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Abstract: Stabilization and tracking control of Unmanned Aircraft Systems (UASs) such as helicopters
in a complex environment with system uncertainties, unknown disturbances, and noise is a challeng-
ing task; therefore, to compensate for system uncertainties and unknown disturbances, this paper
presents a trajectory tracking control strategy for a 2-DOF (degree of freedom) helicopter system
testbed by employing a gradient descent-based simple learning control law that minimizes the cost
function corresponding to desired closed-loop error dynamics of the nonlinear system under control.
In addition, to ensure the stability of the closed-loop nonlinear system, further analysis is provided.
The learning capability of the designed controller makes it suitable to take system uncertainties and
unknown disturbances into account. The results of computer simulations and real-time experiment
using the Quanser AERO helicopter are included to demonstrate the effectiveness of the designed
control strategy.

Keywords: learning control; trajectory tracking; nonlinear control; helicopter

1. Introduction

Unmanned Aircraft Systems (UASs) are being employed in a wide range of applica-
tions including reconnaissance and mapping, search and rescue, environmental monitoring,
and power-line, wind turbine, and bridge inspection to name a few [1,2]. In general,
they are categorized into fixed-wing crafts, airship/dirigible balloons, and rotary craft
classes [1,2]. These systems are inherently unstable and designing controllers for them
requires rigorous consideration and therefore they attracted significant attention in the
recent past. Several examples have been studied in the context of fixed-wing crafts [3,4]
and rotary-craft UASs such as helicopters [5–19], tricopters [20], quadcopters [21–26], and
hexacopters [27].

A helicopter is one of the most flexible types of rotary-craft UASs with horizontally
spinning rotors that supply the thrust and lift. This structure provides the capabilities of
Vertical Takeoff and Landing (VTOL), hovering, and flying in different directions. Nu-
merous linear and nonlinear control strategies have been designed to control helicopters.
Linear control techniques for helicopters include Proportional-Integral-Derivative (PID),
Linear-Quadratic-Regulator (LQR), and linearization-based adaptive and optimal control
methods [5–8]. For example, based on linear quadratic techniques, an adaptive augmen-
tation method was designed and experimentally applied to control the Quanser 2-DOF
helicopter in [5]. The authors in [6] developed an optimal LQR controller for the attitude
tracking control of the 2-DOF helicopter. In their work, the authors utilized the Adaptive
Particle Swarm Optimization (APSO) approach to acquire the Q and R matrices. In another
study [7], a control framework has been designed to track desired trajectories for the 2-DOF
helicopter by applying an extended linearization method. Later, the authors in [8] devel-
oped a Multi-Step Q-Learning (MsQL) method for solving the optimal output regulation
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problem for the Quanser 2-DOF helicopter. Although these linear control techniques are
relatively easy to design and implement, their operational range is limited.

As helicopter systems are inherently nonlinear and due to numerous sources of un-
certainties and disturbances, there remain many open problems in the design of control
algorithms that can effectively compensate for these challenges; therefore, simple linear con-
trol strategies may not be effective in meeting the desired performance requirements [27].
To this end, in this paper, we focus on developing robust nonlinear control strategies for
tracking control of the 2-DOF helicopter systems. In the past few years, several studies
have been devoted to designing and validating nonlinear adaptive and robust controllers
to better compensate for the nonlinearity, uncertainties, and disturbances in the 2-DOF heli-
copter systems. For example, a backstepping controller has been designed by incorporating
nested saturation feedback functions for tracking control of helicopters in [14]. In a relevant
study [28], to independently track the yaw and pitch position references, a backstepping
adaptive nonlinear controller has been designed. The authors in [16] implemented an
optimized fractional-order sliding mode controller (SMC) on the 2-DOF Quanser AERO
helicopter testbed where they chose the sliding surface in a fractional-order hyperplane
in order to reduce the chattering. Other nonlinear and learning-based control strategies
developed for helicopter systems can be found in [11–13,15,17–19].

