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ABSTRACT SMOTE is a classical oversampling method and aims to improve imbalanced classification
by creating synthetic minority class samples. Overgeneralization is a great challenge in SMOTE and its
improvements. Multiple variations of SMOTE are proposed against imbalances between classes and
overgeneralization. However, they still have the following issues: a) most methods depend on too many
parameters; b) most methods fail to detect suspicious noise effectively and modify them; c) interpolation of
almost all methods is susceptible to abnormal samples. To overcome the above issues, a new synthetic
minority oversampling technique based on adaptive local mean vectors and improved differential evolution
(SMOTE-LMVDE) is proposed. First, a new noise detection technique based on the defined adaptive local
mean vectors (NDALMV) is proposed to find suspicious noise. Second, an improved differential evolution
is proposed to modify and improve detected suspicious noise. Finally, a new interpolation based on the
defined adaptive local mean vectors is proposed to create synthetic minority class samples. Experiments
prove that the proposed method superior to 7 popular oversampling approaches on extensive data sets in the
training nearest neighbor classifier and the decision tree classifier.

INDEX TERMS Imbalanced learning; Imbalanced classification; Classification; Oversampling; Local
means; Differential evolution

I. INTRODUCTION

Imbalanced classification has been favored by scholars in
genetic engineering [1], text mining [2], image recognition
[3], financial fraud [4], etc. In these practical applications,
the number of negative cases is much more than that of
positive cases due to the highly skewed class distribution.
Negative and positive cases are regarded as the majority
and minority classes, respectively. Under such
circumstances, the minority class is more concerned, but it
is easy to be misclassified due to the limited number.

Imbalanced classification [5] has been intensively studied
and developed into cost-sensitive, algorithm-level and data-
level approaches. In terms of the cost-sensitive approach [6],
they generate the cost matrices by the imbalance ratio and
misclassification costs. Then, the cost matrices are used for
the imbalanced classification. The algorithm-level approach
[7] usually modifies the theoretical model or cost function
of the traditional classifiers. The algorithm-level approach
aims to make the traditional classifiers adapt to imbalanced
classification. The data-level approach [8] is the most
dominant because of the wrapping advantage, i.e., it is
independent of classifiers. Concretely, the data-level

approach includes oversampling techniques [9, 10],
undersampling techniques [11] and hybrid techniques [12].

Oversampling techniques improve the class distribution
of data by creating synthetic minority class samples. By
contrast, undersampling methods intend to remove
redundant majority class samples. Hybrid techniques, such
as S-SulfPred [12] and SSOMaj-SMOTE-SSOMin [13], are
developed and combine oversampling techniques with
undersampling techniques. Among oversampling
techniques, the Synthetic Minority Over-sampling
Technique (SMOTE) [5] is the most successful due to a lot
of admiration and extensive practice, such as gender
analysis [14], bioengineering [15], medical examination
[16], Fraud identification [17].

Numerous experiments and studies [5, 8] show that
overgeneralization is a great challenge in SMOTE and its
improvements. Overgeneralization usually refers to noise
generation in SMOTE-based methods [18, 19]. Synthetic
minority class samples may become noise and cross the
decision boundary due to interpolation among suspicious
noisy samples and (or) improper values of parameters,
leading to overgeneralization.
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Multiple variations of SMOTE are proposed to handle
imbalances between classes and overgeneralization.
Representative examples are change-direction
oversampling techniques and filtering-based oversampling
techniques. Change-direction oversampling techniques
overcome imbalances between classes and
overgeneralization by creating synthetic minority class
samples in high-density and (or) central regions. Safe-
Level-SMOTE [20], ADASYN [21], DBSMOTE [22],
MWMOTE [23], NI-MWMOTE [24], k-means SMOTE
[25], Adaptive-SMOTE [26] and RSMOTE [27] belong to
change-direction oversampling techniques. Filtering-based
techniques deal with imbalances between classes and
overgeneralization by employing noise detection
approaches. Employed noise detection approaches can find
and remove suspicious noise in filtering-based techniques.
SMOTE-ENN [28], SMOTE-WENN [29], SMOTE-IPF
[18], FRIPS-SMOTE [19] and SMOTE-NaN-DE [10] are
with the idea of filtering-based techniques. Despite their
effectiveness, they still have the following shortcomings:

