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Machine learning-based distributed routing algorithms, in contrast to traditional mathematical model-driven distributed routing
algorithms, are typically data-driven, allowing them to adapt to dynamically changing network environments and various
performance evaluation index optimization requirements. It is quite likely that it will become a key part of the next-generation
Internet in the future. However, current intelligent routing research is still in its early stages.�is article provides a comprehensive
review of the state-of-the-art routing algorithms based on machine learning. First, important research on existing data-driven
intelligent routing algorithms is presented with the key concepts and applications of these systems demonstrated. To enable
intelligent routing algorithms to be deployed in real scenarios with cheap cost and high reliability, two appropriate training
deployment frameworks and intelligent routing algorithm training and deployment strategies are given. Finally, the future
development of machine learning-based intelligent routing systems is examined. �e opportunities and problems that have been
encountered, as well as prospective research directions, are discussed.

1. Introduction

In recent years, with the rapid development of the Internet,
many emerging applications including industrial Internet,
4K + video and holographic communication, online games,
and remote cloud services have emerged in large numbers.
�ese emerging network applications bring highly di�er-
entiated service quality requirements. However, in the past,
the method of improving network service quality by simply
increasing the speed and capacity of equipment has grad-
ually reached the ceiling and further improving the per-
formance requires a high cost. �erefore, better
optimization and utilization of existing network resources

has become an important way to improve user service
experience.

In a classical computer network design, the network
layer uses best-e�ort packet forwarding, and the routing
algorithm’s focus is on the data packet’s reachability, as well
as the algorithm’s performance and scalability. In recent
years, with the rapid development of computer networks, the
scale of the network has drastically increased, and the
number of application service types on the upper layer of the
network has also increased rapidly. As the number of service
kinds grows, so do the goals for service performance im-
provement, which include latency, bandwidth, throughput,
packet loss rate, and network stability. �e traditional best-
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effort routing algorithm makes the existing computer net-
work architecture have certain limitations in optimizing
these performance evaluation indicators. Figure 1 shows an
example of the limitations of the traditional routing algo-
rithm. In this example, the network flow load requires a
bandwidth of 500Mbps. ,e traditional shortest path-based
routing algorithm directs all traffic to the bottleneck link,
and the selected path has an available bandwidth (100Mbps),
which is much smaller than the service demand bandwidth.
,is not only will greatly reduce the user experience, but also
may bring serious network congestion and cause a huge
waste of network resources. Appropriate routing and off-
loading of the above traffic can well avoid the problem in this
example. However, because the available bandwidth of the
path changes dynamically with time in the real network
environment, it is difficult for traditional routing algorithms
to accurately perceive the current network status and per-
form appropriate actions accordingly.

In addition, the emergence of emerging network ap-
plication scenarios such as data center networks has brought
new challenges to the field of routing optimization and traffic
engineering [1]. Compared with the traditional network, the
network bandwidth of the data center is larger, and there are
larger flows and long flows at the same time, and the demand
and difficulty for traffic scheduling are also higher. Although
there have been some routing and traffic engineering
methods to try to solve the network optimization problem in
various data center scenarios, in the data center network
scenario, the existing routing and traffic scheduling opti-
mization methods are still difficult to meet the requirements
of efficient utilization of links and loads [2]. In order to meet
complex network application scenarios and diverse service
quality requirements, many network layer optimization
schemes based on mathematical models have been proposed
[3–6]. ,ese routing optimization or traffic engineering
schemes usually make some assumptions for the application
scenario to simplify the problem, so that the optimization
problem can be efficiently solved by using the existing
mathematical methods. However, real network application
scenarios are often difficult to fully meet these idealized
assumptions, which makes routing optimization algorithms
based on mathematical models unable to guarantee their
deployment effects in real scenarios. In fact, many routing
optimization problems can be solved even under hypo-
thetically simplified scenarios.

It is still very complex, and there is no general model that
can solve different types of routing optimization problems at
the same time [7]. Since traditional routing optimization
tasks need to be modeled separately for each specific sce-
nario and specific optimization objectives, deploying these
methods in a real network environment may have an impact
on the scalability of network facilities. ,erefore, traditional
mathematical models have still difficulty to deploy large-
scale routing optimization schemes in practical scenarios.

In recent years, artificial intelligence (AI) technology
based on deep learning has developed rapidly and has been

widely used in natural language processing [8], image rec-
ognition [9], game strategy calculation [10], and other fields.
,e research on deep learning models and the development
of computer hardware such as central processing unit (CPU)
and graphical processing unit (GPU) have made the strat-
egies that can be learned by AI models more complex, and
the training and execution efficiency is getting higher. ,e
improvement of equipment computing power and model
expression ability makes the AI model have strong learning
ability and good generalization. It is gradually possible to use
AI model to solve routing optimization problems and to
endow the network layer with intelligence. Compared with
the traditional model-driven routing optimization algo-
rithm, the data-driven intelligent routing optimization al-
gorithm has three advantages:

(1) Accuracy. Using real data to train machine learning
algorithm models does not require complex as-
sumptions and modeling of the network
environment;

(2) Efficiency. In polynomial time, the optimized routing
decision can be obtained by fast reasoning according
to the input data;

(3) Universality. ,e same machine learning model can
be used to solve different.

,e above three advantages make the data-driven in-
telligent routing method better adapt to different network
application scenarios and routing optimization goals than
the traditional routing method and have better scalability in
the process of deployment.

In addition to the rapid development of AI technology,
the related research on software-defined networking (SDN)
[11] and programmable routing devices [12, 13] that have
emerged in recent years also provides the possibility of
deploying intelligent routing algorithms.,ese works enable
the routing layer to complete more complex tasks. ,e
emergence of the SDN architecture enables the intelligent
routing algorithm based on machine learning to run as an
application in the SDN server with powerful computing
power and effectively control the routing and traffic [14].
However, the existing research on the intelligent routing
scheme based on machine learning is still in a relatively
preliminary stage as it mainly focuses on the correctness and
convergence of the intelligent routing algorithm. ,e
training and deployment scheme of the intelligent routing
algorithm in the real scenario is still not perfect. In addition,
the computing power of current routing equipment is still
far from the large-scale deployment of intelligent routing
algorithms [15].

In order to provide a detailed evaluation of the relevant
state-of-the-art machine learning-based routing methods,
this article proposed a comparative study and has the fol-
lowing contributions:

(i) Introduces the related work of existing data-driven
intelligent routing algorithms based on machine
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learning from the perspectives of methods and ap-
plication scenarios, and analyzes the advantages and
disadvantages of different intelligent routing methods.

(ii) Further analyzes the training and deployment
methods of existing intelligent routing algorithms.

(iii) Two intelligent routing algorithm training and
deployment frameworks suitable for different ap-
plication scenarios are proposed.

(iv) Analyzes the opportunities and challenges in the
future development of intelligent routing algo-
rithms based on machine learning, and gives the
future research directions of intelligent routing
algorithms.

