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Abstract

Maintaining a subject’s freedom to decide imposes structure and constraints on learning systems
that aim to guide those decisions. Two natural sources from which subjects can learn to make
good decisions are past experiences and advice from others. Both are affected by the subject’s
freedom to ultimately act as they wish, giving rise to learning theoretic and game theoretic
repercussions respectively.

To study the effect of past experiences, we extend the standard bandit setting: after the
algorithm chooses an action, the subject may actually carry out a different action. This is then
observed along with the reward. Algorithms whose choice of action is mediated by the subject
can gain from awareness of the subject’s actual actions, which we term compliance awareness.
We present algorithms that take advantage of compliance awareness, while maintaining worst
case regret bounds up to multiplicative constants. We study their empirical finite sample
performance on synthetic data and simulations using real data from clinical trials.

To study the effect of advice of others, we consider the literature on incentives for multiple
experts by a decision maker that will take an action and receive a reward about which the experts
may have information. Existing mechanisms for multiple experts are known not to be truthful,
even in the limited sense of myopic incentive compatibility, unless the decision maker renounces
their ability to always take on the best ex-post action and commits to a randomized strategy
with full support. We present a new class of mechanisms based on second price auctions that
maintain the subject’s freedom. Experts submit their private information, and the algorithm
auctions off the rights to a share of the reward of the subject, who then has freedom to pick
the action they desire after observing the submitted information. We show several situations in
which existing mechanisms fail and this one succeeds. We also consider strategic limitations
of this mechanism beyond the myopic setting that arise due to complementary information
between experts, and practical considerations in its implementation in real institutions.

We conclude by considering a natural hybrid setting, where a sequence of subjects make
decisions and each can receive advice from a fixed set of experts that the mechanism seeks to
incentivize. The model for this setting is extremely general, having as special cases standard,
compliance aware and contextual bandits, as well as decision markets. We present a novel
practical market structure for this setting that incentivizes exploration, information revelation,
and aggregation with selfish experts.
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Chapter 1

Introduction

That thing is called free, which exists solely by the necessity of its own nature, and
of which the action is determined by itself alone. On the other hand, that thing is
necessary, or rather constrained, which is determined by something external to
itself to a fixed and definite method of existence or action.– Spinoza, Ethics, Part I,
Definition VII

1.1 Thesis Statement

A decision maker’s freedom has both positive and normative implications for the
design of learning algorithms and mechanisms that seek to improve decisions. Pos-
itively, incorporating awareness of subject freedom can improve the performance
of learning algorithms for decision problems, relative to those which do not take it
into account. Normatively, it motivates maintaining subject freedom as a design
criterion in the design of mechanisms for decision making.

1.2 Problem Statement

One can learn to decide from experience or from the advice of others. Consider the
following two situations:

1. An algorithm seeks to help a doctor facing a sequence of patients for which
there is an established and a novel treatment.

2. Patients seek to elicit information from experts to select the optimal treatment
for their condition.

In both situations it is natural to assume that the patients have the last say on what
treatment they take. In a more abstract sense the subject who takes the action and
lives through its consequences retains their freedom; their actions are not externally
determined by the system which helps to inform them. Maintaining freedom for
the subject in decision support thus implies that the actions the system suggests
need not be those the subject takes.

1
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2 Introduction

These two motivating interaction patterns, ignoring considerations on the subject’s
freedom, are found reflected in two previously separate parts of the literature: the
first is the classic bandit setting [Thompson, 1933]; the second is the more recent
literature on decision markets [Berg and Rietz, 2003; Hanson, 2002; Othman and
Sandholm, 2010; Boutilier, 2012; Chen et al., 2014]. In both it is widely assumed
that the action selected by the algorithm or mechanism is the one carried out by the
subject.

This is implicit in most of the bandit literature, where no variable encodes the poten-
tial distinction between the algorithm’s and the subject’s choices of actions; rarely
consideration is given to the possibility that they can differ. Incentive-compatible
bandits [Kremer et al., 2014; Mansour et al., 2015, 2016] are a noteworthy excep-
tion.

The subject’s follow-through of the algorithm’s or mechanism’s selected action is
explicit in the decision market literature. Those mechanisms based on sequential
proper scoring rules contingent on the action taken (voiding the markets contingent
on the actions not taken) require not only that the subject follow the mechanism’s
choice, but select ex-post dominated actions with positive probability to incentivize
experts.

Operationally, in the bandit setting, our notion of the subject’s freedom can be
captured by considering, in addition to the usual variable which encodes the action
that the algorithm or mechanism selects, a second variable for the action that
the subject actually takes. Naively using such a variable and simply replacing
the chosen with the observed action (in a standard worst case sub-linear regret
algorithm) leads to linear regret in the worst case.

In the mechanism design problem of expert elicitation for decision making, main-
taining freedom rules out classes of mechanisms that rely on the subject taking
dominated actions with positive probability. Previously, no mechanisms that are
incentive compatible with many experts where the subject retains its freedom (is not
knowingly required to take an ex-post dominated action with positive probability)
were known [Othman and Sandholm, 2010; Chen et al., 2014].

1.3 Freedom: Subject as Principal for Decisions with
no Externality

This thesis takes freedom of subjects as a design criterion and seeks to further the
understanding of how to incorporate it into the algorithms and mechanisms where
it is relevant. The natural setting where this is a good design criterion is actions that
only affect a single agent, the subject, who both carries out the action and receives
the reward. Motivated by Spinoza Ethics’ Definition VII that opens this chapter,
we define the subject as free if the subject’s action is not determined by the output
of the algorithm or mechanism.
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§1.4 Decisions 3

In the bandit setting, preserving the freedom of the subject requires that the algo-
rithm does not directly control the action taken. This opens the possibility that the
algorithm’s choice of action for a round is different from the action the principal
carries out.

In the work on the normative implications for incentive schemes used in part II
we assume a utility maximizing principal; mechanisms that retain their freedom
allow them to pick the action that maximizes their utility. In the decision market
mechanisms previously proposed in the literature, incentive compatibility of the
max decision rule for the experts necessitates [Othman and Sandholm, 2010; Chen
et al., 2014] violating the freedom of the subject by dictating that the distribution
of actions they take have full support. This rules out subjects that always take their
optimal decision.

It is worth noting this design criterion clashes with other desirable ones, most
notably the utilitarian objective of maximizing social welfare, where the principal
is an abstract social planner who aims to maximize the sum over all agents’ utility.
This social welfare objective means that optimal mechanisms there [Kremer et al.,
2014; Mansour et al., 2015, 2016] constrain the information set revealed to the
subjects (e.g. the patient who is or is not taking the treatment at a given point in
time for the clinical case).

1.4 Decisions

Decision making, as understood in this thesis, is concerned with selecting an action
so as to achieve a favorable outcome. Examples of such decision making problems
are:

1. prescribing a treatment to a patient so as to maximize their quality adjusted
life years.

2. selecting which ad to display to a web user so as to maximize the probability
the user will click on the ad.

3. advising a company in which of some competing projects to invest in so as to
maximize their profits.

The literature on bandit algorithms was originally motivated by the first, and
this also is the motivating application in this thesis. More recently, work within
computer science has often had some variation of the second as the motivating
application. The third has been the motivating application in the decision markets
literature.

Decision problems can be contrasted with prediction problems. In a prediction
problem, the canonical example being weather forecasting, the performance of
any strategy can be directly evaluated once the event of interest is realized. In a
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4 Introduction

decision problem, the performance of strategies that take actions different from
those that were used is inherently counter-factual.

In the settings with a sequence of decisions we assume that a decision does not
directly affect future decisions. That is, while the underlying state of the system
may be changing, the decisions do not affect its evolution.

In the expert elicitation for decision setting, we assume no inherent interest of
experts on actions, nor any cost to them in acquiring their signals. For example,
the expert doctors offering advice have no conflict of interest and would not profit
more from carrying out a specific treatment.

1.5 Learning

We focus on two distinct sources of learning and their interaction. First, as has
been the focus in the machine learning literature on online learning, we consider
learning from experience in a setting where a choice from a finite set of K possible
actions is sequentially repeated T times. Second, as is the focus in the decisions
market literature, we consider learning from recommendations of a set of N experts
who may have information about which of the K actions is best in a given situation.

Taking into account the subject’s freedom can make learning possible in settings
where it is not without doing so. A particularly relevant class of learning settings
where this can be true and which arises naturally in personalized medicine and
lifestyle interventions is when K/T > 1.

On the other hand, providing freedom to the subject can render mechanisms infea-
sible that seek to create the right incentives to learn from experts, by dictating the
distribution over the K actions that will take place. In particular, all past incentive
compatible mechanisms for N > 1 experts have required that the distribution over
the K actions has full support.

1.6 Games

Algorithms for bandit problems have been extensively analysed within game theory.
This has largely focused on giving worst case guarantees that result from minimax
analysis of zero sum games against an adversary. Game theory plays an even
more fundamental role in mechanisms for optimal decision elicitation such as
decision markets, since equilibrium considerations and not just worst case concerns
are inherent to the setting. Our focus in the equilibrium based analysis is on the
strategic aspects of the experts offering the advice, and we consider mechanisms.
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1.7 Thesis Contributions

We first turn to the purely learning theoretic implications of subject freedom, in
learning from sequences of decisions taken by such free subjects. This addresses
the positive aspect of our thesis statement, by showing that awareness of the
consequences of subject’s freedom can improve learning. If subjects have freedom,
we should not assume that the actions an algorithm selects are those that are carried
out in the world. Valuable information can be learned from observing when that
is the case, and what happens when it is not. Formally, this is done by extending
the bandit setting and to incorporate compliance information while preserving
regret bounds. We present bandit algorithms that use compliance awareness and
empirically outperform their standard variant, while preserving worst case regret
guarantees up to multiplicative constants. We then present empirical results from
simulations using implementations of these algorithms.

We then turn to purely strategic considerations, focusing on the incentive structure
for the elicitation of advice on an optimal action from multiple experts. We take
a normative stance, proposing preserving freedom for the subject as a first order
design criterion for the mechanism. This implies that the mechanism can’t have
the subject take dominated actions. We present mechanisms that can elicit decision
information from multiple experts without committing to taking dominated actions
with positive probability. We show sufficient conditions on the signal structure
of the experts for incentive compatibility and efficiency. The crucial conceptual
contribution which enables this is a reduction to an auction with interdependent
signals and valuations.

Finally, we consider a natural setting that emerges from the combination of the
above. A sequence of subjects make decisions, and each can receive advice from
a fixed set of experts that the mechanism seeks to incentivize. The model for
this setting is extremely general, having as special cases standard, compliance
aware and contextual bandits, as well as decision markets. We show that in natural
information structures the repeated sequential use of the single-agent multi-expert
mechanism fails to explore or aggregate information efficiently. We present a
simple and practical market structure that incentivizes exploration, information
revelation and aggregation with selfish experts, while maintaining subject freedom.
We then briefly consider some of the limitations of this simple mechanism.

1.8 Scope

When we focus on incentive compatibility, we do so for the experts, not the subject.
Assuming a utility maximizing subject – one that uses the max decision rule –
restricts the freedom of that subject. For example, having unstable preferences that
will change once the mechanism commences brings both limits and possibilities.
While it limits the richness of the mechanics we can use (since we need to account
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for a subject that may or may not respond to incentives), it also liberates the analysis
from constraints created by assuming all subjects are rational. For example, in
bayesian exploration [Mansour et al., 2015] there are priors over arms rewards
where some arms are never explored, even through they may be optimal with
positive probability 1. The reason for this is that a rational selfish agent does
not internalize the benefit of exploration when exploitation will be carried out by
later agents. The possibility of some share of agents not being expected utility
maximizers means such arms may be explored.

While the direct decision elicitation mechanism we propose sidesteps the main
problems of previously proposed mechanisms, it makes very strong use of a
common prior assumption that extends over both compliance probabilities of
subjects and a common prior probability distribution accross experts over their
joint signals. This creates a tension with the canonical concern of [Wilson, 1987]:

Game theory has a great advantage in explicitly analyzing the conse-
quences of trading rules that presumably are really common knowledge;
it is deficient to the extent it assumes other features to be common
knowledge, such as one agents probability assessment about another’s
preferences or information. I foresee the progress of game theory as
depending on successive reductions in the base of common knowledge
required to conduct useful analyses of practical problems. Only by
repeated weakening of common knowledge assumptions will the theory
approximate reality.

This motivates our second mechanism, which retains the structure of the direct
mechanism but replaces signals with bids. We analyze different information
structures to understand when information can still aggregate appropriately in this
setting.

The relation between the different settings considered in this thesis and in the
literature is summarized in the table bellow.

1.9 Publications and Collaborations

Most of chapters 3 and 4 on compliance aware bandits appears in [Della Penna
et al., 2016b]. The work in Chapters 5 and 6 on decision elicitation from multiple
experts has benefited from feedback of David Balduzzi.

During the course of the PhD I also collaborated on related publications in, predic-
tion markets [Frongillo et al., 2012], market making [Kinathil et al., 2014, 2016],
crowdsourcing [Della Penna and Reid, 2012] and medical applications [Della Penna
et al., 2016a].

1They might even be optimal with a probability of almost one half
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Setting Subjects Information Solution Concept

Forecasting T past rewards for all actions Minimax
Bandit T past rewards Minimax
Peer Prediction 1 N reports BNE
Prediction Market 1 N reports, reward vector NE
Decision Market 1 N reports, reward NE
Advice Auction 1 N reports, reward, taken action NE
Compliance Aware Bandit T reward and taken action minimax
N sided Advice Markets T N reports, rewards taken action NE

Table 1.1: Relation between learning settings in the thesis and literature.

