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ABSTRACT Few-shot fine-grained image classification aims to solve the learning problem with few
limited labeled examples. The existing methods use data augmentation to randomly transform the original
examples to get new examples, and then use the new examples to train the model to improve the robustness
and generalization ability of the learnt model. Due to each iteration of these methods uses a random
transformation to get a new example, it will cause the unstable problem of the class center in the feature
measurement stage. To solve this problem, aMulti-viewMetric Learning (MML) method is proposed, which
is based on a new concept (View Bag) and its effective similarity measurement method to achieve better
few-shot fine-grained image classification. Firstly, a new example obtained by a kind of data augmentation is
defined as a view, and a set of views generated by multiple data augmentation is defined as a view bag. Then,
the view bag is sent into the model to extract the features, and a multi-view metric method with the view
bag as the object is proposed to overcome the unstable problem of the class center. Finally, classification
is performed by measuring the similarity between view bags. Experiments are conducted on three public
datasets, CUB-2011-200, Stanford-Dogs and Stanford-Cars. The proposed method achieves 71.61±0.87%,
57.78±0.96% and 74.02±0.84% for the 5-way 1-shot classification task, and 88.72±0.51%, 76.30±0.68%
and 92.94±0.37% for the 5-way 5-shot classification task, which have the state-of-the-art performances.
Under the condition of the same backbone network, the proposed multi-view metric method can measure
the similarity between examples more effectively, and improve the robustness and generalization ability of
the model.

INDEX TERMS Few-shot fine-grained image classification, fine-grained image classification, metric
learning, date augmentation, multi-view metric.

I. INTRODUCTION
Fine-grained visual classification (FGVC) aims to distinguish
sub-categories of a general category, such as birds, cars and
aircrafts. Due to the subtle inter-class differences and large
intra-class variations, FGVC tasks are more challenging than
the general image classification tasks. Over the past years,
the methods of FGVC have made great achievements [1]–[6]
with the development of datasets [7]–[10]. Compared with
general classification datasets, it is more difficult to annotate
fine-grained dataset due to the subtle difference among sub-
categories. Furthermore, fine-grained annotations is labor
intensive, which limits both scalability and practicality of
real-world fine-grained applications. In order to tackle the
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problem of annotation, researchers [11]–[18] gradually focus
on few-shot fine-grained classification task, which requires
only few labeled examples.

Recently, few-shot fine-grained image classification
is mainly divided into two categories: meta-learning
method [19]–[23] and metric learning method [24]–[28]. The
former focuses on learning a meta model for classification,
while the latter focuses on measuring the similarity between
examples for classification. Although the two methods are
different, they both adopt data augmentation method to
increase training data. In the data pre-processing, these meth-
ods use data augmentation function to randomly process the
original image to get a new image before model training, such
as random cropping or random flipping. In each iteration,
the original example generates a different new example for
training, so the data augmentation method increases the
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number of training examples, can significantly improve
the robustness and generalization ability of the model, and
has been widely used in the field of image classification.
However, using random augmentation method to generate
new examples will make the feature of the model different
in each iteration. When the number of intra-class examples
is small, it will lead to a large difference for the class
center in each iteration, which makes the calculation of the
similarity measurement between the query example and the
class center unstable. To solve this problem, researchers
[29]–[31] propose transductive learning, which updates the
class centers with unlabeled query examples. Although this
kind of method can overcome the model instability caused by
the uncertainty of examples, it has to update the class center
for multiple times in each iteration, resulting in a large cost
of computing time.

If the original image transformed by a kind of data aug-
mentation method is regarded as an example under a cer-
tain perspective, which can be called a view of example.
Thus, in the whole training process, each original image will
generate multiple views, while the traditional method only
randomly uses a single view of each image in each iteration,
so each class contains a random variety of views, which leads
to the instability of the class center. In practice, given two
objects in two images, we tend to measure the similarities
of the two images from different views and combine them as
the standard to measure whether the two images belong to the
same category. Inspired by this, in order to solve the problem
of model instability caused by traditional data augmenta-
tion and make full use of new examples after augmentation,
we proposed a Multi-view Metric Learning (MML) method,
whichmainly consists of view bag creationmodule andmulti-
view metric module. Firstly, a view bag is constructed from a
variety of view examples obtained from the original example
by multiple data augmentation method, which contains a
number of different views. Then, the view bag is used as the
input of the model to learn, and the multi-viewmetric module
is used to measure the similarity between different views.
Finally, the similarity between query examples in all views
and original examples in all views is used for classification.

