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ABSTRACT Cybersecurity is important today because of the increasing growth of the Internet of Things
(IoT), which has resulted in a variety of attacks on computer systems and networks. Cyber security has
become an increasingly difficult issue to manage as various IoT devices and services grow. Malicious
traffic identification using deep learning techniques has emerged as a key component of network intrusion
detection systems (IDS). Deep learning methods have been a research focus in network intrusion detection.
A Recurrent Neural Network (RNN) is useful in a wide range of applications. First, this paper proposes a
novel deep learning model for anomaly detection in IoT networks using a recurrent neural network. Long
Short TermMemory (LSTM), BiLSTM, and Gated Recurrent Unit (GRU) techniques are used to implement
the proposed model for anomaly detection in IoT networks. A Convolutional Neural Network (CNN)
can analyze input features without losing important information, making them particularly well suited for
feature learning. Next, a hybrid deep learning model was proposed using convolutional and recurrent neural
networks. Finally, a lightweight deep learning model for binary classification was proposed using LSTM,
BiLSTM, and GRU based approaches. The proposed deep learning models are validated using NSLKDD,
BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets. Compared to current deep learning
implementations, the proposed multiclass and binary classification model achieved high accuracy, precision,
recall, and F1 score.

INDEX TERMS Internet of Things, anomaly detection, recurrent neural network, convolutional neural
network, LSTM, BiLSTM, GRU.

I. INTRODUCTION
The fast expansion of the Internet has facilitated the
development of the Internet of Things. A common element
contributing to this development is the ease with which IoT
devices are available, affordable, and convenient in everyday
lives. Due to the fast advancement of wireless communication
technologies, developers have built extremely low cost
IoT nodes that support data collection, data analysis, and
wireless transmission [1]. IoT is a network of linked physical
devices and sensors that enables information sharing via the
Internet. IoT networks have become particularly effective in
collecting, analyzing, reporting, and predicting information
for use in future plans. IoT networks are made up of
various technologies, including protocols, software, and
sensor elements. An IoT architecture is a collection of
multiple components such as sensors, actuators, protocols,
cloud services, and layers of an IoT communication network.
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Each architecture is divided into several layers that enable
network administrators to detect, analyze, and monitor the
IoT system’s consistency. There is no single agreed upon
design for IoT, with numerous designs proposed by various
manufacturers. The primary types of architecture are three,
four, and five layer structures. A three layer structure,
comprised of perception, network, and application layers,
is the most basic configuration for IoT implementation. The
perception layer is equipped with sensors, actuators, and
computational hardware to detect and collect information
from the environments. The physical layer handles tasks such
as setting a frequency, manipulating the signal, encrypting
the signal, and transmitting and receiving data. This layer
has several issues, including power consumption, security,
and compatibility. IoT devices are connected to other smart
objects, network equipment, and services via the network
layer. This layer receives data from the perception layer
and passes the data to the application for analytics and
smart services. The network layer needs to deal with
reliability, network capacity, energy usage, and security.

62722 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2952-7215
https://orcid.org/0000-0003-0472-5757
https://orcid.org/0000-0003-0513-3665


I. Ullah, Q. H. Mahmoud: Design and Development of RNN Anomaly Detection Model for IoT Networks

The application layer provides user specific services and
applications [2], [3].

The application, data processing, network, and perception
layers constitute a four layer architecture. The application
layer describes all IoT applications and connects end IoT
devices to the network. Application layer grants access to
different services depending on the information gathered
by sensors. The data processing layer receives information
from the perception layer and ensures that only data from
legitimate users is transmitted by being secure against
cyberattacks. The network layer connects the real and virtual
worlds by gathering data from sensors and transferring it to
other network devices and networks. The perception layer,
also known as the sensor layer, identifies and collects data
from IoT devices. An IoT network will likely consist of
sensors of various types. The perception layer should be able
to identify between these diverse sensors and their various
operation methods.

A five layer IoT architecture adds the processing and
business layers to the three layer model design. The percep-
tion and application layers serve the same purpose as the
three layered architecture in this architecture. The transport
layer sends and receives data from IoT sensors between
the perception and processing layers. The processing layer,
also known as the middleware layer, manages the storage,
analysis, and processing of large data volumes delivered
by the transport layer. The business layer oversees the
IoT system’s general administration, including applications,
business models, and user privacy. The IoT network can be
a Low Power Wide Area Network (LPWAN), Local and
Personal Area Network (LAN / PAN), cellular network,
or mesh network [4].

Recently, the Industrial Internet of Things (IIoT) has
emerged as the most rapidly developing revolutionary
technology, with the ability to digitize and integrate numerous
sectors, resulting in significant economic benefits for all
relevant stakeholders. IIoT offers significant potential for
developing a wide range of industrial applications, but they
are also vulnerable to cyberattacks and need higher levels
of security. The wide range of sensors in the IIoT networks
creates a significant volume of data, which has caught the
interest of hackers worldwide. When it comes to protecting
IIoT applications from cyberattacks, the intrusion detection
system, which monitors network traffic and identifies net-
work behavior, is regarded as one of the most important
security measures [5]. As the IoT networks technology
continues to advance, cyber attack detection measures are
becoming more important in assuring the security of IoT
networks. However, with the continuous development of IoT
network traffic, standard IDSs are incapable of rapidly and
reliably identifying complex and varied IoT network attacks,
particularly those using low frequency attacks [6].

IoT devices and cloud computing are among the expanding
Internet connected services, making it increasingly difficult
to prevent cyber attacks. Cyberattacks have evolved into
severe threats to security and privacy, as their influence on

IoT devices would result in financial losses and potentially
risk human life. Network intrusion detection is important
for monitoring and identifying potential threats, events,
and breaches. Security systems, such as firewalls and
intrusion detection systems, are vulnerable to modern cyber
threats since existing techniques are focused on static attack
signatures and cannot recognize new attack variants [7].

IoT is a valuable target for cybercriminals because of
its significant economic impact and widespread influence
on our lives. Cybersecurity has gone to the top of the
priority list for IoT infrastructure. Even though cybersecurity
has been studied for years, the growing IoT networks
and the introduction of innovative threats have rendered
conventional measures ineffective. The study conducted by
Tsimenidis et al. [8] provides a comprehensive assessment
of deep learning models that have been developed for
IoT intrusion detection. Deep learning has been used for
IoT cybersecurity, and models have categorized its unique
contributions to establishing efficient IoT intrusion detection
systems in a detailed and organized evaluation.

It is becoming more concerning for most service providers
as the number of computer networks and Internet threats
grows. It has motivated the development and implementation
of IDSs to help prevent and mitigate threats caused by
network intruders. An important role in detecting network
cyberattacks and abnormalities has been performed and
continues to be played by intrusion detection systems.
Researchers have proposed numerous intrusion detection
techniques to counter the threats posed by network intruders.
However, most previously proposed intrusion detection
systems have high rates of false alarms [9].

The primary aim of this paper is to design and develop
an RNN based anomaly detection model for IoT networks.
Kernel, bias, and activity regularizers were implemented
in RNN models. Layer normalization was utilized in these
models, which optimizes and stabilizes the learning process.
Layer normalization and activity regularization layers were
used to develop novel RNN and CNNRNN based models
for multiclass and binary classification. In contrast to batch
normalization, the layer normalizationmethod normalizes the
activations of the previous layer for each given sample in a
batch individually rather than across the entire batch. Activity
regularization changes the cost function, which is based on
input activities. These models were aided in learning weak
features by incorporating an activity regularization layer
into their design. A model is vulnerable to overfitting, and
significant changes will be required during training to avoid
overfitting. Overfitting of the RNN models was assessed
using the dropout layer, early stopping, and 5-fold cross-
validation techniques.

First, class weights are utilized to address class imbalances
in datasets during the training phase. The weights assigned
to classes were determined by the number of instances of
each class, so a minority class with a small number of
instances will receive a high weight. Next, new synthetic
sampleswere created using the borderline SMOTE algorithm.
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The random state controls the algorithm’s randomization. The
borderline SMOTE is being used to ensure the training set is
balanced. Features extracted from pcap files are generalized
features applicable to any IoT network. The NSLKDD,
BoT-IoT, IoT Network Intrusion, IoT-23, MQTT, MQTTset,
and IoT-DS2 datasets evaluated the proposed multiclass and
binary classification models. The contributions of this paper
are:
• Design of an anomaly detection model for IoT networks
using a recurrent neural network.

• Design of an anomaly detection model for IoT networks
using convolutional and recurrent neural networks.

• A lightweight anomaly detection model for IoT net-
works using a recurrent neural network.

• Performance improvements of multiclass and binary
classification models.

The remainder of this paper is organized as follows: Section II
provides a discussion of the related work. Section III explains
the design and development of the recurrent and convolu-
tional neural networks models for anomaly detection in IoT
networks. Section IV discusses the data collecting process
for evaluating the proposed models. Section V presents the
evaluation results, followed by discussion and comparison of
results in Section VI. Finally, Section VII concludes the paper
and offers recommendations for future research.

