we normalize the PTV’s velocity in

the train dataset. For C-TF, we cluster the velocities in the X-axis and Y-axis directions in

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

7×104

C

o
u
n
t

X (m/s)
−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1×104

2×104

3×104

4×104

5×104

6×104

C
o
u
n
t

Y (m/s)

Figure 10. Velocity distribution. (a) Velocity distribution of X-axis. (b) Velocity distribution of Y-axis.

5.2. Implementation Details

We perform all our experiments in PyTorch with CUDA 10.2 and the cuDNN backend.
All experiments run on two NVIDIA GTX-1080Ti GPUs and have a maximum batch size
of 200. For TF, we set six layers and eight attention heads. In addition, we adopt an
L2-loss function and Adam optimizer. Besides this, we normalize the PTV’s velocity in
the train dataset. For C-TF, we cluster the velocities in the X-axis and Y-axis directions
in 6000 clusters. We also work with six layers and eight attention heads and the Adam
optimizer. What we need to highlight is the cross-entropy loss function that is employed in
C-TF. The trajectories are 5 s per set, in which the input data are 20 points, and the output
data are 30 points since the sampling frequency is 10 Hz.

5.3. Evaluaiton Metrics

In this paper, the average displacement error (ADE) and final displacement error
(FDE), are employed to evaluate the vehicle forecast prediction error.

ADE represents the average difference of the Euclidean distance between each predic-
tion position and the true trajectory, which is given by (8).

ADE =
1
T

T

∑
t=1

√(
xpred

i − xgt
i

)2
+
(

ypred
i − ygt

i

)2
(8)

FDE denotes the Euclidean distance difference on end position between the predicted
trajectory and the true trajectory, which is given by (9).

FDE =

√(
xpred

T − xgt
T

)2
+
(

ypred
T − ygt

T

)2
(9)

where T represents predicted length, xpred
i , ypred

i denote the predicted position at the time i
and xgt

i , ygt
i represent the true position at the ith moment.

5.4. Result Analysis

Table 1 shows the ADE and FDE for the LSTM, TF, and C-TF models at 1, 2, and 3 s. It
is apparent from this table that the proposed methods TF and C-TF have achieved a large
improvement compared to LSTM both ADE and FDE at 1, 2, and 3 s. TF improves ADE by
3.202 m, 6.780 m, 8.271 m compared to LSTM at 1, 2, and 3 s and improves FDE by 6.595 m,
13.318 m, 18.254 m, respectively. In addition, C-TF receives better results compared to TF.
For ADE, C-TF shows an improvement of 3.507 m, 7.392 m, and 10.460 m at 1, 2, and 3 s,

Sensors 2022, 22, 4808 11 of 15

respectively, compared to LSTM. In addition, there are improvements of 7.034 m, 14.716 m,
20.781 m for FDE at 1, 2, and 3 s, respectively.

Table 1. The ADE and FDE of LSTM, TF, and C-TF on real-world preceding vehicles dataset.

LSTM TF C-TF

ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

1s 4.244 8.090 1.042 1.495 0.737 1.056
2s 8.596 16.960 1.816 3.642 1.204 2.244
3s 12.159 24.300 2.708 6.046 1.699 3.519

Figure 11a–d presents the ADE and FDE in the X-axis and Y-axis directions respectively.
Both the proposed TF and C-TF achieve a large improvement over the LSTM as can be
seen from Figure 11. For ADE and FDE in the x-axis direction, C-TF has better results
than TF. For ADE, C-TF improves by 0.466 m, 0.857 m, and 1.298 m compared to TF and
FDE improves by 0.688 m, 1.775 m, and 2.942 m at 1, 2, and 3 s, respectively. However,
in the Y-axis direction, TF has a better effect compared to C-TF for both ADE and FDE.
There is an improvement of 0.122 m, 0.161 m, and 0.151 m for ADE, TF compared to C-TF,
0.191 m, 0.180 m, 0.070 m for FDE. Although the TF has better results than the C-TF in the
Y-direction, the improvement over the X-axis C-TF is slightly less apparent.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 16

(a) (b)

(c) (d)

Figure 11. The ADE and FDE in the X- and Y-axis directions. (a) The ADE of the X-axis. (b) The ADE

of the Y-axis. (c) The FDE of the X-axis. (d) The FDE of the Y-axis.