2. Overview of Intelligent Routing Algorithms

,e authors devised an intelligent routing algorithm
Q-routing based on Q-learning and deployed in commu-
nication networks as early as 1994 [16]. ,e experiments
demonstrated that the Q-routing strategy can efficiently
avoid the network congestion and minimize the packet
transmission time when compared to standard shortest path
routing. However, although many subsequent works have
perfected and optimized the method [17, 18], limited by the
computing power of the router and the design of the net-
work layer structure, the intelligent routing algorithm is
difficult to be deployed in real network scenarios.

Reference [19] proposed the Q-learning-based energy-
efficient and lifetime-aware routing (QELAR) method,
which applied the idea of Q-Learning to wireless sensor
networks (WSN) to optimize the energy consumption and
lifetime of wireless sensor networks. Compared with the
traditional network, the WSN is located in a complex and
changeable environment and the demand for routing service
quality is diverse. ,e traditional routing algorithm is often
difficult to achieve satisfactory results in this application
scenario. In addition, the structure of WSN is relatively
independent compared with the traditional network, so the
deployment of the intelligent routing method based on

Q-learning is less difficult. Subsequent literature [20, 21]
further applied the Q-learning method to the reliable
transmission and accelerated forwarding of WSNs and
achieved good results.

Deep learning has made great progress in the network
area in recent years. It has been employed in transport layer
congestion management [22], network vulnerability detec-
tion [23], video streaming optimization [24], and other
domains. It has also gotten increased attention for solving
routing optimization issues, and certain routing algorithms
based on deep learning and deep reinforcement learning
have been developed [25]. ,ese intelligent routing algo-
rithms not only use deep learning to improve the traditional
routing algorithms [26], but also optimize the global per-
formance for new network application scenarios such as data
center network traffic scheduling and backbone network
traffic engineering in recent years.

As more intelligent routing algorithms are proposed,
how to deploy data-driven intelligent routing algorithms in
real environments has also become a problem that has
attracted much attention.,e work of reference explored the
prospect of deploying deep learning-based intelligent
routing algorithms in real-world scenarios and proposed a
way to deploy deep learning-based intelligent routing using a
software-defined router (SDR) equipped with GPUs algo-
rithm framework assumptions. However, according to our
research, the existing research work still does not provide a
feasible solution to deploy the intelligent routing algorithm
in the existing computer network architecture.

According to the types of machine learning methods
used, the data-driven intelligent routing algorithms are
largely separated into intelligent routing algorithms based
on supervised learning and reinforcement learning in recent
years.

3. Supervised Learning-Based Routing Schemes

3.1. An Overview of Supervised Learning Methods Applied in
Intelligent Routing. Supervised learning refers to the use of
known input and output samples to train amodel, so that the
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Figure 1: Illustration of flow decision in the open shortest path first algorithm.
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model can accurately complete a class of machine learning
tasks from input to output mapping [27, 28]. In recent years,
intelligent routing systems based on supervised learning
have mostly relied on deep learning models. Compared with
traditional supervised learning methods, deep learning
models can learn more complex strategies through labeled
data, which provides the possibility to implement intelligent
routing methods in complex network environments. In this
section, we will briefly introduce the deep learning methods
commonly used in existing intelligent routing methods.

,e most common deep learning model is deep neural
network (DNN), whose model design simulates the working
principle of biological neurons, and the working process
includes the feedforward process and the feedback process.
Figure 2 shows its model structure and working process. In
the feedforward process of DNN, the model passes the input
vector forward layer by layer by combining linear weighting
and activation function, and finally realizes the mapping
from input to output. In the feedback process of DNN, the
model transmits the deviation between the actual output
result and the expected result in reverse layer by layer to
complete the adjustment process of model parameters and
achieve the effect of automatic learning. As an improvement
to the DNN model, Ref. [29] proposed deep belief network
(DBN). ,e DBN model combines the traditional DNN
model with the restricted Boltzmann machine (RBM). ,e
training process can be regarded as using the RBM to ini-
tialize the parameters of the DBN model and using the
gradient reverse transfer process to fine-tune the parameters
of the DBN model according to the task. As a basic deep
learning model, the DBNmodel can be used in various tasks
including routing optimization.

In the intelligent routing scheme, it is often necessary to
process serialized information with variable dimensions,
such as path information extraction [30] and traffic pre-
diction at the next moment based on past traffic information
[31]. In these tasks, it is difficult to achieve the desired effect
only through the DNN model, and the recurrent neural
network (RNN) is often used.,e RNN can handle serialized
input of indeterminate length well and has a good guarantee
for the timing of network traffic information and the or-
dering of path features. Figure 3 shows the model structure
of the RNN network. As an improvement of the RNNmodel,
the long short-termmemory unit (LSTM) [32] and the gated
recurrent unit (GRU) [33] has better performance in existing
works and is widely used.

In the intelligent routing scheme, the local or global
topology information of the current network is an important
basis for completing the intelligent routing decisions.
However, due to the dynamic variability of the network
topology, the traditional deep learning models are often
difficult to handle this part of the information efficiently.,e
graph neural network (GNN) is a new type of neural net-
work structure proposed in recent years, which is considered
to be able to effectively deal with the problem of topological
information extraction [34]. ,e GNN model vectorizes the
characteristics of network nodes and edges, and performs
several rounds of iterations. During each iteration, the
vectorized representations of these nodes and edges are

updated according to the topological dependencies using an
update function based on the deep learning model. Finally,
the vectorized representation of these nodes and edges will
converge to a certain value, which means that the GNN
model has transformed the topology information into
vectorized representation information that can be used by
the deep learning model. Studies have shown that the GNN
model has good scalability and generalization, and has been
widely used in network topology information extraction
tasks [35].

3.2. Intelligent Routing Algorithm Based on Deep Learning.
,e most direct application of deep learning in routing
optimization problem is to use deep learning model to re-
place the original routing algorithm based on a mathe-
matical model. A general routing solution model is shown in
Figure 4, which takes the network topology and network
state information as input, and the deep learning model
makes appropriate routing decisions according to the cur-
rent network environment state according to the input
information.

,e authors in Ref. [15] proposed a routing decision
scheme based on the DBN. Figure 5 shows the schematic
diagram of the overall model of the scheme.,e application
scenario of this intelligent routing scheme is the backbone
network. ,e scheme divides the routers into intradomain
routers and border routers. When the data packets enter
the backbone network through the border routers, the DBN
model deployed on the border routers will calculate the
data packets in the backbone network according to the
current traffic status of each node in the network. ,e data
packet is forwarded to the destination router through the
intra-domain router and finally leaves the backbone net-
work. In the above model, the interdomain routers are only
responsible for route forwarding and network state in-
formation collection, thus avoiding the frequent exchange
of network topology information in traditional distributed
routing algorithms. ,e routing decision model of this
scheme trains a DBN model separately for each routing
node to each destination border router to output the ap-
propriate next-hop node according to the network state
information. ,e routing path calculation process adopts a
hop-by-hop method to pass the corresponding DBN model
generation. ,e work of Ref. [15] shows that the routing
strategy based on the deep learning model can achieve 95%
accuracy. At the same time, the deep learning model has the
characteristics of making routing decisions based on part of
the network state characteristics, which also makes the
intelligent routing method based on deep learning.
Compared with traditional routing methods, it has lower
information exchange cost and faster routing convergence
speed when the network environment changes. However,
the deployment of the above scheme not only requires the
backbone network routers to have strong model computing
capabilities, but also needs to modify the existing routing
protocols. ,erefore, deploying the above scheme under
the existing computer network architecture requires ex-
tremely high costs and will seriously affect the scalability of
the network.
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In addition to the DBN model, other deep learning
models have also been tried to apply to intelligent routing
tasks. ,e work of Ref. [36] compared the effect of applying
different deep learning models to learn routing decisions. In
this work, the hop-by-hop intelligent routing decision-
making process is formally expressed as

src, dstn+1 � F src, dstn, dst, G( 􏼁. (1)