II. RELATED WORK
Millions of IoT devices are embedded in smart cities,
enabling important applications such as smart homes,
autonomous vehicles, and communications. The smart city
is based on millions of heterogeneous sensors that do
not support traditional security frameworks. Several man-
ufacturers use inadequate protection mechanisms for their
devices and fail to upgrade their firmware in response to
recently discovered operational security breaches. To achieve
comprehensive management of sensor operating systems
while maintaining perfect security, smart cities need a
common architecture that combines soft computing and deep
learning [10].

While many machine learning methods have been used
to identify anomaly based invasions, relatively few attempts
have been made to classify recurrent neural networks. The
IoT devices have evolved fast in recent years, and cyber
cyberattacks on IoT devices are becoming common. It has
become more necessary to have an effective approach
for identifying malicious attacks in the IoT domain to
reduce security threats on IoT devices. Alkahtani et al. [11]
developed a hybrid deep learning approach based on CNN
and LSTM for detecting botnet attacks on nine IoT devices.
Their methodology proved effective in identifying botnet
assaults from various IoT devices with an average accuracy
of 90%.

Autonomous Vehicles (AVs) are prone to safety and secu-
rity issues, risking human life. The Internet of Vehicles (IoVs)
is a network of manually operated vehicles connected to the
Internet. If cyber attackers get access to these vehicles, they

might be utilized for malicious purposes. Khan et al. [12]
have developed a multistage intrusion detection system to
identify intrusions in AVs and the Internet of Vehicles (IoVs)
while minimizing the number of false alarms. The proposed
framework uses a BiLSTM architecture to detect intrusions
from AVs network gateways and communication networks.
Additionally, the suggested system can detect zero day
outbreaks in networks of IoVs.

Smart home network IoT devices are susceptible to
sophisticated botnet assaults. Popoola et al. [13] examine the
performance of RNNs in properly classifying network traffic
samples belonging to minority groups in severely unbalanced
network traffic data. To learn hierarchical representations
of highly unbalanced network traffic data with different
degrees of abstraction, many layers of RNN are stacked.
To effectively capture the classifying properties of severely
unbalanced network traffic samples, the stacked RNN model
was used instead of the RNN model. The SRNN model also
showed excellent generalization abilities when recognizing
network traffic samples from minority groups.

The number of computer controlled automobiles is
increasing at an alarming rate worldwide. Even though this
improves the driving experience, it introduces a new security
vulnerability in the automobile business. Desta et al. [14]
suggested an LSTM based intrusion detection system built
on arbitration ID sequences. They were only able to get an
accuracy of 60% using this strategy. Applying this finding to
a real car would result in a large number of false negatives;
they designed a second strategy that utilizes log loss as an
anomalous indicator.

Malicious traffic identification using deep learning tech-
niques has become a crucial aspect of network intrusion
detection research. Most effective IDS require packets to be
classified into specific flows before analysis, which causes
processing delays. In order to identify malicious traffic at
the packet level, Wang et al. [15] offer a deep learning
strategy, employing hierarchical networks, which can learn
the properties of communication using basic data packets.
They also explored how data balance affects classification
performance and time efficiency between the LSTM and
GRU models.

Hao et al. [16] utilize the encoder to automatically
process and analyze network packets to get properties
that appropriately reflect the network packets. The variant
gated recurrent units dynamically understand data packet
content and header attributes to significantly increase the
IDS detection rate. The experimental findings from the
ISCX2012 dataset indicate that intrusion detection using
the proposed variant gated recurrent units provides a greater
level of accuracy and detection rate. Using binary weights
and activation functions, their proposed model provides a
greater representation of the data than the original raw data,
which helps to minimize the amount of memory and access
time. An overview of recent developments in deep learning
for intrusion detection is presented in Table 1. In Table 1,
DR mean detection rate, Acc represents the accuracy, F1
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TABLE 1. An overview of the related work in deep learning for intrusion detection.
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represents the F1 score, and Pr represents precision. When
data is unavailable, it is denoted by a ‘‘-’’.

Recent years have seen a tremendous influence on
industrial production because of the fast development and
widespread use of new technologies, resulting in smart
manufacturing (SM). However, industrial systems based on
the IoT are currently one of the most targeted sectors for
various cyberattacks. An anomaly detection approach is
proposed by Huong et al. [65] to identify industrial control
systems cyberattacks. The framework outperforms existing
time series data detection solutions in terms of detection
performance. In the Industrial IoT (IIoT), a vast quantity
of data processing takes place in the cloud and at the edge
to perform various types of analytics. IIoT routing attacks
can be detected using Nayak et al. [66] deep learning based
routing attack detection technique. The proposed solution
uses parallel learning and detection to facilitate deep learning
on IIoT devices with limited processing power. The parallel
model output is tested in an IIoT network to compare the
performance of distributed and centralized threat detection in
an RPL network. Training time is significantly reduced when
a parallel GAN model is used.

Although various relevant research has utilized deep
learning for NIDS, most of these techniques fail to consider
the impact of overfitting when deep learning algorithms
are implemented. Therefore, the anomaly detection sys-
tem’s resilience may be compromised, making detecting
zero day cyberattacks less effective. Convolutional neural
networks and a novel regularizer technique were proposed
by Elsayed et al. [59] to categorize network flow traffic
into normal and attack categories. Additionally, they propose
a lightweight CNN model with fewer features without
sacrificing model performance significantly. Advanced infor-
mation and communication technologies have facilitated the
dissemination of a large quantity of information, which
continues to grow day by day through the Internet and the
creation of new added value via Internet based activities.
Increasing numbers of diverse connecting points with high
computing capability have expanded cyber security concerns.
Biswas et al. [57] have suggested a new deep learning strategy
to distinguish malicious botnet traffic from normal traffic.

The widespread availability of Internet services around
the globe has presented a significant challenge to service
providers in terms of protecting their systems, particu-
larly against new breaches and threats. The GRU is the
most effective model for botnet detection; however, it is
computationally costly, yet it can handle large amounts
of data and identify sequences efficiently. Deep learning
approaches based on the LSTM algorithm were developed
by Laghrissi et al. [58] for the purpose of detecting attacks.
They utilized PCA and mutual information to reduce the
dimensionality of the data and select the best features. These
techniques were also evaluated in terms of performance and
processing time.

The battery performance of IoT devices is a major concern,
as the devices consume a significant amount of energy when

connected. IoT devices might also contain important network
data, raising major privacy and security risks. Botnet attacks
are significant threats to IoT smart devices. Ashraf et al. [67]
secure IoT networks against botnet cyberattacks using
statistical learning for botnet detection. Louk et al. [68]
address a gap in the literature by showing the importance
of ensemble models for detecting potential attacks in a
cyber physical power system. They balanced the dataset
by employing oversampling and undersampling techniques.
Oversampling and undersampling were beneficial in a
boosting ensemble model but were ineffective in a bagging
ensemble model. Ensemble learners have outperformed
single learners in a wide variety of applications, including
the cybersecurity area. However, the majority of previously
publishedworks continue to produce unsatisfactory outcomes
due to insufficient ensemble design. Nkenyereye et al. [69]
demonstrate the efficacy of stacking ensemble models for
anomaly detection, where a deep neural network is utilized
as a basic learner model. The suggested model’s effectiveness
and DNNmodel are experimentally compared using a variety
of performance criteria.

A two-level hybrid anomalous activity detection model has
been proposed to detect intrusions in IoT networks, which
detects abnormal activity at level1 and analyses the identified
anomalous activity at level2 [70]. The level-2 model selects
relevant features using Recursive Feature Elimination (RFE),
oversampling using Synthetic Minority Over Sampling Tech-
nique (SMOTE) and cleaning the data using Edited Nearest
Neighbors (ENN). A three-layer system was proposed to
detect intrusions in a smart grid system [71]. The proposed
structure includes an IDS in eachHomeAreaNetwork (HAN)
and Neighborhood Area Network (NAN) and many IDS
sensors in the WAN. In modeling anomaly based intrusion
detection systems, feature selection is important. A filter
based feature selection methodology was proposed for
anomaly based intrusion detection systems that leverage
information gain by considering each feature’s consistency,
dependency, content, and distance [72]. Additionally, using
an industrial control system dataset, the suggested model
for feature selection was evaluated for anomaly detection in
SCADA networks [73].

It is challenging to extract valuable information from
network traffic to identify possible anomalies. Many different
network flow features were investigated to address this chal-
lenge [74], [75]. A feed forward neural network technique
for identifying anomalous activity in IoT networks based on
flow and control flags features has been presented [76]. The
model was assessed for multiclass and binary classification
using a variety of IoT network intrusion datasets. Using
conditional GANs to create realistic distributions for a given
feature set, a framework for identifying anomalies in IoT
networks was proposed, which overcomes data imbalance
by using conditional GANs to detect abnormalities in IoT
networks [77].