Figure 12. PTV The predicted effect of C-TF and TF on real-world preceding vehicles dataset.

As shown in Table 1 and Figure 11, the C-TF model has the best prediction. However,

the effect of the C-TF model is influenced by the number of clusters. Figure 13 shows the

ADE and FDE of C-TF at the 3rd second when the training dataset is clustered by k -

means into different numbers of clusters. As can be seen from Figure 13, the predictive

effect of C-TF gradually improves as the number of clusters increases. C-TF has the best

prediction when the training dataset is clustered in 6000 clusters. There is a small accuracy

decrease of C-TF at 7000 clusters. However, when observing the overall trend, it can be

drawn that the model’s predictions stabilize when the number of clusters reaches 6000.

One interesting finding is TF accepts higher prediction accuracy than C-TF when clusters

are below 1000. However, when the number of clusters exceeds 1000, C-TF obtains better

1 2 3
0

2

4

6

8

10

12

A
D

E
(m

)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

1

2

3

4

5

A
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

5

10

15

20

25

F
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

2

4

6

8

10

F
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

-795 -790 -785 -780 -775
-270

-268

-266

-264

-262

-260 input

 gt

 TF

 C-TFY

X
-330 -315 -300 -285 -270

84

86

88

90

92

Y

X

 input

 gt

 TF

 C-TF

-555 -540 -525 -510 -495
65
66
67
68
69
70
71
72
73

Y

X

 input

 gt

 TF

 C-TF

Figure 11. The ADE and FDE in the X- and Y-axis directions. (a) The ADE of the X-axis. (b) The ADE
of the Y-axis. (c) The FDE of the X-axis. (d) The FDE of the Y-axis.

Sensors 2022, 22, 4808 12 of 15

Figure 12 shows the predicted trajectories of C-TF and TF for different positions and
directions. The black solid line is the historical trajectory, the red solid line is the ground
truth, the pink dashed line is the TF prediction result, and the green dashed line is the C-TF
prediction result.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 16

(a) (b)

(c) (d)

Figure 11. The ADE and FDE in the X- and Y-axis directions. (a) The ADE of the X-axis. (b) The ADE

of the Y-axis. (c) The FDE of the X-axis. (d) The FDE of the Y-axis.

Figure 12. PTV The predicted effect of C-TF and TF on real-world preceding vehicles dataset.

As shown in Table 1 and Figure 11, the C-TF model has the best prediction. However,

the effect of the C-TF model is influenced by the number of clusters. Figure 13 shows the

ADE and FDE of C-TF at the 3rd second when the training dataset is clustered by k -

means into different numbers of clusters. As can be seen from Figure 13, the predictive

effect of C-TF gradually improves as the number of clusters increases. C-TF has the best

prediction when the training dataset is clustered in 6000 clusters. There is a small accuracy

decrease of C-TF at 7000 clusters. However, when observing the overall trend, it can be

drawn that the model’s predictions stabilize when the number of clusters reaches 6000.

One interesting finding is TF accepts higher prediction accuracy than C-TF when clusters

are below 1000. However, when the number of clusters exceeds 1000, C-TF obtains better

1 2 3
0

2

4

6

8

10

12

A
D

E
(m

)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

1

2

3

4

5

A
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

5

10

15

20

25

F
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

1 2 3
0

2

4

6

8

10

F
D

E
 (

m
)

time (s)

 LSTM

 TF

 C-TF

-795 -790 -785 -780 -775
-270

-268

-266

-264

-262

-260 input

 gt

 TF

 C-TFY

X
-330 -315 -300 -285 -270

84

86

88

90

92

Y

X

 input

 gt

 TF

 C-TF

-555 -540 -525 -510 -495
65
66
67
68
69
70
71
72
73

Y

X

 input

 gt

 TF

 C-TF

Figure 12. PTV The predicted effect of C-TF and TF on real-world preceding vehicles dataset.

