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 2 

Abstract: 13 

Cryoelectron tomography enables the visualization of cellular environments in 14 

extreme detail through the lens of a benign observer; what remains lacking 15 

however are tools to analyze the full amount of information contained within these 16 

densely packed volumes. Detailed analysis of macromolecules through 17 

subtomogram averaging requires particles to first be localized within the 18 

tomogram volume, a task complicated by several factors including a low signal to 19 

noise ratio and crowding of the cellular space. Available methods for this task 20 

suffer either from being error prone or requiring manual annotation of training data. 21 

To assist in this crucial particle picking step, we present TomoTwin: a robust, first 22 

in class general picking model for cryo-electron tomograms based on deep metric 23 

learning. By embedding tomograms in an information-rich, high-dimensional 24 

space which separates macromolecules according to their 3-dimensional 25 

structure, TomoTwin allows users to identify proteins in tomograms de novo 26 

without manually creating training data or retraining the network each time a new 27 

protein is to be located. TomoTwin is open source and available at 28 

https://github.com/MPI-Dortmund/tomotwin-cryoet.  29 

  30 
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 3 

Main Text: 31 

Introduction 32 

In recent years, cryo-electron tomography (cryo-ET) has emerged as a landmark 33 

technique for the visualization of macromolecules within their native cellular 34 

environment1–7. Advances in high-pressure freezing and the advent of focused ion beam 35 

(FIB) milling at cryogenic temperatures now allow for the routine preparation of thin (< 36 

200 nm) lamellae from cells or even small organisms8–10. Performing cryo-ET on these 37 

thin lamellae offers a unique opportunity to capture cellular processes in 3D and in 38 

unprecedented detail. Subsequent analysis of specific macromolecules from tomographic 39 

volumes through subtomogram averaging (STA) allows in depth structural determination 40 

of macromolecular complexes in their native environment11–14. Particularly when 41 

complemented by recent advances in structure prediction such as alphafold2, STA forms 42 

a powerful crossbridge between protein biochemistry and cellular proteomics15–17. In 43 

order to perform STA however, particles of a macromolecule of interest must first be 44 

located within the tomographic volume, a task complicated by the 3D nature of these data. 45 

The accurate localization of macromolecules inside cryo-electron tomograms is a 46 

well-recognized barrier for studying cellular life at the mesoscopic level, sparking 47 

competitions such as the annual Classification in Cryo-Electron Tomograms (SHREC) 48 

competition where contestants submit algorithms to localize proteins in tomograms with 49 

a benchmark set by template matching18. This has led to the development of several deep 50 

learning-based tools with high picking accuracies often achieved by leveraging popular 51 

3D-Unet convolutional neural network (CNN) architectures19–21. Each of these 52 
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approaches is unified however in the fact that they share a non-generalizing workflow, 53 

meaning that for each protein of interest, users must first manually pick the protein in at 54 

least one tomogram and retrain the neural network to identify that protein. Not only is this 55 

incompatible with the future directions of automated tomogram reconstruction and STA, 56 

but for many proteins picking sufficient training data by eye is not possible. With a minimal 57 

requirement for user-input, template matching22,23 is still often utilized in cryo-ET 58 

processing workflows that place an emphasis on throughput24 although at the cost of 59 

picking accuracy.  60 

One method to retain the accuracy of deep learning-based picking while 61 

circumventing the requirement of manually annotating training data for each protein of 62 

interest is to train a model to learn a generalized representation of 3D molecular shape 63 

that then can differentiate between macromolecules based on their structure. Such 64 

approaches have demonstrated profound impact for particle picking in 2D for single 65 

particle cryo-electron microscopy analysis25–28. 66 

Particularly well suited for this type of generalization is deep metric learning in 67 

which data are encoded as a high-dimensional representation, called an embedding, 68 

where one or more learned characteristics of the data are related to distance in the 69 

embedding space29,30. During training, the model is penalized for placing data from 70 

different classes near to one another and rewarded for placing data from the same class 71 

close together in the embedding space31. Therefore, over the training process the model 72 

learns to place data from each class within a distinct region of the embedding space 73 

where more similar classes are placed closer together and dissimilar ones further apart. 74 

In some cases, the embeddings of a dataset are sufficiently ordered to allow for de novo 75 
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 5 

identification of classes based on their clustering in the embedding space31. By 76 

understanding similarity relationships, deep metric learning models have demonstrated 77 

acute adaptability when presented with new classes of data, being able to place them in 78 

the embedding space according to their similarity to known classes without requiring 79 

retraining31–33. 80 

Here we present TomoTwin, a generalized particle picking model and deep metric 81 

learning toolkit for structural data mining of cryo-electron tomograms. We supply two 82 

workflows for macromolecular localization with TomoTwin, a reference-based workflow in 83 

which a single molecule is picked for each protein of interest and used as a target, and a 84 

de novo clustering workflow where macromolecular structures of interest are identified on 85 

a 2D manifold. Trained on a diverse set of simulated tomograms, the picking model of 86 

TomoTwin is able to locate new proteins with high accuracy in not only simulated data, 87 

but experimental and cellular tomograms as well. TomoTwin combines the high accuracy 88 

of deep learning-based particle picking with high throughput processing by removing the 89 

step of manual annotation of training data and model training, and allows simultaneous 90 

picking of several proteins of interest in each tomogram.  91 

 92 

Results: 93 

Overview of functions, build, and philosophy behind TomoTwin 94 

The machine learning backbone of TomoTwin is built on the principle of learning 95 

generalized representations of 3-dimensional shapes in tomograms (Supplementary Fig. 96 