Among them, src and dst represent the source and
destination nodes, respectively, and src, dstn are the nth
routing node numbers in the route from src to dst; F(·) is the
routing decision function; G stands for topology informa-
tion. ,rough experiments, it is found that the combination
of the topology-based feature extraction method and the
graph-aware deep learning (GADL) model can effectively
improve the model test accuracy and reduce the model
training time compared with the existing deep learning
models such as DBN and CNN.

To further utilize the topology information, Shin and
Kim [26] designed a distributed intelligent routing algo-
rithm based on GRU and GNN. In order to make the GNN
model better represent the structural characteristics of the
routing network and make the network feature information
modeled by the GNN more convenient for the routing
decision-making process, the router interface is added to the
graph model as an additional node. Figure 6 shows the
schematic diagram of the graph model after adding the
router interface as an additional node. After GNN completes
the topology modeling, the node information corresponding
to each router interface is vectorized and represented by hv.

It not only contains its own information, but also contains
the entire network structure and state information required
for routing decisions due to the information transfer
characteristics of GNN. Using the routing interface infor-
mation hv, each router can locally calculate the router in-
terface that should pass through to the corresponding
destination node. Due to the model characteristics of GNN,
the iterative process of the above GNN topology modeling
can be done in a distributed manner by deploying the GNN
parameter update function on each router, so this method
naturally has good scalability and distributed routing de-
cisions. ,e simulation experiments of this work show that
the distributed intelligent routing algorithm based on GNN
performs well in terms of routing convergence speed, ac-
curacy, robustness, and fault adaptability. ,e accuracy rate
of 98% is achieved within 15 rounds of iterations for the
max-min fair routing algorithm [37].

Combining with the content in Table 1, it can be found
that the existing intelligent routing schemes based on deep
learning models mainly generate routing paths in a hop-by-
hop manner. Another routing mode corresponding to the
hop-by-hop routing generation method is to calculate all
possible paths in advance and select the appropriate path
according to the network state through the deep learning
model. ,is method based on path selection can avoid
routing loops caused by the path generation model. How-
ever, the number of optional paths in the network will in-
crease exponentially with the increase in the network size,
and its huge output dimension makes the learning difficulty
of the deep learning model based on path selection and the
number of model parameters in an unbearable order of

Figure 5: Protocol flow process of the deep belief network.
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magnitude [38]. In addition, due to the strong correlation
between network path characteristics and topology, it is
difficult for deep learning models based on path selection to
have sufficient generality and generalization. Compared with
the path selection method, the hop-by-hop path generation
method can significantly reduce the output dimension and
the difficulty of model decision-making, which can signif-
icantly improve the accuracy of routing decisions [39].

Existing work shows that the intelligent routing algo-
rithm based on deep learning can quickly and accurately
calculate the corresponding routing decision based on some
network state information, and it shows certain advantages
compared with traditional distributed routing in terms of
information transmission cost and routing convergence
speed. ,e distributed routing decision based on GNN has
made some progress in the problems of topology infor-
mation modeling, robustness, and fault adaptability that are
difficult to be solved by intelligent routing solutions based on
traditional deep learning models. However, the existing
intelligent routing algorithm based on the deep learning
model mainly learns the routing algorithm based on the
shortest path, and whether it can learn more complex dy-
namic routing algorithms well is worth further discussion. In
addition, the existing deep learning-based intelligent routing
algorithms cannot guarantee their security and robustness in
complex and changeable network environments, and require
high deployment costs. ,erefore, deep learning-based
routing algorithms want to replace traditional routing al-
gorithms and still a long way to go.

3.3. Utilize Intelligent Modules to Assist Routing Calculation.
Existing deep learning methods have achieved certain results
in network modeling, traffic prediction, and congestion

detection [41, 42]. Using the results of deep learning
methods in these fields to assist routing calculation is to
make routing algorithms more efficient. In routing opti-
mization problems, traditional model-based optimization or
heuristic methods often need to involve modules such as
network environment modeling, traffic prediction, and
congestion detection. Using deep learning methods to re-
place these modules sometimes achieves better results.

,e work of Ref. [40] used a deep neural network predictor
based on multitask learning to predict link congestion for each
link based on the link historical state data and compared the
predicted results with rule-based congestion avoidance and
replay. ,e combination of routing schemes enables routing
methods to actively adjust routing before congestion occurs,
rather than passively make up for it after it occurs.

,e authors in Ref. [30] combined GNN and LSTM
model and used a deep learning model based on graph
neural network to build the relationship between routing
path delay and delay jitter and network topology, traffic
matrix, and routing path model, and used the established
model to assist the heuristic routing optimization algorithm
to calculate the routing strategy. ,e research results show
that the network modeling based on GNN can accurately
predict the routing path delay and delay jitter according to
the input information and shows good generalization for the
topology that does not appear in the training and the dy-
namically changing routing path. ,e data-driven network
modeling method provides an accurate and efficient routing
strategy test environment for the exploration-based heuristic
routing optimization algorithm, which enables the heuristic
routing optimization algorithm to complete the routing
optimization solution process at low cost, while avoiding the
need for network optimization. ,e loss of routing strategy
effect was caused by modeling and real environment.

Table 1: Comparison of various routing protocols based on machine learning.

Algorithm Routing method Controlling method Learning method Deployment Training method
Ref. [15, 25, 39] Path creation

Packet-based Offline
Decentralized

Offline
Ref. [26] Path creation
Ref. [40] Predicting congestion
Ref. [30] Predicting jitter and delay Centralized
Ref. [36] Path creation Flow-based Centralized
Ref. [16–21] Path creation Packet-based Online Decentralized OnlineRef. [14] Splitting ratio configuration Epoch-based Centralized
Ref. [31] Link weights Epoch-based Offline Centralized OfflineRef. [38]

Router

(a)
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Figure 6: Inclusion of the router. (a) Example of network topology, (b) Associated graph model, (c) Example of output features.
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,e scheme of using the deep learning model to assist the
traditional routing algorithm can effectively improve the
performance of the traditional routing optimization algo-
rithm, and at the same time, the traditional routing opti-
mization algorithm ensures that the intelligent routing
scheme has stronger reliability and interpretability. ,ere-
fore, combining traditional routing optimization algorithms
with deep learning models may be a way to develop intel-
ligent routing algorithms in the future.