As shown in Table 1 and Figure 11, the C-TF model has the best prediction. However,
the effect of the C-TF model is influenced by the number of clusters. Figure 13 shows
the ADE and FDE of C-TF at the 3rd second when the training dataset is clustered by
k-means into different numbers of clusters. As can be seen from Figure 13, the predictive
effect of C-TF gradually improves as the number of clusters increases. C-TF has the best
prediction when the training dataset is clustered in 6000 clusters. There is a small accuracy
decrease of C-TF at 7000 clusters. However, when observing the overall trend, it can be
drawn that the model’s predictions stabilize when the number of clusters reaches 6000.
One interesting finding is TF accepts higher prediction accuracy than C-TF when clusters
are below 1000. However, when the number of clusters exceeds 1000, C-TF obtains better
results. A possible explanation for this might be that k-means clustering algorithm fuses X
and Y direction trajectory parameters into clusters. As more clusters are clustered, each set
of data represented by a cluster becomes closer to the centroid. As a result, the centroid of
the clusters matched by k-means after the softmax layer is closer to the true value in the
data parsing module.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 16

results. A possible explanation for this might be that k -means clustering algorithm fuses

X and Y direction trajectory parameters into clusters. As more clusters are clustered, each

set of data represented by a cluster becomes closer to the centroid. As a result, the centroid

of the clusters matched by k -means after the softmax layer is closer to the true value in

the data parsing module.

Figure 13. The 3rd second accuracy of C-TF at different number of clusters.

A further validation was done on the Argoverse dataset in order to verify the gener-

alizability of the proposed model. Argoverse dataset is a motion prediction benchmark

that has collected more than 30 K scenes in Pittsburgh and Miami. Each scene is a sequence

of frames sampled at 10 HZ. Each sequence has an object called an “agent”, and the task

of trajectory prediction is to predict the position of the agent in the future range of 3 s.

These sequences are divided into training, validation, and test sets with 205,942, 39,472,

and 78,143 sequences, respectively. These splits do not overlap geographically. For the

training and validation sets, each sequence lasts 5 s. The first two seconds are used as

input data, and the other 3 s are used as the underlying facts of the model’s predictions.

For test sets. Only the first 2 s of data are provided. Each frame is given in the form of the

coordinates of the center point of all objects in the scene. The center coordinates of all

objects in the scene. Here, the training and validation datasets are integrated and split

back into three parts: training, validation and testing, according to the ratio of 6:2:2. The

first 2 s are taken as history trajectory and the last 3 s are taken as predicted trajectory. The

results are presented in Table 2. As can be seen in Table 2, the proposed methods TF and

C-TF have also achieved a large improvement compared to LSTM both ADE and FDE at

1,2,3 s. C-TF also has better prediction accuracy than TF. Figure 14 shows the predicted

trajectories of C-TF and TF for different positions and directions on the Argoverse dataset.

The black solid line is the historical trajectory, the red solid line is the ground truth, the

pink dashed line is the TF prediction result, and the green dashed line is the C-TF predic-

tion result.

Table 2. The ADE and FDE of LSTM, TF, and C-TF on the Argoverse dataset.

 LSTM TF C-TF

 ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

1s 2.76 5.52 0.72 0.88 0.60 0.67

2s 5.86 11.73 1.00 1.68 0.79 1.35

3s 8.32 16.59 1.30 2.49 1.11 2.38

1000 2000 3000 4000 5000 6000 7000
1

2

3

4

5

6

E
rr

o
r

(m
)

Number of cluster

 ADE

 FDE

Figure 13. The 3rd second accuracy of C-TF at different number of clusters.

A further validation was done on the Argoverse dataset in order to verify the general-
izability of the proposed model. Argoverse dataset is a motion prediction benchmark that
has collected more than 30 K scenes in Pittsburgh and Miami. Each scene is a sequence
of frames sampled at 10 HZ. Each sequence has an object called an “agent”, and the task
of trajectory prediction is to predict the position of the agent in the future range of 3 s.
These sequences are divided into training, validation, and test sets with 205,942, 39,472,
and 78,143 sequences, respectively. These splits do not overlap geographically. For the
training and validation sets, each sequence lasts 5 s. The first two seconds are used as
input data, and the other 3 s are used as the underlying facts of the model’s predictions.