1.10 Thesis Outline

In Chapter 2, we provide background on the two settings that this thesis contributes
to. In Chapter 3, we present two novel classes of algorithms and associated regret
guarantees that take into account the underlying freedom not to comply with an
algorithm’s chosen treatment. We then study the empirical performance of these
algorithms based on both synthetic and real data in Chapter 4. In Chapter 5,
we turn our attention to eliciting an optimal action, and offer the first incentive
compatible algorithm for elicitation from multiple experts that does not restrict the
agent’s freedom. We show it to be optimal while exploring some of its practical
limitations from its extensive use of a common prior, as well as what is lost when
we move to a simpler mechanism that relies on bids instead of signals. In Chapter 6,
we present a novel setting with both multiple experts and multiple subjects that
arrive sequentially, which we term two sided decision markets. We propose an
extension of the simple mechanism based on a sequence of second price auctions
that internalizes the benefits of exploration, while rewarding only valuable experts.
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Chapter 2

Background and Related Work

Desvarío laborioso y empobrecedor el de
componer vastos libros; el de explayar en
quinientas páginas una idea cuya perfecta
exposición oral cabe en pocos minutos.

Jorge Luis Borges, Prólogo de Ficciones.

Learning what action to take to maximize a reward is a fundamental problem in
decision theory. We first provide an overview of the game theoretical background
that underpins all aspects of this work.

We then present the building blocks from the two branches, bounded regret bandit
algorithms and mechanism design, that are used in our contributions. We finalize
the chapter by giving an overview of related work that we do not build upon, but
which nonetheless informs or motivates our analysis, most notably the analysis of
results from randomized controlled trials in the medical literature.

2.1 Notation and Conventions

The notation used for this work is a compromise to accommodate to as great an
extent as possible the conventions of both the bandit algorithms and mechanism
design literature, while adding the distinction between the action the algorithm or
mechanism chooses and the one that the subject actually carries out in the world.
We refer to the former throughout as the chosen action and notate it as c, and we
refer to the action that the subject takes in the world as the actual action, which we
notate as a.

We follow the bandit literature and refer to rewards (notated as r throughout) as
directly observable after the actual action is taken. This is skipping the mapping
of actions to outcomes, and the utility functions which map those outcomes to
rewards, which is standard in the mechanism design literature. The reader wishing
to move the analysis more explicitly towards the mechanism design tradition can
replace the observed rewards with the von Neumann Morgensten utility function

9
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10 Background and Related Work

of the agent over the realized outcome. We treat experts’ signals in the manner
of features in a contextual bandit problem. To translate this to the formalism of
the mechanism design literature, we can consider the cross-product of the agents’
signals as defining a set of partitions, with one partition for each value. When we
speak of two agents’ signals being identical, we mean both agents assign the same
probability to every possible state.

All models in the thesis use finite action spaces. In the strategic setting this
guarantees the existence of a Nash Equilibrium. Since actions involve reports
of signals s, this constrains all signals to also be discrete; note that this does not
constrain the underlying latent state of the world u to be discrete.

2.2 Game Theory

Statistical learning algorithms can be understood game theoretically as a game be-
tween a forecaster and nature. This is particularly natural in the sequential (online)
setting, and a framework termed Learning with Expert Advice and (Cesa-Bianchi
and Lugosi [2006]) provides a unified treatment from a worst case game theoretic
perspective of many such learning settings and algorithms. This literature largely
considers the underlying structures to be zero-sum and thus uses an adversarial
model of nature to construct strategies that have good worst case properties. The
framework was applied to the setting of sequential experiments initially by Wald,
and the bandit formalism was introduced by (Robbins [1952]).

When there are multiple agents beyond nature interacting, as in the case of elici-
tation from multiple experts for decision making, there are severe limits to what
worst case analysis alone can yield. In particular, the notions of the Nash Equi-
librium( Nash et al. [1950]) and common knowledge (Aumann [1976]) provide a
useful starting point to thinking about such settings, though they leave us with an
embarrassment of riches in terms of the potential equilibrium set.

2.3 Online Learning

The central object of analysis in the online learning framework, also known as the
learning with expert advice framework, is the regret of an algorithm (the forecaster).
This is defined as the difference in the cumulative reward between the reward the
algorithm gets and the reward that would have been obtained by some benchmark.
The most common benchmark is that of best fixed action in hindsight, and this is
termed static regret. When we use the term regret without further modifiers in this
thesis, we are referring to this notion.

Two main settings appear in the literature for the play of the environment that is
carried out: in the stochastic setting an adversary picks a distribution over actions
at the start of the game from which i.i.d. draws are later made; in the non-stochastic
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§2.3 Online Learning 11

(oblivious) adversary setting they select a specific sequence of play before the game
begins. Both choices are made with knowledge of the strategy of the learner, which
is thus necessarily randomized in the non-stochastic adversarial case.

The basic structure of an online learning game is as follows.

For each round:

1. The environment chooses an action without revealing it

2. The algorithm chooses a probability distribution over the set of N actions and
draws

3. The algorithm observes the reward which depends on its realized action and
the realized action of the environment

A crucial aspect of online learning is the feedback model, that is what about the
received reward is revealed to the decision making process, be it an agent or an
algorithm. Two fundamental extremes are full feedback and the bandit setting. In
the first, after realizing a reward, the reward that would have been obtained for any
other choice of action by the algorithm is also revealed. In the second, only the
reward of the chosen action is revealed. More generally, prediction with partial
monitoring Cesa-Bianchi et al. [2006] generalizes this as follows:

1. The environment chooses an action without revealing it

2. The algorithm chooses a probability distribution over the set of N actions and
draws one

3. The algorithm receives the reward which depends on its realized action and
the realized action of the environment

4. The feedback is revealed to the forecaster

In the full information setting, the feedback exactly pins down the value of the
reward of the algorithm for any possible choice of the algorithm’s action on that
period; in the bandit setting the feedback pins down the reward only for the taken
action.

In our setting the compliance information, the actual action taken by the agent
being advised, is part of the feedback that is observed.

2.3.1 Bandit Algorithms

A one-armed bandit is an anachronistic term for a slot machine. A motivating
example in the literature is that of a gambler faced with a set of slot machines,
each of which has a different expected reward, and the gambler wishes to find a
good strategy to eventually concentrate their play in that with the highest payout.
Replacing such slot machines with potential medical treatments (in our motivating
example) or with potential online advertisements on the web (in the motivation of
much contemporary machine learning research). Two lines of analysis of the regret
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of algorithms in this settings depend on if the payout distribution is assume fixed
(the stochastic setting) or is allowed to vary arbitrarily (the adversarial setting).
Within the adversarial setting, variation in the rewards that can be instantiated
before the game (non-adaptive) or at each step of the game (an adaptive adversary).

Three main families of algorithms with theoretical guarantees exist in the literature,
and are based on Bayesian, upper confidence bounds and exponential weights. We
also explore a heuristic algorithm, epsilon greedy, which has been observed to often
have good empirical performance Kuleshov and Precup [2014].

Thompson Sampling is a very natural Bayesian strategy first proposed in Thompson
[1933]. It selects each action with probability equal to its posterior probability of
being the best action, given the prior and rewards observed up to that point. It has
excellent practical performance characteristics Chapelle and Li [2011b].

A second family of algorithms encountered in the literature are based on Upper
Confidence Bounds (UCB) and originate in (Lai and Robbins [1985]; Katehakis
and Robbins [1995]; Agrawal [1995]). They play the action with the highest upper
bound on its expected value. This embodies the principle of optimism in the face
of uncertainty. A finite time analysis of the regret was presented in (Auer et al.
[2002a]).

A third family, based on exponential weights, offers maximally robust guaran-
tees, in the sense that it has close optimal (minimax) performance with regard to
arbitrary non-stochastic underlying sequences of rewards. This becomes useful
when we wish to create hierarchical bandits when the original sequence may not
be independent and identically distributed (IID); the sequence that results from a
bandit algorithm’s choices will not be so by construction.

Our conceptual contributions are agnostic about the specific underlying algorithm
that is used, as long a regret guarantee against an adaptive adversary holds. A thor-
ough analysis of bandit algorithms with adversarial regret guarantees can be found
in( Bubeck [2012]; Lattimore and Szepesvari [2016]). The underlying intuition
as to why an adaptive adversary is sufficient, is that, whatever dependencies are
introduced into the sequential process by the compliance aware algorithm cannot
be worse than those. Since otherwise the adaptive adversary could have used such
a strategy.

2.4 Mechanism Design

The central question of mechanism design is how to structure a game so as to
incentivize self-interested agents to achieve some objective. The two central
objectives are efficiency – that the sum of utilities be as great as possible – and
revenue optimal – that the principal which runs the mechanism receives maximal
net payment. In our setting, we are interested in efficiency, that is, allocating the
right choice of action for the agents. The rest of this section and the later section
thus focus on mechanisms in relation to that objective.
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§2.4 Mechanism Design 13

Each agent’s information is characterized by their signal, which allows the agent
to narrow down which realization of possible states of the world they are in. In
the literature this is often also called an agent’s type, particularly when it describes
a private valuation of a good by that agent. We say a mechanism is incentive
compatible when agents reach maximal utility if they report their true signals to the
mechanism. Without any further assumptions (i.e. without a probability distribution
over said states of the world), signals are of limited use beyond situations with a
dominant strategy equilibrium.

Ideally one would like to search for mechanisms that are strictly dominant strategy
incentive compatible. For many objectives of interest, such mechanisms do not
exist, and optimal decision elicitation will turn out to be one of them. It is worth
noting that a weak dominant strategy mechanism for optimal decision elicitation
is trivial: if the payment to the experts is 0 for all possible states of the world,
then any action is weakly dominant, including truthfulness. For this reason in the
substantive chapters we will simply use the term dominant strategy and focus on
strictly dominant mechanisms.

A canonical problem in mechanism design is one where each agent has a quasi-
linear utility function that depends on the chosen social alternative, on their private
signal, and on monetary transfers, but not on the information available to other
agents. This is known as private values. A class of mechanisms known as Vickrey-
Clarke-Groves (VCG) (Vickrey [1961]; Clarke [1971]; Groves [1973]) guarantee
that truthful revelation of private information is the dominant strategy for each
agent; that is, the mechanisms are dominant incentive compatible, and the efficient
decision is taken. This holds for arbitrary dimensions and distributions of signals.
Under independence of signal draws between agents, (Jehiel and Moldovanu
[2001]) provide an efficient mechanism for the case where the quasi-linear utility
function of an agent can depend on all agents’ private signals. To maximize
the future social welfare in a dynamic setting, variations of the efficient (VCG)
mechanism exist for relatively general dynamic settings (Bergemann and Välimäki
[2010]; Parkes and Singh [2003]; Athey and Segal [2007]).

We focus on models where expert information is endowed to the agents and has no
cost of acquisition.

Many settings of interest, including ours, do not in general have dominant strategy
mechanisms. The literature in microeconomics has largely dealt with this by
using a probability distribution over signals, and then treats the problem as one of
Bayesian mechanism design. The designer then seeks to optimize the objective
in expectation over this distribution. The agents’ incentives are relaxed relative to
dominant strategies, to ensure that their actions are a best response in expectation
to the distribution of actions of other agents.

In a Bayesian game there are three stages of knowledge possessed by the agents:

• Ex ante: before values are drawn from the distribution, the agents know this
distribution but not their own types (or those of others).
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• Interim: after the agents learn their types, but before playing in the game,
the agents know their distribution and know that the other agents’ types are
drawn from the prior distribution conditioned on their own type.

• Ex post: the game has been played and the actions of all agents are known.

A simple but fundamental result in mechanism design is the Revelation Principle.
For any mechanism and equilibrium of the mechanism, there exists an incentive
compatible mechanism with the same equilibrium. The reason is that one can wrap
the original non-incentive compatible mechanism with a mechanism that takes a
report, assumed truthful, and simulates its optimal play in the original mechanism
to pick its payments and allocations, thus achieving the same equilibrium but from
the truthful reports. This holds in a vast range of situations in both the Bayes-Nash
and the Dominant Strategy sense of equilibrium. It however fails to hold in natural
settings of optimal decision elicitation, when agents only learn their types over time
or when the mechanism designer does not know the prior (and thus can’t simulate).
The learning of types over time is inevitable in the learning setting where there is
a sequence of subjects, while in one-off markets a common prior over the signal
distribution seems almost impossible.

2.4.1 Bandit Algorithms as Mechanisms

A recent and notable exception to assuming that the algorithm in a bandit setting is
able to implement any choice it desires is in the mechanism design literature around
bandits (Kremer et al. [2014]; Mansour et al. [2015]). In this setting the principal
is a social planner, considered to be optimizing the welfare across a sequence of
agents, and strategically reveals information about past outcomes to incentivize
agents to explore.

A closely related literature to the work of this thesis is focused on the incentive
properties of bandit algorithms for their subjects. The study of this problem was
initiated in (Kremer et al. [2014]). At each step of the bandit problem, a new agent
(subject) must select which arm to pull. The incentive offered by the social planner
is the recommended action. The planner does not offer payments for following the
recommendation. This setting is studied in (Mansour et al. [2015]), who provide
a generic black box reduction from bandit algorithms with arbitrary context and
(extra) feedback to incentive compatible mechanisms.

The setting where payments are offered to the agents at each step is considered
in (Frazier et al. [2014]). These works assume the central algorithm embodies a
benevolent social planner that attempts to maximize social welfare, and focus on
the incentives of the subjects. In contrast to these works, we abstain from subject
incentive considerations, and instead focus on how to incentivize those providing
the advice of which decision to take.

Another literature that studies bandit problems in a mechanism design framework
is called Strategic bandit models and focuses on several players facing (identical)
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§2.5 Information Aggregation and Incentives 15

copies of the same set of arms. Players can observe not only their own outcome
but also that of their neighbors. A good review of this literature, and the broader
literature on the interaction between learning and strategic considerations, is in
(Hörner and Skrzypacz [2016]).