In our previous work [9], to achieve both asymptotic regulation to desired set points
and trajectory tracking of a 2-DOF helicopter system an observer-based SMC strategy is
developed. Moreover, to prove set point stabilization and robust trajectory tracking of the
helicopter, and the convergence of the velocity estimates, Lyapunov-based analyses are
provided. In [10], to achieve robust nonlinear tracking control of the 2-DOF helicopter
system, we extended our results in [9] by replacing the sliding mode observer with a bank
of dynamic filters. Furthermore, to illustrate the effectiveness of the dynamic filter-based
tracking control strategy, numerical simulation and experimental results are provided using
the Quanser 2-DOF AERO helicopter.

Although all these nonlinear and learning-based methods have several advantages
such as dealing with uncertainties and disturbances, they are mostly computationally
expensive to be implemented in real-time. To this end, in this paper, we follow the key
steps presented in [20] for the design of a simple learning control strategy for the trajectory
tracking of a 2-DOF helicopter system. Our main contributions in this paper are as follows:

i Development of a simple learning based robust control algorithm that is computation-
ally efficient for real-time implementation.

ii Demonstration of the effectiveness of the proposed tracking control law via experi-
mental results using the Quanser 2-DOF AERO helicopter.

The rest of this paper is organized as follows: the mathematical model of the 2-DOF
helicopter system is presented in Section 2. In Section 3, the gradient descent-based simple
learning control strategy design is investigated and discussed. We illustrate the satisfactory
performance of the proposed method by providing several numerical simulations and
experimental implementation in Section 4, and finally conclusions and further extensions
are presented in Section 5.

2. Mathematical Model

Consider the schematic representation of a 2-DOF helicopter system shown in Figure 1,
where the right-handed frame B is a body-fixed frame with axes x, y, and z. The system has
two identical propellers. The horizontal propeller generates a thrust force Fp at distance rp,
which results in a pitch torque around the y-axis. The vertical propeller generates a thrust
force Fy at distance ry, which results in a yaw torque abut the z-axis.
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Figure 1. Schematic representation of the Quanser 2-DOF AERO helicopter.

Let θ and ψ denote the pitch and yaw angles, respectively. Then, the dynamical model
of the helicopter can be expressed as [9]:

θ̈ =
1
a1
[KppVp + KpyVy + a2] (1)

ψ̈ =
1
b1
[KypVp + KyyVy + b2] (2)

where
a1 = Jp + ml2

cm

a2 = −mglcm cos θ − Dp θ̇ −mlcmψ̇2 sin θ cos θ

b1 = Jy + ml2
cm cos2 θ

b2 = −Dyψ̇ + 2ml2
cmψ̇θ̇ sin θ cos θ

where m is the helicopter mass, lcm is the distance between the center of mass and the point
of rotation, (Dp, Dy) are viscous friction coefficients, (Kpp, Kpy, Kyp, Kyy) are the thrust
torque constants, and Jp and Jy are moments of inertia (MOIs) around the pitch and yaw
axes, respectively. The control input voltages to the DC torque motors are Vp and Vy, which
control the pitch and yaw propellers, respectively. These input voltages are restricted to
[−24, 24] V.

3. Control Design

Consider the nonlinear dynamical system defined by (1) and (2). Define the following
input transformation from (Vp, Vy) to (u1, u2):[

u1
u2

]
=

[
Kpp Kpy
Kyp Kyy

][
Vp
Vy

]
(3)

so that (1) and (2) can be rewritten as

θ̈ =
1
a1
(u1 + a2) (4)

ψ̈ =
1
b1
(u2 + b2) (5)
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Clearly, each of these two equations can be written in the following form:

ẋ1 = x2 (6)

ẋ2 = f (x) + g(x)u + d (7)

where the state vector and control input are defined as x = [x1, x2]
T ∈ R2 and u ∈ R,

respectively. The modeling uncertainties and external disturbances are lumped together as
disturbance d ∈ R, which is assumed bounded. The control objective is to design a control
input u such that the system tracks the given reference trajectory r(t) = [r1(t), r2(t)]T ,
where r2 = ṙ1, while all the states and input remain bounded.

Remark 1. Although there exist several works on UASs or similar systems such as [29,30], which
do not require any knowledge of system parameters, our work demonstrates that considering
some information about the dynamics of the system could significantly reduce the computational
complexity of the designed controller and make it suitable for real-time implementation; however, one
can extend our results by designing an approximator to estimate the system parameters, e.g., [21].