The main contributions of this paper include three aspects:
• A new concept, View Bag, is proposed to describe the
set of the multiple transformations of the same image.
The view bag creation method built multiple views by
augmenting from the same original example in each
iteration for training.

• A Multi-view Metric Learning method is proposed for
few-shot fine-grained image classification, in which a
new multi-view metric method is proposed to measure
the similarity between two view bags. It improve the
robustness of the model training in each iteration.

• Experimental results show that our method reaches a
new state-of-the-art performance on three public fine-
grained datasets. It also verified the effectiveness of
several commonly used data augmentation methods and
our multi-view metric method for FGVC.

II. RELATED WORK
A. FINE-GRAINED VISUAL CLASSIFICATION
In recent years, researchers have conducted many studies on
fine-grained visual classification tasks and achieved abundant
results [1]–[6], [32]–[35]. Fine-grained objects belong to the
same super-category and their inter-class differences exist in
local regions, so the key is discriminant feature extraction of
local regions. In order to extract more discriminant features,
on the one hand, researchers classify objects by locating local
discriminant regions. For example, Shroff et al. [1] designed
a circular attention structure to classify targets by extract-
ing discriminant regional features at multiple moments.
Ding et al. [33] proposed a Selective Sparse Sampling Net-
works (S3Ns) to learn sparse attention from class peak
responses, which typically corresponds to informative object
parts. Zhuang et al. [2] proposed an Attentive Pairwise Inter-
action Network (API-NET) based on the principle that a
person classifies fine-grained objects by comparing them in
pairs. API-Net can adaptively detect contrast cues from a
pair of images and has strong discriminant characteristics
through pair interaction learning. And more, He et al. [34]
also proposed a multi-scale and multi-granularity deep rein-
forcement learning approach (M2DRL), which learns multi-
granularity discriminative region attention and multi-scale
region-based feature representation for fine-grained classifi-
cation. To locate the discriminative regions fast, He et al. [35]
proposed a weakly supervised discriminative localization
approach for fast fine-grained classification.

On the other hand, researchers improve the feature extrac-
tion ability by designing effective loss functions to super-
vise the learning process of the model. For example,
Chang et al. [3] proposed a channel loss to extract efficient
channel information. Rao et al. [32] presented a counterfac-
tual attention learning (CAL) method to supervise attention
learning based on causal inference. Gao et al. [6] adopted a
contrastive loss to push the features of different classes away
while pulling the positive pairs close.

However, the above methods are always trained based
on large-scale fine-grained datasets. The annotation of fine-
grained datasets is more difficult than that of general clas-
sified data sets, so the generalization of these methods is
limited.

B. FEW-SHOT FINE-GRAINED IMAGE CLASSIFICATION
Recently, few-shot fine-grained image classification has been
developed rapidly, and the current methods are mainly
divided into two categories: meta-learning method and
metric learning method. The former focuses on learning
a meta-model for classification, such as, multi-attention
meta-learning [36] uses multiple attention mechanisms to
extract regional discriminant features for classification, and
uses gradient-based meta-learning method to update model
parameters to focus on the different parts adaptively. The
latter focuses on the classification bymeasuring the similarity
between examples and the class center. In metric learning
methods, most researchers focus on improving metric
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algorithms to improve the accuracy of model recognition.
Li et al. [24] proposed a covariance measurement method,
which calculates the similarity between the covariance matri-
ces of features to obtain an effective similarity measurement.
Huang et al. [26] proposed a low-rank pairwise alignment
bilinear network by extracting subtle differences between
images. Li et al. [28] proposed a dual similarity measurement
network that uses two measurement methods to measure the
similarity between examples simultaneously because a single
measurement method often has limitations when calculating
the similarity between examples.

In addition, in order to avoid the instability of the
class center caused by randomly angmented examples,
researchers [29]–[31] improved the accuracy of measure-
ment by calculating more accurate class center methods. For
example,Meta-Confidence Transduction (MCT)method [29]
obtained more accurate class center by updating the class
center by weighting all intra-class examples. Such methods
usually require multiple iterations to update the class center,
which is too expensive to calculate. In order to avoid the
instability of the class center caused by data augmentation
and measure the similarity between examples more accu-
rately, a multi-view metric method is proposed in this paper.
This method does not update the class center repeatedly, but
directly calculates the similarity between examples by mea-
suring the similarity between various augmented examples.
Since all the expanded examples are covered in the measure
stage, the similarity between examples can be measured more
accurately.