2.5 Information Aggregation and Incentives

A literature in economics and particularly mechanism design is centered on when
and how information can be aggregated from multiple agents that receive signals
about the state of the world, and have various degrees of strategic sophistication in
their actions. A definitive article on the topic with respect to the common prediction
market and Arrow Debreu general equilibrium models is (Ostrovsky [2012]), which
also provides an excellent overview of the historical literature within economics.
Ostrovsky studies information aggregation in dynamic markets with a finite number
of partially informed strategic traders. Trading takes place in a bounded time
interval and in every equilibrium; as time approaches the end of the interval, the
market price of a separable security converges in probability to its expected value
conditional on the traders’ pooled information. If the security is non-separable,
then there exists a common prior over the states of the world and an equilibrium
such that information does not get aggregated.

In these models the fact that securities are settled unambiguously implies that the
state of the world is eventually observed. A largely separate literature, motivated
by crowdsourcing, considers how to create incentives to elicit information when
the underlying state of the world is not observable to the mechanism. In the
initial mechanism (Prelec [2004]; Miller et al. [2005]), truth-telling is a strict
Bayesian Nash Equilibrium. These mechanisms typically have many other non-
truthful equilibria as well, and some of them may pay better than the truth telling
equilibrium, motivating agents to coordinate on non-informative equilibria. A
knowledge-free peer prediction mechanism that does not require knowledge of
the information structure and can truthfully elicit private information for a set
of information structures slightly smaller than the maximal set is proposed in
(Zhang and Chen [2014]). (Kong and Schoenebeck [2016]) present a framework
for information elicitation mechanisms where truth-telling is the highest paid
equilibrium, even when the mechanism does not know the common prior.

2.6 Prediction Markets

The closest contact point between the online learning and information elicitation
literature is in the fully supervised case. That is, the information the market is
attempting to aggregate is a forecast of the future state of the world that is not
contingent on the actions that the market can influence. Thus, at the time of the
realization of the event, we can judge not only the forecast obtained but also any
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other potential forecast that could have been received. This contrasts with the bandit
setting, where instead of a forecast of the state of the world we seek an action
that results in a state of the world that is maximally beneficial. The equivalence
between trading shares and eliciting beliefs from a single agent by the means of
scoring rules goes back at least to (Savage [1971]).

Initiating with the equivalence between market scoring rules and regularized follow-
the-leader algorithms in (Chen and Vaughan [2010]), a series of follow up works
(Abernethy et al. [2013]; Frongillo et al. [2012]; Hu et al. [2014]; Frongillo and
Reid [2015]) map prediction markets to learning algorithms. How the wealth
(and thus the accuracy of prices) is concentrated between informed trades in a
sequence of markets, using a natural if highly specific trader model (Kelly bettors,
equivalently log utility maximizers), is studied in (Beygelzimer et al. [2012]).

The subject’s freedom makes no difference in the analysis of the fully supervised
setting; since there is no action to take, there is no sense in which a subject may
not follow along. To the degree the information these prediction markets surface is
not being used by participants in the world in a way that affects it (as the models
assume), we can perfectly evaluate how accurate they are regardless of the other
agents’ reports.

2.7 Decision Markets

Can markets be used not just to understand the underlying distribution over future
states of the world, but to select which action to take so as to induce the best
distribution? The idea of using prediction markets for decision support originates
at least as far back as (Berg and Rietz [2003]; Hanson [2002]). These mechanisms
rely on running a prediction market for the outcome variable of interest for each
possible action that the decision maker can take, and voiding those markets for the
action not taken.

Corporate prediction markets (Ortner [1998]; Cowgill and Zitzewitz [2015]) are
attempts to have corporate insiders trade claims whose payouts is contigent on a
event of interest to their company, such as the date a product will ship. In some
cases the claims are traded via double auction as in stock markets, while in others
an automated market maker is used to provide liquidity.

In (Othman and Sandholm [2010]), the authors argue that corporate prediction
markets do not capture the right problem for their clients. In particular, by focusing
on eliciting probabilities about what their effects will be after decisions have
been made, they cannot be used to inform those decisions. It then considers the
manipulability of a decision market where (in our terminology) the subject seeks to
maximize their utility by always selecting the action that the market prices indicate
is best, which they term the max decision rule. It is then shown that there are no
incentive compatible market scoring rules markets under this decision rule with
multiple experts. More recently (after the bulk of this thesis was written) this
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line of work has been extended by Oesterheld and Conitzer [2020] who show that
decision scoring rules in general cannot truthfully elicit beyond the best action and
it’s expected reward.

The intuition is elementary: the last expert to trade with the market can force
which of the conditional markets will be settled, so they maximize their profits
by changing the price that is most incorrect, and lowering the price of all other
actions bellow that. These results are formally generalized in (Chen et al. [2014]),
to show that the subject must use a decision rule with full support to create the right
incentives in conditional prediction markets that are used for decision support.

The above works all assume that the participants in the markets are only motivated
by the payments they receive on the market (as does this thesis). A related line
of work in (Boutilier [2012]) considers the case when the expert has an inherent
interest in the decision.
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Part I

Positive Implication for Bandit
Learning: Compliance

Awareness
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Chapter 3

Model and Algorithms

3.1 Introduction

Bandit problems are concerned with optimal repeated decision-making in the pres-
ence of uncertainty. The main challenge is to trade-off exploration and exploitation,
so as to collect enough samples to estimate the rewards from different strategies
whilst also strongly biasing samples towards those actions most likely to yield high
rewards.

Our running example is an algorithm that recommends treatments to patients. For
concreteness, consider a mobile app that encourages patients who have recently
suffered a stroke to carry out various low intensity interventions that may be
beneficial in preventing future strokes. These could be as simple as meditating,
going for a walk or taking an aspirin. The effects of the interventions on the
probability of a future stroke may be small. The social benefits of collectively
choosing the most effective interventions, however, may be large.

People often don’t do as they are told. Approximately 50% of patients suffering
from chronic illness do not take prescribed medications (Sabaté [2003]). It is safe to
assume that the rate at which patients or doctors will follow the recommendations
provided by an algorithm will fall well short of 100%. There are other settings
in which compliance information is available. For example, an algorithm could
recommend treatments to doctors. Whether or not the doctor then prescribes the
recommended treatment to the patient is extremely informative, since the doctor
may make observations and have access to background knowledge that is not
available to the algorithm.

A quite different setting is online advertising, where bandit algorithms are exten-
sively applied to recommend which ad to display (Graepel et al. [2010]; McMahan
et al. [2013]). In practice, the recommendations provided by the bandit may not
be followed. For example, sales teams often have hand-written rules that override
the bandit in certain situations. Alternatively, the algorithm may assign a user to
a treatment on their laptop, and when the user is not logged in, expose him to a
different treatment on their mobile. Clearly, the bandit algorithm should be able

21
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to learn more efficiently if it is provided with information about which ads were
actually shown.

Unfortunately, despite its importance in medical applications (Vrijens et al. [2012];
Hugtenburg et al. [2013]), compliance has not been analyzed in the bandit literature.
In this chapter, we introduce compliance awareness into the bandit setting. In the
classic multi-armed bandit setting, the player chooses one of K arms on each round
and receives a reward( Auer et al. [2002b]; Auer [2002]). The player is not told
what the reward would have been had they chosen a different arm. The goal is
to minimize the cumulative regret over a series of T rounds. In the more general
compliance setting, the action chosen by the algorithm is not necessarily the action
that is finally carried out, see section 3.2.1. Instead, a compliance process mediates
between the algorithm’s recommendation and the action that is actually taken.
Importantly, the compliance process may depend on latent characteristics of the
subject of the decision. We focus on the case where the outcome of the compliance
process is observable.

Unfortunately, compliance information is a two-edged sword. There are settings
where it is useful; but it can also lead to linear regret. We present sub-linear regret
algorithms that incorporate compliance information and provide worst case regret
guarantees that match the standard ones for multi-armed bandits (which we term
the chosen strategy) up to multiplicative constants. We also show stylized example
situations where compliance aware algorithms have bounded regret and standard
ones do not.

3.1.1 Outline

Section 3.2 introduces the formal compliance setting and introduces three protocols
for incorporating compliance information into bandit algorithms. Each protocol
has strengths and weaknesses.

The simplest protocol ignores compliance information – yielding the classical
setting where standard regret bounds hold. If instead of attending to its recommen-
dations the algorithm attends to whether the subject actually follows the recom-
mendation, it is possible to learn faster than without compliance information. On
the other hand, there are no guarantees on convergence when an algorithm attends
purely to the compliance of subjects and ignores its own prior recommendations.
A natural goal is thus to simultaneously incorporate compliance information whilst
preserving the no-regret guarantees of the classical setting. We present two hybrid
algorithms that achieve this.

The first, HierarchicalBandit (HB), is a two-level bandit algorithm. The
bottom-level learns three experts that specialize on different kinds of compliance
information. The top-level is another bandit that learns which expert performs
optimally. The algorithm thus has no-regret against both the treatments and two
natural reward protocols that incorporate compliance information.
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The second algorithm, ThompsonBandit (TB), rapidly converges to Thompson
sampling with standard guarantees. However, when Thompson sampling is unsure
about which arm to pull, the algorithm takes advantage of the uncertainty to
introduce arm-pulls sampled from HB.

Empirically, TB achieves a surplus of 8.9 extra survivals (that is, extra lives in the
simulation) relative to the randomized baseline. The HB algorithm with Epsilon
Greedy as the base algorithm achieves a surplus of 9.2. In contrast, the best
performing strategy that is not compliance aware is Thompson sampling, which
yields 7.9 extra survivals.

3.1.2 Comparison with other bandit settings

It is useful to compare noncompliance with other bandit settings. Partial monitoring
is concerned with situations where the player only partially observes their loss Alon
et al. [2015]. In contrast, our setting the losses are observed as in the classic bandit
setting, while imperfect control over the action taken is introduced. Our setting
is an extension of the bandit setting, where additional compliance information is
provided, which allows for leveraging this imperfect control beyond the standard
setting. Whether or not a patient complies is a form of side-information. However,
in contrast to the side-information available to contextual bandits, compliance is
only observed after an arm is pulled. An interesting question, left for future work,
is how contextual and compliance information can both be incorporated into bandit
algorithms simultaneously.

Hybrid algorithms were previously proposed in the best-of-both-worlds scenario
(Bubeck and Slivkins [2012]; Seldin and Slivkins [2014]), where the goal is to con-
struct a bandit that plays optimally in both stochastic and adversarial environments.
Vapnik introduced a related notion of side-information into the supervised setting
with his learning under privileged information framework (Vapnik and Vashist
[2009]).

An important point of comparison is the bandits with unobserved confounders
model introduced in (Bareinboim et al. [2015]). That paper was motivated using
an extended example involving two subpopulations (drunk and sober) gambling in
a casino. Since we are primarily interested in clinical applications, we map their
example onto two subpopulations of patients, rich and poor. Suppose that rich
patients always take the treatment (since they can afford it) and that they are also
healthier in general. Poor patients only take the treatment when prescribed by a
doctor.

In Bareinboim et al. [2015]) they observe that the question “what is the patient’s
expected reward when taking the treatment?” is confounded by the latent variable
wealth. Estimating the effect of the treatment – which may differ between poor
and rich patients – requires more refined questions. In our notation: “what is
the patient’s expected reward when taking the treatment, given she is wealthy?”
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and “what is the patient’s expected reward when taking the treatment, given she
is poor?”.The solution proposed in (Bareinboim et al. [2015]) is based on the
regret decision criterion (RDC), which estimates the optimal action to be the one
maximizing the expected reward given the patient’s inclination, where the action
chosen may differ from the patient’s latent inclination. Essentially, computing the
RDC requires imposing interventions. However, overruling a patient or doctor’s
decision is often impossible and/or unethical in clinical settings. The counterfac-
tual information required to compute the RDC may therefore not be available in
practice. Compliance information does not act as a direct substitute for imposition
of interventions. However, compliance information is often readily available and,
as we show below, can be used to ameliorate the effect of confounders by giving a
partial view into the latent structure of the population that the bandit is interacting
with.

3.2 Model

This section introduces a formal setting for bandit algorithms with noncompliance
and introduces protocols that prescribe how to make use of compliance informa-
tion. Before diving into the formalism, let us discuss informally how compliance
information can be useful.

First, suppose that the patient population is homogeneous in their response to the
treatment, and that patients take the treatment with probability p if prescribed and
probability 1− p otherwise, where p < 0.5. In this setting, it is clear that a bandit
algorithm will learn faster by rewarding arms according to whether the treatment
was taken by the patient, rather than whether it was recommended to the patient.

As a second example, consider corrective compliance where patients who benefit
from a treatment are more likely to take it, since they have access to information
that the algorithm does not. The algorithm clearly benefits by learning from the
information expressed in the behavior of the patients. Learning from the treat-
ment actually taken is therefore more efficient than learning from the algorithm’s
recommendations. Further examples are provided in section 3.2.1.

3.2.1 Formal setting

We consider a sequential decision making problem where a process mediates
between the actions chosen by the algorithm and the action carried out in the world.
Let A = [k] = {1, . . . , k} be the set of possible actions, and let T be the number
of observed time steps. The general game is as follows:

Definition 1 (bandit with compliance information).
At each time step t ∈ [T], the player selects an action c(t) ∈ A (the chosen action).
The environment responds by carrying out an action a(t) ∈ A (the actual action)
and providing reward r(t) ∈ [0, 1].
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Figure 3.1: Bandit with Compliance Awareness DAG

The standard bandit setting is when a(t) is either unobserved or a(t) = c(t) for all
t ∈ [T].

The set of compliance behaviors is the set of functions C = {ν : A → A} from
chosen to taken action.