4. Intelligent Routing Algorithm Based on
Reinforcement Learning

4.1. Overview of Reinforcement Learning Methods Applied in
Intelligent Routing. A standard reinforcement learning
process can be viewed as a process in which a reinforcement
learning unit interacts with the environment in discrete time
steps. At each time point t, the reinforcement learning unit
takes an action at according to the state st and receives a
feedback reward rt. ,e goal of reinforcement learning is to
find a policy π(s), the policy function is a mapping from
state to action and can maximize the decreasing reward, and
􏽐

T
t�0 ctrt, c ∈ [0, 1] is the reward discount factor.
,e Q-learning method uses a Q-function to predict the

maximum decreasing reward sum corresponding to the state
st and the action at observed at time t. ,e Q-function is
defined as

Q st, at( 􏼁�
max
π E Rt|st, at, π􏼂 􏼃􏼈 􏼉. (2)

For the calculation of the Q-function, there are two
methods: model-based and model-independent. ,e model-
based method directly solves the Q-function through the
correlation model between the states in the Markov deci-
sion-making process, which is formally expressed as

Q st, at( 􏼁 � rt + c 􏽘
st+1∈S

P
at

stst+1
V st+1( 􏼁,

V(s) �
max
a Q(s, a){ }

1
2
.

(3)

Among them, the V function is the state value function,
which represents the maximum decreasing reward sum that
can be obtained in the corresponding state, and P

at
stst+1

represents the state transition probability of the reinforce-
ment learning task corresponding to the Markov decision
process. In reinforcement learning tasks, the state transition
probability is not always easy to obtain, and the state-in-
dependent method can be used to estimate the Q-function:

Q st, at( 􏼁 � (1 − α)Q st, at( 􏼁 + α rt + cV st+1( 􏼁􏼂 􏼃, (4)

where α is the model learning rate. Compared with the
model-based Q-function calculation method, the model-
independent Q-function calculation method usually re-
quires a longer convergence time.

In the traditional Q-learning method, the Q-function is a
mapping from the finite state decision space S × A to the real
number space R. In order to deal with the reinforcement
learning problem on the continuous high-dimensional state

decision space, researchers introduce the deep learning
model into the reinforcement learning framework, a variety
of deep reinforcement learning (DRL) models have been
designed.

,e Google DeepMind institute proposed deep
Q-learning (DQN) [43]. It uses a deep neural network
(DNN) instead of the original Q-value table to approxi-
mate the Q-function and trains it through the squared
error:

L θQ
􏼐 􏼑 � E yt − Q st, at|θ

Q
􏼐 􏼑􏼐 􏼑

2
􏼔 􏼕, (5)

where θQ is the parameter of DQN and (yt is the target
value, which can be calculated as

yt � rt + cQ st+1, π st+1( 􏼁|θQ
􏼐 􏼑, (6)

where π(·) is a policy function that can maximize the ex-
pected total return, and a commonly used asynchronous
strategy is to choose actions in a greedy way:

π st( 􏼁 �
argmax
at

Q st, at( 􏼁. (7)

Corresponding to the DQN method based on Q-func-
tion estimation is the policy gradient method [44]. ,e
policy gradient method uses the deep learning model as the
policy function πθ(s, a) and directly optimizes the policy
function by calculating the policy gradient.

In order to further improve the performance of the
policy gradient method and accelerate the convergence
speed of the reinforcement learning model, we can combine
the Q-value learning and the policy gradient method, and
use the value estimation function to predict the value that
will be obtained after the action is taken in the current state,
and use the prediction result. ,e policy model is trained,
which is the Actor Evaluator (AC) framework for rein-
forcement learning.

A commonly used AC framework based on online
strategy uses an action advantage function A(s, a) to esti-
mate the advantages and disadvantages of the strategy, and
the policy gradient after introducing the advantage function
is

∇J(θ) � Eτ∼pθ(τ) ∇θlog πθ(s, a)A(s, a)􏼂 􏼃, (8)

where τ represents the state-action tuple (st, at).
,e reinforcement learning method based on the online

strategy needs to synchronize the training process with the
data collection and achieve parameter convergence through
the iterative process of updating the parameters for multiple
rounds of data collection. In order to decouple the data
collection and model training process, an offline rein-
forcement learning method, a commonly used offline policy-
based AC framework deep reinforcement learning model is
deterministic policy gradient (DPG) [45]. ,e method di-
rectly uses the value network gradient backhaul to calculate
the policy gradient and has achieved good results in the
continuous action space reinforcement learning problem.
An improved version of this method, deep deterministic
policy gradient (DDPG) [46], has been widely used to solve
routing optimization problems in continuous action spaces.
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In recent year researches, in order to solve the problem
of excessive policy update in the trust region policy opti-
mization (TRPO) algorithm, extensive literature has been
proposed [47]. Although the second-order method has
better convergence guarantee than the first-order method,
its high computational complexity limits its application
scenarios. Based on the idea of TRPO, OpenAI and
DeepMind proposed a proximal policy optimization (PPO)
[48] algorithm, which combines the efficiency and ease of
implementation of traditional first-order methods and the
data efficiency and reliable performance of confidence re-
gion algorithms. It is one of the current mainstream rein-
forcement learning algorithms.

4.2. Intelligent Routing Algorithm Based on Q-Learning.
,e authors of Ref. [16] proposed Q-routing and for the first
time applied Q-learning in routing algorithms. ,e
Q-routing uses the Markov decision process (MDP) to
represent the routing forwarding process, treating each
routing node as a state in the MDP, the neighbor node
picked by the routing next hop as the MDP action, and the
routing node selected by each hop as the MDP action. ,e
feedback value acquired by reinforcement learning an action
is the time delay. In Q-routing, the Q-value function
Qx(d, y) is used to predict the time it takes to use the next
hop node y from the current node x to the target node d.
Whenever node x sends a packet to neighbor node y, node y

will immediately return the estimated remaining distance
delay t to x, which is expressed as

t �
min

z ∈ neighbors of y
Qy(d, z). (9)

At this time, using the model-based Q-Learning method,
node x can dynamically update its corresponding Q-value
function information, formally:

ΔQx(d, y) � η q + s + t − Qx(d, y)( 􏼁, (10)

where η is the learning rate of the algorithm, and q and s are
the queue delay and transmission delay from x to y, re-
spectively. According to the dynamically updated Q-value
function, for each data packet, Q-routing can adapt to the
dynamically changing network state and choose the routing
path with the minimum latency. In contrast to the typical
shortest path routing method, Q-routing measures the
length of the path using time rather than routing hops,
allowing it to efficiently avoid network congestion.

In order to achieve fast perception of congestion re-
covery, Ref. [17] modeled the relationship between the
congestion recovery process and time in Q-routing and
proposed to use the R function to estimate the rate of change
of the Q-function with time and then estimate the rate of
change of the Q-function over time.,e R function is used to
calculate the Q-value corresponding to each current
neighbor node when making routing decisions. ,e ex-
periments show that the Q-routing scheme based on the
change of Q-value prediction is used in the situation of
frequent network congestion. Compared with the original

Q-routing scheme, it has better convergence speed and
stability. In addition, Ref. [18] used dual reinforcement
learning to improve the Q-routing and obtained better
performance.