Since IoT devices are increasingly being used in critical
infrastructures and cyber physical systems, there has been
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a significant increase in research efforts to develop efficient
defenses against cyber attacks. IoT networks can be protected
from a wide range of cyberattacks using a framework called
Boost Defense, developed by Al-Haija et al. [78]. A strong
classifier for identifying and categorizing cyberattacks in
IoT networks was built using AdaBoost, decision trees, and
substantial data engineering approaches. Anomaly NIDS
are lightweight and versatile to construct profiles for
normal and malicious behavior using a variety of ways.
Al-Haija et al. [79] used machine learning approaches
to design and evaluate an anomaly based IoT NIDS.
It was modeled as supervised multiclass learning, where a
classification function was developed to map a collection of
labels to ten classes.

III. PROPOSED MODEL
A. RECURRENT NEURAL NETWORK
Neural networks have the ability to improve many aspects
of our daily lives. An artificial neural network with a
sequential information structure is known as a Recurrent
Neural Network (RNN). They are referred to as recurrent
because they execute the same function on each sequence
element, with the outcome depending on prior calculations.
RNNs are loop based networks that enable data preservation.
Long Short TermMemory (LSTM) network is a kind of RNN
that can learn long term dependencies. Hochreiter et al. [80]
introduce the LSTM network. The LSTM network performed
very well across a broad range of issues and is now
extensively utilized. LSTM is designed to prevent long term
dependence [81]. Each recurrent neural network comprises
a chain of repeating neural network modules. A recurrent
neural network includes loops, enabling information to be
retained in the network. In Fig.1, a simple recurrent neural
network with loops is shown. The neural network in Fig.1, A
examines the input xt and then generates output ht . A loop
enables data to be transferred from one network phase to the
next. LSTM is expressly intended to prevent the issue of long
term dependence. Each recurrent neural network comprises a
chain of repeating neural network modules. Table 2 shows a
list of symbols used to help understand the various concepts
presented in the following sections.

FIGURE 1. Simple recurrent neural network with loops characteristic.

The first stage of LSTM is to determine which information
from the cell state will be discarded. A sigmoid layer, known
as the ‘‘forget gate layer,’’ makes this determination. The

TABLE 2. List of symbols.

sigmoid layer examines the values in ht−1 and xt and returns
a value between 0 and 1 for each value in the cell state Ct−1.
A 1 indicates ‘‘completely retain,’’ whereas a 0 indicates
‘‘entirely discard.’’ The forget layer functioning of the LSTM
is shown in Fig. 2, and the operation of forgets gate layer
is represented by (1). It is necessary to determine what
additional information will be stored in the cell state due
to the input gate layer decision. The input gate layer, also
known as the sigmoid layer, determines the values to update.
Equation (2) represents the operation of the input gate layer,
and the input gate layer functioning of the LSTM is shown in
Fig. 3. A tanh layer generates a vector of potential nominee
values, C̃t that may be included in the state. A tanh layer
operation is represented by (3). Equation (4) updates the cell
state Ct−1 into the new Ct, and (4) function is resented in
Fig. 4.

ft = σ (Wf . [ht−1, xt ]+ bf ) (1)

it = σ (Wi. [ht−1, xt ]+ bi) (2)

C̃t = tanh(WC . [ht−1, xt ]+ bC ) (3)

Ct = ft × Ct−1 + it × C̃t (4)

The last step is to determine the output. The output result
will be based on the current state of the cell, but it will be a
simplified form of it. First, a sigmoid layer is implemented
that sets the output of the cell state based on the values
received. Equation (5) represents this operation. As shown
in (6), the system implements a cell state to the tanh function
and then multiplies it by the output of the sigmoid gate. This
process ensures that only the values that have been selected
to return are sent. The output ht operation is presented in (6)
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FIGURE 2. LSTM forget layer operation.

FIGURE 3. LSTM input gate layer operation.

FIGURE 4. LSTM cell state operation.

and Fig. 5.

ot = σ (Wo. [ht−1, xt ]+ bo) (5)

ht = ot × tanh(Ct ) (6)

Cho et al. [82] developed a slight variant of LSTM called
Gated Recurrent Unit (GRU). The GRU has two gates, while
the LSTM has three gates. The LSTM input and forget gates
are combined into an ‘‘update gate’’ in GRU. The GRU
eliminated the cell state and transferred information via the
hidden state. The update gate works the same way as the
LSTM forget and input gates. It determines which data should
be discarded and which should be included. The reset gate
determines how much previous information should be erased
from the memory. GRU utilizes fewer tensor operations than

FIGURE 5. LSTM output gate operation.

FIGURE 6. GRU cell operation.

LSTM, and as a result, it can be trained faster than the LSTM
model. A single GRU cell operation is presented in Fig. 6.
Equation (7) represents the reset gate operation, (8) describes
the update gate operation, (9) shows the current memory state
of the GRU, and (10) represents the final memory state of the
GRU.

rt = σ (Wr . [ht−1, xt ]) (7)

zt = σ (Wz. [ht−1, xt ]) (8)

h̃t = tanh(W . [rt × ht−1, xt ]) (9)

ht = (1−zt )× ht−1 + zt × h̃t (10)

BiLSTM is an extension of conventional LSTM that
enhancesmodel performance on sequence classification tasks
by learning in both directions simultaneously. Because they
train two LSTM on the input sequence instead of one,
BiLSTM is useful when all timesteps in the input sequence
are accessible. BiLSTM considers forward and backward
activation to calculate the output.

B. PROPOSED MODEL
Deep learning techniques are gaining popularity due to their
ability to detect computer network threats and abnormalities
in various applications. A recurrent neural network has shown
to be effective in multiple areas. Due to its better capability,
this article presents a model based on a recurrent neural
network. This paper design and develop LSTM, BiLSTM,
and GRU models for anomaly detection in IoT networks.
The model consists of an input layer, output layer, and four
recurrent, activation, normalization, activity regularization,
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and dropout layers. Overfitting is a significant concern for
deep learning models. Kernel, bias, and activity regularizers
were used at the LSTM, BiLSTM, and GRU layers to reduce
the possibility of overfitting. The kernel regularizer imposes a
penalty on the kernel of the layer; the bias regularizer enforces
a penalty on the bias of the layer while the output of the layer
is penalized by the activity regularizer. The regularizers uses
the value of l1-l2 to compute the value for kernel, bias, and
activity regularization.

In the proposed model, the activation layer adopted the
LeakyReLU activation function. Next, layer normalization
is applied, which typically accelerates and stabilizes the
learning process by decreasing error rates. A neural network
can be encouraged to learn weak features by using an activity
regularization layer. The activity regularization support
l1, l2, and l1-l2 regularization techniques. The activity
regularization layer updates the input activity, which is
dependent on a cost function. A recurrent neural network is
prone to overfitting and will need significant adjustments to
the training dataset to avoid it. By ignoring certain neurons
during the training period, a dropout layer mitigates the risk
of overfitting. Neuron weights in a neural network settle
into their environment as a network learns. Four recurrent,
activation, normalization, activity regularization, and dropout
layers were used across LSTM, BiLSTM, and GRU models.
A dense layer with 512 neurons and a LeakyReLU activation
function is utilized before the output layer. The output layer is
the last layer of the model, and the number of neurons in this
layer is dependent on the number of classes in the dataset.

A recurrent neural network was used to design an anomaly
detection model for IoT networks. Same structure was used
to construct LSTM, BiLSTM, and GRUmodels. Fig. 7 shows
a layered view of the proposed recurrent neural network
LSTM, BiLSTM, and GRU models. Table 3 shows the
proposed LSTM, BiLSTM, and GRU models parameters and
hyperparameters, including one input layer, four RNN layers,
four activation layers, four normalization layers, four activity
regularization layers, four dropout layers, one dense layer,
and one output layer. The input layer receives network traffic
flow with 64 features. First, a 64 × 1 input vector is created
to fit the 64 best features selected by the feature selection
method [83]. The LSTM model uses 512 units at each
LSTM layer. The LSTM model also uses kernel, bias, and
activity regularizers at the LSTM layer. These regularizers
use l1-l2 function for penalties. The activation layer uses the
LeakyReLU activation function, an alternative to Rectified
Linear Unit (ReLU) implementation. It does not contain zero-
slope sections; LeakyReLU solves the ‘‘dying ReLU’’ issue.
The LeakyReLU activation function accelerates the rate of
learning significantly. It’s been demonstrated that having the
‘‘mean activation’’ near to 0 speeds up the training process.
In contrast to ReLU, LeakyReLU is more ‘‘balanced’’; as a
result, it can learn more quickly [84]. A model normalization
layer may usually aid in accelerating and stabilizing the
learning process by reducing error rates. The LSTM model
training and validation details are presented in algorithm 1.

BiLSTM and GRU models were created using the same
parameters and hyperparameters.

FIGURE 7. Proposed LSTM, BiLSTM, and GRU models layer’s view,
parameters, and hyperparameters for multiclass classification.