1a,b). Trained with deep metric learning, the 3D-CNN is able to locate not only 97 

macromolecules contained in the training set, but novel macromolecules in tomograms 98 
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as well. This allows TomoTwin to retain the high fidelity of deep learning-based particle 99 

picking while avoiding the burden of requiring retraining for each protein of interest. The 100 

trained model plots tomogram subvolumes as points in a high-dimensional embedding 101 

space organized according to the similarity of their macromolecular contents 102 

(Supplementary Fig. 1c). Once this high-dimensional space is mapped for a tomogram, 103 

particles of each macromolecule can be picked by identifying their associated region in 104 

of the embedding space. This can be done either by identifying a single example of each 105 

protein of interest in a tomogram and using them to mark the region of the space where 106 

they are embedded to create a target embedding (reference-based workflow), or by 107 

plotting the tomogram embeddings onto a 2D manifold where clusters of subvolumes for 108 

each macromolecule can be identified by eye (clustering workflow) (Fig. 1a,b). Once the 109 

subvolumes containing a protein of interest are identified in the embedding space, they 110 

must be mapped back to real space in the tomogram where overlapping picks of the same 111 

molecule can be consolidated into one centralized pick per molecule (Fig. 1c). Finally, 112 

TomoTwin allows users to interactively filter the picked particles for each macromolecule 113 

of interest based on the particle size and the network’s confidence level, which is encoded 114 

as the distance between each subvolume and the target embedding for that 115 

macromolecule in the embedding space (Fig. 1d, Supplementary Fig. 2).  116 

 117 

Two workflows to identify and locate macromolecules in tomograms 118 

TomoTwin represents tomograms in a high-dimensional space where subvolumes of 119 

each macromolecule are embedded in a distinct region of the space. In order to identify 120 

which region of the embedding space a macromolecule is located in, we provide the user 121 
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with two workflows – a reference-based workflow and a clustering workflow. Each 122 

workflow picks particles with high accuracy, but the reference-based approach begins 123 

with identifying an example of the protein of interest in the tomogram and mapping this to 124 

the embedding space whereas the clustering workflow begins with identifying a region of 125 

the embedding space and mapping this to the tomogram. Which workflow is most suitable 126 

for any given application depends on how easily the protein(s) of interest can be identified 127 

in the tomogram versus the embeddings. Both workflows share the common first step of 128 

using the embedding function of TomoTwin to generate a high-dimensional embedding 129 

of the entire volume of the tomogram called a tomogram’s representation map (Fig. 1a).  130 

In the reference-based workflow, users identify a single molecule of each protein 131 

of interest in a tomogram and embed it to generate a target in the embedding space for 132 

that protein. In the clustering workflow, TomoTwin approximates the representation map 133 

of the tomogram onto a 2-dimensional manifold. This 2D manifold can then be directly 134 

visualized by the user who can then outline one or more clusters of interest using the 135 

Lasso function of TomoTwin. The Lasso function then computes the center coordinate of 136 

the drawn cluster in the high-dimensional embedding space to be used as a target 137 

embedding in lieu of a reference (Fig. 1b). The map function of TomoTwin takes as input 138 

the tomogram embeddings and target embeddings and calculates the distance matrix 139 

between the target(s) and each point in the tomogram embeddings. The distances are 140 

mapped to the coordinates of each subvolume, constructing a similarity map of proposed 141 

particle locations within the tomogram for each protein of interest (Fig. 1c). The Locate 142 

function uses this similarity map to localize peaks of high similarity and generate 143 

candidate particle positions. Finally, the Pick function of TomoTwin uses these candidate 144 
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positions as well as adjustable size and confidence thresholds to pick particles in the 145 

tomogram producing a coordinate file for each protein of interest to be then used for 146 

subtomogram averaging or other analysis (Fig. 1d).  147 

 148 

Training of the general picking model 149 

To produce a picking model capable of localizing novel macromolecules within 150 

tomograms without requiring retraining, TomoTwin is trained using deep metric learning 151 

on triplets of subvolumes from simulated tomograms. A set of 120 structurally dissimilar 152 

proteins procured from the Protein Data Bank (PDB) ranging in size from 30 kDa to 2.7 153 

mDa were used to simulate 84 tomograms containing a total of 120,000 subtomogram 154 

particles (Supplementary Fig. 3). During training, batches of subvolumes are embedded 155 

by a custom-built 3D CNN which transforms each 37x37x37 realspace 3D subvolume to 156 

a 1D, 32-length coordinate vector located on a high-dimensional embedding manifold 157 

molded to the surface of a 32D hypersphere (Supplementary Fig. 1a).  158 

These coordinate vectors are used in the metric learning process which rewards 159 

the model for placing the anchor and positive close together in the embedding space and 160 

penalizes it for placing the anchor and negative near one another. Therefore, through 161 

training TomoTwin learns to place subvolumes of each macromolecule within a distinct 162 

region of the embedding space, where more structurally similar macromolecules are 163 

placed closer together and dissimilar ones further apart (Supplementary Fig. 1c). By 164 

training on a large, diverse set of 3D macromolecular shapes and sizes, TomoTwin learns 165 

a generalized representation of 3D macromolecular shapes which it leverages to place 166 
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novel macromolecules in their own region of this embedding space relative to their 167 

structural similarity to known proteins without requiring retraining. 168 

 169 

The general picking model accurately locates particles across a wide range of 170 

shapes and sizes 171 

Because a priori information on the ground truth locations of all molecules in a tomogram 172 

is not possible to obtain for experimental data, the picking performance of the trained 173 

model was first assessed on the simulated tomograms containing proteins from the 174 

training set where the F1 picking score was calculated from the true positive, false 175 

positive, true negative, and false negative picks as described in Methods. 176 

 The median F1 picking score across all validation tomograms was 0.88 with a 177 

range from 0.76 to 0.98 (Supplementary Fig. 4a). Across all proteins in the training set, 178 

the median validation F1 picking score is 0.92 (Supplementary Fig. 4b). In rare cases, 179 

outlier scores were observed where specific proteins were unable to be picked across a 180 