III. DEFINITION
A. PROBLEM DEFINITION
Few-shot fine-grained image classification aims to distin-
guish C categories, but each category only has N labeled
examples, which specifically called C-way N -shot classifi-
cation task. To measure the classification ability of the model
with few labeled examples, a dataset is divided into target
set T and auxiliary set A (as shown in Figure 1), where
A ∩ T = φ, and the model trained on A are tested on T .
It is worth noting that the label space of set T is disjoint with
the label space of set A.
In the training process, the episodic training mechanism is

adopted. Specifically, for each epoch in training, one episode
randomly selects the examples in C categories from the setA
to form the support set AS and query set AQ. The definition
is as follows:

AS = {(xi, yi)}C×Ni=1 ,AQ = {(xj, yj)}Mj=1, (1)
where AS ∩ AQ = φ, xi denotes the i-th example of AS , xj
denotes the j-th example of AQ, yi, yj ∈ {1, . . . ,C} denotes
the label. N and M are the number of examples in each
category ofAS and query setAQ respectively. After t epochs,
t episodes have been used to train the mapping function.

Once trained, we predict the labels of the set T via themap-
ping function conditioned on the set A. In the test process,
the set T are divided into support set TS and query set TQ,
and the difference is that TS contains N labeled examples for

each category and TQ contains M unlabeled examples, and
M � N . The definition is as follows:

T = {TS = {(xi, yi)}N×Ci=1 ∪ TQ = {xm}
M
m=1}, (2)

where TS ∩ TQ = φ, xi denotes the i-th example of TS ,
yi ∈ {1, . . . ,C}, and xm denotes the m-th example of TQ.

B. VIEW BAG
In order to solve the problem of model robustness caused
by a small mount of examples, data augmentation method
has been widely used in few-shot fine-grained image classifi-
cation task. Such methods usually use a data augmentation
method, including random cropping, random flipping and
color jittering, to transform an image into another new one,
which is used for model training. We formulate the transfor-
mation as follows:

An example (x, y) is transformed into (x′, y), where y is the
label, and the transformation is represented as:

x′ = T (x), (3)

where T (·) is the data augmentation function, x and x′ denotes
the original image and the transformed image, respectively.

Although the above method can increase the amount of
training data and improve the robustness of the model, it may
have a negative impact on the few-shot fine-grained image
classification. This is because the new example generated by
the original example after a transformation method can be
regarded as the example with modified local pixel values,
and the features of the same example in different views are
different, so a certain view feature cannot represent the whole
features of the example. Therefore, the similarity between
examples measured by the state of a view cannot fully mea-
sure the similarity between the original examples. In addition,
after data augmentation, an example will often produce a
variety of views, such as noisy view, partial view and flipped
view, and different views reflect different characteristics.

Therefore, we proposed a new concept, ViewBag, to repre-
sent the set of themultiple transformations of the same image.
The view bag is formalized as follows:

Given an example (x, y), x is the original image, y is the
label, and the view bag is obtained through P augmentation
methods, denoted as (B(x), y).

B(x) = {xp|xp = Tp(x)}Pp=1, (4)

where Tp(·) is the p-th augmentation function, xp denotes the
p-th view of x.
The view bag is constructed by different views of the same

original images. It is important to note that a raw examples
are used to build a view bag by P augmentation functions.
When P = 1, the view bag contains only one view, that is,
the original example x is transformed into a view example
x1, which is the same as in (3). In this simplification case,
it becomes the traditional data augmented learning method.
It will become more effectiveness to measure the similarity
between different original examples by measuring the simi-
larity between different view bags.
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FIGURE 1. Architecture of our MML.

IV. METHOD
The architecture of our MML is shown in Figure 1. It consists
of four stages: view bag creation, feature extraction, multi-
view metric, and classification. Firstly, an image x from sup-
port set or query set is transformed into a view bag B(x), and
then the feature of the view bag is extracted by the backbone.
Finally, the similarity between a query view bag and a support
view bag is computed for the next classification.