Sensors 2022, 22, 4808 13 of 15

For test sets. Only the first 2 s of data are provided. Each frame is given in the form of
the coordinates of the center point of all objects in the scene. The center coordinates of all
objects in the scene. Here, the training and validation datasets are integrated and split back
into three parts: training, validation and testing, according to the ratio of 6:2:2. The first 2 s
are taken as history trajectory and the last 3 s are taken as predicted trajectory. The results
are presented in Table 2. As can be seen in Table 2, the proposed methods TF and C-TF
have also achieved a large improvement compared to LSTM both ADE and FDE at 1,2,3 s.
C-TF also has better prediction accuracy than TF. Figure 14 shows the predicted trajectories
of C-TF and TF for different positions and directions on the Argoverse dataset. The black
solid line is the historical trajectory, the red solid line is the ground truth, the pink dashed
line is the TF prediction result, and the green dashed line is the C-TF prediction result.

Table 2. The ADE and FDE of LSTM, TF, and C-TF on the Argoverse dataset.

LSTM TF C-TF
ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

1 s 2.76 5.52 0.72 0.88 0.60 0.67
2 s 5.86 11.73 1.00 1.68 0.79 1.35
3 s 8.32 16.59 1.30 2.49 1.11 2.38

Sensors 2022, 22, x FOR PEER REVIEW 14 of 16

Figure 14. PTV The predicted effect of C-TF and TF on the Argoverse dataset.

6. Conclusions

In this paper, we propose a method for PTV’s trajectory prediction under urban sce-

narios using LIDAR, camera, and combined inertial navigation system. The method com-

bines the modeling of PTV detection, tracking, and trajectory prediction as an organic en-

tirety. This approach is proven to be robust and it satisfies the requirement of trajectory

prediction in the real urban road in Wuhan, China. The accurate and robust modeling of

PTV trajectory prediction using multi-sensor fusion consists of several procedures that all

have a significant influence on the final prediction results. To obtain the robust trajectory

of the moving PTV from EV, YOLOv5 and deepSORT are employed to detection and

tracking under EV coordinate system using the camera. Next the relative position of the

PTV and the EV is obtained by LIDAR-camera fusion. Then, the PTVs are unified under

the EV vehicle coordinate system and converted to the world coordinate system using the

combined inertial navigation system. The proposed history trajectory generation method

proves to be effective in tracking PTVs. After obtaining PTV’s historical trajectory, an S-G

filter is employed to smooth the vehicle trajectory. In the trajectory prediction component,

unlike previous works, the PTV’s trajectory is predicted based on two transformer net-

works, namely TF and C-TF. For the TF model, only the X and Y axis velocities are used

as inputs. For C-TF, the velocities of the X and Y axis are clustered, and then the IDs of the

clusters are one-hot encoded for training in the world coordinate system. The aim of the

method is to dig deep into the process of predicting PTV’s trajectory using LIDAR, cam-

era, and combined inertial navigation system under real driving scenarios to find a better

way to organize the entire information flow. The method is tested using the image, point

cloud and longitude and latitude, and the parameters of the models are optimized using

the experimental method. The results reveal that the proposed two transformer-based

methods achieve higher prediction accuracy compared with the LSTM-based method. In

addition, the ADE for C-TF and TF are 1.699 m and 2.708 m, respectively, which improve

10.460 m and 8.271 m, respectively, compared to LSTM. The FDE for C-TF and TF are

3.519m and 6.046 m, respectively, which improve 20.781 m and 18.254 m respectively com-

pared to LSTM. The proposed C-TF method has greater improvements in ADE, FDE and

X-axis than TF model while TF method offers slightly better effects than C-TF in Y axis. In

conclusion, both C-TF and TF have significant improvements compared to LSTM when

using ADE and FDE as evaluation metrics, and C-TF yields more accurate trajectory pre-

dictions than TF. Future work will detect lane lines using the camera and using future

trajectory and lane lines to identify PTV driving intentions.

Author Contributions: Conceptualization, B.Z. and X.H.; methodology, W.L.; software, W.L.; vali-

dation, L.T., Q.Y.; investigation, L.T.; resources, X.H.; data curation, W.L.; writing—original draft

preparation, W.L.; writing—review and editing, W.L. and X.H.; visualization, Q.Y.; supervision,

X.H.; project administration, B.Z.; funding acquisition, B.Z. All authors have read and agreed to the

published version of the manuscript.