range of sizes (Supplementary Fig. 4c). Closer inspection of these outliers revealed that 181 

in the simulated tomograms, each of these proteins display a particularly weak signal 182 

when compared to proteins of similar size (Supplementary Fig. 4d). In these cases, it 183 

appears that these proteins display a shape that is not recovered well during tomogram 184 

reconstruction by weighted back-projection. Despite this, picking on the validation 185 

tomograms demonstrated high accuracy for proteins across a wide array of shapes and 186 

sizes ranging from 30 kDa to 2.7 mDa.  187 

 188 

 189 
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 10 

TomoTwin generalizes to unseen proteins 190 

In order the assess the generalization of the general picking model to particles that were 191 

not in the training data set, we measured the picking performance with other, previously 192 

unseen proteins in a simulated tomogram with the reference-based workflow. We 193 

measured the F1 score of proposed particle locations against ground-truth boxes for 194 

seven proteins not included in the training data for which TomoTwin was therefore naïve 195 

(Fig. 2a,b). This assessment revealed that when trained on a set of 120 dissimilar proteins 196 

(Supplementary Fig. 3), the resulting model was able to locate all seven proteins 197 

accurately with a median F1 score of 0.82 despite a lack of previous training on these 198 

proteins (Fig. 2d). To measure the effect of training set size on generalization accuracy 199 

we performed this analysis on picking models trained on 20, 50, 100, and 120 proteins 200 

where we observed a logarithmic increase in generalization accuracy with the number of 201 

proteins in the training set (Fig. 2c). This high accuracy in locating novel proteins indicates 202 

a high generalization capability of TomoTwin.   203 

As TomoTwin is trained entirely on simulated data, it is paramount to investigate 204 

its ability to pick proteins of interest in experimental tomograms. To evaluate this, cryo-205 

ET was performed on a sample containing a mixture of three proteins, namely 206 

apoferritin34, the Type VI secretion effector RhsA from Pseudomonas protegens34, and 207 

the Tc toxin A component TcdA1 from Photorhabdus luminescens35 as well as liposomes 208 

(DOPC/POPC) (Fig. 3a). This mixture was chosen to create an environment with several 209 

proteins of different sizes as well as liposomes to mimic non-protein structures that may 210 

confound picking accuracy. Ten reconstructed tomograms were picked for apoferritin, 211 

RhsA, and TcdA1 using the pretrained general model of TomoTwin. In each case, the 212 
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reference-based workflow was employed in which a target embedding was created by 213 

picking a single example of each protein as they are readily observable in tomograms 214 

with sufficient contrast. The target embedding from one tomogram was then applied 215 

across all tomograms in each dataset. Direct visualization of the picking similarity maps 216 

and final picking reveals high fidelity localization of each protein within the tomograms 217 

despite none of these proteins being included in the training set (Fig. 3b).  218 

As ground-truth particle coordinates are not available for experimental data, the 219 

accuracy of the picking was assessed by extracting subvolumes at the picked coordinates 220 

of each protein, projection of the 3D subvolumes to 2D using SPHIRE36, and performing  221 

2D classification37 to evaluate the picked particles in a reference-free manner 222 

(Supplementary Fig. 5). For each protein of interest, the number of particles in the 2D 223 

classes displaying a high similarity to 2D classes of the protein previously determined by 224 

single particle analysis were recorded and represented as a percentage of the total 225 

number of particles picked (Fig. 3c). The high proportion of particles in all positive classes 226 

indicates that the picking is of high accuracy, confirming the visual impression of the 227 

picking result. 228 

One of the principal advantages of cryo-ET is the ability to directly visualize 229 

proteins in their native cellular environments. Due to crowding of the cellular space and 230 

the poor contrast caused by thick specimens however, particle localization within a 231 

cellular environment presents a significant challenge. To assess its ability to locate 232 

particles in cellular tomograms, we applied TomoTwin to a dataset of tomograms 233 

containing Mycoplasma pneumoniae38 (EMPIAR 10499) (Fig. 4a). Using the TomoTwin 234 

general model, we picked 70S ribosomes in 65 tomograms with the reference-based 235 
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workflow in which a reference was identified on one tomogram and used to generate a 236 

target embedding that was then applied to the entire dataset (Fig. 4b,c). To visualize the 237 

results, we extracted pseudo-subtomograms39 and performed 3D classification using a 238 

70S ribosome cryo-EM structure (EMD 11650) lowpass filtered to 30 Å as a reference. 239 

As all 3D classes resemble ribosomes refined to ~15 Å, it clearly indicates that TomoTwin 240 

also picks highly accurately in cellular tomograms (Fig. 4d).  241 

 242 

Structural Data Mining on the Embedding Manifold 243 

The embedding feature of TomoTwin constructs a representation of a tomogram as a 244 

series of high-dimensional embeddings. These high-dimensional embeddings can be 245 

directly visualized by approximation on a 2D manifold (Fig. 5a,c). As a result of our deep 246 

metric learning-based approach, these representations contain a wealth of information 247 

about the contents of a tomogram where the distance between two subvolume 248 

embeddings directly correlates to the similarity of the 3-dimensional macromolecular 249 

shapes contained within. Typically, these representations contain a large mass 250 

corresponding to background noise, or a particularly prominent feature of the tomogram 251 

volume as well as additional well-defined clusters corresponding to different shapes such 252 

as proteins, membranes, or fiducials. By directly visualizing these representations on a 253 

2D manifold, the clustering workflow of TomoTwin allows interactive, structural data 254 

mining of tomograms, where clusters of subvolumes on the embedding manifold are used 255 

to locate different macromolecular populations within the tomogram.  256 

To evaluate the accuracy of clustering-based picking quantitatively, we again 257 

utilized our simulated generalization tomogram where we evaluated the results of the 258 
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clustering-based picking of each protein against the ground-truth coordinates with the F1 259 

picking score as well as directly comparing it against the reference-based workflow (Fig. 260 

