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Abstract—Hyperspectral anomaly detection (HAD) is an im-
portant hyperspectral image application. HAD can find pixels
with anomalous spectral signatures compared with their neighbor
background without any prior information. While most of the
existed researches are related to statistic-based and distance-based
techniques, by summarizing the background samples with certain
models, and then, finding the very few outliers by various distance
metrics, this review focuses on the HAD based on machine learning
methods, which have witnessed remarkable progress in the recent
years. In particular, these studies can generally be grouped into the
traditional machine learning and deep-learning-based methods.
Several representative HAD methods, including both traditional
machine and deep-learning-based methods, are then conducted on
four real HSIs in the experiments. Finally, conclusions regarding
HAD are summarized, and prospects and future development di-
rection are discussed.

Index Terms—Anomaly detection, deep learning, hyperspectral
imagery, machine learning.

I. INTRODUCTION

HYPERSPECTRAL anomaly detection (HAD), which
refers to the process of finding pixels or subpixels with

different spectral signatures compared with their neighbor back-
ground without any prior information, is an important task of
hyperspectral image processing. As early as 2001, Prof. D.
A. Landgrebe, the pioneer and leader of hyperspectral remote
sensing research in IEEE GRSS, organized a special issue on
analysis of hyperspectral image data, which collected very early
researches on hyperspectral target detection, thus initiating the
developments of the hyperspectral remote sensing target and
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anomaly detection [1]. Thereafter, benefit from the scientific
ideas as well as the open source software and datasets of the
LARS at Purdue University, the world-wide well-known re-
search groups, e.g., the laboratories at University of Iceland,
Universidade de Lisboa, University of Extremadura, and the
RS group at Wuhan University, have provided outstanding
contributions in the field of hyperspectral data analysis. HAD
enjoys a wide range of real-world applications, such as military
reconnaissance [2], [3], camouflage identification [4], fine agri-
culture [5], mineral identification [6], change detection [7], and
land cover classification [8]–[10]. Among these applications,
HAD has elicited increasing interest because it can discover the
potential targets of interest in the image scene in recent years.

However, current research faces the following three main
challenges.

1) The spectrum is complex and changeable, which is usually
caused by various factors, such as changes in illumination,
environment, atmosphere, and time conditions.

2) The correlation between adjacent bands is strong, and the
information is redundant, presenting a substantial bias in
the estimation of the background statistical model.

3) The spatial resolution of the image is limited while that of
hyperspectral remote sensing data is low, resulting in the
widespread phenomenon of mixed pixels.

Low detection rates and high false alarms are thus involved
due to the mixed pixels.

A variety of classical machine-learning-based HAD methods,
including those based on feature mapping [11]–[14], represen-
tation [15]–[17], matrix decomposition [18]–[20], transformed-
based [21], and GLRT-based [22] methods have been proposed
in the literature and summarized in a highly recent published
technical review [23]. In this review, we focus on the HAD based
on machine learning methods, which have witnessed remarkable
progress in recent years. In particular, the deep-learning-based
HAD models, which can achieve state-of-the-art performance
on various benchmarks of HAD, have been actively explored
with the rapid development of deep learning techniques in recent
years. A variety of deep learning methods, ranging from the
unsupervised autoencoder (AE)-based method to recent promis-
ing HAD approaches using generative adversarial networks
(GANs), have been applied to tackle HAD tasks.

A comprehensive overview of traditional machine learning
methods to recent advances in HAD with deep learning is pro-
vided in this article. The literature contains some existing HAD
surveys. Different from this study, the machine-learning-based
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Fig. 1. Milestones of hyperspectral anomaly detection.

Fig. 2. Kernel feature projection by kernel learning methods for hyperspectral
anomaly detection.

methods are comprehensively reviewed, and deep learning-
based HAD methods are emphasized. The main contributions
of this survey are twofold.

1) A comprehensive review of HAD methods based on tra-
ditional and deep learning-based methods, which are ad-
vanced from two stages, is provided.

2) A systematic overview of past decades of traditional ma-
chine learning-based methods and recent advances of deep
learning is presented hierarchically and structurally, and
the advantages and limitations of each component are
summarized for an effective HAD solution.

The following sections will cover various aspects of tradi-
tional and deep-learning-based methods in the HAD task. Fig. 1
shows the milestones of HAD, including traditional machine-
learning-based method before 2017, and with methods after
2017 dominated by related deep networks. Section II provides a
brief introduction to traditional machine-learning-based meth-
ods. Section III analyzes the main deep-learning-based structure
of HAD methods. Section IV compares several representative
HAD methods using real HSIs. Finally, Section V concludes
this article.

II. TRADITIONAL MACHINE-LEARNING-BASED MODELS

A. Feature Mapping-Based Method

Different from the statistic-based HAD method, feature map-
ping is one of the machine learning techniques, and it usually
maps the original data space into a new feature space that can
enhance the separability of the background and target class.
Fig. 2 shows the kernel feature projection by kernel learning
methods for HAD.