Reference [19] applied the Q-learning method to WSN
and proposed the QELAR scheme. Due to the complex
working environment of WSN and the frequent changes of
network topology, traditional routing methods often fail to
achieve good results in the WSN environment. ,e QELAR
mainly solves the lifetime problem of WSN. Similar to
Q-routing, the QELAR also uses the Markov process to
model the process of data packet transmission in the net-
work. Combining numbers as reinforcement learning, the
feedback makes the routing algorithm able to make intel-
ligent routing decisions according to the current state of the
remaining energy of the system, so as to ensure the normal
working time of the WSN network as long as possible.

After QELAR, Ref. [20, 21] proposed the MARLIN and
MARLIN-Q models, and used MDP to model the packet
sending and retransmission process of the WSN network.
Figure 7 shows a schematic diagram of the state transition
model of each routing node controlling the forwarding of
data packets in the MARLIN-Q scheme. In the work of
MARLIN and MARLIN-Q, the data packet p is defined in
the state space S of each routing node according to the
current data packet retransmission times as follows:

S � 0, 1, . . . , K − 1{ }∪ rcv, drop􏼈 􏼉. (11)

,e action space that each routing ith node can perform
in the sth state includes the selected modem type and the
next hop routing node that the corresponding modem can
reach

A
M
i (s) � a � < j, m> |m ∈M, j ∈ Neighborm

i􏼈 􏼉, (12)

where M is the set of modem types that the node has and
Neighborm

i represents the set of neighbor nodes that the
node can reach by using the modem type m. ,e MARLIN
series algorithm cleverly designs the feedback function so
that the feedback value obtained by the reinforcement
learning model of each node is positively correlated with the
data packet transmission delay and at the same time imposes
a large penalty on a packet loss (drop) behavior, which can be
used for reliable and low-latency data transmission of un-
derwater sensor networks. In the real network scenario,
through continuous trial and learning, the MARLIN series
models can adaptively calculate the state transition proba-
bility P

(j,m)
i,s⟶ rcv through historical data and then ensure the

route quality-of-service (QoS) of WSN network. In addition,
by changing the maximum number of retransmissions K in
the MDP process, ,e MARLIN-Q can support different
types of QoS requirements, such as accelerated forwarding
services requiring low latency and reliable transmission
services requiring guaranteed reliability. ,e MARLIN-Q
has tested the algorithm performance under different net-
work parameters and loads in the simulation environment,
and the results show that compared with the existing state-
of-the-art underwater sensor network routing and trans-
mission algorithm CARP [49] and QELAR optimized for
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network lifetime, the MARLIN-Q algorithm can effectively
avoid the failure retransmission in the process of data packet
transmission and have better performance in terms of ef-
fective throughput, delay, and energy consumption.

After investigation, most of the existing intelligent
routing algorithms based on the Q-learning model the
forwarding process of data packets in the network withMDP
and then convert the routing optimization problem into a
model-based Q-learning problem, and build on this basis.
Due to the characteristics of MDP modeling and model-
based Q-learning, its optimization objectives are mainly
performance evaluation indicators that can be accumulated
hop by hop, such as delay, throughput, and energy con-
sumption. ,e intelligent routing algorithm designed using
the model-based Q-Learning method can adapt itself to the
dynamically changing network environment, and because its
MDP model is known, its decision-making process has
better interpretability than other deep learning-based
methods. So it has a wide range of applications in the
scenarios where the network state fluctuates greatly, such as
the WSN network. However, for routing optimization
problems with higher input and output dimensions and
more complex optimization objectives, it is very difficult to
explicitly establish an MDP model. In addition, the packet-
level routing control methods commonly used in the existing
Q-learning-based routing optimization methods are difficult
to meet the requirements of the backbone network.
,erefore, the application scenarios of existing intelligent
routing algorithms based on Q-Learning still have great
limitations.

4.3. Intelligent Routing Algorithm Based on Deep Reinforce-
ment Learning. With the development of deep learning
technology in recent years, researchers have begun to try to
apply deep reinforcement learning (DRL) technology to
intelligent routing and traffic engineering scheme design.
Compared with Q-learning, the DRL methods can learn
more complex strategies to solve routing optimization
problems with larger states, larger decision spaces, and more
complex optimization objectives.

Reference [14] applied deep reinforcement learning to
intradomain traffic engineering (DRL-TE) scheme. Similar
to the classic semi-state-independent traffic engineering
(SMORE) scheme proposed by [7] in 2018, the DRL-TE

divides the traffic engineering problem into two parts: static
multipath solution and online dynamic adjustment of path
split ratio. ,e DRL-TE uses traditional methods to generate
paths and utilizes a deep reinforcement learning unit to
complete the process of dynamically adjusting the path split
ratio online. In this scheme, the deep reinforcement learning
model takes the current delay and throughput corre-
sponding to each session as the state of reinforcement
learning, the path split ratio as the action of reinforcement
learning, and the performance evaluation function of each
session as the feedback of reinforcement learning. In this
way, the network status information is dynamically sensed,
the distribution ratio of each path is controlled, and the
optimal distribution is learned adaptively according to the
feedback results of each session. In order to deal with the
continuous action space problem caused by the split ratio,
the DRL-TE adopts the deep deterministic policy gradient
algorithm (DDPG) as the reinforcement learning model and
adopts the experience playback method specially designed
for traffic engineering to ensure the convergence of the
reinforcement learning model. Compared with SMORE,
which needs to accurately predict the traffic matrix at the
next moment in order to use the linear programming model
to solve the optimal split ratio and can only optimize a
limited target (such as maximum link utilization), DRL-TE
only needs traffic characteristic information can automati-
cally predict future traffic changes and make decisions that
maximize the value of the total benefit function of each
session. ,erefore, it has better generality and robustness
than SMORE method, which requires less assumptions
about application scenarios. It is simulated in the NS-3
environment, and the experimental results show that
compared with traditional routing and traffic engineering
algorithms, the DRL-TE has obvious advantages in terms of
delay, throughput and the utility function index. In addition,
the comparative experiment directly using the original
DDPG algorithm shows that the machine learning model is
used to solve the problem. It is necessary to improve the
original machine learning algorithms in traffic engineering
problems, and it may be difficult to achieve ideal results by
directly applying the existing machine learning models to
routing optimization and traffic engineering problems.