Definition 2 (model assumptions).
We make the following assumptions:

1. Compliance ν ∈ C depends on a latent variable sampled i.i.d. for each
time step from unknown distribution P(U) over a set U. Denote by νu the
compliance behaviour under a given instance u of the latent variable.

2. Outcomes r(a, u) depend on treatment taken and the latent u, a fixed function
r : A×U → [0, 1]. In other words, the chosen action of the algorithm can
only affect the reward received by affecting the actual action taken.

When |A| = k = 2 (e.g., control and treatment), we can list the compliance-
behaviors explicitly.

Definition 3 (compliance behaviors).
For k = 2, the following four subpopulations capture all deterministic compliance-
behaviors:

• never-takers N :
(

0 7→ 0, 1 7→ 0
)

• always-takers A :
(

0 7→ 1, 1 7→ 1
)

• compliers C :
(

0 7→ 0, 1 7→ 1
)

• defiers D :
(

0 7→ 1, 1 7→ 0
)

Unfortunately, the subpopulations cannot be distinguished from observations. For
example, a patient that takes a prescribed treatment may be a complier or an always-
taker. Nevertheless, observing compliance-behavior provides potentially useful
side-information. The setting can be contrasted from contextual bandits because
the side-information is only available after the bandit algorithm chooses an arm.
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Definition 4 (stochastic reward model).
The expected reward given subpopulation s and the actual treatment a ∈ A is

rs,a := E
u∼P(U)

[
r(a, u)

∣∣ νu = s
]

for s ∈ {N,A,C,D}.

The goal is to maximize the cumulative reward received, i.e. choose a sequence of
actions (c(t))t∈[T] that maximizes

E
u∼P(U)

[
∑

t∈[T]
r(νu(c(t)), u)

]

In the non-compliance setting there is additional information available to the
algorithm. Ignoring the compliance-information (Chosen) reduces to the standard
bandit setting. However, it should be possible to improve performance by taking
advantage of observations about when treatments are actually applied. Using
compliance information is not trivial, since bandit algorithms that rely purely on
treatments (Actual) or purely on compliance (Comply) can have linear regret.

This section proposes two hybrid algorithms that take advantage of compliance
information, have bounded regret, and empirically outperform algorithms running
the Chosen protocol.

Consider the regret not relative to a best fixed action as usual, but relative to an
algorithm that has access to compliance information. We show that this regret
scales O(T) in the non-stationary setting if the regime from which losses are
drawn changes frequently enough. We also show that within each regime the
compliance awareness helps converge faster, for example due to very high rates
of noncompliance of subjects that don’t have different underlying characteristics,
making Actual perform well, or due to subjects having information that helps
them switch to the best arm.

3.3 A Hierarchical Algorithm

A natural idea is to use the three protocols to train three experts and, simultaneously,
learn which expert to apply. The resulting hierarchical bandit (specified in 1)
integrates compliance-information in a way that ensures the algorithm (i) has no-
regret, because one of the base algorithms uses Chosen, and therefore has no
regret; and (ii) benefits from the compliance-information if it turns out to be useful.

The general construction is as follows. At the bottom-level are three bandit al-
gorithms implementing the protocols Chosen, Actual and Comply. On the
top-level is a fourth bandit algorithm whose arms are the three bottom-level algo-
rithms. The top-level bandit learns which protocol is optimal. Note the top-level
bandit is not in an i.i.d. environment even when the external environment is i.i.d,
since the low-level bandits are learning.
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Algorithm 1 HierarchicalBandit (HB)

Input: Bandits Bi running NoRegretAlgorithm on Comply Chosen, and Actual
for i = {1, 2, 3} respectively, with arms corresponding to treatments
Input: BanditH running NoRegretAlgorithm compatible with adaptive environments,
with arms corresponding to Bi above
for t = 1 to T do

Draw bandit i(t) ∈ {1, 2, 3} fromH and arm j(t) from Bi(t)

Pull arm j(t) of Bi(t) ; observe loss ` = `
(t)
i(t),j(t)

; observe compliance

UpdateH with loss ` applied to bandit-arm i(t)

if i(t) = 1 then
Update B1 with loss ` applied to treatment-arm j(t)

end if
Update B2/3 with loss ` according to protocols Chosen and Actual respectively

end for

3.3.1 Regret analysis

Definition 5 (Regret). The regret of an online learning algorithm A is

RegretA(T) = ∑
t∈[T]

`
(t)
j(t)
−min

j
∑

t∈[T]
`
(t)
j

where j(t) is the action chosen by the algorithm in time step t, and minj ∑t∈[T] `
(t)
j

is the minimal accumulated loss one can obtain when fixing an action and choosing
that same fixed action each step.

This section shows that constructing a hierarchical bandit with Exp3 (Algorithm
2) as the top-level bandit algorithm yields a no-regret algorithm. The result is
straightforward; we include it for completeness. A similar result was shown in
Chang and Kaelbling [2005].

The Exp3 Algorithm (Auer et al. [2002b]) is a bandit algorithm whose worst case
regret bound is robust to adaptive environments.

To obtain a hierarchical algorithm using Exp3 as top level, we first construct
a hierarchical version of Hedge [Littlestone and Warmuth, 1994; Freund and
Schapire, 1997], Algorithm 3, which is applicable in the full-information variant of
our setting (the model where the counterfactual value of actions can be observed).
We then modify it using the principle from EXP3 to make it work for bandit
feedback settings.

Hedge (Chang and Kaelbling [2005]) is an algorithm with bounded regret in the
expert setting. On the bottom-level of our hierarchical version (Algorithm 3),
there are M instantiations of Hedge. Instantiation i, for i ∈ [M], plays an N-
dimensional weight vector and receives N-dimensional loss vector `(t)i on round
t. We impose the assumption that all instantiations play N-vectors for notational
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Algorithm 2 Exp3
Input: γ ∈ [0, 1]
Initialize weight vector w(1)

i = 1 for i ∈ [N] where N is the number of arms;
for t = 1 to T do

Define probabilities x(t)i = (1− γ)
w(t)

i

∑j w(t)
j

+ γ 1
N

Draw an arm i(t) ∼ x(t)

Pull arm i(t)

Incur loss `(t)

Update:

w(t+1)
i =

w(t)
i · exp(−γ `(t)

N·x
i(t)

) if i = i(t)

w(t)
i else

end for

convenience. The top-level is another instantiation of Hedge, which plays a
weighted combination of the bottom-level instantiations.

We have the following lemma:

Lemma 1. Introduce compound loss vectors ˜̀ (t) with

˜̀(t)
i :=

N

∑
j=1

`
(t)
i,j · y

(t)
i,j

Then ρ can be chosen in HHedge such that for all i ∈ [M],

T

∑
t=1
〈x(t), ˜̀ (t)〉 ≤

T

∑
t=1

˜̀(t)
i + O(

√
T log M)

Moreover, ρ and η can be chosen such that for all i ∈ [M] and all j ∈ [N],

T

∑
t=1
〈x(t), ˜̀ (t)〉 ≤

T

∑
t=1

`
(t)
i,j + O(

√
T log M +

√
T log N).

Proof. From Theorem 5 in [Freund and Schapire, 1997] we have that the loss for
Hedge with M actions and loss ˜̀ (t)

i :

T

∑
t=1

˜̀ (t)
i(t) ≤ min

i∈[M]

T

∑
t=1

˜̀(t)
i + O(

√
T log M)

The upper level of HHedge is Hedge with loss ˜̀ (t)
i(t)
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Algorithm 3 Hierarchical Hedge (HHedge)
Input: η, ρ > 0
v(1)i = 1 for i ∈ [M]

w(1)
i,j = 1 for (i, j) ∈ [M]× [N]

for t = 1 to T do
Set x(t) = v(t)

∑i∈[M] v(t)i

Set y(t)
i =

w(t)
i

∑j∈[N] w(t)
i,j

for i ∈ [M].

Receive feedback `(t) ∈ [0, 1]M×N

Incur loss ∑M
i=1 x(t)i ·∑

N
j=1 `

(t)
i,j · y

(t)
i,j

Update weights for all i, j:

v(t+1)
i = v(t)i · exp

(
− η

N

∑
j=1

`
(t)
i,j · y

(t)
i,j

)
w(t+1)

i,j = w(t)
i,j · exp

(
− ρ · `(t)i,j

)
end for

T

∑
t=1
〈x(t), ˜̀ (t)〉 =

T

∑
t=1

M

∑
k=1

x(t)k
˜̀ (t)

k =
T

∑
t=1

˜̀ (t)
i(t) ≤

T

∑
t=1

˜̀ (t)
i + O(

√
T log M)∀i ∈ [M]

The lower level of HHedge is Hedge with loss ˜̀ (t)
i,j(t) for i-th instantiation

T

∑
t=1

˜̀ (t) =
T

∑
t=1

N

∑
j=1

y(t)
i,j

˜̀ (t)
i,j =

T

∑
t=1

˜̀ (t)
i,j(t)
≤

T

∑
t=1

˜̀ (t)
i,j +O(

√
T log M)∀i ∈ [M]∏[N]

Combining the two gives the lemma

Lemma 1 says, firstly, that HHedge has bounded regret relative to the bottom-level
instantiations and, secondly, that it has bounded regret relative to any of the M×N
experts on the bottom-level.

Algorithm 4 modifies HHedge so that it is suitable for bandit feedback, yielding
HExp3. A corresponding no-regret bound follows immediately:

Lemma 2. Define ˜̀ (t) as in Lemma 1 to obtain the expected loss for the upper-level
Exp3 instances:

˜̀(t)
i :=

N

∑
j=1

`
(t)
i,j · y

(t)
i,j = E

[
`
(t)
i,j(t)

]

Examination Copy – 19 March 2022



30 Model and Algorithms

Then ρ can be chosen in HExp3 such that for all i ∈ [M]

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤

T

∑
t=1

˜̀(t)
i + O(

√
TM log M)

Moreover, ρ and η can be chosen such that for all i ∈ [M] and j ∈ [N]

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤

T

∑
t=1

`
(t)
i,j + O(

√
TM log M +

√
TN log N)

Proof. The bound for Exp3 with M actions and loss `(t)i (Corollary 3.2 in Auer
et al. [2002b]) is:

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤ min

i∈[M]

T

∑
t=1

`
(t)
i + O(

√
TM log M)

Note that

˜̀ (t) =
N

∑
j=1

y(t)
i,j `

(t)
i,j = E

[
`
(t)
i,j(t)

]

Upper level is Exp3 with loss `(t)
i(t),j(t)

E
i

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤

T

∑
t=1

`
(t)
i,j(t)

+ O(
√

TM log M)∀i ∈ [M]

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]

]
≤

T

∑
t=1

E
j

[
`
(t)
i,j(t)

+ O(
√

TM log M)
]
=

T

∑
t=1

˜̀(t)

Lower level is Exp3 with loss `(t)
i,j(t)

T

∑
t=1

`
(t)
i = E

j

[
T

∑
t=1

`
(t)
i,j(t)

]
≤

T

∑
t=1

`
(t)
i,j + O(

√
TM log M)∀j ∈ [N]

Combining these yields the lemma

Theorem 1 (No-regret with respect to Actual, Comply and individual treatment
advice).
Let Exp3 be the no-regret algorithm used in Algorithm 1 for both the bottom and
top-level bandits, with suitable choice of learning rate. Then, HB satisfies

E

[
T

∑
t=1

`
(t)
a(t)

]
≤

T

∑
t=1

˜̀(t)
Actual/Comply + O(

√
T)
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Algorithm 4 Hierarchical Exp3 (HExp3)

Input: η, ρ ∈ [0, 1]
v(1)i = 1 for i ∈ [M]

w(1)
i,j = 1 for (i, j) ∈ [M]× [N]

for t = 1 to T do
Set x(t) = (1− η) v(t)

∑i∈[M] v(t)i

+ η 1
M

Set y(t)
i = (1− ρ)

w(t)
i

∑j∈[N] w(t)
i,j

+ ρ 1
N for i ∈ [M]

Draw bandit i(t) ∼ x(t) and arm j(t) ∼ y(t)
i(t)

Pull arm j(t) on bandit i(t)

Incur loss ` = `
(t)
i(t),j(t)

∈ [0, 1]
Update:

v(t+1)
i =

v(t)i · exp
(
− η `

M·x(t)i

)
if i = i(t)

v(t)i else

w(t+1)
i,j =

w(t)
i,j · exp

(
− ρ `

N·x(t)i ·y
(t)
i,j

)
if (i, j) = (i(t), j(t))

w(t)
i,j else

end for

where ˜̀(t)
Actual/Comply denotes the expected loss vector of Exp3 under the respec-

tive protocol on round t. Furthermore, the regret against individual treatments
j ∈ [K] is bounded by

E

[
T

∑
t=1

`
(t)
a(t)

]
≤

T

∑
t=1

`
(t)
j + O(

√
TK log K)

Proof. For the first bound, from Lemma 2, we have that ρ can be chosen in HExp3
such that for all i ∈ [M], which includes Actual and Comply as elements,

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤

T

∑
t=1

˜̀(t)
i + O(

√
TM log M)

Note that M log M is fixed and thus O(
√

TM log M) = O(
√

T).

For the second bound, note that from Lemma 2 ρ and η can be chosen so that for
all i ∈ [M]and j ∈ [N]

E

[
T

∑
t=1

`
(t)
i(t),j(t)

]
≤

T

∑
t=1

`
(t)
i,j + O(

√
TM log M +

√
TN log N)
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Applied to HierarchicalBandit we have that M = 3 since that is the set
of underlying actions, and N = K the set of higher level actions (actual, chosen,
comply):

O(
√

TM log M +
√

TN log N) = O(
√

T3 log 3 +
√

TK log K)

= O(
√

TK log K)

3.4 Compliance Awareness with i.i.d. Rewards

In an i.i.d. setting the previous strategy achieves a sub-optimal bound. Here we
consider a different strategy to guarantee low regret specialized for i.i.d. settings
which achieves the optimal bound up to multiplicative factors.