A. VIEW BAG CREATION
Different from the extensive few-shot fine-grained image
classification method, the view bag is used as the input of
the backbone network, as shown in Figure 1.
The support set AS = {(xi, yi)}C×Ni=1 contains C category

and each category contains N images. Each image xi gener-
ates a labeled view bag (B(xi), yi) through P data augmenta-
tion functions. The view bag set of the support setA′S contains
a total ofC-class examples, and each category containsN×P
examples. It can be expressed as:

A′S = {(B(xi), yi)}
C×N
i=1 . (5)

Similarly, query set AQ = {xm}Mm=1 becomes A′Q by the
same P data augmentation functions:

A′Q = {B(xm)}
M
m=1, (6)

where xm denotes the m-th image in AQ, and B(xm) =
{x1m, . . . , x

P
m} denotes m-th view bag.

B. FEATURE EXTRACTION
Given an image x, its feature is got by f pi = ϕ(x pi ), where
ϕ(·) represents the mapping function of feature extraction.
In practice, the mapping function is the backbone network.

Feature sets FS and FQ are obtained forA′S andA
′
Q. They

can be obtained by extracting the features of the examples in
one view bag through the backbone network.

FS = {Fi}C×Ni=1 = {f
1
i , . . . , f

p
i , . . . , f

P
i }
C×N
i=1 , (7)

where Fi = {f 1i , . . . , f
p
i , . . . , f

P
i } denotes the feature set of

i-th view bag in AS , f
p
i ∈ Rd×W×H represents the feature of

the i-th image by the p-th augmentation function, and d , W ,
H represent the channel, width and height of the feature.

FQ = {Fm}Mm=1 = {f
1
m, . . . , f

q
m, . . . , f

P
m}

M
m=1, (8)

where Fm = {f1m, . . . , f
q
m, . . . , f Pm} denotes the feature set of

m-th view bag in AQ, f
q
m ∈ Rd×W×H represents the feature

of the m-th image by the q-th augmentation function.

C. MULTI-VIEW METRIC
To more accurately calculate the similarity between query
view bag B(x) and each category, we propose a new multi-
view metric method to calculate the similarity between dif-
ferent view bags as the final similarity. To describe our
multi-view metric method clearly, the c-th category feature
set {F(c−1)×N ,F(c−1)×N+1, . . . ,F(c−1)×N+N } is rewritten as
{F1

c, . . . ,F
p
c, . . . ,F P

c }, where F p
c = {f

p
n}

(c−1)×N+N
n=(c−1)×N+1 rep-

resents the feature set of the p-th augmentation in all N
examples of class c. We define a convert function g(·) to
transform the feature tensor f ∈ Rd×W×H into a feature
matrix f̄ = g(f) ∈ Rd×L , which can be treated as a set of
L(L = W × H ) d-dimensional local descriptors.

The similarity between B(xm) and c-th category is calcu-
lated based on covariance matrix measurement method [24]
and image-to-class measurement method [25], and we noted
them as MML(C) and MML(D) respectively.

1) MML(C)
Firstly, a covariance matrix Spc ∈ Rd×d is calculated for
the feature F p

c of the p-th augmentation in the c-th category,
which can be treated as the feature center of the p-th augmen-
tation in the c-th category,

Spc =
1

LN − 1

(c−1)×N+N∑
n=(c−1)×N+1

(f̄
p
n − τ )(f̄

p
n − τ )

T
, (9)

VOLUME 10, 2022 52785



Z. Miao et al.: Multiview Metric Learning Method for Few-Shot Fine-Grained Classification

where f̄
p
n = g(f pn) ∈ Rd×L , τ ∈ Rd×L is a matrix of mean

vectors, with each of its column the same mean vector of all
the L × N descriptors.

Then, we calculate the similarity between fqm and Spc as

sim(f qm,S
p
c) = wT diag(f̄ qm

TSpc f̄
q
m), (10)

where f̄
q
m = g(f qm) ∈ Rd×L , diag(f̄ qm

TS p
c f̄
q
m) represents

the local similarity between f qm and Spc , and diag(·) returns
a column vector of the main diagonal elements of a matrix.
The similarity sim(f qm,S

p
c) between the feature f qm and the

class center S p
c is obtained by a fully-connection layer, and w

represents the weight of the layer.
Finally, the similarity between B(xm) and c-th category is

calculated as

sim(B(xm), c) =
1
P2

P∑
p=1

P∑
q=1

sim(f qm,S
p
c), (11)

where sim(B(xm), c) averages the P2 similarities between f qm
and S p

c .