1) Kernel Learning-Based Method: The kernel feature space
has the same assumptions as those used in the RX [23] algorithm;
that is, the mapped data in the feature space currently comprise
two Gaussian distributions, thus modeling the two hypotheses
as follows:

H0 : Φ (xi) = nΦ(target absent)

H1 : Φ (xi) = Φ(s) + nΦ(target present). (1)

The corresponding kernel RX in the high-dimensional feature
space is now represented as

RX(Φ (xi)) = (Φ (xi)− uΦ)
T Σ−1

Φ (Φ (xi)− uΦ) . (2)

The kernelization of the RX in the kernel feature space [27]
considering the eigenvector decomposition and kernel methods
can be obtained as follows:

KRX(xi) =
(
KT

xi
−KT

u

)T
K−1

Σ

(
KT

xi
−KT

u

)
(3)

where X = [x1,x2, . . . ,xm] are the samples from the hyper-
spectral image, and m is the number of samples.

The following algorithms published in the last decades use
this idea. The kernel RX [30] provides a nonlinear version of
the RX for HAD considering the nonlinear characteristic and
high-order relationship of the spectral signatures. The kernel
PCA [31] attempts to maximize the anomalous components and
suppress the background components temporarily. The support
vector data description [32] uses a single-class SVM classifier
to estimate the minimum enclosing hypersphere containing the
most normal instances, wherein pixels that fall outside of the
hypersphere are classified as anomalies. The robust nonlinear
anomaly detector [33] combines the kernelization procedure and
robust iterative background distribution estimation strategy to
formulate a nonlinear and robust detector, which can effectively
estimate the background distribution and avoid contamination to
a certain extent. The kernel-based nonlinear anomaly detection
method via union dictionary [34] considers the nonlinear mixing
models to demonstrate the intrinsic nonlinear characteristics of
the real HSIs. A union dictionary comprising a background and
anomalous atoms is also constructed by considering the local
spatial correlations and global anomalies. Li et al. [86] proposed
a iForest-based HAD method as well as its kernel version. It can
fully use the global and local information in an HSI.

2) Manifold Learning-Based Method: Manifold learning
methods are used for nonlinear dimensionality reduction [35],
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and can discover the compact and nonlinear representation of
the given high-dimensional data. Manifold learning methods
can also reveal the important and intrinsic structure of the given
high-dimensional data by preserving distances within the local
neighborhoods of the data. Researchers usually apply manifold
learning to account for the local structural information for HAD
task. In the learned manifold, the samples with similar spectral
signatures are clustered and those with different spectrums are
far apart, which is helpful for the HAD task.

Lu et al. [47] proposed a manifold constrained AE network
(MC-AEN)-based HAD method. The embedding manifold is
first learned by the manifold learning method. Subsequently,
the latent representations are learned by an AE network with
the embedding manifold constraints to preserve the intrinsic
structure of hyperspectral data. The anomaly scores are indicated
by reconstruction errors. A manifold constrained multihead
self-attention variational autoencoder (MMS-VAE) method for
HAD is previously proposed [24]. The manifold learning method
is utilized to first learn the embedded manifold, which is used to
constrain the VAE to learn the latent feature representation and
maintain the internal structure of hyperspectral data. The mul-
tihead self-attention mechanism is introduced to learn context-
related information to automatically focus on abnormal areas.
Finally, the respective global and local reconstruction errors of
the multihead self-attention network and the latent feature space
are simultaneously considered to determine whether each pixel
is abnormal.

3) Orthogonal Subspace-Based Method: The subspace-
based anomaly detection algorithm considers that anomaly and
background pixels have a greater degree of separation in a
suitable subspace. The most representative subspace method
is orthogonal subspace projection (OSP). It is a versatile hy-
perspectral imaging technique that has shown great poten-
tial in dimensionality reduction and target detection. Orthog-
onal subspace-based methods project testing pixels into an
orthogonal subspace of the background components where the
background and anomalies can be better separated. The OSP of
an abnormal pixel is a large component, while the projection of a
background pixel is a small one. Thus, the component projected
to the subspace is the abnormal level of the testing pixels.

The local 3-D OSP HAD method constructs the OSP from
the height, width, and spectrum of hyperspectral images to
realize a double utilization of spectral and spatial information
[25]. Yang et al. [26] proposed a low-rank and sparse matrix
decomposition with OSP-based background suppression and
adaptive weighting for HAD. The OSP is employed to project
the sparse component into the background orthogonal subspace
that is estimated from the low-rank component to suppress the
background interferences and highlight the anomalies. Chang
et al. [27] presents an OSP version of go decomposition (OSP-
GoDec), which implements GoDec in an iterative process by a
sequence of OSPs to find desired low-rank and sparse matrices.

B. Representation-Based Method

In addition to the aforementioned methods, representation-
based detectors, such as sparse, collaborative, and tensor

representation-based anomaly detectors, have also received con-
siderable attention. A background joint sparse representation
detector was proposed in [15]. This detector assumes that the
background pixel can be reconstructed by a linear combination
of a small number of atoms in an overcomplete background
dictionary. Zhao et al. [16] proposed a sparsity score estimation
framework, which utilizes two strategies to enhance the diversity
between the background and anomaly information. Different
from sparse representation, collaborative representation consid-
ers that background pixels can be represented by a linear com-
bination of surrounding pixels while anomalies cannot [45]. Li
and Du proposed a collaborative representation detection (CRD)
[18] method according to this assumption. After that, Hou et al.
[87] proposed a CRD extension version, which first purifies
the background in HSI. Simultaneously, saliency analysis was
designed to further improve the detection performance to make
full use of spatial information. Fig. 3 shows the flowchart of
sparse and collaborative representation-based HAD methods.