The strategy starts from the observation that Thompson sampling often outperforms
other bandit algorithms in stochastic settings ( Thompson [1933]; Chapelle and Li
[2011a]) and has logarithmic regret (Agrawal and Goyal [2012]; Kaufmann et al.
[2012]). A natural goal is to design an algorithm that performs like Thompson
sampling under the Chosen protocol in the long run – since Thompson sampling
under Chosen is guaranteed to match the best action in hindsight in O(log T) time
– but also takes advantage of compliance information when Thompson sampling
has not converged onto sampling a single arm with high probability. Note that
under the i.i.d. setting it is not possible to obtain a stronger expected regret bound
than static regret.

The proposed algorithm, TB, uses an algorithm that does not have guarantees (is
not certified) and a Thompson Sampling based algorithm. Unlike HB, it does not
stack them, but instead uses the Thomson algorithm to bound the behaviour of the
uncertified algorithm.The Thompson sampler is initially unbiased between arms;
as it learns, the probabilities it assigns to arms become increasingly concentrated.
TB takes advantage of Thompson sampling’s uncertainty about which arm to pull
in early rounds to safely introduce compliance information. TB draws two samples.
If they agree, it plays a third Thompson sample. If they disagree, it plays the arm
chosen by the hierarchical bandit. Intuitively, if Thompson sampling is uncertain,
TB tends to use the uncertified bandit. As the sampler’s confidence increases,
TB is more likely to follow its advice. The next theorem shows that initially mixing
in side information has no qualitative effect on the algorithm’s regret, which grows
as log(T).

Theorem 2. The regret of TB is bounded by

RegretTB(T) ≤ O(log T).
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Algorithm 5 ThompsonBounded (TB)

Input: Bandit algorithmH
Input: Thompson sampler under Chosen protocol
for t = 1 to T do

Sample t and t′ from Thompson
if t = t′ then

Pull arm sampled from Thompson
else

Pull arm chosen byH
end if
Incur loss, update algorithm used to pull arm

end for

Proof. Suppose without loss of generality that arm 1 yields a higher average payoff.
Let pj be the probability that Thompson assigns to arm j on round t, so that
pF = ∑k

j=2 pj is the probability that Thompson sampling does not pull arm 1. The
probability that TB follows the uncertified algorithm then is

1−
k

∑
j=1

p2
j = 1− (1− pF)

2 −
k−1

∑
j=2

p2
j ≤ 2pF.

The additional expected regret from deviating from Thompson sampling is therefore
at most twice the regret Thompson incurs by pulling suboptimal arms. Finally, it
was shown in Agrawal and Goyal [2012]; Kaufmann et al. [2012] that Thompson
sampling has logarithmic regret.

The algorithm can be generalized beyond the use of while preserving the bound.
Note that the above proof makes no use of any property of HB, thus we can replace
it with any other bandit algorithm, including ones that do not have regret bounds.
One natural variation is to use Actual or Comply depending on whether a priori
the expected effects on noncompliance include noncompliance conditional on
unobservable heterogeneity of patients (in which case Comply would make sense)
or selection towards more effective treatments (in which ) that have homogeneous
effects across subjects.

While for the case of Bernoulli rewards and no context, pulling the arm twice is
unnecessary. We could instead use the expected probability of a pull and square it,
and use the resulting probability. It does have the advantage of black boxing the
details for the underlying Thompson sampling implementation, which enables the
use of beliefs where deriving precise probabilities is expensive but sampling is not.
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Algorithm 6 Base Thompson Sampler (BTS)
Input: Probability p that BTS is called by top-bandit
Set 1̃← 1/p
For each arm i sample θi ∼ β(Si + 1̃, Fi + 1̃)
Play arm i(t) := argmaxi θi and observe reward r(t)

Sample b from Bernoulli with success probability r(t)

If b = 1 then Si ← Si + 1̃ else Fi ← Fi + 1̃

3.5 Data-efficiency

As described, the hybrid algorithms are data-inefficient, since despite the i.i.d.
assumption on the patient population, the certified strategies only learn when
they are executed. We describe a recycling trick that can potentially improve the
efficiency of the certified strategies.

A naive approach to increase data-efficiency is to reward the certified strategy on
rounds where the executed strategy selects the same action as the certified strategy.
However, this introduces a systematic bias. For example, consider two strategies:
the first always picks arm 1, the second picks arms 1 and 2 with equal probability.
Running a top-level algorithm that picks both with equal probability results in a
mixed distribution biased towards arm 1.

The recycling trick stores actions and subsequent rewards by non-certified strategies
in a cache. When there is at least one of each action in the cache, the certified
strategy is rewarded on rounds where it was not executed by sampling, without
replacement, from the cache. Sampling without replacement is important in our
setting since it prevents early unrepresentative samples introducing a bias into
the behavior of the certified strategy through repeated sampling. A related trick,
referred to as “experience replay”, was introduced in reinforcement learning in
(Mnih et al. [2015]).
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Chapter 4

Empirical Evaluation

4.1 Introduction

The previous chapter introduced a pair of new algorithms that incorporate com-
pliance information and proved that they preserve the worst case performance
guarantees up to multiplicative factors. This leaves open the question whether
these new algorithms can in fact outperform their standard counterparts in practical
settings. This chapter uses simulations to assess that. We first consider simulations
based on data from a clinical trial. Given that there is a single suitable dataset,
and to explore settings were the data generating process is exactly known, we also
consider several stylized models of patient compliance and simulate them.

The full source code and electronic versions of the simulation results can be found
at https://github.com/nikete/thesis/blob/master/Simulations.ipynb.

4.2 International Stroke Trial Simulation

The simulation data is taken from the International Stroke Trial (IST) database, a
randomized trial where patients believed to have acute ischemic stroke are treated
with aspirin, subcutaneous heparin, both, or neither (Group [1997]). It contains
complete compliance and mortality data at 14 days for each of 19,422 patients.

To the best of our knowledge, this is the only publicly available clinical trial with
compliance data that is suitable for simulations of compliance aware algorithms. An
extensive search failed to find other suitable open randomized clinical trials datasets
that included compliance. A systematic review by (Ebrahim et al. [2014]) identified
only 37 reanalyses of patient-level data from previously published randomized
control trials; only five were performed by entirely independent authors. Data
from drug abuse clinical trials is used in (Kuleshov and Precup [2014]). However,
non-compliance is coded as failure, so this source, and drug dependence treatments
more generally, cannot be used in our setting.

Given there is substantial loss of follow up at the 6 month measure we focus on the
14 day outcome.

35
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4.2.1 Construction of Actual Actions from Compliance

The main sources of non-compliance in the dataset are the initial event not being a
stroke, clinical decision, administration problems and the patient missing out more
than 3 doses. A detailed table and counts of these are included in the dataset’s open
access article ( Sandercock et al. [2011]). While these might initially seem like
reasons to discard the patients from the dataset, non-compliance is not necessarily
random. Discarding these patients could cause algorithms to have unbounded
regret (since the loss we care about is over all patients). In particular, misdiagnoses,
administrative problems, not taking doses and other sources of noncompliance can
be confounded with a patient’s socio-economic status, age, and overall health.

To construct our “actual arm” variable, we assume that non-compliance entails
taking the opposite treatment. This is well-defined in the Aspirin case, which only
has two arms, and thus non-compliance with placebo is likely to be taking the
treatment. Assigning an actual arm pulled in the heparin part of the trial is less
clear cut, as it has three arms: no, low and medium dosage. We construct the actual
arm variable by combining assignment and non-compliance. Non-compliance to
low and medium assigned treatments is coded as not-takers, while non-compliance
by a patient prescribed “none” is coded as low.

4.2.2 Results

We simulated 10,000 patients per run, which allowed us to not oversample the
data in any single simulation. A total of 2000 runs were performed, all algorithms
were tested against the same draw of the run to minimize unnecessary sampling
variation.

The EXP3 gamma parameter was set ahead of time to 0.085, a choice determined
by the regret-bounds for T = 10000 and K = 2 or K = 3. Epsilon-Greedy used a
standard annealing schedule. No data dependent parameter tuning was used. The
simulation was carried out by creating a “counter-factual patient”: one patient was
sampled i.i.d. from each treatment and control groups in the clinical trial. If the
algorithm selected the treatment, it received the reward and observed the action
taken by the subject sampled form the treatment group, and vice versa for the
control.

Empirically, TB achieved a surplus of 8.9 extra survivals (that is, human lives)
with 95% confidence interval [8.1, 9.7], relative to the randomized baseline. HB
with Epsilon Greedy as the base algorithm achieved a surplus of 9.2 (CI:
[8.3, 10.0]) In contrast, the best performing strategy that was not compliance aware
was Thompson sampling, which yielded 7.9 extra survivals (CI: [7.2, 8.7]).

The gains were largely concentrated in the Aspirin trial, which is consistent with
the lack of benefits or severe ill effects found in the original study Group [1997] for
heparin, and with the small but beneficial effect found for aspirin. If the underlying
treatment has no positive or negative effect, side-information after the fact alone
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Figure 4.1: 14 Day survivals: average lives saved over uniform random policy per 10,000
patients in 10,000 simulated trials of Aspirin and Heparin, with Exp3 as the base bandit.
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Figure 4.2: 14 Day survivals: average lives saved over uniform random policy per 10,000
patients in 10,000 simulated trials of Aspirin and Heparin, with Epsilon Greedy as the base

bandit.
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Figure 4.3: 14 Day survivals: average lives saved over uniform random policy per 10,000
patients in 10,000 simulated trials of Aspirin and Heparin, with UCB1 as the base bandit.
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Figure 4.4: 14 Day survivals: average lives saved over uniform random policy per 10,000
patients in 10,000 simulated trials of Aspirin and Heparin, with Thompson sampling as the base

bandit.
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cannot be helpful. Note that Actual, and to a lesser extent Comply, performed
better than either Chosen or the hybrid algorithms. However, these are problem-
atic to use directly since no guarantees apply to their worst case performance. The
performance of the hybrids benefits from the information encoded in Actual and
Comply whilst keeping the guarantees of Chosen.

A striking secondary empirical observation from the experiments is the strong
interaction between the base learning algorithm and the nature of the feedback
used. In particular, our naive implementation of EXP3 performed extremely badly
under both Actual and Comply, in both the aspirin and heparin simulations. In
contrast, EXP3 performs well when used as a top-level algorithm in HB in both
trials, and other algorithms on the same data with the same protocol are able to
learn better than Chosen, while EXP3 does worse than random (note the EXP3
guarantees are only for the Chosen protocol, so they do not apply here).

4.3 Synthetic Data

To better understand the behavior of the algorithms in a more varied range of
settings, we present results of simulations with synthetic data.

4.3.1 Selection of treatment on unobservables

The first simulation has two equally sized subpopulations of rich, healthy patients
who always take the treatment, and poor, less healthy patients who only take the
treatment if prescribed. Suppose the treatment reduces the probability for survival
by 0.25. Assume that the rich patients would all do well (receive reward of 1) if
they didn’t take the treatment, but they all take it and so face only a 0.75 chance of
survival. Poor patients who face a baseline survival of 0.75 only take the treatment
if instructed, which brings their survival probability down to 0.5.

For comparison, T was kept at 10,000, and we simulated the binary outcome case.
We assigned half the patients to rich and half to poor randomly. Fig. (4.5) shows
that the performance of Actual and Comply is much worse than Chosen and
the hybrid algorithms. Results are for 100 samples.

A lack of useful information about underlying treatments in the compliance be-
haviour, their misleading nature, drives high regret in naive strategies for using
compliance information.

4.3.2 Short time periods

The second simulation concerns small T. A motivation for very small T adaptive
clinical trials is provided by rare diseases. The overall size of the patient population
is very restricted in this setting. The priors for the mechanisms of action are also
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Figure 4.5: The naive ways of incorporating compliance, actual and comply based policies,
perform poorly in this example, due to the non-compliance being in the opposing direction to

the better choice.
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often poorly understood, so potential alternative treatments can have radically
different probabilities of success. We simulated a T = 12 adaptive trial, a not
uncommon size of clinical trials in rare diseases or neonatal populations. We used
binary outcomes, with two treatments and expected rewards drawn uniformly from
the unit interval, and compliance drawn uniformly at random. We sampled 1,000
such simulations; results can be seen in Fig. (4.7). While our bounds are vacuous in
this setting, it is interesting that there is, on average, an improvement when taking
the noncompliance information into account.

4.3.3 Noncompliance for Best Arm

A natural scenario for noncompliance, and one that offers substantial potential, is
when the subject is better informed than the algorithm and realizes they know a
better alternative. This provides potentially huge practical advantages, especially
in situations with very large numbers of a priori low expectation but high variance
actions. They allow later subjects to benefit from the information that previous
subjects bring to the mechanism, while current compliance unaware algorithms
not only waste this information but hurt later subjects by unnecessarily raising the
apparent variance of the rewards in the arms (since the chosen arm may indeed be
very bad relative to the actual arm).
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Figure 4.6: Results from 1000 simulations with T = 12 and synthetic data:with two treatments
and expected rewards drawn uniformly from the unit interval, and compliance uniformly at

random.
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Figure 4.7: Results from 1000 simulations with T = 12 and synthetic data:with two treatments
and expected rewards drawn uniformly from the unit interval, and compliance uniformly at

random.
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Figure 4.8: Noncompliance for best arm: 100 simulations from synthetic data of T = 10, 000
with noncompliance proportional to how much better the best arm is than the algorithm selection.