Define the tracking error variables

e1 = r1 − x1 (8)

e2 = r2 − x2 (9)

and consider the following control input:

u = g−1(x)
[
− f (x) + k1e1 + k2e2 + ṙ2 − d̂

]
(10)

where d̂ is the estimated disturbance and ki > 0, i = 1, 2, are control gains. Then the
closed-loop error dynamics can be derived as follows

ė1 = e2 (11)

ė2 = −k2e2 − k1e1 − d + d̂ (12)

For robust control performance, the desired closed-loop error dynamics defined as

c(e, kdes) = ė2 + kdes
2 e2 + kdes

1 e1 (13)

should converge to zero. Here gradient decent method is used for the minimization of the
closed-loop error function (or the cost function) given by

C =
1
2
(c(e, kdes)2 (14)

The time-update rule for controller gains is given by

k̇i = −α
∂C
∂ki

= αic(e, kdes)ei (15)

where αi > 0 is the learning rate for the ith controller gain. Similarly, the update rule for the
disturbance estimate is

˙̂d = −αd̂
∂C
∂d̂

= −αd̂c(e, kdes) (16)

where αd̂ is the learning rate for the disturbance estimate d̂. The controller gains and
disturbance estimates are updated until the cost function goes to zero, i.e., C(e, kdes) = 0.
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Stability Proof

The closed-loop error dynamics can be rewritten as

ë1 + k2 ė1 + k1e1 − d̂ + d = 0 (17)

We assume that the average rate of change of the disturbance d is much smaller than that of
the error state variables so that taking the time derivative of (17) with ḋ = 0 yields

...
e 1 + k2 ë1 + (k1 + k̇2)ė1 + k̇1e1 − ˙̂d = 0 (18)

Plugging the expressions for k̇i and ˙̂d in (18) yields

...
e 1 + a1(ξ)ë1 + a2(ξ)ė1 + a3(ξ)e1 = 0 (19)

where ξ = [e1 ė1 ë1]
T is the state and

a1(ξ) = k2 + αd̂ + β(ξ), a2(ξ) = k1 + kdes
2 (αd̂ + β(ξ)) (20)

a3(ξ) = kdes
1 (αd̂ + β(ξ)), β(ξ) = α1e2

1 + α2 ė2
1 (21)

Equation (19) is in a pseudo-linear form. Following [31], we perform a Routh–Hurwitz
criterion-based stability analysis. Clearly, ai(ξ) > 0, i = 1, 2, 3, ∀ξ and the characteristic
equation corresponding to ai(0), i = 1, 2, 3, is given by

s3 + a1(0)s2 + a2(0)s + a3(0) = 0 (22)

Applying the Routh–Hurwitz criterion, it can be shown that all the roots of characteristic
Equation (22) have negative real parts if a1(0)a2(0) > a3(0), where

a1(0) = k2 + αd̂, a2(0) = k1 + kdes
2 αd̂, a3(0) = kdes

1 αd̂ (23)

Equivalently, the closed-loop error system is asymptotically stable if

kdes
2 α2

d̂ + (k1 + k2kdes
2 − kdes

1 )αd̂ + k1k2 > 0 (24)

In what follows, we choose ki, kdes
i , and αd̂ such that this stability condition is satisfied.

4. Numerical Simulation and Experimental Results

This section presents the results of computer simulations and experimental implemen-
tation of the 2-DOF helicopter control under three different scenarios. The performance
of the control law proposed in Section 3 is evaluated using the system parameters of the
Quanser AERO 2-DOF helicopter. Nominal and estimated system parameters are given
in Tables 1 and 2, respectively. It is worth noting that the proposed controller is robust
to variation in system parameters meaning that regardless of using the values in Table 1
or Table 2, the performance of the developed controller is satisfactory. The performance
of the proposed method is further validated by comparing it to PID and LQR controllers,
which are available on the Quanser website.