220 230 240 250 260 270
1523.0

1523.5

1524.0

1524.5

1525.0

1525.5

1526.0

Y

X

 input

 gt

 TF

 C-TF

190 200 210 220 230
1515

1520

1525

1530

1535

1540

1545

1550
 input

 gt

 TF

 C-TFY

X
1772 1776 1780 1784

408
410
412
414
416
418
420
422
424

Y

X

 input

 gt

 TF

 C-TF

Figure 14. PTV The predicted effect of C-TF and TF on the Argoverse dataset.

6. Conclusions

In this paper, we propose a method for PTV’s trajectory prediction under urban
scenarios using LIDAR, camera, and combined inertial navigation system. The method
combines the modeling of PTV detection, tracking, and trajectory prediction as an organic
entirety. This approach is proven to be robust and it satisfies the requirement of trajectory
prediction in the real urban road in Wuhan, China. The accurate and robust modeling of
PTV trajectory prediction using multi-sensor fusion consists of several procedures that all
have a significant influence on the final prediction results. To obtain the robust trajectory of
the moving PTV from EV, YOLOv5 and deepSORT are employed to detection and tracking
under EV coordinate system using the camera. Next the relative position of the PTV and the
EV is obtained by LIDAR-camera fusion. Then, the PTVs are unified under the EV vehicle
coordinate system and converted to the world coordinate system using the combined
inertial navigation system. The proposed history trajectory generation method proves to
be effective in tracking PTVs. After obtaining PTV’s historical trajectory, an S-G filter is
employed to smooth the vehicle trajectory. In the trajectory prediction component, unlike
previous works, the PTV’s trajectory is predicted based on two transformer networks,
namely TF and C-TF. For the TF model, only the X and Y axis velocities are used as inputs.
For C-TF, the velocities of the X and Y axis are clustered, and then the IDs of the clusters
are one-hot encoded for training in the world coordinate system. The aim of the method
is to dig deep into the process of predicting PTV’s trajectory using LIDAR, camera, and
combined inertial navigation system under real driving scenarios to find a better way to
organize the entire information flow. The method is tested using the image, point cloud
and longitude and latitude, and the parameters of the models are optimized using the
experimental method. The results reveal that the proposed two transformer-based methods

Sensors 2022, 22, 4808 14 of 15

achieve higher prediction accuracy compared with the LSTM-based method. In addition,
the ADE for C-TF and TF are 1.699 m and 2.708 m, respectively, which improve 10.460 m
and 8.271 m, respectively, compared to LSTM. The FDE for C-TF and TF are 3.519 m and
6.046 m, respectively, which improve 20.781 m and 18.254 m respectively compared to
LSTM. The proposed C-TF method has greater improvements in ADE, FDE and X-axis than
TF model while TF method offers slightly better effects than C-TF in Y axis. In conclusion,
both C-TF and TF have significant improvements compared to LSTM when using ADE and
FDE as evaluation metrics, and C-TF yields more accurate trajectory predictions than TF.
Future work will detect lane lines using the camera and using future trajectory and lane
lines to identify PTV driving intentions.

Author Contributions: Conceptualization, B.Z. and X.H.; methodology, W.L.; software, W.L.; val-
idation, L.T. and Q.Y.; investigation, L.T.; resources, X.H.; data curation, W.L.; writing—original
draft preparation, W.L.; writing—review and editing, W.L. and X.H.; visualization, Q.Y.; supervision,
X.H.; project administration, B.Z.; funding acquisition, B.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Overseas Expertise Introduction Project for Discipline
Innovation (Grant No. B17034), Innovative Research Team Development Program of Ministry of
Education of China (Grant No. IRT_17R83), and the Special Fund for Key Program of Science and
Technology of Hubei Province, China (Grant No. 2020AAA001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to Kewei Wang for help on validation and formal analysis. Thanks for
the help of reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.; Wang, Y.; Zhou, Z.; Nam, K.; Wei, C.; Yin, C. Trajectory Prediction of Preceding Target Vehicles Based on Lane Crossing

and Final Points Generation Model Considering Driving Styles. IEEE Trans. Veh. Technol. 2021, 70, 8720–8730. [CrossRef]
2. Cai, Y.; Wang, Z.; Wang, H.; Chen, L.; Li, Y.; Sotelo, M.A.; Li, Z. Environment-Attention Network for Vehicle Trajectory Prediction.