5b,e). The clustering-based picking identified each protein with high accuracy across a 261 

range of sizes. Notably, it outperforms the reference-based workflow for glutamine 262 

synthetase40 (PDB ID: 1FPY) indicating that this workflow provides complementary 263 

advantages to the reference-based workflow. Additionally notable in the manifold 264 

projection of the representation map is the fact that individual protein clusters are globally 265 

organized by size, with the three largest protein clusters located in one area of the map, 266 

clusters for medium sized proteins in another, and the clusters for the two smallest 267 

proteins located furthest away from those of the large proteins, demonstrating that the 268 

model accurately represents complex similarity relationships in terms of protein structures 269 

as distance in the embedding space (Fig. 5a).  270 

We additionally compared the clustering-based picking workflow directly against 271 

the reference-based approach for the cellular tomograms containing M. pneumoniae (Fig. 272 

5c). Examining the representation maps of these tomograms, several clusters are visible. 273 

One of which, when picked, produces accurate particle locations for 70S ribosomes 274 

nearly identical to those produced by the reference-based approach once again 275 

underlining the robustness of both workflows (Fig. 5d).  276 

 277 

Conclusion: 278 

Despite offering the potential to study proteins in their native, cellular environment in 279 

unprecedented detail, it remains that, presently, only a select few proteins have been 280 

successfully studied in detail by cryo-ET with STA. In part, this is because with increased 281 
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cellular context, the formation of macromolecular complexes, and poorer contrast caused 282 

by thicker specimens, comes the challenge of picking individual proteins for subsequent 283 

subtomogram averaging. To assist in this crucial particle picking step, we developed 284 

TomoTwin, a robust, first in class general picking model for cryo-electron tomograms 285 

based on deep metric learning. TomoTwin allows users to identify proteins in tomograms 286 

de novo without manually creating training data or retraining the network each time a new 287 

protein is to be located. 288 

The innovation landscape for algorithm development in both cryo-EM and cryo-ET 289 

bears a heavy emphasis on automated processing for increased data throughput26,37,41–290 

43 . With its highly generalizable picking model, TomoTwin is the first tool based on deep 291 

learning that can be readily integrated with high throughput tomogram reconstruction and 292 

STA workflows. Additionally, when combined with unsupervised cluster detection 293 

algorithms44, the clustering workflow of TomoTwin paves the way for unsupervised STA 294 

analysis on a whole-tomogram level (Supplementary Fig. 6).  295 

TomoTwin is a robust, open-source tool for particle localization in cryo-electron 296 

tomograms. The code used to develop and train TomoTwin as well as the general picking 297 

model and tools to use it for generalized particle picking are available at 298 

https://github.com/MPI-Dortmund/tomotwin-cryoet with future updates including 299 

extensive user documentation available soon. 300 

  301 
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Methods 302 

Training Data Generation 303 

TomoTwin was trained on 123 data classes comprised of subvolumes of 120 different 304 

proteins, membranes, noise, and fiducials from simulated tomograms. To ensure that 305 

TomoTwin is trained on the most diverse set of proteins possible, 108 proteins were 306 

selected from the PDB with sizes ranging from 30 kDa to 2.7 mDa and the cross 307 

correlation between pairs of 10 Å low-pass filtered maps of each protein was calculated 308 

(Supplementary Figure 3). Any protein with a high similarity (greater than 0.6) to another 309 

protein in the training set was marked for replacement. Additionally included were the 310 

data from the 2021 SHREC competition including 12 proteins18 to yield a total of 120 311 

proteins for training. A training/validation split was achieved with 800 subvolumes for each 312 

data class in the training set and 200 in the validation set, yielding a total training set size 313 

of 98,400 subvolumes and a validation set size of 24,600 subvolumes. 314 

 315 

Tomogram simulation 316 

Tomogram simulation was done using TEM Simulator45 which calculates the scattering 317 

potential of individual proteins and places them in definable positions within the volume. 318 

The output of the simulation is a tilt series which is then reconstructed using IMOD46. A 319 

configuration file was generated with properties for the electron beam, optics of the 320 

microscope, the detector, the tilt geometry and the sample volume. The default detector 321 

was adjusted to reflect the MTF curve of a modern Gatan K3 Camera with a quantum 322 

efficiency of 0.9. The detector size was set to 1024x1024 with a pixel size of 5 micrometer. 323 

The magnification was set to 9800, the spherical aberration and chromatic aberration 324 
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were adjusted to 2.7 mm and 2 mm respectively to mimic popular modern TEMs. A 325 

condenser aperture size of 80 micrometer was chosen. For each tomogram the defocus 326 

value was randomly chosen between -2.5 µm and -5 µm. A tilting scheme of -60˚ to +60˚ 327 

with a step size of 2˚ was used. To simplify and streamline the simulation we wrote a set 328 

of open-source programs called “tem-simulator-scripts” (https://github.com/MPI-329 

Dortmund/tem-simulator-scripts). They contain scripts that require as input the PDB files 330 

to be simulated and the number of particles to simulate per PDB. The program then 331 

generates reconstructed tomograms as they were used for this study using the following 332 

pipeline:  333 

1. Generation of densely packed random particle positions within the volume 334 

where individual particles do not overlap. 335 

2. Generation of an occupancy map - a volume where each voxel is labeled 336 

according the protein identity.  337 

3. Generation of fiducial maps. 338 

4. Generation of vesicle maps. 339 

5. Generation of the configuration file for TEM-simulator 340 

6. Simulation of the tiltseries using TEM-simulator. 341 

7. Alignment and reconstruction using IMOD. 342 

However, all steps can also be carried out individually to have full control over all 343 

parameters. 344 
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Using this procedure, we simulated 11 sets of proteins. The sets contain in total 345 