2) MML(D)
For the p-th augmentation of the m-th query image xm, it can
be transformed into a feature f qm = [f qm(1), . . . , f

q
m(L)] ∈

Rd×L , where each f qm(i) is a deep local descriptor. For
each descriptor f qm(i), we can find its k-nearest neighbors
f pc(i, j)|kj=1 in the p-th augmentation of the c-th category. Then
we compute the similarity between f qm(i) and each f

p
c(i, j), and

sum the L× k similarities as the similarity between query f qm
and the p-th augmentation of category c.
Mathematically, the measure can be expressed as

sim(f qm, f
p
c) =

L∑
i=1

k∑
j=1

cos(f qm(i), f
p
c(i, j)), (12)

where cos(·) represents the cosine similarity measurement.
Finally, we obtain the final similarity by summing the

similarities between query fqm and category c for all possible
P transformations.

sim(B(xm), c) =
1
P2

P∑
p=1

P∑
q=1

sim(f qm, f
p
c), (13)

D. CLASSIFICATION
The class prediction probability pcm of the B(xm) is generated
by softmax operation

pcm =
exp(sim(B(xm),Sc))∑C
j=1 exp(sim(B(xm),Sj))

, (14)

where Sj is the j-th category, C is the number of classes.
The cross-entropy loss is adopted to supervise the training,

and the loss L is calculated as follows

L = −
1
M

M∑
m=1

ym logŷm, (15)

TABLE 1. The details of datasets.

where ŷm = argmax
c=1,...,C

pcm is the predicted label of m-th exam-

ples, ym is the ground-truth label of m-th examples, M is the
number of training examples. As B(xm) has the same label
as xm, the classification result ŷcm is the result of xm.

V. EXPERIMENTS
Experiments are conducted on three widely-used fine-grained
datasets, including CUB-200-2011 [7], Stanford-Dogs [8],
and Stanford-Cars [9]. Each dataset is divided into auxiliary
set and target set in the same way as methods [24]–[27],
among which the auxiliary set is divided into training set and
validation set. The statistical information of datasets is shown
in Table 1.

Our method is implemented in PyTorch on one NVIDIA
2080Ti GPU. During the training process on each dataset,
the view bag was constructed by random cropping, horizontal
flipping and color enhancement, and the processed image size
was 84 × 84. Meanwhile, the model adopted Conv4-64 as
backbone and was trained by episodic training mechanism,
and 250,000 episodic were trained in total. In the 5-way
1-shot classification task, each episodic contains 5 classes,
and each class contains 1 labeled support image and 15 query
images. Similarly, in the 5-way 5-Shot classification task,
each episodic contains 5 classes, and each class contains
5 labeled support images and 15 query set images. Besides,
we adopt Adam algorithm with an initial learning rate of
0.005 to optimize our model, where the learning rate is
reduced by half for every 100,000 episodes. In the test process
on all three datasets, 600 episodes were randomly formed
from the test set for testing to calculate the top-1 mean
accuracy as well as the corresponding confidence interval.

A. COMPARISON WITH STATE-OF-THE-ART METHODS
Our method was compared with state-of-the-art methods
on three datasets. The results are shown in Table 2, where
the optimal value and the sub-optimal value are high-
lighted in bold and underline respectively. Our MML(C) and
MML(D) calculate the similarity based on covariance matrix
measurement method [24] and image-to-class measurement
method [25] respectively.

From Table 2, we can find that our method achieves
71.61±0.87%, 57.78±0.96% and 74.02±0.84% on CUB-
200-2011, Stanford-Dogs and Stanford-Cars in 5-way
1-shot classification task respectively, and 88.72±0.51%,
76.30±0.68% and 92.94±0.37% in 5-way 5-shot classifi-
cation task, which are the best results. As can be seen
from Table 2, on the three public datasets of CUB-2011-
200, Stanford-Dogs and Stanford-Cars, in 5-way 1-shot
setting, our MML (C) increased by 17.63%, 8.68% and
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TABLE 2. Comparison with state-of-the-art methods.