Examination Copy – 19 March 2022



§4.3 Synthetic Data 47

Figure 4.9: Noncompliance for best arm: 100 simulations from synthetic data of T = 10, 000
with noncompliance proportional to how much better the best arm is than the algorithm selection.
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Give the people what they want
when they want it
and they wants it all the time
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Chapter 5

Advice Auctions: Subject
Freedom and Adviser Incentives
for a Single Decision

5.1 Introduction

This chapter considers a subject facing a decision, who wishes to incentivize
multiple experts in providing advice so as to make a choice that maximizes the
reward the subject receives, while maintaining the freedom to take any action.
Experts do not have intrinsic interest in the action the subject takes, nor do they
face any costs in acquiring information to advice the subject. This model is closely
related to that studied in decision markets. The key difference being requiring
that the subject of the decision maintain autonomy over what action is taken. It
introduces advice auctions, in which the right to provide advice and receive a share
of the reward is allocated to one of the experts. This framing allows casting this
setting as one of a single unit efficient allocation with interdependent valuations
[Milgrom and Weber, 1982; Maskin, 1992; Ausubel et al., 1999; McLean and
Postlewaite, 2004; Roughgarden and Talgam-Cohen, 2016; Eden et al., 2018]. The
term “advice” is chosen to highlight that the decision is not ultimately determined
by the market, thus preserving the subject’s freedom.

Our proposed mechanisms all have the same structure; in an initial stage a rights
bundle over the advice and the resulting payoff is allocated efficiently. The winner
form the initial stage is shown other agents reports if necessary, and selects their
advice.

By leveraging the connection the mechanism design and auction literature sufficient
conditions on bidders valuations can be provided such that the auction is efficient.
An advantage of this framing as opposed to a mechanism that directly outputs a
chosen action is that it allows for the expert making the recommendation to have
different influences on the subject (i.e. some experts may be more persuasive).

53
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5.1.1 Limits to Subject Freedom In Sequential Proper Scoring
Rule Based Decision Markets

One way to incentivize the experts is by applying the machinery of prediction
markets based on sequentially shared proper scoring rules to the expected reward
conditional on the action. A challenge that presents itself is how to settle the
markets for the reward conditional on the action which is not taken. One natural
approach is to void the trades in the markets for these actions, this being the
originally proposed mechanism in this line of work by Hanson [2002], and only
settling the markets where actions are taken. While seemingly natural, this is not
incentive compatible for the experts, even in the weak myopic sense, as shown in
Othman and Sandholm [2010].

To understand why this is the case, consider a last trader facing the prediction
market (sequential proper scoring rule) where the price is correct (matches the
expected reward) for the optimal action, but there is some other action that is
mispriced. The profit maximizing move for this trader is to lower the price of
the optimal action below the true price of the previously mispriced action, and
correct the mispriced action to its true price. The utility maximizing subject would
then carry out the suboptimal action, the expert would be rewarded for correctly
predicting it and would receive no punishment for the error she introduced into
the reward of the optimal action. A mechanism is called Bayes Nash Incentive
Compatible (BNIC) if there is an equilibrium were every agent reports their signal
truthfully and this maximizes their reward in expectation (over the state of the
world). The mechanism proposed in Hanson [2002] is not BNIC for the experts
who provide advice, as witnessed by the example above, and shown in Othman and
Sandholm [2010]; Chen et al. [2014]. More generally, any sequential proper scoring
rule based mechanism that is incentive compatible for the experts is incompatible
with maintaining the subject’s freedom to select the action that appears optimal
ex-post [Chen et al., 2014].

5.1.2 Summary and Outline

The rest of the chapter is structured as follows. We first introduce a formal model
and notation, and conditions under which a simple and practical mechanism built
around a second price auction is efficient. We then present a general direct mecha-
nism for a broader class of information structures, show a condition on valuation
profiles under which it is truthful and efficient as well as explore it’s limits. We
then consider a practical variation of the procedure, which remove the need for the
mechanism to have detailed valuations, and consider necessary conditions for their
efficiency in equilibrium.
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5.2 Model

As in the previous chapters, there is a single subject that seeks advice from n experts
on what action to take from some finite set of alternativesA. Let ci ∈ A× n be the
action that was given as advice by expert i. Let a ∈ A the action that the subject
actually takes.

Each expert receives a single signal si ∈ Si which is known only to expert i. Denote
a signal profile as~s = (s1, s2, . . . , sn). Let~s−i denote all signals but si, and let
(s′i,~s−i) denote the profile ~s where si has been replaced with s′i. Similarly, let
(si,~s′−i) denote the profile~s where si is fixed and~s−i been replaced with~s′−i.

Each possible signal profile~s corresponds to an underlying state of the world; this
includes inherent physical properties of both the subject and the actions available
to them, as well as the subject’s probability for choosing a given action response to
different advice by different experts.

There is a joint probability distribution over signals, actions conditional on advice
from experts, and rewards. This distribution is common knowledge among the
experts. All expectations are with respect to this distribution.

Since the subject can be influenced differently by different experts who provide
the same advice (that is experts can differ in how persuasive they are). The reward
r that the subject receives depends on their chosen action a and the underlying
state of the world as determined by the signal profile~s. Conditional on the chosen
action a it does not depend on the advice it received, that is the advice can only
affect the reward by altering the choice of action. Note, it is not the case that
the optional advice is always the optimal action to be taken (for a given signal
vector). For example, an expert who knows the subject would find the optimal
action unpersuasive may opt to advice for a more persuasive second best action that
has a high chance of being actually taken. Each agent has a reduced form value
function vi : ×i Si → R≥0, which maps every signal profile of the n agents to the
linear share α of the expected reward r given the bundle of rights is assigned to
expert i and they provide optimal advice for the signal profile.

Vi(s) = α E [r |~s]

Each expert reports a signal bi ∈ Si, and the vector of reported signals is denoted
~b = (b1, b2, . . . , bn). Without loss of generality, assume Si = {0, 1, . . . , qi}.
Mechanisms are pairs (x, p), where x = (x1, x2, . . . , xn) is a set of allocation
functions and p = (p1, p2, . . . , pn) is a set of payment functions. The allocation
functions xi : ×j Sj → [0, 1] map a bid profile~b to the probability that expert i gets
allocated. They hence satisfy ∑i xi(~b) ≤ 1 for all possible~b. The payment rules
pi : ×jSj → R map the reported signals~b to the expected payment from bidder i.

Experts are risk neutral, so their expected utility is quasilinear, given in the reduced
form by xi(~b) · vi(~s)− pi(~b) where~s is the true signal profile of the experts.
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Advice is termed optimal for the expert if the expected value of the reward con-
ditional on the chosen expert i, their advice ci and the true signal vector ~s, is
maximized. An advice mechanism is efficient if it leads to optimal advice over all
experts given the true signal~s.

Formally, an advice mechanism is efficient when c∗i is such that for any other expert
j and any advice c

′
j,

E [r |~s, c∗i ] ≥ E
[
r |~s, c

′
j

]

5.3 Advice Auctions with Privately Informed Experts

When an experts signal is sufficiently rich, in the sense that it is fully informative
of both what their optimal advice is wand what reward to expect from it, a strong
notion of truth telling, dominant strategy, is possible for an advice auction. In
the dominant strategy it is in every agent i’s best interest to report her true signal
bi = si for any possible vector of reports of other agents. A second price sealed
bid auction for the right to provide the advice and receive a linear share α of the
reward, results in a dominant equilibrium where the advice provided is efficient.

Mechanism 1. [Second Price Auction for Advice and Reward Share (SPAAR)]

Each expert places a bid for the value of receiving the rights bundle. The first part
of the mechanism gives the rights bundle to the expert i∗ = argmaxj{~b} with the
highest bid (a randomly picked one of them, if there are several). This expert i∗

then provides their advice c.

That is, the allocation rule is:

xi(~b) =

{
1 if i = argmaxj

~b}
0 otherwise.

The experts that were not selected receive no payment, while the selected expert
i∗ receives her share α of the reward r minus the value of the second highest bid.
More formally, given~b−i∗ (the bids for all agents except i∗), the payment rule is:

pi(~b) =

{
αr−max~b−i if bi > max~b−i

0 otherwise.

A valuation profiles satisfies a private value condition when each experts i signal
si contains all the information in the~s for them to give their optimal advice (that
is maximize r subject to them being the expert providing advice), and know what
reward to expect from doing so. Thus there is no further information that is relevant
to their choice of action or their expected reward if they are given the rights bundle
in the signals received by the other experts~s−i. Formally,

Examination Copy – 19 March 2022



§5.3 Advice Auctions with Privately Informed Experts 57

Definition 6 (Private Value Condition). For a fixed expert i with signal si and their
optimal advice c∗i , and for any set of other experts signals~s′−i:

E [r |~s, c∗i ] = E
[
r | (si,~s′−i), c∗i

]
This condition can be re-stated in terms of the reduced form valuation profiles as:

A valuation profile vi(~s) is said to satisfy the private value condition if for every
expert i, for any fixed si, and for any other expert’s signals~s′−i

vi(~s) = vi((si,~s′−i))

This makes the valuation of the rights bundle match the private values condition of
Vickrey [1961]. The condition is very strong, but the exact match it provides to
the natural private value goods setting makes an instructive starting point. A more
formal proof for the existence of an efficient weakly dominant strategy equilibrium
for the second price auction wiht private values can be found in Krishna [2009]
Proposition 2.1.

Proposition 1. Given a valuation profile that satisfies the Private Value Condition
there is a weakly dominant strategy equilibrium of the Mechanism 1 that results in
efficient advice.

Proof. The first part of the mechanism is a second price sealed bid auction with
private values. Given the Private Value Condition (Definition 6) if they have the
highest bid the payoff to expert i is their expected share of the reward conditioned
on their signal si, which is identical to giving their optimal advice conditioned~s,
minus the second highest bid. If they bid bellow their expected reward it does not
change their payoff when they win the auction, but it does reduce the set of states
of the world were they are awarded the rights bundle, but in all of them this has
expected profit. If they bid above their value it only increases the set of states of
the world in which they are awarded the rights bundle but only in those states of
the world where it has negative profit. Since there are no further repercusions in
the mechanism from their bid, it is dominant strategy to bid their expected value.

The expert i who places the highest bid and is awarded the rights bundle then
maximizes their payoff by selecting their advice c∗i which maximizes the reward
given~s, and by (Definition 6) they have all the information in their signal si to do
so. If there was an expert j who could provide advice c

′
j that obtained a higher

reward they would have had a higher valuation vj and won the second price auction
in the first part of the mechanism. Thus, for any c

′
j. :

E [r |~s, c∗i ] ≥ E
[
r |~s, c

′
j

]
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The condition can be substantially weakened, since the value of the rights bundle
only needs to be private (in the sense that other experts signals are not further
informative) for the highest valuation expert i∗. This is a much more natural
condition than it being private value to all experts. It emerges naturally when
the evidence base the experts have access to is common, so the signals are only
encoding internal knowledge of the experts. The most knowledgeable expert might
thus be sufficiently informed that even when observing the reasoning of the others,
it would not change their diagnosis or estimate of the right course of action.

Definition 7 (Sufficiently Informed Best Expert Condition). There is a highest
value expert i with signal si, and their optimal advice c∗i , such that for any set of
other experts signals~s′−i and for any other experts j 6= i advice c∗j :

E [r |~s, c∗i ] = E
[
r | (si∗ ,~s′−i), c∗i

]
> E

[
r | (si∗ ,~s′−i), c∗j

]
In terms of the reduced form valuation profiles:

A valuation profile v(~s) is said to satisfy the sufficiently informed best expert
condition if there is a highest valued expert i, such that for all j:

vi(~s) > vj(~s)

, and for the fixed si, and for any other expert’s signals~s′−i

vi(~s) = vi((si,~s′−i))

Note that this is equivalent to the Private Value Condition for the most valuable
expert, and imposes no structure on the valuation profiles of other experts other
that they be lower than the highest expert.

Theorem 3. Given a valuation profile that satisfies the Sufficiently Informed Best
Expert Condition there is an ex-post efficient Nash Equilibrium of the Mechanism 1
that results in efficient advice.

Proof. For the highest valuation bidder nothing has changed relative to the private
values setting so their dominant strategy in the auction and their actions once
awarded the rights bundle remain the same as in the private value condition. That
is their bid is their value bi = vi(si).

For any other agent j there are a multiplicity of equilibrium strategies that result
in the same efficient allocation of the rights bundle in (but different payments to
the highest value expert): any bid bj < bi is an ex-post Nash Equilibrium. They
are never assigned the rights bundle and always receive payoff 0. If they bid at or
higher than bi they might be assigned the bundle and since by Definition 7 their
value is lower than this, would obtain a negative payoff. Thus in equilibrium their
bid is bellow bi and they are never awarded the good. For concreteness consider
the equilibrium of the auction in which bj = vj(sj).
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As in the private value case, the expert i who places the highest bid and is awarded
the rights bundle then maximizes their payoff by selecting their advice c∗i which
maximizes the reward given~s, and by (Definition 7) they have all the information
in their signal si to do so. If there was an expert j who could provide advice c

′
j

that obtained a higher reward they would have had a higher valuation vj and by
definition won the second price auction in the first part of the mechanism. Thus,
for any c

′
j:

E [r |~s, c∗i ] > E
[
r |~s, c

′
j

]

5.4 Interdependent Valuations And A Direct Reward
Sharing Mechanism

The previous mechanism can be generalized beyond private values or sufficiently
informed best expert conditions by replacing the second price sealed bid with a
generalized VCG mechanism [Maskin, 1992] for the initial stage that assigns the
rights bundle to the expert, and then allowing the expert to observe the reported
bid vector before selection the action a. This mechanism is direct in the standard
sense that agents report their signals. Note these mechanisms are no longer an
auction, and while conceptually simple, the mechanism makes direct use of the
value function of all agents.