1) Sparse Representation-Based Method: Sparse representa-
tion (SR) has been widely studied in image processing [46]. For a
given dictionary, the signals are the sparsest linearly represented
via atoms of the dictionary with sparsity regularization. The
objective function can be explained by solving the following
optimization problem:

min
Z

‖Z‖0 s.t. X = DZ (4)

where ‖ · ‖0 denotes the l0 norm, which is used to evaluate the
number of nonzero elements of a matrix. D is a dictionary, Z
is the set of sparse coefficient vectors, and X is the set of test
signals.The problem of (7) is an NP-hard problem. This problem
can be relaxed in the following form:

min
Z

‖Z‖1 s.t. X = DZ (5)

where ‖ · ‖1 denotes the l1 norm to compute the sum of the
absolute value of all the nonzero entries in the matrix.

2) Collaborative Representation-Based Method: Collabora-
tive representation (CR) assumes that collaboration among
atoms improves representation accuracy [47]. For each pixel x
of size b× 1, where b is the number of bands, all the atoms from
the reconstruct dictionary B ∈ Rb×s, where s is the number of
the atoms, are used in the representation. Thus, x ≈ Bα, where
α is a weight vector, can be approximately obtained. l2 norm is
adapted to constrain the α, and all the atoms in B are assigned
with similar small coefficients. The CR of pixel y by dictionary
B can be formulated as

α̂ = argmin
α

‖x−Bα‖22 + λ‖α‖22 (6)

where λ is a Lagrange multiplier, which controls the penalty of
the norm of weight vectors.

The CRD algorithm used the collaborative representation
technique for the first time in the HAD task [18]. Atoms in
the reconstructed dictionary B contain major information of the
normal pixels. Thus, the objective is to find a weight vector α in
which ‖x−Bα‖22 is minimized under the constraint that ‖α‖22
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Fig. 3. Flowchart of sparse and collaborative representation-based HSI
anomaly detection method.

is also minimized. Equation (6) is equivalent to

argmin
α

[
αT

(
BTB+ λI

)
α− 2αTBTx

]
. (7)

Taking the derivative of α and setting the resultant equation to
zero yields

α̂ =
(
BTB+ λI

)−1
BTx. (8)

The residual of the pixels can be obtained as the detection score
upon completion of the representation process.

r1 = ‖x− x̂‖2 = ‖x−Bα̂‖2. (9)

C. Matrix Decomposition-Based Method

1) Low-Rank and Sparse Matrix Decomposition-Based
Method: Researchers have recently provided considerable ef-
fort into extracting knowledge from backgrounds and potential
anomalies [48], which provided more comprehensive informa-
tion than those methods exploring only the background infor-
mation. Therefore, several methods first take the low-rank and
sparse matrix decomposition (LRaSMD) technique [49], [50],
which decomposes the HSI matrix into low-rank, sparse, and
noise matrices, and then, design a suitable detector for further
processing.

Some algorithms obtain detection results by analyzing the
sparsity of anomalies. Sun et al. [50] scored each pixel with
the Euclidean distance between the corresponding sparse com-
ponent vector and the mean vector of the sparse matrix. Cui
et al. [48] scored each pixel by computing the norm of its
corresponding sparse component vector. Some algorithms also
design detectors based on the low rank of background. Zhang
et al. [49] proposed the LRaSMD-based Mahalanobis distance
method for HAD (LSMAD). In [51], Xu et al. proposed the
low-rank and sparse representation (LRASR) HAD method,
where a background dictionary was introduced and sparse con-
straints on the representation coefficient were imposed. The
spectral-difference LRDL [52] is introduced to further explore
the low-rank characteristic of spectral contextual information.
Li et al. [88] proposed the LSDM-MoG detector, which based
on the LSDM model in conjunction with the mixture of Gaus-
sian to better fit the various data distribution. Furthermore,

Fig. 4. Flowchart of the reconstruction-based HSI anomaly detection method.

the dictionary-based low-rank decomposition algorithms were
applied on the background dictionary.

2) Tensor Decomposition-Based Method: HSI is a 3-D data
cube, which can be intrinsically treated as a third-order tensor.
However, most of the current HAD methods, including the afore-
mentioned methods, neglect the 3-D structure in HSI. Thus, a
tensor has been employed to advance the structure for integrated
consideration of all the dimensions to address this problem.
Several approaches based on tensors have been proposed for
HAD, thus gradually becoming a popular task.

Yang et al. [36] proposed an HAD method through sparse
representation with tensor decomposition-based dictionary con-
struction and adaptive weighting. Ma et al. [37] proposed
a hyper-Laplacian regularized low-rank tensor decomposition
method combing with dimensionality reduction framework
which considering the spectral-spatial information at the same
time. In [38], a fast and adaptive method for determining the
major principal component numbers (K1, K2, and K3) along
the three modes of hyperspectral data is proposed. However,
this tensor is still dense in spectral dimension, thus indicating the
existence of a group sparse prior in the anomaly tensor. There-
fore, a prior-based tensor approximation (PTA) [90] method
is proposed for HAD, which combines low-rank, sparse, and
piecewise smooth with the advantages of tensor representation
of HSI.