In the first two scenarios, we have considered two cases (Sections 4.1 and 4.2) for the
computer-based numerical simulation and the last scenario is provided for experimental
validation (Section 4.3). In the first scenario, the proposed simple learning-based controller
is utilized to generate control actions for sinusoidal trajectories while in the second scenario,
it is utilized for maintaining the system to track constant trajectories. In the numerical
simulation scenarios, the total simulation time is 60 s. All experimental implementations
are carried out on a platform with the following specifications: Windows 10 Enterprise;
Processor: Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz, 3000 Mhz, 8 Core(s), 8 Logical
Processor(s); RAM: 32.0 GB.
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Table 1. System Parameters.

Symbol Parameter Value Unit

Jp Pitch inertia 0.0215 kg·m2

Jy Yaw inertia 0.037 kg·m2

lcm Distance b/w center of mass and origin of B 0.002 m
m Mass 1.075 kg
Dp Pitch viscous friction coefficient 00071 N

V
Dy Yaw viscous friction coefficient 0022 N

V
Kpp Pitch torque thrust gain from pitch prop 0.0011 N·m

V
Kpy Pitch torque thrust gain from yaw prop 0.0007 N·m

V
Kyp Yaw torque thrust gain from pitch prop −0.0027 N·m

V
Kyy Yaw torque thrust gain from yaw prop 0.0022 N·m

V

Table 2. Estimated System Parameters.

Symbol Parameter Value Unit

K̂pp Est. Pitch torque thrust gain from pitch prop 0.0008 N·m
V

K̂py Est. Pitch torque thrust gain from yaw prop 0.00046 N·m
V

K̂yp Est. Yaw torque thrust gain from pitch prop −0.0014 N·m
V

K̂yy Est. Yaw torque thrust gain from yaw prop 0.0028 N·m
V

The initial conditions for the simulations are selected as

(θ0, ψ0) = (0, 0) [deg]

(θ̇0, ψ̇0) = (0, 0) [deg/s]

The expressions for the desired closed-loop pitch and yaw error dynamics are given by

cp(e, kdes) = ëp + kdes
p2

ėp + kdes
p1

ep (25)

cy(e, kdes) = ëy + kdes
y2

ėy + kdes
y1

ey (26)

where (ep, ey) are the pitch and yaw errors, (ėp, ėy) are the pitch rate and yaw rate errors, and
(ëp, ëy) are the pitch acceleration and yaw acceleration errors. The parameters (kdes

p1
, kdes

y1
)

and (kdes
p2

, kdes
y2

) are the desired simple-learning gains for the pitch and yaw angles and their
rates, respectively.

The following gains for the desired closed-loop error dynamics are used in both cases
(Sections 4.1 and 4.2) for the simulation:

kdes
p1

= 4, kdes
y1

= 4

kdes
p2

= 4, kdes
y2

= 4

The initial controller gains and their learning rates are given by

kp1(0) = 5, ky1(0) = 5

kp2(0) = 3, ky2(0) = 3

αp1 = 1, αy1 = 1

αp2 = 1, αy2 = 1
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In both simulation scenarios, external torques equal to 0.5 N ·m are imposed on both pitch
and yaw as external disturbances. The initial disturbances and disturbance learning rates
are as follows

d̂p(0) = 0, d̂y(0) = 0

αd̂p
= 1, αd̂y

= 1

4.1. Case I: Tracking Sinusoidal Trajectories

In the first simulation, time-varying trajectory tracking control of the 2-DOF helicopter
is investigated. The desired trajectory is given as the following:

θd(t) = 10 cos t [deg]

ψd(t) = 45 sin
t
4

[deg]

Figure 2 shows the sinusoidal time-varying desired trajectories and the tracking
outputs of the system where the proposed controller is in green (solid line), the LQR in
magenta (dotted line), the PID in cyan (dashed-dotted line), and the desired trajectory in
black (dashed line). The control gains (kp1 , kp2) and (ky1 , ky2), the estimated disturbances
(d̂p, d̂y), and the control input voltages (Vp, Vy) for Case I are shown in Figures 3–6.

0
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15

0 10 20 30 40 50 60

0

50

Figure 2. Trajectory tracking (Case I-simulation).
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Figure 3. Control gains for pitch control (Case I-simulation).

Figure 4. Control gains for yaw control (Case I-simulation).
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Figure 5. Estimated disturbances (Case I-simulation).
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Figure 6. Input voltages (Case I-simulation).