The core of the mechanism is simple. Since there is knowledge by the mechanism
over the value function for a given vector of signals, it can use the reported signals
to select the highest value expert. The net payment to that expert is then just her
share of the reward minus her value at the lowest signal she could have misreported
and still obtained the allocation give the other reports. More formally:

Mechanism 2. [Direct Reward Share VCG (DRSVCG)] The first part of the mech-
anism gives the rights bundle to the expert i∗ = argmaxj{vj(~b)} with the highest
valuation under the reported signals (a randomly picked one of them, if there are
several).

It lets the expert i∗ observe~b and then select c∗. The subject then observes c∗ and
~b, takes their action a and receives reward r, which the mechanism observes.

That is, the allocation rule is

xi(~b) =

{
1 if i = argmaxj{vj(~b)}
0 otherwise.

The experts that were not selected receive no payment, while the selected expert i∗

receives her share α of the reward r minus her valuation of the lowest bid b∗i∗ (the
critical signal) that would have still resulted in expert i∗ being selected.
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More formally, given~b−i (the bids for all agents except i), the critical signal for i is

b∗i = min{b ∈ Si | xi(b,~b−i) = 1}

if this minimum exists (otherwise there is no critical signal for i). The payment rule
then is

pi(~b) =

{
αr− vi(b∗i ,~b−i) if i = i∗

0 otherwise.

An allocation function xi is called deterministic if xi(~b) ∈ {0, 1} for all i and all~b.
The generalized direct VCG mechanism is deterministic and prior-free. It is not
however detail free, in the sense that it requires the mechanism to have access to
the valuation function of all experts.

In general, one cannot hope for truth-telling to be a dominant strategy for the experts.
One expert’s misreport can cause other experts to also misreport to compensate.
Thus the strongest incentive-compatibility (IC) notion that we can hope for in the
general setting is is ex-post Nash Equilibrium. That is, it is in every agent i’s best
interest to report her true signal bi = si given that all other agents reported their
true signals profile b−i = ~s−i. Fix a signal profile~s ∈ ×j Sj. For all bi ∈ Si we
have

xi(~s) · vi(~s)− pi(~s) ≥ xi(bi,~s−i) · vi(~s)− pi(bi,~s−i)

We use the equivalent, ex-post notion of individually rational (IR):

xi(~s) · vi(~s)− pi(~s) ≥ 0

As is standard, a mechanism is truthful when it is both incentive compatible and
individually rational.

Lemma 3. Given a valuation profile resulting in an efficient truthful equilibrium of
the initial generalized VCG part of the mechanism, the resulting advice is optimal.

Proof. Since the highest valuation agent is selected by construction in the truthful
efficient equilibrium of the generalized direct VCG mechanism, and this agent is
selfish and has access to the reports of the signal profile. Since by assumption the
equilibrium is truthful,~b = ~s, so the expert i when selecting the advice c8

i can
effectively condition on~s , and so maximize their payoff by maximizing the reward
conditioned on~s.

It is worth highlighting that the lemma is assuming the generalized direct VCG
initial part of the mechanism results in an efficient equilibrium. While such equi-
librium exist when the signal structure is suitable they are not necessarily unique.
See Krishna [2009] Example 8.3 where a multiplicity of inefficient asymmetric
equilibrium can exist as well as an efficient symmetric equilibrium.
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5.4.1 Efficiency

The link to auction theory allows to immediately derive results when the information
structure of the experts is more complicated, such that they need to consider the
signals (as expressed in their reports) of the other experts to decide upon the optimal
advice.

A single-crossing condition captures the idea that bidder i’s signal has a greater
effect on experts i’s value than on any other expert’s value. We follow the definition
in Eden et al. [2018]:

For si = 1, . . . , ki, define

∂vj(si,~s−i)

∂si
= vj(si,~s−i)− vj(si − 1,~s−i)

Definition 8 (Single-Crossing). A valuation profile is said to satisfy the single-
crossing condition if for every expert i, for any set of other expert’s signals~s−i,
and for every expert j,

∂vi(si,~s−i)

∂si
≥

∂vj(si,~s−i)

∂si
.

Lemma 4. There is a truthful and efficient ex-post Nash equilibrium of the gener-
alized VCG part of the DRSVCG mechanism when valuation profiles satisfy the
single-crossing property.

A complete proof for this can be found for example in Proposition 10.1 of Krishna
[2009].

Further, one cannot do better than this, since monotonicity of the allocation rule is
necessary for an efficient and truthful mechanism. Hence, without single-crossing,
it is impossible to have a truthful direct mechanism in general. The single crossing
condition is needed so that that the ex post values of different bidders have the
same order as their signals.

Theorem 4. When valuation profiles satisfy the single crossing property the
DRSVCG there is an efficient ex post equilibrium that results in efficient advice.

Proof. From Lemma 4 we have that there is a truthful efficient ex post equilibrium.
Given Lemma 3 this implies the advice in this equilibrium is efficient.

This procedure for a direct advice elicitation mechanism based on the advice
auction procedure was here instantiated using the generalized VCG of Maskin
[1992] as the first stage auction, but the procedure is generic. It could be, for
example, instantiated instead with the randomized mechanism of Eden et al. [2018],
and would obtain the approximation properties that algorithm provides in auctions
in our advice setting.
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5.4.2 Practical Mechanisms

The mechanism having access to the value functions is highly impractical in
general. Further, direct mechanisms in the context of motivating experts to provide
decision making advice are also highly impractical as experts signals might not be
practical to report. It is easy to consider situations in which experts having difficulty
understanding each others information, much less having access to a well defined
function that is able to incorporate all of it and map it to both optimal advice and a
valuation conditional on that advice. It is much more practical for experts to place
bids on their value of the rights bundle, rather than directly reporting their signals.
This section considers practical advice auctions beyond private values.

Access to the value function and the reported signals allows the direct VCG
mechanism to select the expert i with the highest valuation. Conditions on the
valuation profiles for efficiency of the VCG mechanism are sufficient for an efficient
advice mechanism. This is not the case once the mechanism does not have access
the reports and valuation function. That is, even under conditions on the valuation
profile such that the initial part of the mechanism would result in an efficient ex
post equilibrium, the resulting advice auction need not be efficient. The reason for
this is efficient advice requires allocation to the expert with the highest valuation
vi, but this value depends on the expert being able to provide optimal advice given
the signal~s. Once the signals are not reported to the mechanism, the mechanism
cannot reveal them to the expert before it chooses the advice. This suggests a
further condition on the equilibrium bids reported that is necessary for an efficient
advice mechanism: that there is enough information in the bids reported to the
mechanism that when the highest valuation agent is allocated the rights bundle is
presented with the bids before providing the advice he is still able to provide the
optimal advice.

Definition 9 (Informative-Bids). A bid vector b is said to satisfy the informative-
bids condition if for the highest valuation agent i observing the bid vector b from
the initial auction stage and their signal si the advice c∗i that maximizes expected
reward is equal to when they observe the full signal vector~s. More formally, for
any fixed signal profile~s

argmax
c∗i

E [r |~s, c∗i ] = argmax
c∗i

E
[
r | si,~b, c∗i

]
This condition is unsatisfactory, in that bids result from a specific equilibrium of a
valuation profile and a mechanism, and thus are not primitive. What condition on
the valuation profiles and mechanism is needed to satisfy this condition is an open
problem.

Note that mechanism based around sealed bids are impractical to express inter-
dependence of valuations, since to do so the experts would have to place bids
contingent on the submitted bids of the other experts. A practical structure that

Examination Copy – 19 March 2022



§5.5 Conclusion 63

has been substantially studied is using an open ascending auction (also known
as an english auction). The price of the rights bundle would rise and experts can
irrevocably drop out until there is only one left, who is then awarded the rights
bundle, and pays the price at which the last expert dropped out. In the private
values case this is equivalent to a second price auction. Efficiency for such auctions
requires valuation profiles obey an average crossing condition, and the advice auc-
tion around them would also require that the resulting bids satisfy the informative
bids condition. There are naturally occurring situations where english auctions
result in inefficient outcomes, Hernando-Veciana and Michelucci [2018] propose a
two step mechanism that is still very practical to address such situations, and could
be used as the underlying auction for the bundle of advice and reward shares.

5.5 Conclusion

This chapter presents a bundle of rights approach on incentives for decision elicita-
tion from multiple experts, which naturally suits an auction approach. It explores
two information structures, one equivalent to private values and a relaxation where
only the highest value expert needs to have private values, under which a simple
and practical auction based mechanism is efficient. The generalized VCG mecha-
nism of [Maskin, 1992] to study the theoretical possibilities in a direct incentive
compatible mechanism, resulting that efficiency requires experts values for the
rights bundle have a single crossing property. It then explores the limits in trying
to make efficient practical advice auctions beyond the private values and it’s best
expert relaxation, in that they require further conditions than those necessary for
the underlying initial auction to be efficient. In this sense advice auctions can be
seen as an effective way to elicit non-binding advice in situation where the main
concern is identifying the single expert whose signal is most informative. They
appear much more limited as ways of aggregating information dispersed among
experts.
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Chapter 6

A General Setting and a First
Approach

6.1 Introduction

This chapter differs from the previous ones in its relationship to the thesis. While
before we seek to extend the understanding of previously presented settings (bandit
algorithms and decision markets), this chapter seeks to introduce a new setting that
generalizes these two.

Our motivating applications in medicine suggest a sequence of similar decisions
faced by a sequence of agents, all of whom face an individual choice on their own
course of action. Every day new patients perceive their symptoms and seek diag-
noses and treatments from medical providers. Other applications that correspond
to this setting:

• A recording label faces a sequence of new artists, decides what kinds of
investments, and gives them advice from various departments with respect to
sound, publicity, etc. Once the investment in the band is made it is hard to
constraint the artistic choices it makes.

• A venture capital firm faces a sequence of entrepreneurs it is investing in, and
the various partners in the firm might each offer advice various choices facing
the startup (hiring, go to market strategy, etc).

Scenarios such as these that motivate optimal advice elicitation are naturally cast
as repeated games with many experts and a sequence of subjects who seek advice
before making a decision which only directly affects them. The informational
externalities resulting from the decision do indirectly affect the knowledge that
will be available to future subjects. This combines the central aspects of bandits
with compliance awareness and elicitation of advice from experts to enable optimal
decisions without the advice being binding.

65
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6.1.1 Subjects’ Beliefs and Incentives

Previous work on incentive compatible bandits Kremer et al. [2014]; Mansour et al.
[2015] has shown that there are distributions of rewards where if all agents were
rational and this was common knowledge, some actions can never be explored
(assuming only information revelation and no transfers can be used by the mecha-
nism). Namely, actions that a priori have lower expected rewards than all others no
matter what is revealed by previous instances of other actions cannot be explored.
The logic behind this is that knowing no previous signal could persuade an agent to
take the action, an agent told to take the action knows that in expectation they can
do better. That literature has largely been focused on finding information revelation
strategies that are optimal, subject to the incentive constraints. A related line of
work has focused on providing payments as incentives for exploration [Frazier
et al., 2014] and the trade-off between the size of payments and the regret of the
bandit algorithm.

This chapter poses a novel and natural generalization of these settings that captures
the compliance aware bandit setting and the advice auctions as special cases. We
consider a sequence of T subjects (patients in the medical motivation), and a fixed
set of K advisers (experts) with access to signals about different patients’ expected
rewards r under different advice c and actual courses of action a. The bounded
regret algorithms with compliance awareness introduced in Chapter 3 can be seen
as addressing the special case where the experts’ signals are known a priori to be
uninformative, so K = 0 effectively, and thus only the experience can be learned
from. A situation where experts always report their signals truthfully and have no
knowledge over how to aggregate them beyond that possessed by the mechanism
is equivalent to a compliance-aware contextual bandit problem. When contexts
are constant across all time steps, the situation further reduces to a bandit problem
with compliance awareness. When the subject always follows the mechanism or a
cannot be observed, it reduces further to the standard multi-armed bandit problem.
Our one-subject mechanism in Chapter 5 is the special case for T = 1, thus there
is no role for exploration or learning from experience, since there are no past
decisions to leverage, or future decisions to help inform.

In contrast to the previous chapters’ motivation in the literature, in this chapter our
focus is first and foremost on constructing a practical mechanism. The setting is
natural, and no mechanisms (nor the setting itself) have been previously proposed
to the best of our knowledge. Even without being able to provide theoretical
guarantees as to the behaviour of such mechanisms, there

The most conceptually interesting possibility when moving to a sequence of T
subjects is that it can be ex-post incentive compatible to take the exploratory actions
for subjects, by linking them to suitably large transfers. By introducing randomness
into which subjects and which actions have these transfers attached, and into their
magnitude, it becomes possible to estimate the underlying causal effect of actions
on rewards. These estimates provide a viable alternative to reward sharing as a
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objective to incentive experts advice.

We build up to the main practical design by analyzing two simplified models that
illustrate the two key characteristics of our mechanism. The first is the need for
incentives to motivate exploratory choices. For this, the rewards from the choice
of action must be linked not just to the reward during the period in which the
action is taken, but to the full sequence of subsequent future rewards. Second, to
aggregate signals from expert advisors, we propose using an off-line contextual
bandit algorithm to evaluate the counter-factual (marginal) value of the signals each
expert provides. We present a mechanism that combines both ideas, and explore
some of its limitations.

6.2 Model

The game occurs over T steps. At each step:

1. A new subject t arrives and each i of K experts receives a signal st,i for that
subject. The mechanism randomly allocates a contingent transfer payment of
~γt for each of the possible actions facing the subject.

2. Each expert i reports bt,i to the mechanism. After all reports are received, the
mechanism selects an expert i∗, gives them access to ~bt, and allows them to
advice an action ct.