Layer normalization has the potential to stabilize the
hidden state dynamics of a recurrent neural network.
To avoid introducing additional dependencies across training
instances, unlike batch normalization, layer normalization
calculates normalization statistics from the inputs neurons of
the hidden layer [85]. Regularization and dropout layers were
utilized to reduce the likelihood of overfitting. The activity
regularization layer makes changes to the input activity that
is dependent on the cost function. l1-l2 factors serve as a
baseline for the activity regularization layer functionality. The
dropout layer improves overfitting prevention by changing
some input units to 0 at a frequency equal to the dropout rate
during the training process. This implies that their impact on
downstream neuron activity is eliminated temporally on the
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Algorithm 1 LSTM Model
Input: X, y← Network Flows
Output: metrics
Set LSTM, activation, normalization, regularization, and

dropout layers parameters to define the LSTMmodel (LM)
Model←LM
Initialize batch size, optimizer, learning rate, epochs
for epochs= 1 to n do

while early stopping criteria= false
train Model
validate Model
monitor=’loss’
adjust loss function using sparse categorical
cross entropy

end while
end for
EvaluateModel
Perform prediction using Model
Calculate metrics
return metrics

forward pass, and any weight changes are not transferred to
the cell on the backward trip.

BiLSTM is a sequence processing model with two
LSTMs: one processing input in the forward direction and
the other LSTM processing in the backward direction.
The BiLSTM model provides higher predictions than the
normal LSTM model due to the extra data training. Long
training time is needed for the BiLSTM model. The
proposed BiLSTM model consists of an input layer, four
BiLSTM layers, four activation layers, four normalization
layers, four activity regularization layers, four dropout
layers, one dense layer, and one output layer, as shown in
Table 3.

The GRU was created to address the vanishing gradient
issue inherent in the conventional recurrent neural network.
GRUmay also be seen as a variant of the LSTM since they are
both constructed similarly and, in certain instances, provide
equally good outcomes. GRU uses update and reset gates
to overcome the vanishing gradient issue of a conventional
RNN. To put it another way, two vectors determine what
information should be sent to the output device. The proposed
GRU model also consists of an input layer, four GRU layers,
four activation layers, four normalization layers, four activity
regularization layers, four dropout layers, one dense layer,
and one output layer. Table 3 summarizes the proposed
recurrent neural network model.

A Convolutional Neural Network (CNN) is an algorithm
used in deep learning that takes an input picture, assigns
significance to distinct image elements, and can distinguish
between different image elements. A convolutional neural
network requires significantly less preprocessing than other
deep learning classification methods. Recent research has
shown that a convolutional neural network can produce
outstanding speech recognition and image identification

TABLE 3. LSTM, BiLSTM and GRU models parameters and
hyperparameters for multiclass classification.

results. The advantages of a convolutional neural network can
be fully revealed if intrusion detection problems are trans-
formed into image recognition problems. A convolutional
neural network can effectively capture spatial and temporal
correlations related to intrusion detection. A smaller number
of parameters and reusable weights make this design better
suited to the problem of intrusion detection than other deep
learning approaches [86].

Convolutional and recurrent neural networks were used
to design a model for anomaly detection in IoT networks.
Convolutional neural network learns input features without
losing essential information, making them ideal for pre-
diction. Figure 8 shows a layered view of the proposed
convolutional neural network based LSTM, BiLSTM, and
GRU models. Table 4 shows the parameters and hyperpa-
rameters of a convolutional neural network based LSTM,
BiLSTM, and GRU models for multiclass classification. The
convolutional layer was created using a CNN1D model.
Convolution is computed in 1D using temporal access, with
the kernel moving in just one direction. CNN1D requires
two dimensional input, and output data is regularly used to
process time series data. First, an input vector 64 × 1 is
created to correspond to the 64 best features selected by
the feature selection method. The convolutional layer is
combined with the activation, normalization, regularization,
and dropout layers. The activation layer uses LeakyReLU
activation function with an alpha value of 0.2. The layer
normalization uses a feature axis for normalization. The
activity regularization layer uses l1-l2 functions, and the
dropout layer randomly drops neurons to reduce the chance
of overfitting. A pooling layer reduces the dimension of a
complex feature and the computational resources required
to analyze the data. The model employs an average pooling
layer.

The activation, normalization, regularization, and dropout
layers are combined with two LSTM, BiLSTM, or GRU
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FIGURE 8. Proposed convolutional neural network based LSTM, BiLSTM,
and GRU models layer’s view, parameters, and hyperparameters for
multiclass classification.

layers. The dense layer receives input from the final dropout
layer, and the output of the dense layer is transferred to
the output layer. The dense layer uses 512 neurons and
LeakyReLU activation function. The number of neurons in
the output layer is determined by the number of classes in
the dataset. The output layer of the proposed model has
four, five, six, ten, and nineteen neurons. The following
benefits accrue from the initial model interface being a
convolutional neural network: The spatial and temporal
correlations associated with an anomaly detection problem
can be captured effectively by a convolutional neural network
when the optimal filters are used and with fewer parameters
and reusable weights, the architecture is more suited to fit the
anomaly detection data. The pooling layer lowers computing
power by reducing the dimension of the features.

A lightweight binary classification model utilizing a single
RNN layer was proposed. A layered view of the binary
classification model is presented in Fig. 9. The model consist
of an input layer, and the number of inputs to the model is
equal to the number of features in the dataset. The hidden
layer can be LSTM, BiLSTM, or GRU layer combined

TABLE 4. Convolutional neural network based LSTM, BiLSTM and GRU
models parameters and hyperparameters for multiclass classification.

with the activation, normalization, activity regularization, and
dropout layers. The activation layer uses LeakyReLU action
function, the normalization layer uses layer normalization,
and the regularization layer uses activity regularization along
with the l1-l2 penalty function. Regularization and dropout
layers lower the likelihood of the model overfitting. The
dense layer use 512 neurons and the LeakyReLU activation
function. The dense layer works as a classification layer,
and the output layer uses two neurons to classify the data
as normal or anomalous. Parameters and hyperparameters of
LSTM, BiLSTM, and GRU models for binary classification
are described in Table 5.

IV. DATA COLLECTION
BoT-IoT [87], IoT-NI [88], IoT-23 [83], MQTT [83],
MQTTset [83], and NSLKDD [89] datasets were used to
evaluate the proposedmodels. The first step included process-
ing pcap files of BoT-IoT [90], IoT Network Intrusion [91],
IoT-23 [92], MQTT-IoT-IDS2020 [93], and MQTTset [94]
datasets. CICFlowmeter [95] extracts 80 network features
from pcap files and stores them as CSV files. The adapted
datasets are available at [96]. The testbed architecture and
attacks on each dataset are described in detail in the previous
paper [83]. It is determined how to label each dataset instance
based on pre-defined criteria for each dataset instance.
Because the network features flow ID, source IP, source port,
destination IP, and timestamp characterize communication
inside a specific IoT network; they were removed from all
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FIGURE 9. Proposed LSTM, BiLSTM, and GRU models layer’s view,
parameters, and hyperparameters for binary classification.

TABLE 5. LSTM, BiLSTM and GRU models parameters and
hyperparameters for binary classification.

adapted datasets. Non-numeric features are transformed into
numeric features. Duplicate instances were produced when
the pcap data was converted to CSV files. These redundant
instances have been removed from all datasets. Features
were normalized within a given range (−1, 1) to eliminate
extreme valueswhichwill significantly speed up calculations.
The mean imputation method fills in missing values in all
datasets. It replaces missing values with the average of a
variable’s remaining values that have missing information.
Table 6 presents the BoT-IoT, IoT Network Intrusion, IoT-23,
MQTT, and MQTTset datasets with and without redundancy.

The BoT-IoT dataset pcap files were generated by
Koroniotis et al. [90]. The BoT-IoT dataset testbed comprises
virtual machines connected to the network through a
LAN and the Internet. The PFSense system establishes a
connection between the virtual machines and the Internet.
A realistic smart home framework was developed using five

IoT devices operated locally and connected to the cloud
services using the node-red system for producing network
traffic. Normal network traffic is generated with the help of
the ostinato tool. The Ubuntu server delivers IoT resources
for simulating a real world IoT network, while Kali Linux
serves as an attack system. Transmitting IoT messages into
the cloud was accomplished using the MQTT protocol. The
BoT-IoT dataset category classes are Normal, DDoS, DoS,
Scan, and Data Theft. The BoT-IoT dataset instances details
are presented in Table 6(a). The DDoS and DoS attack
categories were combined to form a single attack class.

The IoT Network Intrusion dataset pcap files were
generated by Kang et al. [91]. Two IoT devices SKT NGU
and EZVIZ Wi-Fi camera were used as victim devices. The
wireless network adapter collects the network traffic. Except
for the Mirai botnet category, all cyberattacks are constructed
of packets collected when modeling cyberattacks that use
software such as Nmap. A laptop produced attack packets
that were then altered to seem as though they came from
an IoT device in the instance of the Mirai botnet. The IoT
Network Intrusion dataset category classes are Normal, DoS,
MITM, Mirai, and Scan. Table 6(b) shows the details of the
IoT Network Intrusion dataset instances.