III. DEEP-LEARNING-BASED MODELS

With the development of deep learning techniques, numer-
ous scholars have focused on hyperspectral anomaly detection
tasks with deep-learning-based methods due to the capability to
extract deep features. These tasks elicited several HAD studies
based on deep learning. The tasks are divided into the follow-
ing four categories: reconstruction-based, residual error-based,
feature learning-based, and deep learning supported methods.

A. Reconstruction-Based Method

The first mainstream idea is to utilize deep learning technol-
ogy to reconstruct the background component in the original
hyperspectral data cube effectively. However, the anomaly part
could not be reconstructed successfully temporarily. Therefore,
the reconstructed hyperspectral data can be considered to obey a
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Gaussian normal distribution. Finally, the Mahalanobis distance
is usually applied, or some postprocessing is used to obtain
the detection results. The methods of this part are divided
into the following two categories according to the network
architecture used in the reconstruction process: the AE-based
and the GAN-based methods. Fig. 4 shows the flowchart of
reconstruction-based HAD methods. The entire HSI image is
fed into the reconstruction network (AE- or GAN-based), with
some constraints, such as sparse and manifold constraints, to
reconstruct the background components effectively.

Considering that the anomalies spectrum is significantly dif-
ferent from their neighbors, the HAD task is thus very concerned
with the structural information of HSI data. Given that man-
ifold learning methods can preserve distances with the local
neighborhoods of the data [40], the meaningful and intrinsic
structure of the given high-dimensional data can be revealed.
In the learned manifold, the samples with similar spectral sig-
natures are clustered and those with different spectrums are far
apart. Researchers commonly apply this method to constrain the
learning of the latent representation of AEs to create the latent
representation with local structural information, which is helpful
for the HAD task. As for sparse constraint, the AE requires that
the output be equal to the input as much as possible, and its
hidden layer must satisfy a certain sparsity. Thus, the hidden
layer compresses the input, and then, decompresses it in the
output layer. To ensure the sparsity of the hidden layer, a sparsity
penalty term Kullback–Leibler divergence is generally added to
the cost equation of the AE.

1) AE-Based Method: As a self-taught learning neural net-
work, AE comprises an encoder and a decoder. The parameters
of the network, including the weights and bias, are estimated by
the backpropagation method [58]. The encoder is used to learn
a mapping from the input layer x to the hidden layer y.

y = f(x;W,b) (10)

where W and b denote the weights and bias, respectively, and
f denotes an activation function. The decoder is used to learn a
mapping from the hidden layer y to the output layer x̃.

The AE aims to generate an output that approximates the
input, extracting the latent features of the input. Thus, the loss
function is the root-mean-square error, and the parameters can
be updated using the ADAM algorithm [59]:

L = ‖x− x̃‖2. (11)

The AE has been previously used to detect anomaly in-
stances by learning anomaly scores. These processes train the
parameters of encoder/decoder function by a known background
training set, contributing to the effective performance of this
semisupervised learning method on background replication. The
reconstruction error is used as an anomaly score considering that
the reconstruction error of background data will be small while
those of anomaly data will be relatively large. However, the HAD
research cannot provide any prior knowledge of the background
training set. Moreover, the aforementioned basic AE cannot be
applied to detect anomaly objects directly.

The following methods proposed in recent years are all based
on AE based on the aforementioned problems and challenges.

Combining with the spatial correlation of HSI, Chang et al.
[60] proposed a sparse AE-based AD using a dual concen-
tric window. Zhang et al. [61] introduced a 3-D-convolutional
variational AE-based HAD method, which can maximize the
spectral-spatial information. The anomalies can be easily de-
tected by the RX detector in the residual between the original
input and the reconstructed background. Zhu et al. [62] proposed
an encoder–decoder long short-term memory-based anomaly
detector (EDLAD) for hyperspectral images. The EDLAD first
utilizes a well-designed encoder–decoder LSTM to reconstruct
the hyperspectral image, which tends to maintain the background
and alleviate anomaly during the reconstruction process be-
cause the entire image is employed for training the network.
The Mahalanobis distance is calculated to detect the probable
anomalies after using the dimension reduction to further alle-
viate the anomaly contamination. Lei et al. [63] proposed a
discriminative reconstruction method for HAD with spectral
learning (SLDR). This method imposes a constraint on the
encoder, thus forcing it to generate latent variables that follow a
Gaussian distribution. The loss function of the SLDR model
additionally introduces the SAD term, which constrains the
model to generate a reconstruction with remarkable similarity to
the input. An unsupervised spectral adversarial feature learning
(SAFL) architecture, which has a powerful feature representa-
tion capability for high-dimensional HSIs, is especially designed
for HAD in [64]. The morphological attribute filter is introduced
to strengthen anomalies and remove the background of the fusion
feature.