IEEE Trans. Veh. Technol. 2021, 70, 11216–11227. [CrossRef]
3. Yang, D.; Wu, Y.; Sun, F.; Chen, J.; Zhai, D.; Fu, C. Freeway accident detection and classification based on the multi-vehicle

trajectory data and deep learning model. Transp. Res. Part C Emerg. Technol. 2021, 130, 103303. [CrossRef]
4. Wang, Y.; Zhao, S.; Zhang, R.; Cheng, X.; Yang, L. Multi-Vehicle Collaborative Learning for Trajectory Prediction with Spatio-

Temporal Tensor Fusion. IEEE Trans. Intell. Transp. Syst. 2022, 23, 236–248. [CrossRef]
5. Lyu, N.; Wen, J.; Duan, Z.; Wu, C. Vehicle Trajectory Prediction and Cut-In Collision Warning Model in a Connected Vehicle

Environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 966–981. [CrossRef]
6. Chang, M.-F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D. Argoverse:

3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8748–8757. [CrossRef]

7. Huang, X.; Wang, P.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The ApolloScape open dataset for autonomous driving and its
application. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Salt Lake City, UT, USA, 18–22 June 2018; pp. 1067–10676. [CrossRef]

8. Choi, D.; Yim, J.; Baek, M.; Lee, S. Machine learning-based vehicle trajectory prediction using v2v communications and on-board
sensors. Electronics 2021, 10, 420. [CrossRef]

9. Sedghi, L.; John, J.; Noor-A-Rahim, M.; Pesch, D. Formation Control of Automated Guided Vehicles in the Presence of Packet
Loss. Sensors 2022, 22, 3552. [CrossRef] [PubMed]

10. Jain, V.; Lapoehn, S.; Frankiewicz, T.; Hesse, T.; Gharba, M.; Gangakhedkar, S.; Ganesan, K.; Cao, H.; Eichinger, J.; Ali, A.R.; et al.
Prediction based framework for vehicle platooning using vehicular communications. In Proceedings of the 2017 IEEE Vehicular
Networking Conference (VNC), Turin, Italy, 27–29 November 2017; pp. 159–166. [CrossRef]

11. Lee, J.-S.; Park, T.-H. Fast road detection by cnn-based camera–lidar fusion and spherical coordinate transformation. IEEE Trans.
Intell. Transp. Syst. 2020, 22, 5802–5810. [CrossRef]

12. Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle
Applications. IEEE Sens. J. 2020, 20, 4901–4913. [CrossRef]

http://doi.org/10.1109/TVT.2021.3098429
http://doi.org/10.1109/TVT.2021.3111227
http://doi.org/10.1016/j.trc.2021.103303
http://doi.org/10.1109/TITS.2020.3009762
http://doi.org/10.1109/TITS.2020.3019050
http://doi.org/10.1109/CVPR.2019.00895
http://doi.org/10.1109/CVPRW.2018.00141
http://doi.org/10.3390/electronics10040420
http://doi.org/10.3390/s22093552
http://www.ncbi.nlm.nih.gov/pubmed/35591241
http://doi.org/10.1109/VNC.2017.8275603
http://doi.org/10.1109/TITS.2020.2988302
http://doi.org/10.1109/JSEN.2020.2966034

Sensors 2022, 22, 4808 15 of 15

13. Bahari, M.; Nejjar, I.; Alahi, A. Injecting knowledge in data-driven vehicle trajectory predictors. Transp. Res. Part C Emerg. Technol.
2021, 128, 103010. [CrossRef]

14. Ye, N.; Zhang, Y.; Wang, R.; Malekian, R. Vehicle trajectory prediction based on Hidden Markov Model. KSII Trans. Internet Inf.
Syst. 2016, 10, 3150–3170. [CrossRef]

15. Wiest, J.; Höffken, M.; Kreßel, U.; Dietmayer, K. Probabilistic trajectory prediction with Gaussian mixture models. In Proceedings
of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012; pp. 141–146. [CrossRef]