3. The subject observes ct and ~bt, picks an action at, and receives a reward rt.

4. The mechanism provides feedback about st, ct, at, ~bt, and rt to experts.

At the end of the final period the mechanism makes payments pi to the experts.

6.3 A sequence of repeated one-shot-efficient mecha-
nisms is inefficient

A natural mechanism would be running the advice auction of chapter 5 repeatedly,
once for each subject. Allowing the experts to observe the advice, compliance
information and rewards, they could if they wished run algorithms such as those
in Chapter 3 to aid in forming their advice and valuations. Even when signal
structures satisfy the private values condition, this will not lead to efficient advice.
The repeated use of single-subject efficient mechanisms thus creates incentives for
a greedy policy, since the benefits of exploration do not accrue to the subject or
expert that explores. This is immediate from the definition of the single subject
efficient mechanism: it is the advice that maximizes the rewards for that period
given the signals. To illustrate this consider the following example:

Example 1 (Two Signals With Two Regimes). We consider 2 experts and 3 arms
with T sequential subjects. The first arm is a safe arm with no variance and a
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known reward of 1
2 . The other arms a priori have a lower expected value of 1

3 , but
conditional on both agents’ signals, one arm has an expected value of 2

3 and the
other of 0. Each agent receives a binary signal. The optimal arm is the parity
(XOR) of both agents signals.

In this example the greedy policy always plays the safe arm and has an expected
regret of

( 2
3 −

1
2

)
T relative to the optimal (over all signals) contextual policy

in hindsight. Note that the optimal policy with exploration only requires one
exploration step to identify the mapping to the best arms, thus the regret of the
mechanism choice relative to the optimal policy with exploration is

( 2
3 −

1
2

)
(T−

1)−
( 1

2 −
1
3

)
.

Note that the example satisfies a private valuation profile, since experts’ values are
unchanged by their signals, so their optimal choice and valuation is the same when
they have access to their signal as to the full vector.

Definition 10 (full disclosure). We say a decision elicitation mechanism has full
disclosure if all experts receive feedback about the value of ct, at, and rt in every
period.

Under full disclosure, a repeated version of the Chapter 5 advice auctions when
the valuations profiles in the single shot case support efficient equilibrium, when
applied to this chapters Example 1 has a Nash Equilibrium that results in the greedy
policy. Given that there is no winner’s curse due to the signal structure1, both agents
bid their valuations. If the winner of the auction does not choose the safe arm, and
instead explores in that period, she receives a lower payoff in expectation in that
period. In future periods their bid, and by symmetry and under full disclosure the
other agents’ bids, are higher, since they can now deduce the higher payoff arm,
and that is their new expected value. Thus given the second price mechanism their
payoffs are no higher in later periods. Exploration is not in equilibrium.

One possible attempt to fix this would be to only reveal the outcome to the winning
bidder, thus allowing them to use the informational advantage in future rounds’
payoffs; in other words, by not having full disclosure. This internalizes the benefits
of exploration, yet it prevents the other experts from learning in those rounds when
they do not win, severely limiting the situations in which the mechanism can be
efficient.

6.4 A Simple Bidding Mechanism with Exploration

To overcome the exploration limitation of the repeated one shot mechanism, a
mechanism must enable the decision making expert to exploit informational benefits
of exploration steps on the rewards of future periods. This naturally motivates a

1that is, the winner of the auction who bids her value without conditioning that value on having won the auction
(which implies having the highest signal) gets the same payoff as if they do condition on wining the auction.
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mechanism that generalizes the expert bidding mechanism, by providing the expert
with rewards proportional to all future periods when it wins the auction.

Mechanism 3 (Bidding for Ownership of Choice Mechanism (BOCM)). An expert
i is the owner at a given time period t if she has won the auction, or if she has
won the last auction that had a winner (if no bids in an auction meet the reserve
price, the owner remains unchanged). The payments of the first time period accrue
to the mechanism, as no expert is initially the owner. Denote by ot,i an indicator
variable that takes value 1 if the agent i was the owner of the choice at time t, and
0 otherwise. Further, let b̌t denote the second highest bid that was placed in round
t. The payment rule of this mechanism is

pi(~b) =
T

∑
t=1

{
αrt if ot,i = 1

0 otherwise
+

T

∑
t=1


−b̌t if ot,i = 0∧ o(t+1),i = 1

b̌t if ot,i = 1∧ o(t+1),i = 0

0 otherwise

The first part of the payments sums over the rewards for all periods during which
an agent owns the rights. The second part determines the payments when agent i
newly becomes the owner; they pay out the second highest bid of that period. When
another agent takes over from them as owner, they are paid the second highest bid
in that period. Note that the reserve price can be encoded in the owner’s bid in
this notation, since when it wins there is no change in ownership, and no further
payments are made. This linking of payments addresses the incentive problem
of the experts by internalizing the positive inter-temporal information externality
created by selecting actions that have not previously been selected. This, however,
creates a mis-alignment of incentives between the expert and the subjects, for the
same reasons as in Mansour et al. [2015].

6.5 Choice Incentive Lotteries; Using Transferable Util-
ity as a Source of Unbiased Variation

To provide subjects incentives to explore, payments can be made, as in Frazier et al.
[2014].

Mechanism 4 (Lottery for Exploratory Choice (LEC) Mechanism). At the start of
the game, before the first subject arrives, a vector Γ of payments is chosen. In each
time period t a new subject arrives, agents receive their signals~st and then send
their reports~bt. The contingent lottery payments of the subject γtt are announced.
A one-shot encoding of the reports is used as context in in a contextual bandit
algorithm to select an arm ct, which leads to a choice at being made and a reward
rt being observed.At the end of the last time period, for each expert i estimate the
loss that would be obtained by the contextual bandit algorithm without using that
expert’s report in its context; denote it E(~b−i, A).
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The payment rule for each expert i is as follows:

pi(~b) = α

(
T

∑
t=1

rt −E(~b−i, A)

)
Further, each subject t recieves their lottery payment Γt(at) based on the action at

the subject carried out.

The key observation is that by making Γ have payments that are sufficiently large in
magnitude, it can encourage exploration. Since the payments are completely exoge-
nous to the signals and preferences, they are an ideal instrumental variable, which
can be used to get unbiased estimates of the rewards of different underlying actions.
This avoids the problem of needing to force subjects to take the proposed action of
the mechanism while still providing a way of estimating the full counterfactual.

6.6 A Bid and Signal Mechanism Without Priors

The above signal-only mechanism can be potentially inefficient when there are
experts who know how to map the signals to actions, and thus can help the subjects
avoid some of the regret in the learning. More broadly, experts can have additional
information relative to the mechanism’s that helps them aggregate the signals better
but requires signals by other experts to be reported to them.

It is worth emphasizing the crucial role played by the unbiased nature of the
estimator in the reward function. Alternatively to the contextual bandit, when
exploration is not required or compliance not assured, the same randomness can be
inserted into the mechanism through a lottery, as sketched in the previous section.

Mechanism 5. [A Bid and Bandit Mechanism] Inputs: A contextual bandit algo-
rithm A and an unbiased offline evaluation algorithm E.

A lottery Γ for each action and each subject is drawn, the resulting payment rule
is announced. In each period t, all experts report signals ~st and bids~bt to the
mechanism, the mechanism displays the other experts’ reported signals for all
previous periods to the winner of the bidding, the winner selects the chosen action
ct, and this is displayed to the subject, who takes action at and receives reward rt.

At the end of the last time period, for each expert i, estimate the loss that would be
obtained by the contextual bandit algorithm without using that expert’s report in
its context; denote this by E(~b−i, A).

The payment for expert i rule is:
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pi(~b) =α
T

∑
t=1

rt −E

[
T

∑
1

r̂−i,t

]

+
T

∑
t=1

{
βrt, if ot,i = 1

0, otherwise

+
T

∑
t=1


−b̌t if ot,i = 0∧ o(t+1)

i = 1

b̌t if ot,i = 1∧ o(t+1),i = 0

0 otherwise

Where α and β are set ex-ante.

Further, each subject t receives their lottery payment Γt(at) based on the action at

the subject carried out.

The condition that must be satisfied to make the payments from the mechanism
smaller than the surplus it brings collectively to the subjects is α + β < 1

2 NT.

The above algorithm does not present experts with clear cut incentives for truthful-
ness. A expert can have an incentive to not reveal their signal truthfully and lose
out on that part of the reward if they can benefit more from being the owner at a
lower price. By withholding their signal, they can suppress the bids of other experts
who are thus at a disadvantage. This is a particular concern since the other experts
may be able to achieve higher rewards by aggregating signals more effectively.
Randomization over the set of signal reports that is displayed to an expert could
be used to obtain estimates of the (marginal) value of the experts reports. The
randomization could happen after the expert has submitted their report, and thus
the expert could be blinded to it.

Consider a setting where all experts’ signals are symmetric and perfect comple-
ments to each other; for example when the value of the reward depends on their
product. All signals are equally valuable in the counter-factual sense used to es-
tablish rewards. To the extent the second highest bidders value is close to the first,
there is almost no net expected value from being the owner. On the other hand, if a
bidder does not report her signal truthfully, the other bidders valuations for being
the owner are 0, and the misreporting bidder can appropriate the full value of the α

part of the rewards. Thus α < β is needed for incentive compatibility.

Note that the choice of lottery payments Γ is restricted to those which generate full
support so that the estimator of the signal rewards can be fully evaluated. If the
rewards are not i.i.d., the full support induced by the lottery must be maintained
throughout all time periods. Thus the mechanism is inefficient in so far as the
owner who knows the correct policy given signals a priori cannot fully implement
it, since the lottery induces extra variance. This suggests allowing the experts to
partially buy out most of the lottery, to reduce the inefficiency it induces when they
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already have the information required. It is not clear how to prove when there is an
efficient full revelation mechanism for the above mechanism, since the interaction
between the owners’ information about how to aggregate and learn over the signals
complicates the already tricky dynamic VCG analysis.

6.7 Conclusion

This section sketch an approach to a novel and natural setting that generalizes
advice auctions and compliance aware bandit problems. Using the algorithms and
mechanism proposed in previous chapters as building blocks alone is not sufficient,
as alignment of incentives across the periods of the game is not inherent to either
the repeated case without experts or the case with experts but no repetition. The
use of lotteries to as a way to provide agents with a incentive exploration, while
simultaneously providing a source of exogenous variation in what actions are
taken which allows the value of advice to be estimated. While plausibly practical,
several challenges remains before it incentive or efficiency properties can begin
to be characterized, even in the most stylized of situations. In particular, it is not
clear how to characterize the trade-off between the induced randomization from
the lottery and the efficiency of the advice, nor how the incentives from the two
interact.
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Chapter 7

Conclusion

We provide a summary of thesis and discuss future directions in which to extend
this work in in Section 7.1.

The first part of the thesis introduced compliance information into the bandit setting.
Compliance information reflects the choice actually taken by the subject, rather
than the algorithm’s recommendation. In many cases compliance information can
be used to accelerate learning. Further, for situations where the number of arms
is large relative to the number of time steps, and the subject’s non-compliance is
towards the higher reward arms, compliance awareness can make learning possible
in problems where otherwise it is not. However, naively incorporating compliance
information leads to algorithms with linear regret. The thesis presents hybrid
strategies that are the first algorithms that incorporate compliance information
while maintaining a worst-case guarantee.

The second part of the thesis studied the elicitation of information from self
interested experts for decision making. For the single decision case, which had
previously been analyzed in the decisions market literature, we introduce the
first mechanism for multiple experts with a good ex-post Nash equilibrium that
preserves freedom. It achieves incentive compatibility for the experts without
requiring randomized strategies with full support from the subject, as previous
mechanisms do. Further, entry into the mechanism has positive expectation for
both useful experts and subjects. We also introduced the first model for the repeated
case, which generalizes both one shot multi-expert elicitation and contextual bandit
models.

7.1 Future Work

7.1.1 More Practical Mechanisms In One Shot Setting

While many decision do repeat themselves with new subjects, including those that
motivate most papers in the one shot decision market literature , others are more
unique. The crucial problem is to estimate the counter-factual reward obtained had
a different action been taken. Some form of peer elicitation seems inevitable, but

73
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it is unclear how to combine this with the signal aggregation aspects of optimal
decision advice that are embodied by the bidding mechanism. Obtaining a sufficient
and necessary condition on the valuation profile and the mechanism for efficient
advice in the one shot setting also remains a tantalizing open problem.

7.1.2 Generalization

The final model explored in the thesis has the settings described in the previous
two chapters as special cases. The bandit model has a vast range of extensions
and special cases in which more specialized algorithms can have a substantial
advantage. It is interesting to consider the self-interested experts variations of those
settings and see if more specialized mechanisms can also do better. Obtaining a
model that reduces to the one shot or no-experts models special cases also seems
like a natural objective for future research.

Natural directions for further generalization beyond our final model are:

1. Settings with more supervision. Prediction markets and learning from expert
advice are tightly connected. Bandit algorithms and repeated advice elicitation
can be seen as two potentially complementary sources of information to aid
decisions. However, the two connections are quite different. It could be
valuable to extend feedback graphs and other notions that interpolate between
the bandit and full supervision settings to take into account incentivized
experts as in our model.

2. Incorporating general sources of information that are observed after the action
has been chosen by the algorithm. Compliance has a very specific structural
relation to the arms selected. It is interesting to explore what can be said
generically about what structure the information has to have to be potentially
useful to incorporate even when it arrives along with the reward.

3. Costly signal acquisition. It is natural to consider a situation in which experts’
signals are costly for the experts to acquire. How can the scale of the rewards
that are shared be optimally chosen?

4. Learning valuation functions from bid and signal data. Our mechanism in
chapter 5 faces a severe limitation in what signal structures support truthful-
ness when it does not know the value function of experts. Is it possible to
learn the value functions from previous bid and signal reports?
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