2) GAN-Based Method: The idea of GANs was initially
proposed in [65] within a zero-sum game framework in the
game theory based on the competition of two networks. Two
models are available in adversarial iterative training: the gen-
erator model G and the discriminator model D. Derived from
the basic framework of GANs, many variants of GANs have
been proposed through changing objective function and ar-
chitecture. Most existing GAN-based methods are trained on
normal vectors and even normal and anomalous vectors, which
are unsuccessfully applied to HAD. Therefore, their applications
are limited without any normal or anomalous training samples
[66]. Some scholars have also recently attempted to use the GAN
to reconstruct HSI and realize HAD.

Zhong et al. [67] proposed a characterization of background-
anomaly separability with a GAN for HAD to approximate
the performance of the supervised method while eliminating
the limitation of training samples. The key contribution is the
proposal to constrain the background and anomaly separability
explicitly by characterizing background spectral samples while
avoiding anomaly reconstruction. Arisoy et al. [68] proposed a
completely unsupervised pixel-wise anomaly detection method
for hyperspectral images. Jiang et al. [69] introduced a discrim-
inative semisupervised GAN with dual RX (semiDRX), which
learns a discriminative reconstruction of background homog-
enization and anomaly saliency. Xie et al. [70] proposed an
AE and adversarial learning-based semisupervised background
estimation model, which is trained only on the background spec-
tral samples to learn the background distribution accurately. An
unsupervised background searching method is first conducted
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Fig. 5. Flowchart of the residual error-based HSI anomaly detection method.

on the original HSIs to search the background spectral samples.
A weakly supervised discriminative learning with a spectral
constrained GAN for HAD was proposed in [28]. The proposed
method mainly focus on learning a discriminative end-to-end
reconstruction with the background being homogenized and
anomalies being salient.

B. Residual Error-Based Method

Another mainstream idea is to utilize the deep learning
methods, such as AE, GAN, and its variant, to reconstruct a
background successfully using the neural network, while the
anomalies appear as reconstruction errors. The large errors al-
ways indicate that the corresponding pixels are anomalies, while
the small errors corresponding to pixels are usually regarded
as backgrounds. Fig. 5 shows the flowchart of residual error-
based HAD methods. This idea mainly reconstructs background
pixels successfully through the designed network. Meanwhile,
reconstructing anomaly pixels with the network is difficult
because anomalies are relatively smaller than the background
and only occur in the image with a low probability. Thus, the
reconstruction errors are used as anomaly scores. The difficulty
of this processing idea lies in the development of a well-designed
network to reconstruct the background pixels successfully in
the entire HSI images while suppressing the anomaly pixels
reconstructed temporarily. Some researchers proposed some
methods based on this idea according to the aforementioned
challenges and difficulties.

Zhao et al. [71] proposed a spectral-spatial HAD method
via collaborative representation constraint stacked AEs. The
collaborative representation constraint is imposed on the stacked
AEs to extract deep nonlinear features. The CRD is then used
for obtaining the detection result. Jiang et al. [72] proposed
an unsupervised discriminative reconstruction constrained GAN
for HAD (HADGAN). The HADGAN mainly aims to learn a
discriminative background reconstruction with the suppression
of anomaly targets. The initial detection image was obtained by
the residual between the original and reconstruction images. An
energy-based spatial and distance-based spectral joint anomaly
detector is applied in the residual map to generate the final
detection map. The existing AE-based methods are complicated
and involve manual parameter setting and preprocessing and
postprocessing procedures. Thus, an autonomous HAD network
(Auto-AD) is proposed in [73]. In this network, the background
is reconstructed by the fully convolutional AE network, and the
anomalies appear as reconstruction errors. An adaptive weighted

loss function is designed to further suppress the anomaly recon-
struction, wherein the weights of potential anomalous pixels
with large reconstruction errors are reduced during training.
The latent features learned from the AE occasionally fail to
reflect the intrinsic structure of hyperspectral data because the
locality property is disregarded during the learning process. Li
et al. [74] proposed a sparse coding-inspired GAN for weakly
supervised hyperspectral AD (sparseHAD), wherein a spectral
mapping model is formed to reconstruct background samples
with small errors. Fan et al. [75] introduced a robust graph
AE detector, which is robust to noise and anomalies during
training. Meanwhile, a superpixel segmentation-based graph
regularization term (SuperGraph) was embedded into AE. This
strategy can preserve the geometric structure and the local spatial
consistency of HSI simultaneously and also effectively reduce
the searching space and execution time for each pixel.

C. Feature Learning-Based Method

Another mainstream idea is to utilize pixel-wise feature learn-
ing to obtain additional discriminative features. Different from
the reconstruction-based HAD methods used to acquire the same
dimensional 3-D cube, this approach mainly uses the neural
network to learn a discriminate feature from the original HSI
data. However, the RX detector may also be used to obtain the
detection results after acquiring the discriminate feature. These
methods typically utilize deep learning to extract features and
use the extracted features to design the subsequent detector and
complete the HAD task. The difficulty of this kind of method
lies in designing a neural network to extract features conducive
to subsequent detection tasks. Many scholars have introduced
effective solutions as follows based on existing defects and
problems.