14.83% respectively compared with CovaMNet [24], and
MML (D) increased by 18.64%, 11.66% and 12.51% respec-
tively compared with DN4-DA [25]. In 5-way 5-shot set-
ting, MML (C) increased by 19.87%, 9.6% and 13.93%
respectively compared with CovaMNet [24], and MML (D)
increased by 6.82%, 8% and 3.44% respectively compared
with DN4-DA [25]. From the experimental results, it can be
seen that compared with the methods in [24] or [25] that
only measures the single-view distance as the final similarity,
we adopt the measurement methods of [24] or [25] as the
atomic distance measurement, which can effectively improve
the classification accuracy. The proposed multi-view metric
method is to computes the similarities between two examples
from multiple views, and synthesize these similarities as the
final similarity, which has more robust distance measurement
ability.

It is worth noting that DN4-DA, BSnet(D&C), MattML
and PABN all use data augmentation, including random crop-
ping, color jittering and horizontal flipping. From Table 2,
it can be seen that our method achieves the best results
under the same data augmentation. What’s more, DN4-DA,
BSnet(D&C) and MML(D) all use image-to-class mea-
surement method [25] to calculate the similarity between
views. DN4-DA uses the traditional data augmentation for
training, while BSnet(D&C) uses both cosine measurement
method and image-to-class measurement method to calculate
the similarity between examples, and our MML(D) adopts
the proposed multi-view metric method. The result shows
that our method is the best among all classification tasks,
which verifies that it can obtain more efficient similarity
measurement.

B. ABLATION STUDIES
1) MULTI-VIEW METRIC
In order to verify the validity of the proposed multiple view
metric method, on the basis of CovaMNet, we use different
measurement methods to conduct comparative experiments.
The experimental method adopts the same data augmenta-
tion to train model, and the results are shown in Figure 2,
where ‘‘Benchmark’’ means the result without data augmen-
tation, ‘‘Traditional’’ means that multiple data augmentation
methods are used to process the original example, and the

FIGURE 2. Comparison of different measurements.

single-view measurement is used to compute the similarity,
‘‘Multi-view Metric’’ means that our multi-view measure-
ment is used to calculate the similarity.

As can be seen from Figure 2, the ‘‘Traditional’’ method
can significantly improve the accuracy by 7.51%, 4.80% and
5.89% on three datasets, respectively. This is because the
original data can generate various views after data augmen-
tation, which expand the training example and improves the
robustness and generalization ability of the learnt model.
However, under the same data augmentation, the accuracy of
the ‘‘Multi-view Metric’’ method is higher than that of the
‘‘Traditional’’ method. On the three datasets, the accuracy
of the ‘‘Multi-view Metric’’ method is 11.54%, 8.68% and
8.94% higher than that of the ‘‘Benchmark’’ method, and
4.03%, 3.88 and 8.94% higher than that of the ‘‘Traditional’’
method. This is because the ‘‘Traditional’’ method only uses
a single view of each example in each iteration, although
various data augmentation are used to augment the original
example to obtain different views, such as random cropping.
On the contrary, although ‘‘Multi-view Metric’’ also aug-
ment the original example, it takes all views as a view bag
instead of a single example as input. When measuring the
similarity between view bags, all the similarities between
views are integrated as the final similarity. Therefore, com-
pared with the ‘‘Traditional’’ method, ‘‘Multi-view Metric’’
method can measure the similarity between examples more
accurately.
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2) DATA AUGMENTATION
To verify data augmentation for few-shot fine-grained image
classification task, we adopt four kinds of data augmentations
to augment examples, including horizontal flipping, vertical
flipping, color jittering and random cropping, and use the
‘‘Traditional’’ method and our ‘‘Multi-view Metric’’ method
to calculate the similarity between examples. It is important
to note that horizontal flipping and vertical flipping are con-
ducted in accordance with a certain probability, so there is
two kinds of training examples, the original image and its
augmented example, in thewhole training process. Therefore,
during the construction of view bags, we adopt the original
image and the augmented example to construct the view bag
for training, that is, the view bag contains the original image
and the augmented example. The experimental results are
shown in Figure 3. It can be found that regardless of the
‘‘Traditional’’ method or our ‘‘Multi-view Metric’’ method,
the improvement of random cropping for data augmentation
is the largest.