(a) Most methods rely on too many parameters.
ADASYN, DBSMOTE, Adaptive-SMOTE, SMOTE-ENN,
SMOTE-WENN and FRIPS-SMOTE require 3 parameters.
SMOTE-IPF, MWMOTE, NI-MWMOTE, k-means
SMOTE and SMOTE-NaN-DE require 5 or more 5
parameters.

(b) Most methods fail to handle suspicious noise
effectively. Although change-direction methods hardly use
suspicious noise to generate synthetic samples, they fail to
detect and (or) modify suspicious noise from the original
and synthetic data. Filtering-based methods directly remove
found suspicious noise rather than modifying or improving
them, leading to information loss and distorting the real
data distribution.

(c) Almost all methods use the k nearest neighbor-based
interpolation to create synthetic minority class samples. As
the study [5, 8] found, the k nearest neighbor-based
interpolation heavily relies on parameter k and is
susceptible to abnormal samples (e.g. outliers, noise or
unsafe borderline samples). If one of the k nearest
neighbors is the abnormal sample, the interpolation based
on the selected abnormal will degrade.

To overcome the above issues of existing work while
handling imbalances between classes and
overgeneralization, a new synthetic minority oversampling
technique based on adaptive local mean vectors and
improved differential evolution (SMOTE-LMVDE) is
proposed. First, a new noise detection technique based on
the defined adaptive local mean vector (NDALMV) is
proposed to find suspicious noise. Second, an improved
differential evolution is proposed to modify and improve
detected suspicious noise. Finally, a new interpolation
based on the defined adaptive local mean vectors is
proposed to create safer synthetic minority class samples.
The main advantages of SMOTE-LMVDE are that a) it is

parameter-free; b) it can modify found suspicious noisy
samples rather than removing them; c) it can create safe
synthetic minority class samples, avoiding
overgeneralization. The chief contributions of this work are
highlighted as follows:
A new oversampling technique named SMOTE-

LMVDE is proposed. It can eliminate imbalances between
classes and avoid overgeneralization while overcoming the
shortcoming of the existing work.
A new concept, i.e., the parameter-free adaptive local

mean vector is proposed. The defined adaptive local mean
vectors help SMOTE-LMVDE detect suspicious noise and
generate synthetic samples.
A new noise detection technique (NDALMV) based on

the defined adaptive local mean vector is proposed to find
suspicious noise. Compared with existing noise detection
techniques, NDALMV is parameter-free and reduces the
bias towards the majority class.
An improved differential evolution is proposed.

Compared with related work [10, 30, 31], the proposed
improved differential evolution is parameter-free and
converges faster.
A new interpolation based on the defined adaptive

local mean vector is proposed to create synthetic minority
class samples. The proposed interpolation is parameter-free
and can reduce the error of synthetic minority class samples.
Empirical results with 7 oversampling methods, the

nearest neighbor classifier and the decision trees classifier
on numerous data sets are reported.

The rest is organized as follows. Section II reviews
related work and comparative methods in experiments.
Section III shows preliminaries. Section IV introduces the
proposed algorithm. Section V reports empirical results of
intensive experiments and Section VI summarizes our work.

II. RELATED WORK

SMOTE was proposed by Chawla et al. [5]. Up to now,
SMOTE has been favored in various practical applications
due to its great value. Kamarulzalis et al. [14] apply
SMOTE to gender analysis, in which J48 is used as the
classifier. Liu et al. [15] apply SMOTE-TL to cancer risk
prediction. Nakamura et al. [16] propose a novel SMOTE-
based method using codebooks obtained by the learning
vector quantization, and then apply the proposed SMOTE
in biomedical data. Recently, BSMAIRS is proposed by
Wang et al. [32]. BSMAIRS uses an oversampling method
to improve the air algorithm, aiming to improve the
classification of brain metastasis.