The IoT-23 dataset was developed by Stratosphere Lab-
oratory CTU University, Czech Republic [92]. There are
20 malicious events and three non-malicious events for
IoT devices. The objective of the IoT-23 dataset is to give
researchers a large labeled dataset of IoT malware infections
to build machine learning models. The IoT-23 dataset’s
testbed consists of IoT devices and interconnects networks.
A standard smart home structure was developed to generate
the dataset, consisting of an Amazon Echo device, Philips
Hue device, and Somfy door lock IoT devices. There are nine
types of attacks in the IoT-23 dataset. The IoT-23 dataset
contains twenty different network events that simulate a
variety of IoT device use cases. The normal network traffic
was also collected by gathering the network traffic of three
distinct IoT devices. These three devices are real hardware
devices, not a simulation. Like every real IoT network,
malicious and normal situations operate with unrestricted
Internet connectivity in a managed network. This dataset
provides the community with two distinct datasets: the first
dataset contains normal and malicious networks, while the
other dataset includes only normal IoT network capture.
The IoT-23 intrusion dataset’s primary advantages are that it
effectively simulates a recent trend in IoT network traffic and
is one of the few publicly accessible IoT network intrusion
datasets. Table 6(c) displays the details of the IoT-23 dataset
instances.

The MQTT-IoT-IDS2020 (MQTT) dataset pcap files were
created by Hindy et al. [93]. Five recorded scenarios are
included in the dataset: one normal operation and four
attacks operation. The dataset represents a real MQTT
IoT network in a typical operating situation. The dataset
covers popular MQTT attacks and situations for real world
IoT device testing. The MQTT dataset classes are Normal,
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TABLE 6. BoT-IoT, IoT Network Intrusion (IoT-NI), IoT-23, MQTT-IoT-IDS2020 (MQTT), and MQTTset datasets classes and instances.

MQTT-Bruteforce, Scan-A, Scan-U, and Sparta. Instances of
the MQTT dataset that have been constructed are detailed
in Table 6(d). Security of IoT networks and devices is
crucial due to the increasing number of linked devices and
networks. The MQTTset dataset pcap files were generated
by Vaccari et al. [94]. The testbed for the MQTTset dataset
comprises ten IoT sensors in a typical smart home. MQTTset
was created with the help of IoT-Flock [97], a network traffic
generator capable of simulating IoT devices and networks

that use the MQTT and CoAP protocols. The authors
connected several IoT sensors to MQTT broker to build a
dataset reflective of a real IoT network. TheMQTTset dataset
category classes are Normal, Bruteforce, MQTTFlood,
MalariaDoS, Malformed, and SlowITe. Table 6(e) displays
the details of the MQTTset dataset instances.

BoT-IoT, IoT Network Intrusion, IoT-23, MQTT, and
MQTTset datasets were combined to make a dataset
with several attacks. The new dataset is named IoT-DS2.
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TABLE 7. IoT-DS2 dataset classes and instances.

Table 7 displays the details of the IoT-DS2 dataset instances.
The IoT-DS2 dataset consists of eighteen attack classes and
a normal class. The category column represents the name
network traffic class which can be normal, or any of the
eighteen attack classes. The next five columns represent
the dataset used to develop the IoT-DS2 dataset. The final
column represents the number of instances extracted from
the BoT-IoT, IoT Network Intrusion, IoT-23, MQTT, and
MQTTset datasets to generate the IoT-DS2 dataset. These
datasets, available at [96], may be used by researchers
to develop and test IoT anomaly detection systems. The
extracted datasets were split 80% for training and 20% for
testing in the first phase, and then the training dataset was split
into 80% for training and 20% for validation using a stratified
way. Choosing features is a key stage in deep learning model
building. Feature selection is an approach that involves the
detection and selection of only those features necessary
for enhanced prediction. The feature selection strategy not
only reduces overfitting but also speeds up model training
and makes the model less susceptible to test errors. The
recursive feature elimination technique selects 64 features
using a random forest algorithm and IoT-DS2 dataset [83].
The feature selection techniquewas not used on theNSLKDD
dataset. The same set of features was utilized in all models
and across all datasets.

V. EVALUATION OF RESULTS
The proposed LSTM, BiLSTM, GRU models, and convo-
lutional neural network based LSTM, BiLSTM, and GRU
models were validated using accuracy, precision, recall,
F1 score, TNR (True Negative Rate), FPR (False Positive

Rate), FNR (False Negative Rate), PPV (Positive Predictive
Value), NPV (Negative Predictive Value). The formulas
for these metrics are presented in Eq. 11 to Eq. 19 for
completeness.

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(11)

Precision =
TP

(TP+ FP)
(12)

Recall = Sensitivity =
TP

(TP+ FN )
(13)

F1 score = 2×
(Precision× Recall)
(Precision+ Recall)

(14)

TNR = Specificity =
TN

(TN + FP)
(15)

FPR =
FP

(FP+ TN )
(16)

FNR =
FN

(FN + TP)
(17)

PPV =
TP

(TP+ FP)
(18)

NPV =
TN

(TN + FN )
(19)

Seven datasets were used to conduct multiclass and
binary classification experiments using the proposed anomaly
detection models. This paper combines the Keras framework
with the TensorFlow backend to conduct all the experiments.
The experiments were conducted using Google Colab. Three
processes comprise a neural network model assessment:
training, validation, and testing. The classification method
favors the majority class if an unequally distributed dataset
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is used. Class weights and SMOTE approaches were applied
to deal with imbalanced classes in the datasets. Class weights
were calculated based on the number of class instances,
so the class with a small number of instances will get a high
weight.

Adam optimizer was used to train each RNN model for
100 epochs and a batch size of 128. The loss functions of
a neural network are certainly the most important factor.
Sparse categorical cross entropy loss functionwas used in this
paper. Four strategies were used to reduce model overfitting.
First, the kernel, bias, and activity regularizers were used
at LSTM, BiLSTM, GRU, and CNN layers. Kernel, bias,
and activity regularizers use l1-l2 penalty techniques for
regularization. Second, the activity regularization layer was
used, and third, the dropout layer was used. Finally, an early
stopping approach was used to terminate the model if the
training loss did not decrease during the training phase.
The early stopping strategy also minimizes the likelihood
of overfitting, which occurs when a model is trained over
a large number of epochs. These strategies eliminate the
possibility of the model overfitting. All RNN models were
trained with 100 epochs, a batch size of 128, and 5 iterations
of patience. The batch size and the number of epochs
were increased and decreased to check for improvement
in the model’s accuracy. The accuracy of the model was
not improved. At each epoch value, the accuracy and loss
of each model were computed for training and validation
sets.

Fig. 10(a) illustrates the loss and Fig. 10(b) accuracy
of LSTM, BiLSTM, and GRU models during training and
validation using the BoT-IoT dataset. The loss and accuracy
of the CNN based LSTM, BiLSTM, and GRU models
using the BoT-IoT dataset during training and validation
are presented in Fig. 11(a) and 11(b). The loss function
calculates the overall deviation across all tests in the training
and validation. The early stopping strategy will stop the
training process if the training loss does not decrease after
a specified number of iterations, reducing the overfitting
problem. As illustrated in Fig. 10 and 11, the loss function
and the accuracy plot are inversely associated. With 200 and
500 epochs and 10 iterations of patience, the accuracy did not
increase. Overfitting of training data occurs when a model is
run over a large number of iterations.

This paper performed multiclass and binary classification
for seven datasets. Tables 8, 9, and 10 show the multiclass
classification of LSTM, BiLSTM, and GRU models using
NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and
IoT-DS2 datasets. The outcome of LSTM, BiLSTM, and
GRU models using the NSLKDD dataset is presented in
Table 8(a). The accuracy of the NSLKDD dataset was
measured at 99.67% for LSTM, 99.82% for BiLSTM, and
99.78% for GRU models. Normal, DoS, and Probe classes
achieved a high detection rate while the R2L and U2R
detection rates were low. The R2L and U2R attack categories
are very rare in the dataset, which is the main reason for the
low detection rate of these attack categories. The BiLSTM

FIGURE 10. (a) Loss. (b) Accuracy of multiclass classification using LSTM, BiLSTM, and GRU models utilizing BoT-IoT dataset.

FIGURE 11. (a) Loss. (b) Accuracy of multiclass classification using CNN based LSTM, BiLSTM, and GRU models utilizing BoT-IoT dataset.
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model achieved a high detection rate among the three models
using the NSLKDD dataset. The weighted average of FPR
was 0.12%, and FNR was 0.18% for the BiLSTM model.