In addition to the field of traffic engineering, DRL has
also been applied to the optimization task of intelligent
routing configuration. Reference [31] tried to use a DRL unit
to predict the future network traffic based on historical
traffic data and calculated the appropriate routing config-
uration based on the traffic prediction ability of the rein-
forcement learning model. It takes the historical traffic
matrix as the input of the reinforcement learning model, the
weight of each link is used as the output of the reinforcement
learning model, and the reinforcement learning model
(TRPO) passes the historical traffic according to the learned
experience and knowledge. ,e matrix predicts the future
traffic and performs routing configuration by adjusting the
link weights, so as to achieve the goal of optimizing the
maximum link utilization of the entire network and com-
pleting the load balancing. It is also pointed out that the
representation of routing rules has a strong correlation with

Figure 7: Illustration of MARLIN-Q transitions states.
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the convergence of reinforcement learning models. For a
network topology G(V, E), a destination node-based routing
rule form with an output dimension of |V|.|E| is directly
used as the output action of the above reinforcement
learning model. ,at is, for each node v for each destination
node d, set a split ratio to all its neighbor nodes, and then, the
above reinforcement learning model will be difficult to
converge due to the high output dimension. ,erefore, the
action of the reinforcement learning model in this work sets
a real weight for each link, and the link weight is mapped
into a routing rule through a traditional rule-based ap-
proach. ,is reduces the output dimension of the rein-
forcement learning model to |E|, so as to reduce the size of
the action space of the reinforcement learning model, reduce
the difficulty of exploration and learning, and achieve the
effect of accelerating the convergence. In this work, sparse
and nonsparse gravity/bimodal models are used to generate
different types of flow matrix sequences to test the perfor-
mance of the algorithm.,e simulation results show that for
the traffic matrix with obvious regular characteristics, the
reinforcement learning model can achieve good routing
configuration through traffic prediction, which is better than
the traffic-independent optimal routing [50] and close to the
optimal routing configuration effect. However, when the
traffic matrix no longer has obvious regular characteristics,
the performance of this method will drop significantly. In
fact, traffic changes in real scenarios may be irregular, in-
cluding many burst traffic, so the traffic prediction and
routing configuration capabilities of the above models under
real traffic data are still a problem worth exploring.

Although the DRL model can theoretically predict the
future traffic and make optimal routing decisions based on
the network state data or historical information, the results
of the DRL model in the current experiments are far from
optimal. Ref. [38] compared the effects of several rein-
forcement learning models on routing tasks and put forward
some guiding suggestions for using reinforcement learning
models to solve routing problems. First of all, the author
through a simple scenario deployment experiment of a
Q-routing model [16] shows that the reinforcement learning
intelligent routing model of packet-level routing control is
difficult to apply to application scenarios with high
throughput, and the time-segment-level routing control
model will be a more recommended way. Secondly, the
intelligent routing scheme that uses explicit path selection as
the action of reinforcement learning unit is difficult to
converge to the ideal result. As mentioned in Section 3.2, the
number of paths increases exponentially with the growth of
the network size, and the path selection-based scheme will
undoubtedly greatly increase the learning and exploration
capabilities of the reinforcement learning model. Based on
the above two points, this article also chooses the scheme of
controlling the link weight through the reinforcement
learning model and then indirectly realizing the routing
control. Compared with the direct generation of real link
weights by Ref. [37], Ref. [38] scheme discretizes the link
weights, further reduces the size of the action space from
infinite to finite, and selects the corresponding weights for
each link. ,e process is processed by a single reinforcement

learning model, which further reduces the decision difficulty
and exploration space of each reinforcement learning model.
,e generated link weight is used as the edge weight of the
shortest path algorithm for routing calculation. In order to
ensure the policy consistency of this multiagent cooperative
routing model, Ref. [50] used the latest multiagent deep
deterministic policy gradient (MADDPG) algorithm [51] to
train the model. ,e final experimental results show that the
reinforcement learning intelligent routing algorithm based
on the offline link weight has better load balancing char-
acteristics than the shortest path routing, that is, the shorter
router average waiting time.

Existing intelligent routing schemes based on deep re-
inforcement learning have achieved certain results in
intradomain traffic engineering and intelligent routing
optimization tasks. ,e deep reinforcement learning model
has good versatility and generalization. It can not only
optimize the global performance evaluation indicators of the
network, such as the maximum link utilization rate of the
entire network and the average waiting length of routers, but
also optimize the private benefit value corresponding to each
session function. In addition, compared with traditional
routing optimization algorithms based on rules or mathe-
matical models, intelligent routing algorithms based on deep
reinforcement learning do not need to make assumptions
about the environment and can adapt to dynamically
changing network environments. However, it is not difficult
to find that there is a strong correlation between the con-
vergence of a deep reinforcement learning model and the
form of routing rules generated, and an excessively high
output dimension often makes the deep reinforcement
learning model unable to converge.,erefore, in the existing
research work, the deep reinforcement learning model
generally completes the flow control indirectly by control-
ling the path split ratio or link weight, rather than directly
generating the routing path by path selection or path gen-
eration. In fact, even though the existing work has tried to
reduce the routing decision difficulty of deep reinforcement
learning units as much as possible, and has made significant
progress, there is still a lot of room for improvement in the
performance of existing solutions in complex application
scenarios. In addition, limited by the model performance of
deep reinforcement learning, most of the existing schemes
adopt time-segment-level routing control methods, while
packet-level routing control methods are not suitable for
such intelligent routing schemes. Robustness and reliability
are very important properties for routing algorithms, but the
existing research on intelligent routing algorithms based on
deep reinforcement learning is far from enough.

5. Training and Deployment of Intelligent
Routing Algorithms

Although there have been many related works on intelligent
routing algorithms based on machine learning in recent
years, these works mainly focus on the principle design of
intelligent routing algorithms, algorithm accuracy, conver-
gence, and other issues. ,ere is not yet a mature and
complete framework for training and deployment. ,is
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article discusses the advantages and disadvantages of dif-
ferent training methods and deployment methods of in-
telligent routing algorithms and proposes two types of
reasonable intelligent routing training and deployment
frameworks, so that intelligent routing algorithms can be
used in real scenarios with low cost and high reliability.

5.1. Training Method: Online and Offline. ,e training
methods of the intelligent routing algorithm model are
mainly divided into two types: online and offline. Figure 7
shows the training method of the existing intelligent routing
scheme. ,e intelligent routing models based on supervised
learning are all trained offline, while the models based on
reinforcement learning can be trained both online in the real
environment and offline in the simulation environment.

Generally speaking, the offline training process of the
model first needs to collect data from the real environment,
which may be the traffic matrix, the status information of
each node in the network, and the corresponding routing
decision labels. After the data are processed, it is used in the
offline training process of themachine learningmodel on the
server. After the training is completed, the model is deployed
to the real environment to make online routing decisions.
Offline training and online testing, deployment is a common
training deployment method in the field of deep learning.
However, for intelligent routing algorithms, offline training
often faces three challenges: (1) the collection of training
data may require relatively high costs; (2) the network state
in the real scene may be different from the training data set,
causing the routing algorithm to fail to achieve the expected
effect or even to make errors; and (3) for reinforcement
learning, it may be difficult to build a simulated training
environment similar to the real environment.

For reinforcement learning methods, online training can
ensure that the model adapts to changes in the network
environment and avoids the difficulties and extra costs
brought by the offline simulation environment construction.
However, the routing security and reliability problems
brought by online training make it difficult to deploy in-
telligent routing methods that require online training in
actual deployment. In fact, in online reinforcement learning,
security is an issue that has been widely studied [52, 53]. ,e
reinforcement learning models may produce unpredictable
behaviors in the initial stage of training and the exploratory
stage in the training process. When reinforcement learning
methods are applied to routing tasks, these unpredictable
behaviors may cause serious consequences including routing
loops and link congestion. ,erefore, ensuring the security
and reliability of the online reinforcement learning routing
algorithm training process will be an important prerequisite
for its deployment in real scenarios.