SMOTE is a wrapping algorithm that can train any
supervised classifier in theory. SMOTEBoost [33] improves
AdaBoost by employing SMOTE at each iteration of
Adaboost. KSMOTE [34] improves the cost function of the
support vector machine by combining SMOTE. In
SMOTECSELM [35], ELM is modified by SMOTE, which
improves ELM on imbalanced data.
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Recent empirical studies [18, 19] indicate that
overgeneralization is a great challenge in SMOTE and its
improvements. SMOTE and its improvements may create
synthetic minority class samples by the interpolation
between suspicious noise or (and) harmful borderline
samples. Hence, the generated synthetic minority class
sample may also be noise and cross the decision boundary,
resulting in overgeneralization. Additionally, inappropriate
parameters of SMOTE-based methods also tend to increase
the error of synthetic samples and the possibility of
overgeneralization [8]. Among multiple variations of
SMOTE, change-direction oversampling techniques and
filtering-based oversampling techniques can overcome the
imbalances between classes and overgeneralization at the
same time.

Change-direction oversampling techniques employ
heuristic models and statistical principles to create synthetic
samples of the minority class in high-density and (or)
central areas. Safe-Level-SMOTE is a classical change-
direction oversampling technique and proposed by
Bunkhumpornpat et al. [20]. A so-called safe level ratio is
defined by a distance-based rule and the parameter k in
Safe-Level-SMOTE. Then, Safe-Level-SMOTE uses the
safe level ratio to create safe synthetic samples and
compute the random differences between synthetic samples
and base samples. ADASYN [21] is an improvement of
Safe-Level-SMOTE. ADASYN employs k nearest
neighbors to calculate the adaptive weight for each minority
class sample. Samples that are hard to learn have higher
adaptive weights. Then, more synthetic samples are created
based on samples with higher adaptive weights.
DBSMOTE [22], MWMOTE [23], NI-MWMOTE [24] and
k-means SMOTE [25] are clustering-based change-
direction oversampling techniques. DBSMOTE proposes a
density-reachable graph by DBSCAN. Then, the shortest
path algorithm is used to find the paths between cores
points and minority class samples. Next, DBSMOTE
generates synthetic samples by employing found paths.
MWMOTE and NI-MWMOTE execute the agglomerative
hierarchical clustering on minority class samples. Then,
sampling weights based on the density factor and closeness
factor are used to create synthetic samples and improve the
minority class. k-means SMOTE performs k-means
clustering on imbalanced data. Then, synthetic samples are
generated based on the density of the filtered sub-cluster.
Additionally, Adaptive-SMOTE [26] and RSMOTE [27]
are the latest variants of change-direction oversampling
techniques. Adaptive-SMOTE designs inner subsets and
danger subsets by counting the neighbor’s number in the
majority and minority classes. Adaptive-SMOTE
strengthens the distribution of the original data by using
inner and danger subsets to create synthetic samples.
RSMOTE employs homogeneous and heterogeneous k-
nearest neighbors to compute density for each sample. Then,
k-means clustering is used to partition the minority class

into safe and borderline areas according to the density. Next,
RSMOTE performs SMOTE in safe areas. Nevertheless,
ADASYN, DBSMOTE and Adaptive-SMOTE depend on 3
parameters. MWMOTE, NI-MWMOTE, k-means SMOTE
require 5, 6 and 9 parameters, respectively. Besides, the
above methods fail to detect and (or) modify suspicious
noise from the original and synthetic data.