16. Houenou, A.; Bonnifait, P.; Cherfaoui, V.; Yao, W. Vehicle trajectory prediction based on motion model and maneuver recognition.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November
2013; pp. 4363–4369. [CrossRef]

17. Guo, C.; Sentouh, C.; Soualmi, B.; Haué, J.; Popieul, J. Adaptive vehicle longitudinal trajectory prediction for automated highway
driving. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp.
1279–1284. [CrossRef]

18. Deo, N.; Trivedi, M.M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 1179–1184. [CrossRef]

19. Chandra, R.; Guan, T.; Panuganti, S.; Mittal, T.; Bhattacharya, U.; Bera, A.; Manocha, D. Forecasting Trajectory and Behavior of
Road-Agents Using Spectral Clustering in Graph-LSTMs. IEEE Robot. Autom. Lett. 2020, 5, 4882–4890. [CrossRef]

20. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271. [CrossRef]

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017.

22. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing [Review
Article]. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]

23. Yu, C.; Ma, X.; Ren, J.; Zhao, H.; Yi, S. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In
Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer:
Glasgow, UK, 2020; pp. 507–523. [CrossRef]

24. Giuliari, F.; Hasan, I.; Cristani, M.; Galasso, F. Transformer networks for trajectory forecasting. In Proceedings of the 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 13–18 September 2021. [CrossRef]

25. Sun, F.; Li, Z.; Li, Z. A traffic flow detection system based on YOLOv5. In Proceedings of the 2nd International Seminar on
Artificial Intelligence, Networking and Information Technology (AINIT), Shanghai, China, 15–17 October 2021; pp. 458–464.
[CrossRef]

26. Perera, I.; Senavirathna, S.; Jayarathne, A.; Egodawela, S.; Godaliyadda, R.; Ekanayake, P.; Wijayakulasooriya, J.; Herath, V.;
Sathyaprasad, S. Vehicle tracking based on an improved DeepSORT algorithm and the YOLOv4 framework. In Proceedings of
the 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), Negombo, Sri Lanka, 11–13
August 2021; pp. 305–309. [CrossRef]

27. Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep learning for image and point cloud fusion in autonomous
driving: A review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 722–739. [CrossRef]

28. Jiang, H.; Chang, L.; Li, Q.; Chen, D. Trajectory prediction of vehicles based on deep learning. In Proceedings of the 2019
4th International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 5–7 September 2019; pp. 190–195.
[CrossRef]

29. Choong, M.Y.; Angeline, L.; Chin, R.K.Y.; Yeo, K.B.; Teo, K.T.K. Modeling of vehicle trajectory using K-means and fuzzy C-means
clustering. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence in Engineering and Technology
(IICAIET), Kota Kinabalu, Sabah, 8–9 November 2018; pp. 1–6. [CrossRef]

http://doi.org/10.1016/j.trc.2021.103010
http://doi.org/10.3837/tiis.2016.07.016
http://doi.org/10.1109/IVS.2012.6232277
http://doi.org/10.1109/IROS.2013.6696982
http://doi.org/10.1109/IVS.2016.7535555
http://doi.org/10.1109/IVS.2018.8500493
http://doi.org/10.1109/LRA.2020.3004794
http://doi.org/10.48550/arXiv.1803.01271
http://doi.org/10.1109/MCI.2018.2840738
http://doi.org/10.1007/978-3-030-58610-2_30
http://doi.org/10.1109/ICPR48806.2021.9412190
http://doi.org/10.1109/AINIT54228.2021.00095
http://doi.org/10.1109/ICIAfS52090.2021.9606052
http://doi.org/10.1109/TITS.2020.3023541
http://doi.org/10.1109/ICITE.2019.8880168
http://doi.org/10.1109/IICAIET.2018.8638471

	Introduction
	Related Work
	Sensors Fusion and History Trajectory Generation
	Detection
	Tracking
	Lidar-Camera Fusion
	History Trajectory Generation

	Proposed Model
	Transformer Network
	Self-Attention Mechanism
	Multi-Head Attention Mechanism
	Feed-Forward Networks
	Positional Encoding

	TF Model
	C-TF Model

	Experiment and Result Analysis
	Driving Data Collection
	Implementation Details
	Evaluaiton Metrics
	Result Analysis

	Conclusions
	References