Li et al. [76] proposed a transferred deep CNN-based strategy
for HAD. A reference dataset was employed to train the CNN
with pixel pairs generated from labeled samples. Differences
between pixel pairs are constructed by combining with its
surrounding pixels for each pixel under testing. The detection
results are obtained by the trained CNN with the results of
similarity measurement. Zhang et al. [77] introduced a TCNNT
for HAD, which is an unsupervised CNN model and employs
the test and local neighboring tensors as the convolution kernel
to extract deep features from the dictionary tensor. TCNNT can
effectively utilize the spatial and spectral information of HSI.
Furthermore, Zhang et al. [78] proposed a fractional Fourier
transform and transferred CNN based on tensor (FrFTTCNNT)
for HAD. The FrFTTCNNT employs tensor transformation and
PCA as the preprocessing and combines FrFT and TCNNT. FrFT
can effectively deal with the inherent nonstationary noise in
HSI and increase the discrimination between background and
targets. Zhao et al. [79] proposed bilateral-filtered GANs for
HAD, which can effectively remove noise and anomalous pixels
from an HSI after using dual window and adaptive parameter
selection. Zhao et al. [80] introduced spectral-spatial stacked
AEs based on the bilateral filter for HAD. The bilateral filter is
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employed to obtain the derived anomaly and background com-
ponents. The stacked AEs are utilized on the derived anomaly
and background components for deep features. Ouyang et al.
[81] introduced an unsupervised model (Line-wise SAFL) for
HAD. This model utilizes LSTM in the AE network architecture,
which uses spatial information to learn additional distinct latent
features. A latent discriminator constrains the latent feature to
follow the Gaussian distribution, which enables the RX to detect
anomalies on the latent features directly. Lei et al. [82] proposed
an approach to HAD, which depends on spectral and spatial
feature extraction. A suppressed data space first extracted deep
spectral features via DBN, and the RX detector is utilized to
detect anomalies. Additionally, a simple differential operation
is used to remove BKG and employ the guided filter (GF) to
preserve the edge information and anomalies. The final detection
map is achieved by combining the spectral and spatial results.
Xie et al. [83] presented a spectral distribution-aware estima-
tion network, which does not conduct feature extraction and
anomaly detection in two separate steps but instead learns both
jointly to estimate anomalies directly in an end-to-end manner
without postprocessing. The unified framework can ensure that
the extracted features are effective for HAD.

D. Deep Learning Supported Method

Some scholars use deep learning as an intermediate tool,
which is typically utilized at endmember extraction or denois-
ing models. The postprocessing utilizes the nondeep learning
methods to obtain the final detection maps. This part mainly
uses deep learning to obtain intermediate abundance or a denoise
prior. Thus, the subsequent processing obtains a higher precision
result than that only using the traditional methods to design a
detector. This part of the method relies on the intermediate re-
sults obtained by the deep learning part. Thus, designing a good
neural network is crucial in the preprocessing stage. The deep
learning of this part is mainly used to deal with the part outside
of an HAD task; thus, studies on this kind of idea are limited.
Some scholars have proposed several methods combined with
endmember extraction or based on denoising.

Song et al. [84] proposed an HAD method based on CNN and
LRR. A CNN model is first built and trained on HSI datasets to
obtain the resulting abundance maps accurately. A dictionary
is then constructed by the DBSCAN to represent the back-
ground component stably. A low-rank constraint on the LRR
method contributes to its suitability for abundance map data. The
anomaly matrix was obtained when the convergence condition
in LRR was reached. Instead of cumbersomely handcrafting a
regularizer for representation coefficients, Fu et al. [85] pro-
posed a plug-and-play prior for representation coefficients and
constructed a new dictionary based on clustering. The deep
learning technique has been applied to the image denoising
area, showing promising results. An effective CNN prior is
plugged into the framework to exploit the spatial correlation of
representation coefficients. A modified background dictionary
construction method, which carefully includes background pix-
els and excludes anomalous pixels from clustering results, was
also proposed. An unsupervised low-rank embedded network

(LREN) was proposed in [39]. It searches the lowest rank repre-
sentation based on a representative and discriminative dictionary
in the deep latent space to estimate the residual efficiently.
Spectral features and discriminative dictionary are learned by
jointly training the autoencoders and a Gaussian mixture model.
Then, an LRR-based method is performed to detect anomalies
in the deep latent space.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Datasets and Setup Set

The PAVIA dataset, which was acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor, is a real-
world dataset of the city center of Pavia in northern Italy. The
spatial resolution of this image is 1.3 m per pixel. The image
scene covers an area of 108 × 120 pixels, with 102 spectral
bands in wavelengths ranging from 430 to 860 nm [29]. The
main background materials are bridges and water. Some vehicles
and bare soil are, respectively, found on the bridge and near the
bridge pier, which is represented by 43 pixels in total and was
selected as the anomalies to be detected.

The second and third datasets were collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) in San Diego,
CA, USA [89]. The spatial resolution is 3.5 m per pixel. The
image has 224 spectral channels in wavelengths ranging from
370 to 2510 nm. A total of 189 bands remained after removing
the low SNR, water absorption, and bad bands. The size of the
second HSI data is 100× 100 pixels, and three planes, which are
represented by 58 pixels in total, were chosen as the anomalies
to be detected in the scene. The size of the third HSI data is 60
× 60 pixels, and 22 planes covering 214 pixels were chosen as
the anomalies to be detected in the scene.