Filtering-based oversampling techniques design noise
filters, intending to detect and filter out suspicious noise.
SMOTE-ENN [28], SMOTE-WENN [29], SMOTE-IPF
[18], FRIPS-SMOTE [19] and SMOTE-NaN-DE [10] are
competitive instances with the filtering-based idea. The
edited nearest neighbor is employed in SMOTE-ENN and
SMOTE-WENN to find mislabeled samples regarded as
suspicious noise, in which SMOTE is executed to create
synthetic samples. An ensemble classifier by bagging
decision trees is employed in SMOTE-IPF to detect noise.
SMOTE-IPF executes the noise filter based on the
ensemble classifier k times. FRIPS-SMOTE calculates the
membership degree of noise for each sample by statistics
rough sets. After removing noise with a high membership
degree of noise, SMOTE is performed in FRIPS-SMOTE.
SMOTE-NaN-DE uses evolutionary algorithms to deal with
noise in SMOTE. SMOTE-ENN, SMOTE-WENN and
FRIPS-SMOTE rely on 3 parameters. SMOTE-IPF and
SMOTE-NaN-DE depend on 5 or more 5 parameters. Also,
most of them directly remove found suspicious noise rather
than modifying or improving them.

In summary, change-direction and filtering-based
oversampling techniques manage to combat imbalances
between classes and overgeneralization, but they still have
the following shortcomings: a) most methods require too
many parameters; b) most methods fail to detect suspicious
noise effectively and improve them; c) the k nearest
neighbor-based interpolation employed in most methods
heavily relies on the parameter k and is susceptible to
abnormal samples (e.g. outliers, noise or unsafe borderline
samples) [5, 8]. This paper proposes a new synthetic
minority oversampling technique based on adaptive local
mean vectors and improved differential evolution
(SMOTE-LMVDE), aiming to overcome the above issues
at the same time.

III. PRELIMINARIES

The Natural Neighbor (NaN) and Natural Neighbor
Eigenvalue [36] are introduced in this section, which
provides a theoretical basis for SMOTE-LMVDE.

A. NATURAL NEIGHBORS

The Natural Neighbor (NaN) [36] is a new technique of
neighbors with a Natural Neighbor Eigenvalue (NaNE).
The idea of the NaN comes from the understanding of the
community in the real world. If two peoples are true friends,
they should treat each other as a friend in a community.
When everyone has a friend, a harmonious society will be
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formed. For data objects, if two samples treat each other as
a neighbor, they will be friends. When every sample has at
least one friend, a Natural Stable Structure (NSS) will be
formed in data objects. The relationship of neighbors formed
in the NSS is called natural neighbors. The NSS is described
in formula (1):
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In formula (1), r is the search round and increased from 1
to λ, where λ is the Natural Neighbor Eigenvalue (NaNE).
In other words, when r=λ, each sample has a friend and the
NSS is formed in a given data set. The NaNE is defined in
Definition 1.

Definition 1. (Natural Neighbor Eigenvalue): The
Natural Neighbor Eigenvalue λ is equal to the search round
r, when the Natural Neighbor Stable Structure is formed.
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Based on Definition 1, NaN is defined as follows:
Definition 2. (Natural Neighbor): If sample xj is a natural

neighbor (NaN) of sample xi, sample xj is one of λ nearest
neighbors of sample xi and sample xi is one of λ nearest
neighbors of sample xj.
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Algorithm 1: Search for the NaN (NaN_Search)

Input: X (Input Data)
Output: λ (NaNE)
1: r=1, numr=0,  xiX, Nb(xi)=0, NNr(xi)= , RNN(xi)= , NaN(xi)= ;
2: Create a kd tree from data set X;
3: while numr numr-1 && r>1
4: for each sample xi in X, finding its r-th neighbor xj by using the created kd tree
5: NNr(xi)=NNr(xi) {xj};
6: Nb(xj)=Nb(xj)+1;
7: RNN(xj)=RNN(xj) {xi};
8: end for
9: Compute numr; % numr is the number of sample xiwith Nb(xi)==0
10 r=r+1;
11: end while
12: λ=r-1;
13: return λ;