108 different proteins with each set covering proteins of various sizes. For each set we 346 

simulated 8 tomograms of size 512x512x200 voxels with a pixel size of 1.02 nm and 347 

varying protein density.  For tomogram 1, 2 and 8, 150 particles per protein were 348 

generated, for tomogram 3 and 4, 125 particles per protein, for tomogram 5 and 6, 100 349 

particles per protein and for tomogram 7, 75 particles per protein. Tomograms 1-7 were 350 

used for training and tomogram 8 for validation. The generated tomograms used in this 351 

study with all meta-data are publicly available47. These simulated data were used to 352 

construct the training and validation sets48 to evaluate network training, particle 353 

localization, and model generalizability.  354 

 355 

Convolutional Network Architecture 356 

To encode volumetric cryo-ET data as embedding vectors in a high-dimensional space, 357 

TomoTwin employs a 3D CNN consisting of five convolutional blocks followed by a head 358 

network (Supplementary Fig. 1a). Each convolution block consists of two 3D 359 

convolutional layers with a kernel size of 3x3x3. Each convolutional layer is followed by 360 

a normalization layer and a leaky rectified linear (ReLU) activation function. In the first 361 

convolutional layer of each convolutional block, the number of output channels is twice 362 

the input channels and in the second convolutional layer the number of output channels 363 

matches the output from the previous layer. Max pooling is performed with a kernel size 364 

of 2x2x2 after the first convolutional block and adaptive max pooling to a size of 2x2x2 is 365 

performed after the final convolutional block. As a result, when provided with a 37x37x37 366 

subvolume with 1 channel as a normalized, 37x37x37x1 array, the convolutional blocks 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

transform the input to a 2x2x2x1024 feature vector which is then fed to the head network. 368 

In the head network, the feature vector is first flattened channel-wise before being subject 369 

to a dropout layer and then passed through a series of fully-connected layers that 370 

transform the flattened vector to a 1-dimensional, 32-length feature vector. Finally, this 371 

feature vector is L2-normalized to yield an output embedding vector for the subvolume.  372 

 373 

Triplet Generation 374 

TomoTwin is trained on triplets of subvolumes consisting of an anchor volume A, a 375 

positive volume P, and a negative volume N (Supplementary Fig. 1b). Each subvolume 376 

is assigned to a data class corresponding to the macromolecule contained within and has 377 

a size of 37x37x37 voxels. Triplets are constructed where A and P are sampled from the 378 

same data class and N from a different data class. Given a distance function D and an 379 

embedding function f, the triplet loss is defined as: 380 

 381 

where the hyperparameter α is the margin value. As distance function D we use cosine 382 

similarity which is defined as 383 

 384 

where Q and P are arbitrary embedding vectors, • is the dot product and  the length of 385 

the vector. During training, triplets are generated by online semihard triplet mining 386 

wherein a batch of subvolumes are embedded and triplets generated automatically with 387 

the negative subvolume embedding being selected from those only with a distance to the 388 
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anchor greater than the positive subvolume embedding but not greater than a margin 389 

𝛼𝑚𝑖𝑛𝑒𝑟: 390 

𝐷(𝑎, 𝑝) < 𝐷(𝑎, 𝑛) < 𝑑(𝑎, 𝑝) + 𝛼𝑚𝑖𝑛𝑒𝑟 391 

Where a, p and n are the embedding vectors of the anchor, positive and negative 392 

respectively and 𝛼𝑚𝑖𝑛𝑒𝑟 is the margin of the miner.  393 

 394 

Training of the General Picking Model 395 

Training of the 3D CNN was performed for 600 epochs using an adaptive moment 396 

estimation (ADAM) optimizer49. The model from the epoch with the best F1 score on the 397 

subvolumes in the validation set was further evaluated in the localization and 398 

generalization tasks and used as the general picking model. 399 

Data augmentation 400 

To prevent overfitting during training and to improve generalization of the model, online 401 

data augmentations were applied to each normalized volume before its embedding was 402 

calculated including rotation, dropout, translation, and the addition of noise. For the 403 

rotation augmentation, subvolumes were rotated by a random angle in the X-Y plane but 404 

not X-Z or Y-Z to prevent reorientation of the missing wedge. In the dropout augmentation, 405 

a random portion between 5 and 20% of the voxels were set to the subvolume mean 406 

value. In the translation augmentation, the subvolume was shifted by 1-2 pixels in each 407 

direction. The addition of noise augmentation added Gaussian noise with a randomly 408 

chosen standard deviation between 0 and 0.3 to the subvolume.  409 

 410 
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Hyperparameter optimization 411 

The training of modern convolutional neural networks involves the selection of many 412 

hyperparameters, some of these choices affect the architecture while others affect the 413 

learning process itself. While some heuristics exist to guide hyperparameter selection, 414 

finding a combination of settings that maximize the utility of a machine learning tool by 415 

hand quickly becomes intractable. Optuna50 was applied to explore the hyperparameter 416 

search space and identify an optimized set of parameters for training . Models were 417 

trained on a subset of the training data for 200 epochs and the F1 score calculated on 418 

the validation set after each epoch. Pruning was performed after 50 epochs for training 419 

runs with an F1 score lower than the global median. In total, searches were applied for 420 

the hyperparameters of learning rate, dropout rate, optimizer, batch size, weight decay, 421 

size of the first convolution kernel, number of output layer nodes, online triplet mining 422 

strategy (semihard51, easyhard52 , none), normalization type (group norm53, batch 423 

norm54), loss function (TripletLoss31, SphereFace55, ArcFace56), and loss margin 424 

(Supplementary Fig. 7). 425 

Most notably and unexpectedly, the type of normalization applied during training 426 

was the largest overall affecter of performance with group normalization53 outperforming 427 

the more common batch normalization54 strategy (Supplementary Fig. 7b). Additionally 428 

noted was the increased performance of a standard triplet loss function over the 429 

theoretically superior SphereFace55 and ArcFace56 loss functions (Supplementary Fig. 430 