The accuracy of the BoT-IoT dataset was better than the
NSLKDD dataset. Table 8(b) shows the results of LSTM,
BiLSTM, and GRU models using the BoT-IoT dataset.
Normal, DoS, Scan, and Theft classes of the BoT-IoT dataset
achieved at least a 99.50% detection rate. FPR was 0.04%,
and FNR was 0.11% for the BiLSTM model. Scan and Theft
categories have a high rate of misclassification. The IoT-NI
dataset multiclass classification outcomes are presented in
Table 8(c). The accuracy of LSTM, BiLSTM, and GRU
models using the IoT-NI dataset is 98.14%, 98.89%, and
98.42%, respectively. The precision value for the Normal,
DoS, Mirai, and scan classes was relatively high compared
to the MITM class using the BiLSTM model. The BiLSTM
model’s FPR was 0.61%, and the FNR was 1.11% for the
IoT-NI dataset.

Table 8(d) shows the evaluation results for the IoT-23
dataset’s ten classes using LSTM, BiLSTM, and GRU
models. The accuracy was from 99.71% to 99.83% for the
proposedmodels. The BiLSTMmodel FPRwas 0.04%,while
the FNR was 0.19%. The IoT-23 dataset has an average
precision of 99.81% and a recall of 99.82%. The MQTT
and MQTTset datasets had the highest precision and recall
scores of any dataset evaluated in this paper for the LSTM,
BiLSTM, and GRU models. The results of LSTM, BiLSTM,
and GRU models for MQTT and MQTTset datasets are
presented in Tables 8(e) and 8(f). The accuracy of MQTT
and MQTTset datasets was 99.90% to 99.99%. The BiLSTM
model achieved high precision and recall for MQTT and
MQTTset datasets. The FPR was 0.0042%, and FNR was
0.06% for the MQTT dataset via the BiLSTM model. The
FPRwas 0.062%, and the FNRwas 0.06% using the BiLSTM
model on the MQTTset dataset.

The outcome of LSTM, BiLSTM, and GRU models using
the IoT-DS2 dataset are presented in Table 9. There are
19 classes in the IoT-DS2 dataset. The accuracy of LSTM,
BiLSTM, and GRU models using the IoT-DS2 dataset were
99.31%, 99.48%, and 99.32%, respectively. The BiLSTM
model outperformed the LSTM and GRU models with
precision and recall of 99.48% and 99.46%, respectively. The
FPR for the IoT-DS2 dataset using the BiLSTM model was
0.06%, while the FNR was 0.51%. The precision rate for
the Normal class was at least 99% in LSTM, BiLSTM, and
GRU models. MITM, Heartbeat, Malformed Data, and C&C
are all attack types with a precision rate of less than 98%.
Sensitivity, specificity, PPV, and NPV results for multiclass
classification of the NSLKDD, BoT-IoT, IoT-NI, IoT-23,
MQTT, MQTTset, and IoT-DS2 datasets LSTM, BiLSTM,
and GRU models are presented in Table 10.

A convolutional neural network requires significantly less
preprocessing than other deep learning classification tech-
niques, making it a more efficient classification approach.
The article [83] discusses the performance metrics of
the convolutional neural network anomaly detection model

for IoT networks. It also compares them to other deep
learning based systems to assess the CNN model’s ability
to recognize various IoT network attacks. Convolutional
neural network benefits in anomaly detection are transferred
to image recognition applications. Using appropriate filters,
a convolutional neural network can effectively capture spatial
and temporal connectivity in anomaly detection problems.
Convolutional neural networks are excellent for prediction
because they learn input features without losing important
information. The first hidden layer was created using a 1D
convolutional neural network to learn the network features.
The 1D convolutional neural network layer was followed
by two hidden LSTM, BiLSTM, or GRU layers. The
proposed CNN based LSTM, BiLSTM, and GRU models
were evaluated using NSLKDD, BoT-IoT, IoT-NI, IoT-23,
MQTT,MQTTset, and IoT-DS2 datasets. CNN based LSTM,
BiLSTM, and GRU models evaluation results are presented
in Tables 11, 12 and 13.

The NSLKDD dataset evaluation results using CNN
based LSTM, BiLSTM, and GRU models are presented in
Table 11(a). Precision and recall values of proposed models
for the NSLKDD dataset have improved compared to the
results shown in Table 8(a). CNNBiLSTM model achieved
high precision and recall values, while the LSTM model
had the lowest detection rate for the NSLKDD dataset. FPR
was 0.08%, and FNR was 0.12% for the BiLSTM model.
The BoT-IoT dataset evaluation outcome is presented in
Table 11(b). All proposed models designed for the BoT-IoT
dataset show improved detection rates and reduced FPR and
FNR compared to the findings in Table 8(b). The FPR was
0.02%, and FNR was 0.06% for the BiLSTM model. The
IoT-NI dataset evaluation results are presented in Table 11(c).
The average precision of LSTM, BiLSTM, and GRU models
based on CNN is 98.35%, 99.38%, and 98.77%, respectively.
The precision value for IoT-NI wasmeasured at 98.14%when
only LSTM was used, but when LSTM was combined with
CNN, the average precision value was increased to 98.35%.
The average precision value for CNNBiLSTM andCNNGRU
models was increased to 99.38% and 98.77%, respectively.
The BiLSTM model’s FPR was 0.50%, and the FNR was
0.66% for the IoT-NI dataset.

The IoT-23 dataset evaluation result is presented in
Table 11(d). The CNNBiLSTM model performed better
than other CNN based models in identifying normal and
anomalous categories of the IoT-23 dataset. The precision and
recall values for all proposed CNN based models utilizing
the IoT-23 dataset have improved. As shown in Table 11(d),
the detection rate for CNNBiLSTM and CNNGRU models
has been enhanced to 99.87 and 99.86%, respectively.
The FPR value was reduced to 0.02%, and FNR was
reduced to 0.11% using the CNNBiLSTMmodel. Table 11(e)
shows the multiclass classification of the MQTT dataset,
while Table 11(f) shows the multiclass classification of the
MQTTset dataset. MQTT and MQTTset datasets achieved
high precision and recall values compared to other datasets
used in this paper. The FPR for the MQTT dataset was
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TABLE 8. Accuracy, Precision, Recall, and F1 Score of NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, and MQTTset datasets multiclass classification using LSTM,
BiLSTM, and GRU models.
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TABLE 9. Accuracy, Precision, Recall, and F1 Score of IoT-DS2 dataset multiclass classification using LSTM, BiLSTM, and GRU models.

TABLE 10. Sensitivity, Specificity, PPV, and NPV of NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset and IoT-DS2 datasets multiclass classification using
LSTM, BiLSTM, and GRU models.

0.002%, while the FNR was 0.04% using the CNNLSTM
model. FPR was 0.0016% for the MQTT dataset, while
FNR was 0.03% when the CNNBiLSTM model was used.
FPR was 0.0026%, while FNR was 0.046% for the MQTT
dataset when the CNNGRU model was used. Only 15, 12,
and 12 instances of the MQTTset dataset were misclassi-
fied using the CNNLSTM, CNNBiLSTM, and CNNGRU
models.

The evaluation results for 18 attack categories in the
IoT-DS2 dataset are shown in Table 12. The precision values
for CNNLSTM, CNNBiLSTM, and CNNGRU models were
99.45%, 99.57%, and 99.52%, respectively. The FPR for
the IoT-DS2 dataset was 0.06%, and the FNR was 0.48%
using the CNNLSTM model. The FPR was 0.03% for
the IoT-DS2 dataset, whereas the FNR was 0.40% for the
CNNBiLSTMmodel. FPR was 0.04 %, and FNR was 0.47 %
when the CNNGRU model was used with the IoT-DS2

dataset. Sensitivity, specificity, PPV, and NPV results for
multiclass classification of the NSLKDD, BoT-IoT, IoT-NI,
IoT-23, MQTT, and MQTTset datasets using CNNLSTM,
CNNBiLSTM, and CNNGRU models are presented in
Table 13.

A lightweight binary classification model designed using
a single recurrent neural network layer. Three models
were created using a single hidden layer from the LSTM,
BiLSTM, and GRU networks for binary classification. They
were tested using NSLKDD, BoT-IoT, IoT-NI, IoT-23,
MQTT, MQTTset, and IoT-DS2 datasets. The entire dataset
was converted to a binary label classification scheme.
Table 14 summarizes the assessment results for binary
classification using the LSTM model. The MQTTset dataset
achieved high precision and recall values. IoT-DS2 dataset,
which combines all IoT datasets, reached an accuracy of
99.42% using the LSTM model. The number of normal class

62738 VOLUME 10, 2022



I. Ullah, Q. H. Mahmoud: Design and Development of RNN Anomaly Detection Model for IoT Networks

TABLE 11. Accuracy, Precision, Recall, and F1 Score of NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, and MQTTset datasets multiclass classification using
CNNLSTM, CNNBiLSTM, and CNNGRU models.
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TABLE 12. Accuracy, Precision, Recall, and F1 Score of IoT-DS2 dataset multiclass classification using CNNLSTM, CNNBiLSTM, and CNNGRU models.