In order to better analyze the effects of different data
augmentation, Figure 4 shows the results of original exam-
ples processed by different data augmentation. It can also
be obtained from the analysis of the original image that the
proportion of the object in the whole image is small in the
fine-grained image, and the random cropping method can
remove part of the background and improve the proportion
of the object, so it can better extract the features of the object.
The second best is the horizontal flipping. The examples
obtained by horizontal flipping are more consistent with the
original example and improve the robustness of the model.
As can be seen from Figure 3, the result of our ‘‘Multi-
viewMetric’’ is similar to that of ‘‘Traditional’’ method when
color jittering is used. This is because color jittering changes
the color of the original example by adjusting the image’s
saturation, contrast and brightness, and the feature variation
in the regional area after processing are not obvious. In addi-
tion, on Stanford-Cars, when the vertical flippingmethod was
used, the accuracy of the ‘‘Traditional’’ method decreases
while our ‘‘Multi-view Metric’’ method and ‘‘Benchmark’’
method have the similar accuracy. This is because our ‘‘Multi-
view Metric’’ method compute both the similarity between
the vertical flipped images and the similarity between the
original images, to reduce the negative impact of vertical flip-
ping. Therefore, compared with the ‘‘Traditional’’ method,
our ‘‘Multi-view Metric’’ method can effectively reduce the
impact of negative examples in data augmentation, make full
use of the augmented examples, and greatly improve the
robustness of the learnt model.

3) DATA AUGMENTATION COMBINATION
In order to verify the impact of the combination of different
types of view bags on support set or query set, different
combinations are constructed for comparison. According to
the analysis results in sub-section V-B2, different combina-
tions of three data augmentation methods, including random

TABLE 3. Comparison of different data augmentation combination.

TABLE 4. Results with ResNet-12 backbone.

cropping, horizontal flipping and color jittering, were
selected to construct view bags of support set or query set
respectively, and 5-way 1-shot classification task was carried
out on the CUB-2011-200 dataset. The results are shown
in Table 3.

In Table 3, P and Q represent the number of data aug-
mentation contained in the view bag of the support set or
query set respectively. ‘‘RC’’ represents the transformation
obtained by random cropping, ‘‘HP’’ represents the transfor-
mation obtained by horizontal flipping, and ‘‘CJ’’ represents
the transformation obtained by color jittering. It can be seen
from Table 3 that the results are positively correlated with
the number of data augmentation types, that is, with the
increase of data augmentation types, the accuracy is con-
stantly improved. When a view bag contained three types of
transformation (P = 3, Q = 3), the best accuracy (70.43%)
is achieved. It is verified that the combination of multiple
data augmentation types can calculate the similarity between
examples more robustly.

C. DISCUSSION
Our backbone network is Conv4-64, which consists of 4 con-
volution layers with 64/64/64/64 filters. To comparing with
ResNet-12 backbone as in [38], we replace Conv4-64 with
ResNet-12 and reported the results in Table 4. From Table 4,
we can find that our MML(C) has a big performance gap
with [38] and [12] when we use the ResNet-12 backbone.
The main reason is that our multi-view metric is inefficient
in deal with the output feature of the ResNet-12 backbone.
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FIGURE 3. Comparison of different data augmentation.

FIGURE 4. Results of different data augmentation.

Since the ResNet-12 backbone contains 4 down-sampling
convolution operations, it make the size of the output feature
maps only 5 × 5. The computation of the covariance matrix
(Eq. 9) or the k-nearest neighbor similarity (Eq. 12) does
not have good representation ability, because the few local
deep descriptors of each category is hard to calculate a effec-
tive covariance representation or find the effective k-nearest
neighbors for this category. Comparing with the ResNet-12
backbone, the Conv4-64 backbone has only 2 max-pooling
operations and outputs the feature maps of 21 × 21 size,
which make the covariance matrix or the k-nearest neighbor
similarity have strong representation ability.

VI. CONCLUSION
In this paper, a multi-view metric learning method is pro-
posed to comprehensively measure the similarity from a new
viewpoint by making full use of the original example and
its data augmentations. For 5-way 1-shot and 5-way 5-shot
classification tasks, on three public fine-grained datasets,
experimental results show that our MML achieves the state-
of-the-art accuracies. It improves the robustness of the learnt
model by measuring the similarity between our proposed
view bags.

However, our method focuses on the view bag and its
similarity measurement, neglecting to mining the regional
discriminative parts. In the next step, attention mechanism
or part detection modules will be further studied to extract
the discriminative feature representation to improve the
accuracies.
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