7c). These findings underpin the necessity to explore a wide range of hyperparameters 431 

during training as heuristics alone are not enough to guide optimal hyperparameter 432 

selection for the training of modern convolutional neural networks. 433 
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 434 

Particle picking workflow with the general model 435 

For each dataset picked with the general model, first all tomograms were embedded. To 436 

achieve this, the tomograms were subdivided into a series of overlapping 37x37x37 437 

subvolumes with a stride of 2 voxels. For the reference-based workflow, a random particle 438 

for each protein of interest was selected as reference and embedded to generate a target 439 

embedding. The tomogram and target embeddings were provided to TomoTwin Map 440 

which calculated the distance matrix between each target embedding and each 441 

subvolume embedding from the tomogram and returned this along with a similarity map 442 

for each target embedding. This matrix was then provided to TomoTwin Locate which 443 

identified areas of high confidence as target locations using a region-growing based 444 

maximum detection procedure followed by non-maxima suppression. The returned 445 

candidate positions were then subject to confidence and size thresholding with TomoTwin 446 

pick to produce final coordinates for each protein of interest. 447 

 448 

Evaluation of simulated data 449 

The performance of particle localization was calculated from three metrics: recall, 450 

precision, and, the harmonic mean of the two, the F1 score which are defines as: 451 

 452 

 453 
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 454 

Selected particle locations counted as true positives if the intersection over union (IOU) 455 

of the box of the selected particle location and the ground truth box was greater than 0.6. 456 

The IOU is defined as the ratio of the intersecting volume of two bounding boxes and the 457 

volume of their union. 458 

The particle localization accuracy of the trained model was assessed for each tomogram 459 

in the validation set (Supplementary Fig. 4a). To test model generalization, the 460 

localization task was performed on a tomogram containing 7 proteins not included in the 461 

training set for which TomoTwin was therefore naïve (Fig. 2).  462 

 463 

Clustering 464 

For clustering analysis, a random sample of 400,000 embeddings from the high-465 

dimensional tomogram embeddings were fit to a uniform 2D manifold with Uniform 466 

Manifold Approximation (UMAP) with GPU-acceleration provided by the RAPIDS 467 

package57. The UMAP model was used as the basis to transform the entire tomogram 468 

embeddings and the results plotted (Figure 5a,c). Clusters were identified by eye and 469 

selected by drawing a closed shape containing the desired points. The enclosed points 470 

were then traced back to their original high-dimensional embeddings and the average 471 

embedding of them was calculated. This average embedding was then used as a target 472 

embedding for classification, localization, and picking in the same manner as for the 473 

reference-based workflow. 474 
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 475 

Preparation of Experimental Samples 476 

The components of the mixture were either thawed from long-term storage at -80 ºC or 477 

freshly prepared. Photorhabdus luminescens holotoxin was expressed, purified and the 478 

holotoxin formed as described previously58 and used at a stock concentration of 0.49 479 

mg/mL. RhsA from Pseudomonas protegens was expressed and purified as described 480 

previously34 and used at 4 mg/mL concentration. Liposomes were prepared by extrusion. 481 

4 mg/mL of each POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, Avanti Polar 482 

Lipids) and DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine, Avanti Polar Lipids) were 483 

mixed in buffer (50 mM Tris, pH 8, 150 NaCl, 0.05% Tween20) and after brief sonication 484 

(1 min in water bath) and three cycles of freeze-thawing (-196 ºC and 50 ºC), the liposome 485 

solution was passed 11 times through a polycarbonate membrane with a 400 nm pore 486 

size in a mini extruder (Avanti Polar Lipids). Total lipid concentration was diluted with 487 

buffer to 0.16 mg/mL. The freeze-dried content of one vial Tobacco mosaic virus (TMV) 488 

(DSMZ GmbH Braunschweig, Germany, PC-0107) was solved in 1 mL buffer and diluted 489 

500 times as working solution. The Apoferritin (ApoF) plasmid was a kind gift by Dr. 490 

Christos Savva (Midlands Regional Cryo-Electron Microscopy Facility). Expression and 491 

purification of ApoF was optimized based on the protocol described earlier59 and final 492 

concertation of frozen stock was 3 mg/mL. 493 

Different ratios of the mixture were prepared and then examined after vitrification using 494 

cryo-EM. For cryo-ET, a ratio of 1:2:2:20:10 (TMV:Apoferritin:Liposomes:TcToxin:RhsA) 495 

was chosen. 496 
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 497 

Grid Preparation 498 

Grids were prepared using a Vitrobot Mark IV (Thermo Fisher Scientific) at 4 ºC and 100% 499 

humidity. 4 µL of the freshly prepared mixture were applied to glow-discharged (Quorum 500 

GloQube) R1.2/1.4 Cu 200 (Quantifoil) grids. After blotting (3.5 s at blot force -1, no drain 501 

time) the specimen was vitrified in liquid ethane. 502 

 503 

Cryo-ET 504 

Grids of different mixing ratios were screened using a Talos Arctica electron microscope 505 

(Thermo Fisher Scientific) equipped with a X-FEG and Falcon 3 camera. Small datasets 506 

of 100-200 images were collected using the software EPU (Thermo Fisher Scientific). The 507 

best specimen was transferred to a Titan Krios G3 electron microscope equipped with X-508 

FEG. Images were recorded on a K3 camera (Gatan) operated in counting mode at a 509 

nominal magnification of 63,000, resulting in a pixel size of 1.484 Å/pix. A Bioquantum 510 

post-column energy (Gatan) was used for zero loss imaging with a slit width of 20 eV. 511 