5.2. Deployment Method: Centralized and Distributed. As
there are many intelligent routing algorithms proposed, how
to deploy these algorithms in the existing computer network
architecture is receiving more attention. ,e deployment
methods of intelligent routing algorithms are mainly divided
into two types: distributed and centralized.

Figure 8 shows the schematic diagrams of the framework
structures of the two deployment schemes. ,e intelligent
routing algorithm is deployed in the centralized controller,
and the routing decision is made dynamically according to
the network state information collected by the controller,
and the routing decision is sent to each routing node
through the centralized controller. ,e proposal of the SDN
network structure provides the theoretical possibility for the
centralized deployment of intelligent routing algorithms,
and the above centralized control process can be completed
by using the intelligent routing control unit as an application
on the SDN controller. In a relatively independent appli-
cation scenario such as data center network traffic engi-
neering, it is a feasible solution to deploy the intelligent
routing scheduling scheme using a centralized method.

,e deployment of a centralized solution requires
deploying a centralized routing controller in the network
and designing a centralized routing control protocol.
However, the routing protocols in the current computer
network architecture are still dominated by distributed
routing protocols.

Compared with centralized routing protocols, distrib-
uted routing protocols have better scalability. As can be seen
from Figure 7, there are many existing intelligent routing
algorithms that can support distributed routing decisions.
,ese distributed intelligent routing algorithms have made
progress in terms of convergence and robustness. ,e
corresponding router hardware needs to be further devel-
oped and improved [15]. With the development of pro-
grammable routing devices, it will be possible to deploy
distributed intelligent routing algorithms in real networks in
the future. However, the existing distributed intelligent
routing algorithms mainly focus on the accuracy and con-
vergence of routing methods and do not consider the
compatibility of existing network layer structures and
protocols. For the distributed intelligent routing algorithm,
how to carry out incremental deployment on the basis of
compatibility with the existing network layer structure will
be a problem worth thinking about in the future.

5.3. Intelligent Routing Training and Deployment Model
Design. Based on the above discussion, this section sum-
marizes and proposes two types of future feasible intelligent
routing training and deployment frameworks: (1) an in-
telligent routing framework combining centralized offline
training and online decision-making; and (2) a secure online
reinforcement learning routing framework.

Figure 9 shows the workflow of the intelligent routing
deployment framework combining centralized offline
training and online routing decision-making. In this intel-
ligent routing deployment scheme, the router data plane
needs to collect the network traffic characteristic informa-
tion and pass it up to the control layer to complete the
intelligent routing model training and online routing de-
cision-making process. ,e intelligent routing decision-
making model uses historical network state information and
network simulation environment to complete offline
training in a single node with sufficient computing power
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and publishes the trained model parameters to the online
routing decision-making unit. ,e corresponding routing
decision unit can either deploy the online intelligent routing
unit to the control plane of each router by means of dis-
tributed deployment or place the intelligent routing unit in a
centralized routing controller by means of centralized de-
ployment. For example, in order to adapt to the network
topology and traffic characteristics that change dynamically
with time, the above model adopts the closed-loop learning
method to periodically train the intelligent routing model
incrementally according to the latest network traffic char-
acteristics. ,e training process of the intelligent routing
model based on machine learning needs to consume a lot of
computing and storage resources, and the centralized offline
training makes each routing node in the network do not

need to deploy these resources, which can effectively reduce
the deployment cost of the intelligent routing algorithm.

,e intelligent routing deployment scheme of central-
ized offline training and online routing decision is suitable
for most existing intelligent routing algorithms, and is
consistent with the idea of offline training and online de-
cision-making in machine learning. However, for rein-
forcement learning models, whether it is an on-policy model
or an off-policy model, the interaction with the environment
is an essential part of the learning process. Different from
game tasks, it is very difficult to build a simulation envi-
ronment consistent with the real network environment in
routing optimization problems [30]. Correspondingly, the
poor strategy at the beginning of the deep reinforcement
learning model and its exploratory behavior in the learning
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process make it possible to directly train the intelligent
routing model based on DRL in a real network environment,
in order to solve the challenges faced by the intelligent
routing strategy based on DRL in the training process.

In this article, referring to the idea of secure online
reinforcement learning [53], an online training scheme of
DRL intelligent routing model with reliability guarantee is
proposed. Figure 10 shows the working flow of the scheme.
Compared with the traditional reinforcement learning
method, this scheme introduces a security monitoring
module to judge whether the routing decision made by the
reinforcement learning unit is safe or not based on rules.
When the routing decision made by the reinforcement
learning unit may have security risks, for example, including
routing loops and triggering network congestion, the re-
inforcement learning unit uses a simple and reliable routing
decision (such as shortest path routing) to replace the
original routing decision, and at the same time imposes a
penalty factor p on the reinforcement learning unit to avoid
the reinforcement learning unit. ,e related work of online
security learning in other network application scenarios
shows that the DRL intelligent routing scheme based on
online security learning has the ability to ensure the reli-
ability of the routing learning process without affecting the
original routing optimization goal [53]. It can not only solve
the security problems that have not yet converged, but also
ensure the reliability of the model without guaranteeing the
interpretability of the model. It concerns about the un-
predictability of routing behavior in network emergencies.

For the training and deployment framework of intelli-
gent routing, the existing research work is still relatively
small, but this article believes that the uninterpretability of
the model and the unpredictability of routing behavior
brought by the intelligent routing scheme will be an im-
portant challenge in the design of its training and deploy-
ment framework. Using the rule-based scheme to constrain
the intelligent routing control unit may be an effective means
to ensure the reliability of intelligent routing.

6. Opportunities and Challenges Faced by
Intelligent Routing Algorithms

In recent years, intelligent routing algorithms have received
considerable attention. In this section, the advantages of
intelligent routing algorithms in solving the routing opti-
mization problems and the challenges they face in the future
development process are discussed.

6.1. Advantages of Intelligent Routing Algorithms. ,e data-
driven intelligent routing algorithms are usually based on
deep learning or reinforcement learning, which have five
main advantages:

(1) Be Network State is Sensitive. Compared with the
traditional model-based routing algorithm, the in-
telligent routing algorithm can process higher-di-
mensional network state feature information, which
makes the intelligent routing algorithm more

sensitive to changes in the network state, and can
quickly converge when the network state changes.

(2) Data-driven. Unlike traditional routing algorithms
that use a fixed model to solve the routing strategy,
the intelligent routing algorithm is data-driven, relies
on fewer environmental assumptions, and uses
historical data and spontaneous exploration of the
environment to automatically model application
scenarios and complete routing optimization,
allowing it to adapt to different application scenarios
and network environment changes.

(3) Oriented to Service Quality. Intelligent routing can
help facilitate routing requests with varying levels of
service quality. ,e data-driven intelligent routing
algorithm can automatically learn the appropriate
routing decisions according to the Quality-of-Service
(QoS) requirements, unlike the traditional QoS
routing optimization scheme, which creates a
complex optimization model for each QoS re-
quirement based on a large number of assumptions
about the application scenarios.