TABLE 13. Sensitivity, Specificity, PPV, and NPV of NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset and IoT-DS2 datasets multiclass classification using
CNNLSTM, CNNBiLSTM, and CNNGRU models.

instances was small in the IoT-NI dataset compared to the
anomaly class; as a result, the normal class achieved a low
detection rate compared to the anomaly class. The detection
rate was 99.98%, FPR was 0.04%, and FNR was 0.02% for
MQTTset using the LSTM model.

The findings of the binary classification evaluation using
the BiLSTM model are summarized in Table 15. The
MQTTset dataset demonstrated a high level of precision and
recall. The detection rate for MQTTset using the BiLSTM
model was 99.98%, FPR was 0.03%, and FNR was 0.02%.
IoT-DS2 has an average detection rate of 99.81%, consider-
ably higher than the LSTM model detection rate. The results
of the binary classification evaluation using the GRU model
are summarized in Table 16. The GRUmodel performs better
compared to the LSTM model. The BiLSTM model per-
formed better than the GRU model. The GRU model attained
an accuracy of 99.96%when used with the MQTTset dataset.
The detection rate for MQTTset using the GRU model was

99.97%, FPR was 0.06%, and FNR was 0.03%. IoT-DS2 has
an accuracy of 99.45%, which is high than the accuracy of
the LSTMmodel but lower than the accuracy of the BiLSTM
model.

The NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT,
MQTTset, and IoT-DS2 datasets were accurately clas-
sified using a lightweight binary classification model
based on a single recurrent neural network hidden layer.
In addition, binary classification performance was evaluated
using the receiver operating characteristic area under
the curve (ROC AUC). The validation set and testing
set of the NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT,
and MQTTset datasets were plotted using ROC curves.
Figure 12 shows the ROC curve for the validation
set of NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, and
MQTTset datasets binary classification using the BiLSTM
model, whereas Fig. 13 shows the ROC curve for the
testing set.
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TABLE 14. NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets binary classification using LSTM model.

TABLE 15. NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets binary classification using BiLSTM model.

TABLE 16. NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets binary classification using GRU model.
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FIGURE 12. ROC curve using the BiLSTM model for the validation set of
NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets.

Next, we expand the binary classification model to classify
normal and individual anomalous classes of the IoT-DS2
dataset. The IoT-DS2 dataset was divided into eighteen
subsets, with each subset consisting of a normal data class
and an anomalous data class. Each subset was used to
evaluate LSTM, BiLSTM, and GRU models. The accuracy,
precision, recall, and F1 score of the IoT-DS2 dataset normal
and individual anomalous classes using LSTM, BiLSTM,
and GRU models are presented in Fig. 14. The BiLSTM
model performs better compared to LSTM and GRU models.
A single hidden layer recurrent neural network correctly
detected normal and anomalous occurrences in the IoT-DS2
dataset. These evaluation results indicate that a single layer
recurrent neural network model can be used to detect
anomalies in various IoT networks.

Class weights were used in the training phase to address
imbalanced classes in the datasets. The evaluation results
presented in the preceding sections are based on class
weights. Class weights were calculated based on the number
of instances of each class; therefore, a minority class with
a small number of instances will receive high importance.
Next, SMOTE was implemented to resolve the imbal-
ances between the classes. SMOTE was implemented for
NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, and MQTTset
datasets. The borderline SMOTE algorithm was used to
generate new synthetic samples. Random state was used
to control the algorithm’s randomization. K is the number
of neighbors used in the borderline SMOTE algorithm to
calculate the average distance to minority samples. The
optimal number of neighbors for estimating the average
distance to minority samples was determined to be K=6
to 10 after testing a variety of K values. New synthetic
samples were created using the borderline algorithm. The
performance of the borderline SMOTE algorithm was eval-
uated using CNN based LSTM, BiLSTM, and GRU models.
The borderline SMOTE algorithm ensures that the training
set is balanced appropriately. NSLKDD, BoT-IoT, IoT-NI,

FIGURE 13. ROC curve using the BiLSTM model for the testing set of
NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset, and IoT-DS2 datasets.

IoT-23, MQTT, and MQTTset datasets class balancing
using SMOTE and multiclass classification using CNN
based LSTM, BiLSTM, and GRU models are presented in
Table 17.

The NSLKDD dataset Prob, U2L, and R2L classes detec-
tion rates have been improved, as shown in Table 17(a). One
million instances were selected randomly from the BoT-IoT
dataset’s DoS and Scan classes, and then borderline SMOTE
was used to balance the remaining classes. Table 17(b) shows
the detection rate for the Normal and Theft classes has
been enhanced. Four classes were balanced in the IoT-NI
dataset. As presented in Table 17(c), the detection rates for the
Normal, DoS, MITM, and Scan classes have been improved
for the IoT-NI dataset. One million instances were chosen
randomly from the IoT-23 dataset’s Normal, Attack, Port
Scan, DDoS, and Okiru classes, and then borderline SMOTE
was used to balance the IoT-23 dataset. The IoT-23 dataset
has improved the detection rate of minority classes, as seen
in Table 17(d).

One million instances were selected randomly from the
MQTT dataset’s MQTT-BF and Sparta classes, and then
borderline SMOTE was used to balance the MQTT dataset.
The MQTT dataset achieved a high detection rate when
class weight was used to handle imbalance classes in the
dataset. Each model enhanced the overall detection rate in
the MQTT dataset, as shown in Table 17(e). All anomalous
classes were in the minority in the MQTTset dataset.
Class weight was used to address imbalance classes in
the MQTTset dataset, resulting in a high detection rate,
but when borderline SMOTE was used on the MQTTset
dataset, each model improved the overall detection rate,
as shown in Table 17(f). The borderline SMOTE technique
performs better than class weight, but the borderline SMOTE
technique requires more computing resources than class
weight. The overfitting of the LSTM, BiLSTM, and GRU
models was investigated using the dropout layer and early
stopping strategies. The overfitting of LSTM, BiLSTM,
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FIGURE 14. (a) Accuracy. (b) Precision. (c) Recall. (d) F1 Score of binary classification using LSTM, BiLSTM, and GRU models for normal and individual
anomalous classes using IoT-DS2 dataset.

and GRU models was further evaluated using a 5-fold
cross-validation test. Identical results were achieved using
5-fold cross-validation, demonstrating the proposed model’s
consistency.

VI. DISCUSSION AND COMPARISON OF RESULTS
The proposed models were tested using a variety of IoT
network intrusion datasets. A comparison was made between
the proposed anomaly detection models and the previously
published benchmark methodologies in this field based on
the outcomes of their evaluations. LSTM, BiLSTM, GRU,
CNNLSTM, CNNBiLSTM, and CNNGRU were used to
design multiclass classification models. These models were
evaluated using NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT,
MQTTset, and IoT-DS2 datasets. LSTM, BiLSTM, and GRU
models with four hidden layers were initially used. The
proposed models performed significantly better in multiclass
and binary classification while detecting anomalies in IoT
networks. The prospect of using a recurrent neural network
and merging it with a convolutional neural network to solve
anomaly detection in IoT networks was investigated.

The proposed model also uses kernel, bias, and activity
regularizers at the RNN and CNN layers. These regularizers
apply penalties on the kernel, bias, activity, and regularization
layer output. The activation layer used LeakyReLU activation
function. The utilization of the LeakyReLU activation func-
tion resulted in a significant acceleration of the learning
process. A model normalization layer can often aid in accel-
erating and stabilizing the learning process by decreasing the
error rate in the model being learned. Layer normalization
can stabilize the hidden state dynamics of the recurrent
network. The activity regularization layer and the dropout
layer were used to decrease the possibility of overfitting.

A binary classification model was designed utilizing a single
hidden layer recurrent neural network. Table 18 compares
binary classification techniques used in deep learning with
proposed anomaly detection models. The NSLKDD dataset
was used to compare the evaluation results of the proposed
binary classificationmodel for anomaly detection in a generic
network setting. The detection rate was very high for IoT-23,
MQTT, and MQTTset datasets. Given that these datasets are
recently released datasets for the IoT network, there are few
research papers in which authors constructed a deep learning
model. Since BoT-IoT is the most cited IoT dataset, it is also
used to compare proposed models to previously published
IoT models.

Anomaly detection models based on RNN were evaluated
using the NSLKDD dataset by Yin et al. [19]. The model
achieved a higher level of accuracy in their experiment when
they utilize 80 hidden nodes and a learning rate of 0.1. RNN-
IDS had a high detection rate of 83.28% when 100 epochs
were assigned. Liu et al. [37] proposed long and short session
features and developed a neural network based on CNN and
LSTM models to extract the variations between normal and
abnormal models. The results demonstrate that the proposed
quantitative model can effectively prevent hiding identity
information. However, their model also increases computing
efficiency and anomaly detection accuracy for small subsets
of features. Their model got a 98.90% accuracy rate.