Tilt series were acquired using SerialEM60 with the Plugin PACEtomo61 and with a dose 512 

symmetric tilt scheme62 from  60˚ to 60˚ with a step size of 3˚. Each movie was collected 513 

as an exposure of 0.2 seconds subdivided into 10 frames. Frames were then exported to 514 

Warp 1.0.926 for motion correction, CTF estimation and generation of tilt series. Tilt series 515 

were aligned with patch tracking and tomograms reconstructed by weighted back-516 

projection in IMOD47 with a pixel size of 5.936. Tomograms were scaled by Fourier 517 

shrinking to 10 Å/pix for embedding with TomoTwin.  518 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Raw frames of M. pneumoniae cells were downloaded from EMPIAR (EMPIAR-10499). 519 

Motion correction and CTF estimation were performed in Warp 1.0.9 which was then used 520 

to generate tilt series. These tilt series were aligned with patch tracking and tomograms 521 

reconstructed by weighted back-projection in IMOD with a pixel size of 6.802 Å/pix. 522 

Tomograms were then scaled by Fourier shrinking to 13.6 Å/pix for embedding with 523 

TomoTwin.  524 

 525 

Evaluation of experimental data 526 

For tomograms from samples prepared in-house, coordinates of particles identified with 527 

TomoTwin were scaled to a pixel size of 5.936 to match the originally reconstructed 528 

tomograms. The tomograms were imported and these coordinates were used to extract 529 

subtomograms in Relion 3.037. For reference-free analysis, 3D subtomograms were 530 

projected to 2D with SPHIRE36 and then used for 2D classification. For tomograms 531 

attained from EMPIAR, coordinates of particles identified with TomoTwin were scaled to 532 

a pixel size of 6.802 Å/pix to match the originally reconstructed tomograms. The 533 

tomograms were imported and coordinates were imported and used to reconstruct 534 

pseudo-subtomograms in Relion 4.040. A reference was created from a 70S ribosome 535 

(EMD-11650) by lowpass filtering to 30 Å and then scaling the pixel size to 6.802 Å/pix. 536 

This reference was used for 3D classification with the pseudo-subtomograms in Relion 537 

4.0.   538 

 539 

Hardware 540 
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Two computational setups were utilized for calculations, a distributed computing system 541 

and a local workstation. The distributed computing system consisted of the Max Planck 542 

Gesellschaft Supercomputer ‘Raven’ using up to 30 Nvidia A100 GPUs, where each GPU 543 

has 40 GB memory. Each process had 18 cores of Intel Xeon IceLake-SP 8360Y 544 

processors and 128GB system memory available. The local workstation consisted of a 545 

local unit equipped with a Nvidia Titan V (12 GB memory) GPU and a Intel i9-7920X CPU 546 

with 64 GB system memory. 547 

 548 

Hyperparameter optimization was done in parallel for 7 days one the distributed 549 

computing setup and embeddings were calculated on this set up as well using 2 GPUs. 550 

In all cases a box size of 37 and stride of 2 were used for embedding. 551 

The inhouse workstation was used for miscellaneous tasks and for calculating timings 552 

using 2 GPUs. 553 

 554 

Timings 555 

The calculation of the embeddings is the only function of TomoTwin requiring significant 556 

processing time. To measure this, we embedded our largest experimental tomogram 557 

(608x855x148 after Fourier shrinking) on a local workstation and a distributed computing 558 

system. Using 2 GPUs, tomogram embedding took 80 minutes for the local setup and 30 559 

minutes for the distributed setup, corresponding to the total time to pick all proteins of 560 

interest per tomogram on each setup.  561 

 562 

 563 
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Data Availability 564 

All simulated tomograms used in this study are available here: 565 

https://doi.org/10.5281/zenodo.6637357. 566 

The extracted subvolumes used to train and evaluate the performance of TomoTwin are 567 

available at: https://doi.org/10.5281/zenodo.6637456. 568 

The TEM-Simulator-Scripts package used for automated tilt-series simulation and 569 

reconstruction is available at: https://github.com/MPI-Dortmund/tem-simulator-scripts. 570 

TomoTwin is available under an open-source license at: https://github.com/MPI-571 

Dortmund/tomotwin-cryoet. 572 
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Fig. 1: TomoTwin identifies and localizes particles by a clustering or a reference-based workflow. a, The first step in using 

TomoTwin is to embed the tomogram with the pre-trained model. Optionally, references can be selected and embedded as well to 

create target embeddings. b, For the clustering workflow the tomogram embeddings are projected on a 2D manifold and an interactive 

lasso tool is used to select clusters of interest to generate target embeddings. c, The distance matrix between each target embedding 

and the embeddings of the tomogram is calculated. d, All local maxima are located with TomoTwin Locate and are used to pick final 

coordinates for each protein of interest using TomoTwin Pick with confidence and size thresholding. 
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Fig. 2: TomoTwin generalizes to novel proteins and locates them accurately. a, True positive selected particles (white) and false 

negative (black) of the largest protein 2DF7 (896 kDa) and b, the smallest protein 1FZG (142 kDa) in the generalization tomogram.  