The last dataset was collected by the Hyperspectral Digital Im-
age Collection Experiment (HYDICE) sensor.1 It is a real-world
HSI downloaded from the U.S. Army Engineer Research and
Development Center website. The spatial resolution is 2 m/pixel,
and the spectral resolution is 10 nm. The original dataset has
210 spectral bands in the visible near-infrared range from 400
to 2500 nm. However, only 162 spectral bands remained after
the water absorption, and low SNR bands (1–4, 76, 87, 101–111,
136–153, and 198–210) were removed. The scene is clustered
with different land-cover types, and a scene of 80 × 100 pixels
was selected for the experiments. Parking lot, soil, water, roads,
and vehicles, which are represented by 17 pixels in total, were
chosen as the anomalies to be detected.

B. Compared Methods and Parameter Settings

1) Compared Methods: Several HAD methods, including
RX [11], KRX [30], KIFD [86], CRD [18], LSMAD
[49], LRASR [51], PTA-HAD [90], CNND [76], RGAE
[75], MCAEN [47], Auto-AD [73], and HADGAN [72],
were investigated in this article. The aforementioned
methods comprise traditional machine-learning-based and
deep-learning-based models, which contains 12 methods
in total. The 3-D and 2-D receiver operating characteristic

1[Online]. Available: http://www.tec.army.mil/Hypercube

http://www.tec.army.mil/Hypercube


3358 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 6. AVIRIS-I dataset and color maps of the detection results. (a) Image scene. (b) Ground truth. (c) RX. (d) KRX. (e) KIFD. (f) CRD. (g) LSMAD.
(h) LRASR. (i) PTA-HAD. (j) CNND. (k) RGAE. (l) MCAEN. (m) Auto-AD. (n) HADGAN.

Fig. 7. HYDICE dataset and color maps of the detection results. (a) Image scene. (b) Ground truth. (c) RX. (d) KRX. (e) KIFD. (f) CRD. (g) LSMAD.
(h) LRASR. (i) PTA-HAD. (j) CNND. (k) RGAE. (l) MCAEN. (m) Auto-AD. (n) HADGAN.

(ROC) curves [11] and the area under the curve (AUC) values
[12] were used as the evaluation criterions for experimental
results. Furthermore, there exist two versions of the 2-D ROC
curves. In one version, the probability of false alarm (Pf ) and
the probability of detection (Pd) were used as abscissa and
ordinate, respectively. While in the other version, thresholds τ
and Pf were used as abscissa and ordinate, respectively. AUC
value is the area under the 2-D ROC curve, and the ideal values
of AUC(Pd, Pf ) and AUC(Pf , τ) are 1 and 0, respectively.

2) Parameter Settings: For the CRD detector, the sizes of the
two dual windows size are 15 and 17 for the all datasets. The
optimal regularization parameter λ is set as 10−6 suggested by
previous literature [18]. According to the original description of
LRASR, the number of clusters K and the number of selected
pixels P are set to 15 and 20, respectively, and the regularization
parameters β and λ were set to 0.1 for all four experimental
datasets. For the KIFD method, the default parameters are set
the same as the original article. Furthermore, the number of
principal components is set as 300. The parameters of PTA-HAD
are set accordingly [90]. The tradeoff parameter λ, number
of superpixels S, and the dimension of hidden layer nhid in
the RGAE method are set as optimal [75]. For the MCAEN
method, the range of the dimension of embedding manifold d

and tradeoff parameter α are set following previous study [47].
The parameters of the methods Auto-AD and HADGAN are set
according to [72] and [73], respectively.

C. Detection Results

Figs. 6–9 show the detection maps on the 12 HAD methods
including seven traditional-based HAD methods and five deep-
learning-based HAD methods for the four real HSIs datasets. For
example, on the AVIRIS-I dataset, it can be seen that, although
KIFD, CRD, LSMAD, and LRASR can detect all the anomaly
targets in the scene, they cannot suppress the background com-
ponents well. The KIFD method and the LSMAD method occur
the higher false alarms in the lower left area of the image, while
the CRD and LRASR methods produce the higher false alarms in
the upper left area of the image. As for the PTA-HAD method, it
can obtain really good performance in background suppression,
the anomaly targets could also be highlighted in the scene.
While in the deep learning methods, except for the CNND and
Auto-AD, the other three methods have relatively good results.
Especially for the RGAE method, it can obtain more convincing
anomaly detection results and also have a better background
suppression performance. In general, the methods based on deep
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Fig. 8. PAVIA dataset and color maps of the detection results. (a) Image scene. (b) Ground truth. (c) RX. (d) KRX. (e) KIFD. (f) CRD. (g) LSMAD. (h) LRASR.
(i) PTA-HAD. (j) CNND. (k) RGAE. (l) MCAEN. (m) Auto-AD. (n) HADGAN.

Fig. 9. AVIRIS-II dataset and color maps of the detection results. (a) Image scene. (b) Ground truth. (c) RX. (d) KRX. (e) KIFD. (f) CRD. (g) LSMAD.
(h) LRASR. (i) PTA-HAD. (j) CNND. (k) RGAE. (l) MCAEN. (m) Auto-AD. (n) HADGAN.