Li et al. [39] use LSTM and GRU with a variable number
of hidden layers to evaluate the recently suggested Broad
Learning System (BLS). Pseudoinverse weight adjustment
replaces backpropagation in BLS models with fewer hidden
layers. In the case of incremental learning, weights can
be dynamically updated. The accuracy and F1 score were
very low for LSTM and GRU models. Imrana et al. [9]
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TABLE 17. NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, and MQTTset datasets class balancing using SMOTE and multiclass classification utilizing CNNLSTM,
CNNBiLSTM, and CNNGRU models.
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TABLE 18. Comparison of binary classification models using deep learning for anomaly detection.

proposed a BiLSTM based intrusion detection system.
BiLSTM and LSTM model’s performance were compared
using the NSLKDD dataset. The LSTM model has high
false alarms than the BiLSTM model. Biswas et al. [57]
proposed ANN andGRUmodels for distinguishingmalicious
botnet traffic from legitimate network traffic. The GRU
model has a higher detection rate than the ANN model.
Liu et al. [98] propose leveraging different aspects of each
type of communication from three perspectives: anomaly
discovery, clustering, and classification. Additionally, they
offer a tailored loss function to adjust for traffic data that
is distributed irregularly. DNN, CNN, and RNN models
achieved a low detection rate compared to their proposed
MTDL model.

The detection rate was high for IoT-23, MQTT, and
MQTTset datasets. These datasets are recently released
datasets for the IoT network, and there are few published
research papers in which researchers developed a deep
learning model using these datasets. Since the BoT-IoT

dataset is the most referenced IoT dataset, the proposed
binary classification models were also compared against
previously published models using the BoT-IoT dataset.
Ferrag et al. [32] came up with a new way to protect smart
grids from hackers. They used deep learning and blockchain
technology to build a new framework for smart grids. They
used a recurrent neural network to monitor the energy
network for network threats and fraudulent transactions.
Their model achieved a high accuracy of 98.20% when
applied to the BoT-IoT dataset.

Ferrag et al. [48] use a binary and multiclass classification
approach to study seven deep learning models. RNN models
with different learning rates and hidden nodes were tested
for accuracy and training time using the BoT-IoT dataset.
The accuracy and training time of unsupervised models with
different learning rates and hidden nodes were also evaluated
using the BoT-IoT dataset. The RNN model achieved a high
accuracy of 98.31%. Susilo et al. [46] created a deep learning
method for identifying DoS attacks in IoT networks. They
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TABLE 19. Comparison of multiclass classification models using deep learning for anomaly detection.

concluded that a deep learningmodel could enhance accuracy
significantly, allowing for themost effective threat prevention
in IoT networks. The accuracy of their proposed CNN model
was very low, as seen in Table 18.

Advances in communication and information technol-
ogy have enabled an increased amount of data to be
exchanged via the Internet, resulting in new applications
for Internet services. Biswas et al. [57] suggested a method
for distinguishing malicious botnet traffic from legitimate
traffic by using novel deep learning techniques such as
ANN, GRU, and LSTM models. Testing reveals that the
classification accuracy is 99.76%, which is better than all
prior research, as indicated by the author. The proposed
LSTM, BiLSTM, and GRU models outperformed previ-
ously published anomaly detection models in terms of
accuracy, precision, recall, and F1 score using the BoT-IoT
dataset.

Two anomaly detection models for multiclass classifica-
tion in IoT networks were designed and implemented using
LSTM, BiLSTM, and GRU networks. The LSTM, BiLSTM,
and GRU models were built using the same structure.
Figure 7 represents a layered view of the proposed LSTM,
BiLSTM, or GRU models. There are four hidden layers
in this implementation. The hidden layers may be LSTM,
BiLSTM, or GRU. Convolutional neural network advantages
become more apparent when anomaly detection problems
are turned into image recognition problems. A convolutional

neural network is excellent at capturing spatial and temporal
correlations, which are particularly important for intrusion
detection. A hybrid deep learning model for IoT networks
was built using convolutional and recurrent neural networks.
Three hidden layers were used in this technique to achieve
the desired result. Figure 8 represents a layered view of the
proposed CNN based LSTM, BiLSTM, or GRU models.
There are three hidden layers in this implementation. The first
hidden layer uses a convolutional neural network to extract
feature information from the input features. An average
pooling layer was utilized to decrease the number of features
by half. The CNN layer is followed by two hidden layers of
the recurrent neural network. These two hidden layers may
be LSTM, BiLSTM, or GRU. Yin et al. [19], Wu et al. [25],
Naseer et al. [26], Ding et al. [27], Chouhan et al. [34],
Imrana et al. [9], Liu et al. [51], Sethi et al. [61], and
Vinayakumar et al. [35] used the NSLKDD dataset to
evaluate their model, but these techniques achieved very
low accuracy, as shown in Table 19. The model proposed
by Moizuddin et al. [99] and Sahu et al. [100] achieved
reasonably high accuracy and detection rate compared to
other model models.

Xu et al. [24] investigate a multilayer perception and gated
recurrent units intrusion detection model using the KDD99
and NSLKDD datasets. Their model achieved a maximum
accuracy of 99.24% for the NSLKDD dataset. Numerous
issues emerge because malicious cyberattacks constantly
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evolve and happen in extremely high numbers, demanding a
scalable solution. Due to malware’s dynamic nature and ever
changing attack methodologies, publicly accessible malware
datasets must be regularly updated and benchmarked. DNNs
and other conventionalmachine learning classifiers have been
tested on various publicly accessible malware datasets by
Vinayakumar et al. [35]. Their proposed model achieved a
maximum accuracy of 92.90% for the KDD99 dataset using
four hidden layers and 78.50% for theNSLKDDdataset using
five hidden layers.

The security of an IoT network is essentially dependent
on protecting the supporting communication infrastructure.
Ge et al. [41] propose an intrusion detection technique for IoT
networks, classifying IoT traffic flow using a deep learning
technique. They use the BoT-IoT dataset to obtain generic
features from packet data. Their model achieved 99.03%
accuracy. Recently, Ge et al. [47] also proposed amodel based
on a feed forward neural network with embedding layers for
encoding high dimensional categorical features for multiclass
classification. They also used transfer learning to encode high
dimensional category features to construct a binary classifier
based on another feed forward neural network model. Their
model reached a 99.79% accuracy rate. They used the source
port in the feature set. All the attacks were generated from
specific source ports. Due to this fact, there is a possibility
that their model overfits the training data, resulting in high
accuracy and detection rate. In terms of accuracy, precision,
recall, and F1 score on the BoT-IoT dataset, the proposed
LSTM, BiLSTM, and GRU models outperformed previously
published anomaly detection techniques.

If an unbalanced dataset is used, the classification algo-
rithm strongly leans toward one of the classes containing
the majority of the data. When it comes to classification,
if certain classes dominate, it can lead to biased results. As a
result, it is suggested to balance the dataset. Oversampling
technique were used to balance the datasets to solve this
issue. When using SMOTE, synthetic samples are generated
for the minority class; however, the methodologies used in
SMOTE are based on local knowledge rather than generalized
information about the minority class. The proposed models
effectively capture anomaly detection problems spatial and
temporal connectivity. IoT networks are comprised of a
diverse range of applications and data types. The proposed
methodology can be applied to a wide range of IoT
applications and data to detect and investigate anomalies.
Some IoT networks generate a large quantity of data due
to their continued operation. The proposed model can deal
with a large amount of data. Moreover, the proposed model
achieves better performance when dealing with large volumes
of data. A limitation of the proposed model is that it requires
a significant volume of data to outperform other techniques.

VII. CONCLUSION AND FUTURE WORK
RNNs are suited to evaluate sequential data that is periodic in
nature. RNN model can recognize and utilize the temporal
context for sequential data, including repeating patterns.

A novel deep learning model based on recurrent neural
networks has been designed for detecting anomalies in
IoT networks. The proposed model incorporates LSTM,
BiLSTM, and GRU approaches to build a structure for
anomalous activity analysis for intrusion detection in IoT
networks. Convolutional neural networks are specifically
well suited for feature learning because they can exam-
ine input features without losing essential information.
A hybrid deep learning model has been designed to combine
convolutional and recurrent neural networks. Finally, a
lightweight deep learning model for binary classification that
incorporates LSTM, BiLSTM, andGRU approaches has been
designed. Seven datasets were used to evaluate the proposed
models. In comparison to previous deep learning implemen-
tations, proposed multiclass and binary classification models
achieved high accuracy, precision, recall, and F1 score. The
proposed model enhanced the learning of weak features
by utilizing an activity regularization layer; as a result,
the model produced more balanced learning. The proposed
hybrid model used a convolutional layer before recurrent
layers to improve feature learning. The reliability of the
proposed architecture for anomaly detection in IoT networks
is demonstrated by the consistent performance of multiclass
and binary classification models across several datasets.

In future work, we plan to investigate more deep learning
approaches for anomaly detection in IoT networks, adopting
various optimization techniques to boost the detection
capability of these models on small datasets. We also plan
to develop and evaluate ensemble techniques for LSTM,
BiLSTM, and GRU models.
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