The F1 scores are 0.99 and 0.88 for 2DF7 and 1FZG respectively. c, With increasing number of proteins used during training the 

mean F1 score on the generalization tomogram increased as well. The mean F1 scores are 0.49, 0.73, 0.82 for a model trained on 

20, 50 and 100 proteins respectively. d, The model trained on the full training set of 120 proteins reached a mean F1 score of 0.82 

but has the highest median F1 score of 0.85. White scale bar 100 nm, black scale bar 5 nm 

 
 
 

 
Fig. 3: TomoTwin accurately localizes multiple proteins simultaneously in crowded tomograms. a, Representative slice of a 

tomogram containing a mixture of apoferritin, RhsA, and TcdA1; scale bar: 100 nm. b, Protein structure, cosine similarity map 

between tomogram and each target, and representative picking for apoferritin (PDB ID: 1DAT), RhsA (PDB ID: 7Q97), and TcdA1 

(PDB ID: 6L7E) respectively. Scale bar for protein structures: 5 nm, scale bar for tomograms: 100 nm, color bar: -0.55 - 1.00 c, 

Proportion of picked subvolumes contained within positive 2D classes. Total subvolumes picked: apoferritin: 848, RhsA: 577, 

TcdA1: 122.  
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Fig. 4: TomoTwin locates proteins in a cellular environment. a, Representative slice view of a tomogram containing Mycoplasma 

pneumoniae. b. Slice view highlighting positions of picked 70S ribosomes localized in 3D with TomoTwin. Scale bar 100 nm c, 3D 

representation of ribosome positioning within the tomogram, a represented slice is superimposed with 3D classes of ribosomes 

arranged according to their corresponding coordinates and orientation. d, 3D classes from 18,246 particles. Scale bar 10 nm. 
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Fig. 5: TomoTwin enables structural data mining on the embedding manifold. a, Highlighted clusters of all 7 proteins on the 

generalization tomogram 2D manifold approximation. b, Respective particle locations from cluster 3 and 5 which corresponds to the 

proteins with PDB ID 2DF7 (left) and 1FZG (right). White are true-positive picks and black false-negative. In both cases there were no 

false-positive selections. c, 2D manifold approximation of the embedding space of a tomogram containing Mycoplasma pneumoniae 

(EMPIAR 10499). Highlighted is the manual selected cluster which corresponds to the 70S ribosome. d, Using the cluster center for 

picking identified all ribosomes previously selected by the reference-based picking (white) with a few reference-only selections (blue). 

e, F1 scores for the individual clusters in comparison with the F1 scores for reference-based picking. On average the clustering 

performed slightly better (0.84 vs 0.82 mean F1 score). However, for some individual proteins the difference was larger (e.g. cluster 

7). Scale bar 100 nm 
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Supplementary Fig. 1:  TomoTwin convolutional architecture and metric learning strategy. a, Architecture of 3D convolutional 

network utilized by TomoTwin to translate 3D real space tomogram subvolumes into embedding vectors for deep metric learning. b, 

Overview of the deep metric learning training scheme employed by TomoTwin wherein data triplets are constructed of anchor, positive, 

and negative subvolumes. The triplets of subvolumes are each convolved by the 3D CNN of TomoTwin and the resulting embedding 

vectors are used to calculate the distance metrics implicit in the triplet loss function. c, Uniform manifold approximation of protein 

subvolume embeddings colored according to protein PDB code from TomoTwin 3D CNN in first training epoch and best model after 

600 training epochs.   
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Supplementary Fig. 2: Graphical user interface of TomoTwin implemented as a Napari plugin. Visualization of protein picks in 

simulated generalization tomogram identified by the clustering workflow. Picks for 3 out of 12 clusters are shown as spheres. The 

lefthand panel allows users to adjust various visualization settings for the tomogram including 3D viewing as an isosurface. The 

righthand panel allows users to filter picks for each cluster according to similarity threshold, minimum and maximum size, and adjust 

the box size for viewing. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Fig. 3: TomoTwin identifies proteins with high accuracy by using single particle subvolumes as reference. 

a, F1 scores of TomoTwin on the validation tomograms. The median F1 score of the individual sets is most often above 0.8 and not 

lower then 0.76. b, The overall distribution of F1 scores with a median of 0.92. However, a tail of proteins with low F1 scores can be 

seen. c, Size distribution of particles that show good F1 scores (F1>=0.7) and those with rather low F1 scores (F1 < 0.7). d, 

Examples of proteins of similar size with low (yellow) and high (cyan) F1 score. On the left side the individual particles are depicted 

in a noisy and noise free reconstruction, respectively. On the right side, the respective structures, F1 scores and sizes are shown. It 

can be seen that the proteins which were not identified properly by TomoTwin have a lower contrast than the other proteins. Scale 

bars 100 nm. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497279
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Fig. 4: Characterization of the training data set. a, Pairwise cross-correlation matrix for all 120 proteins sorted by 

size. Cross-correlations were calculated by converting the individual PDBs to density maps with a pixel size of 1 nm, aligning them 

pairwise with EMAN2 and calculating the cross-correlation of the aligned pairs. To maximize the value for training, we selected proteins 

so that all pairs except 3 have a cross correlation value below 0.6. The three pairs with higher correlation are from the SHREC dataset 

and were not simulated by us. Higher correlation values are more likely for smaller proteins. b, Histogram of the pairwise cross 

correlation values. The mean cross correlation value is 0.22 with a standard deviation of 0.13.  
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Supplementary Fig. 5: 2D classes of proteins identified in a mixed tomogram. Example 2D classes from previous studies by 

single particle analysis of apoferritin59, RhsA34, and TcdA158 respectively; 2D class averages of TomoTwin picked subvolumes after 

projection to 2D. Classes outlined in blue were judged to be positive classes by expert inspection, indicating that they contain particles 

of the appropriate protein. Scale bar: 5 nm 
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Supplementary Fig. 6: Automated identification of clusters of interest using HDBSCAN. A subset of the approximated manifold 

of Figure 5a was used to run density-based clustering which located 5 out of 7 clusters of interest in an unsupervised. R implementation 

of HDBSCAN was run with a min_samples of 50 and a minimum cluster size of 50. 
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Supplementary Fig. 7: Hyperparameter optimization of TomoTwin. a, Hyperparameter importance estimated by Optuna50 after 

180 trials with different configurations. b, F1 scores for trials using either the batch normalization or group normalization layers in 

convolutional neural network. Points represent the individual trials. Group normalization performed in general better than batch 

normalization in all cases. c, F1 score for trials using either Triplet-, SphereFace-, or ArcFace-Loss. 
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