Fig. 10. ROC curves of the 12 methods for the AVIRIS-I dataset. (a) Two-dimensional ROC curves (Pd, Pf ). (b) Two-dimensional ROC curves (Pf , τ).
(c) Three-dimensional ROC curves.

learning show better results in background suppression, which
can effectively suppress background information such as noise
in images.

Figs. 10–13 show three kinds of ROC curves corresponding
to the detection maps. It can be observed that the 2-D ROC
curve of (Pd, Pf ), the KIFD, HADGAN, and RGAE method

is much closer to the upper left corner than other methods
for the AVIRIS-II, HYDICE, and PAVIA dataset, respectively.
Obviously, the ROC curves of different methods intersect with
each other in Fig. 10. To deal with this issue, Table I provides two
AUC indicators including AUC (Pd, Pf ) and AUC (Pf , τ) of
all comparing methods on four real HSI datasets for quantitative
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Fig. 11. ROC curves of the 12 methods for the AVIRIS-II dataset. (a) Two-dimensional ROC curves (Pd, Pf ). (b) Two-dimensional ROC curves (Pf , τ).
(c) 3-D ROC curves.

Fig. 12. ROC curves of the 12 methods for the HYDICE dataset. (a) Two-dimensional ROC curves (Pd, Pf ). (b) Two-dimensional ROC curves (Pf , τ).
(c) Three-dimensional ROC curves.

Fig. 13. ROC curves of the 12 methods for the PAVIA dataset. (a) Two-dimensional ROC curves (Pd, Pf ). (b) Two-dimensional ROC curves (Pf , τ).
(c) Three-dimensional ROC curves.

TABLE I
AUC VALUES (Pd, Pf )/(Pf , τ) OF THE 12 METHODS FOR THE FOUR REAL DATASETS
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evaluation. In addition, the best results of AUC (Pd, Pf ) and
AUC (Pf , τ) are highlighted in boldface. The higher the AUC
(Pd, Pf ) value, the better the detection result. While the smaller
the AUC value (Pf , τ), the better the suppressing effect on
the background. The AUC values show similar conclusions
with the visualization results. The PTA, KIFD, HADGAN, and
RGAE methods obtain the highest AUC (Pd, Pf ) on four HSIs,
respectively. It is consistent with the visualization maps, the
aforementioned corresponding methods have the best results
in background suppression and highlighting anomalies. As for
AUC (Pf , τ), the RGAE method shows good competitiveness. It
achieves the best results in the three datasets. While the LSMAD
method shows the best background suppression performance in
the HYDICE dataset. Overall, the RGAE method offers a good
performance in the background suppression, which is consistent
with the visualization maps and AUC (Pf , τ).

In general, for both of the AVIRIS datasets, the ma-
trix decomposition-based and kernel learning-based methods
achieve the highest AUC (Pd, Pf ) values among the all com-
pared methods. While for the HYDICE and PAVIA datasets, the
deep-learning-based methods obtain better results compared to
traditional machine learning methods. The RGAE method can
achieve very good results in terms of a background suppression
effect on different datasets according to the AUC (Pf , τ) values,
although the method only has the highest AUC (Pd, Pf )value
on one set of datasets. Therefore, the RGAE method is most
beneficial for background suppression among all methods.

V. CONCLUSION

This article presents a comprehensive overview of HAD tech-
niques based on machine learning. In particular, both of the tra-
ditional machine-learning-based models and recently emerged
deep-learning-based models are introduced in the parallel tax-
onomies, respectively. Furthermore, experiments on four real
HSIs with 12 compared methods are conducted. Finally, in this
section, we discuss the prospects and future directions. With the
rapid and exciting development of deep learning techniques in
the computer-vision-related tasks, the HAD task has also clearly
moved from the traditional machine learning to deep learning
era. As reviewed in this article, many successful attempts of
deep-learning-based methods for HAD have been reported.
However, the following aspects should be addressed in the future
study.

1) Both of the traditional machine-learning and deep-
learning-based models have many parameters to set, which
is hardly to be tuned in practice due to the unavailable of
evaluation data. Therefore, it is necessary to design the
parameter-robust and parameter-adaptive machine learn-
ing models for HAD.

2) The current machine-learning-based HAD algorithms of-
ten trained on single or very few hyperspectral images,
thus the overfitting phenomenon may imperceptibly hap-
pen. To relieve such issue, some advanced machine learn-
ing techniques, e.g., regularization, model compression,
and network architecture search, are expected to be inves-
tigated.

3) Since the HAD is a full unsupervised task, it is beneficial to
employ the recent deep generative models (e.g., GAN) to
bring large volume of synthesis data to support training. In
the future study, it is more important to further embed the
physical factors (e.g., the linear mixture model) into the
data generation and make the whole learning architecture
to be explainable.

4) In the deep learning society, the regularly updated
backbone networks (usually for feature extraction) push
forward various of computer vision tasks to better
performance. Consequently, it is also reasonable to
rapidly introduce and improve these latest backbone
networks to deal with the HAD task.

5) Recent researches show there exist some potential risks
that the deep learning algorithms may get attacked by
specific deception algorithms, which are crucial for some
HAD applications. Therefore, it is extremely important
to design the HAD algorithms that are robust and not
vulnerable to external attacks.
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