(4) Experience-Driven and Memory Characteristics.
Unlike standard routing algorithms based on models
and rules, intelligent routing algorithms based on
machine learning may remember prior experience
by studying historical data, allowing the model to
“eat a little and gain a wisdom” similar to a human
being. ,e effect of route optimization improves as
the company grows.

(5) Routing Decisions Consider the Past, Present, and
Future. ,e recurrent neural network structure
(RNN) and its corresponding extensions (GRU,
LSTM) can model the past historical information
well, and the reinforcement learning model endows
the intelligent routing algorithm not only with the
current routing effect, but also in predicting the
future network state changes, the ability to avoid
possible future network congestion in advance.

6.2. Challenges to Intelligent Routing Algorithms.
Corresponding to the advantages of intelligent routing al-
gorithms, the future development process of intelligent
routing methods also faces many challenges:

(1) Network Feature Information Extraction. In the in-
telligent routing method, the network state infor-
mation may be organized in the form of topology
structure, and due to the dynamic change of the
network scene, the dimension of the network state
information may change. Traditional machine
learning methods have difficulties in processing this
type of network state information. Existing intelli-
gent routing algorithms try to use graph neural
network model (GNN) to model and extract network
state information [26, 30]. ,e GNN method has
good generalization for different topological struc-
tures, but whether the existing GNN methods can
complete the modeling of dynamic large-scale
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topological structures in real scenarios of routing
optimization problems still lacks sufficient experi-
mental support.

(2) Algorithm Convergence. Compared with games,
image recognition, natural language processing,
and other scenarios where machine learning has
been widely used, the input and output dimen-
sions of routing optimization problems are
higher, and the target strategy is more complex.
Existing research shows that for complex routing
optimization with high input and output di-
mensions. However, the existing machine learn-
ing schemes are often difficult to converge to the
optimal solution. In order to solve the problem
that the model is difficult to converge, it is often
necessary to reduce the input and output di-
mensions, discretize the decision space, or use
indirect control of routing decisions to simplify
the policy complexity to reduce the convergence
difficulty of the model. However, even with these
schemes, many convergence results are still far
from the theoretical optimal value.

(3) Algorithm Scalability. Routing algorithms must meet
a number of requirements, one of which is scal-
ability. Existing machine learning-based intelligent
routing methods are mostly created and tested on
small topologies with little more than 20 nodes. A
bigger topology results in an exponential growth in
the number of network states and a greater difficulty
inmaking routing decisions.,e design of intelligent
routing algorithms in the future will have a problem
in ensuring that the algorithm can still get good
results in a big topology. Furthermore, when the
topology is complex, the centralized routing control
method might result in high data exchange costs and
network state transfer delays, reducing scalability.
,e future difficulty of ensuring the consistency of
each node’s routing strategy under the huge topology
of a distributed intelligent routing algorithm will be
solved.

(4) Algorithm Interpretability. Another problem faced
by intelligent routing methods is the unpredictability
and uninterpretability of routing strategies. Com-
pared with traditional routing algorithms based on
mathematical models, deep learning-based methods
often have unpredictable behaviors. When poor
routing decisions are made, it is difficult for the
operator to locate the cause of the error, and it is
almost impossible to correct the model for the error.
,erefore, how to improve the interpretability of
intelligent routing algorithms will be a challenge in
the future development of intelligent routing
methods.

(5) Model Training Cost. For intelligent routing algo-
rithms based on supervised learning, collecting
enough and accurate enough labeled data is some-
times a very expensive thing. Different from face
recognition and other application scenarios where
training is done once and for all, as the network
environment changes, existing intelligent routing
may need to repeatedly collect training data and
retrain.,erefore, how to improve the data efficiency
of the intelligent routing training process is an im-
portant challenge in the deployment of intelligent
routing solutions. When faced with similar prob-
lems, reducing the training cost through meta-
learning is a feasible solution [54]; however, there is
no perfect research in the field of routing. In addi-
tion, for the intelligent routing method based on
deep reinforcement learning, whether it is online
training or offline training, the high training cost and
the hidden reliability risks brought to the system
during the training process are challenges that need
to be solved urgently.

(6) Handling of Network Emergencies. Another issue that
intelligent routing algorithms will encounter in the
future development phase is figuring out how to cope
with network crises. In practice, traffic surges and
network state changes induced by network equip-
ment failures are all too prevalent. However, these
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Figure 10: DRL-based framework for secure online learning in routing.
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crises come in a variety of forms, and many of them
have never been seen in training data. It is chal-
lenging to verify that these situations are handled
effectively with the present data-driven intelligent
routing algorithms. Even approaches that can dy-
namically adjust to environmental changes, such as
Q-Learning, cannot cope with unexpected and sig-
nificant network shifts. To deal with abrupt changes
in network circumstances, the concept of “secure
online reinforcement learning” [53] is applied. It
might be a future solution, but determining how to
effectively recognize network crises is an issue.

(7) Real Scenario Deployment. For intelligent routing
methods, how to deploy them in real scenarios is a
huge challenge. Intelligent routing, as compared to
standard routing methods, necessitates greater
computational resources and higher routing per-
formance. Simultaneously, the training data col-
lecting and routing perception processes for the
original routing protocol must be changed so that the
intelligent routing algorithm may get data from the
intelligent unit. Although the emergence of SDN
networks and programmable routing equipment
increases the processing capacity of the router
control layer, even intelligent routing algorithms
remain challenging to deploy on a broad scale under
the current network design. It may be the future
trend of intelligent routing algorithms to develop
routing equipment that matches the intelligent
routing scheme while maximizing the performance
of intelligent routing algorithms and boosting their
compatibility and scalability with traditional routing
algorithms.

7. Conclusion

,e present intelligent routing algorithms are largely split
into two types, based on supervised learning and based on
reinforcement learning, according to this article’s findings.
(1) ,e supervised learning-based intelligent routing tech-
nique primarily completes the routing solution by either
replacing the existing routing algorithm with the deep
learning model or supporting the traditional routing algo-
rithm. ,e deep learning method makes the intelligent
routing algorithm more sensitive to the environment and
has a faster convergence speed. ,e data-driven auxiliary
module can also make the routing decision made by the
traditional routing algorithm more accurate and avoid
congestion in advance. (2) Reinforcement learning-based
routing algorithms can adapt to diverse routing application
settings and maximize various network performance met-
rics. ,e model-based Q-Learning method is widely used in
the routing optimization process of wireless sensor net-
works, whereas the deep reinforcement learning method is
used to solve various complex routing optimization prob-
lems like intradomain traffic engineering and intelligent
routing algorithms based on traffic prediction.

,is article analyzes the advantages and disadvantages of
online and offline intelligent routing training schemes,

centralized and distributed intelligent routing deployment
schemes, and further proposes a closed-loop learning
framework of offline centralized training plus online de-
ployment, as well as adaptive online training and security
learning. ,e combined intelligent routing deployment
framework has reliable performance. ,ese two frameworks
provide the possibility for low-cost and high-reliability
deployment of intelligent routing algorithms based on
machine learning in real scenarios.

,is article discusses the opportunities and challenges in
the future development of intelligent routing algorithms and
proposes possible future research directions for intelligent
routing algorithms based onmachine learning in response to
these challenges.
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