By looking at Figure 2, we can observe that the pitch and yaw angles perfectly tracks
the reference trajectory by using all the controllers; however, it is worth noting that the
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performance of the proposed controller is superior compared to the other two controllers
(LQR and PID) especially in tracking the pitch angle.

4.2. Case II: Tracking Constant Trajectories

In the second simulation, constant trajectory tracking control of the 2-DOF helicopter
is investigated. The following set point is considered as the desired trajectory:

(θd(t), ψd(t)) = (−10, 45) [deg]

Figure 7 shows the constant desired trajectories and the tracking outputs of the system
where the proposed controller is in green (solid line), the LQR in magenta (dotted line), the
PID in cyan (dashed-dotted line), and the desired trajectory in black (dashed line). The
control gains (kp1 , kp2), and (ky1 , ky2), the estimated disturbances (d̂p, d̂y), and the control
input voltages (Vp, Vy) for Case II are shown in Figures 8–11.

0

5

0 10 20 30 40 50 60

0

10

20

30

40

50

Figure 7. Trajectory tracking (Case II-simulation).

As seen in Figure 7, the pitch and yaw angles converge to the desired set point;
however, the performance of the other two controllers (LQR and PID) especially in tracking
the pitch angle is degraded. It is worth noting that the parameters of all the controllers
remained the same as in the previous scenario (i.e., Section 4.1), which further validates the
effectiveness of the proposed controller under varying conditions.
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Figure 8. Control gains for pitch control (Case II-simulation).

Figure 9. Control gains for yaw control (Case II-simulation).
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Figure 10. Estimated disturbances (Case II-simulation).
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Figure 11. Input voltages (case II-simulation).



Electronics 2022, 11, 2075 13 of 18

4.3. Case III: Experiment

We experimentally validated our proposed method on the Quanser 2-DOF AERO
2-DOF helicopter system testbed (see Figure 12). The desired trajectory is given as:

θd(t) = 10 sin t [deg]

ψd(t) = 45 sin
t
4

[deg]

The following gains for the desired closed-loop error dynamics are used for experi-
mental validation:

kdes
p1

= 550, kdes
y1

= 50

kdes
p2

= 50, kdes
y2

= 50

The initial controller gains and their learning rates are given by

kp1(0) = 8, ky1(0) = 8

kp2(0) = 8, ky2(0) = 8

αp1 = 1, αy1 = 1

αp2 = 1, αy2 = 1

The disturbance vector is initialized as

d̂p(0) = 0, d̂y(0) = 0

The disturbance learning rates are

αd̂p
= 1, αd̂y

= 1

Figure 13 shows the sinusoidal time-varying desired trajectories and the tracking
outputs of the system where the proposed controller is in green (solid line), the LQR in
magenta (dotted line), the PID in cyan (dashed-dotted line), and the desired trajectory in
black (dashed line). The control gains (kp1 , kp2), and (ky1 , ky2), the estimated disturbances
(d̂p, d̂y), and the control input voltages (Vp, Vy) for Case III are shown in Figures 14–17.

Figure 12. Quanser 2-DOF AERO 2-DOF helicopter system testbed.
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Figure 13. Trajectory tracking (Case III-experiment).

Figure 14. Control gains for pitch control (Case III-experiment).
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Figure 15. Control gains for yaw control (Case III-experiment).
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Figure 16. Estimated disturbances (Case III-experiment).
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Figure 17. Input voltages (Case III-experiment).

As seen in Figure 13, the pitch and yaw angles track the desired trajectory perfectly;
however, the performance of the other two controllers (LQR and PID) especially in tracking
the pitch angle is degraded.

5. Conclusions

A trajectory tracking control strategy for a 2-DOF helicopter system testbed is pre-
sented in this paper. The proposed learning strategy compensates for model uncertainties
and disturbances. This is performed by designing a gradient descent-based simple learning
control strategy that minimizes the cost function defined by the error dynamics of the
nonlinear system. The effectiveness of the attitude trajectory tracking control method is
validated through both computer simulation and experimental results. Comparison with
the well-known existing methods such as LQR and PID controllers further validate the
satisfactory performance of the developed method.

Future work will consider extending our results by designing an approximator to
estimate the system parameters in real-time, which will make the current architecture less
dependent on the knowledge of the system.
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