The searching algorithm for NaNs and NaNE is
described in Algorithm 1 which returns λ. At Lines 2-8, the
r-neighbor of each sample is searched until the NSS is
formed. The stopping criteria of Algorithm 1 are that (1)
every sample is considered as a neighbor; (2) the number of
samples that are not considered as neighbors no longer
changes since noise (i.e., outliers) can affect Algorithm 1.
At Line 9, the value of num is calculated and num is the
number of sample xi with Nb(xi)==0. Nb(xi) is the number
of sample xi that is considered as the neighbor of other
samples. Hence, when num does not change at Line 3, the
NSS is formed and the iteration stops. After NSS is formed,
λ is calculated at Lines 12-13. In general, the time
complexity is O(NlogN) because kd tree [37] at Line 2 is
employed to search for neighbors. N is the number of
samples in X. For more details on NaNs, please refer to the
work [36]. Note that the Natural Neighbor Eigenvalue λ can
be used to overcome the choice of parameter k [36]. Hence,
we design an adaptive local mean vector based on the
Natural Neighbor Eigenvalue λ in Section IV.A.

IV. PROPOSED ALGORITHM
Ximb={x1, x2, ..., xN} is an imbalanced training set with Xmin
and Xmaj. N is the sample number in Ximb. xi={xi, 1, xi, 2, ..., xi,

D} is the ith sample in Ximbwith D attributes.  i is the class
label of sample xi.  i{ min,  maj}.  min and  maj are
the class label of minority and majority classes, respectively.
Xmin={x1, x2, ...,

minNx } is the set of minority class samples.
Nmin is the number of minority class samples.
Xmaj={ 1minNx , 2minNx , ..., xN} is the set of majority class
samples. Nmaj is the number of majority class samples.

The pseudo-code of Algorithm 2 and Fig. 1 provide an
overview of SMOTE-LMVDE. First, the Natural Neighbor
Eigenvalue λ is computed by Algorithm 1 at Line 2. Second,
a noise detection technique based on adaptive local mean
vectors (NDALMV) is proposed to detect suspicious noise,
as shown in Fig. 1 (a) and Line 3 of Algorithm 2. Third, an
improved differential evolution is proposed to modify and
optimize detected suspicious noise, as shown in Fig. 1 (b)
and Lines 4-11 of Algorithm 2. Finally, a new interpolation
based on the defined adaptive local mean vectors is
proposed to create synthetic minority class samples, as
shown in Fig. 1 (c) and Lines 12-22 of Algorithm 2.
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Algorithm 2: SMOTE-LMVDE
Input: Xmin, Xmaj Time complexityOutput: SyntheticSamples (The set of synthetic minority class samples)
1 Ximb=Xmin Xmaj; O(1)

% First, computing the Natural Neighbor Eigenvalue λ O(NlogN)
2 λ=NaN_Search(Ximb);

% Second, detecting noise by the proposed noise detection technique based on adaptive local mean vectors
3 [Noise, Normal]=NDALMV(Xmin, Xmaj, λ); O(N)

% Third, modifying and improving found suspicious noise by the proposed improve differential evolution
4 OptimizedSample=ImprovedDiffierentialEvolution(Noise, Normal, λ); O(Gmax×NlogN)

% Using OptimizedSample to update Xmin and Xmaj
5 for each xiOptimizedSample O(Nnoise)
6 if xiXmin O(Nnoise)
7 Xmin=Xmin {xi}; O(Nnoise)
8 else
9 Xmaj=Xmaj {xi}; O(Nnoise)
10 end
11 end

% Four, creating synthetic minority class samples by the proposed interpolation based on adaptive local mean vectors
12 for each xiXmin, computing the adaptive local mean vector u(xi,  min) by NNλ(xi) in Xmin; O(NminlogNmin)
13 for each xiXmin O(Nmin)
14  ; )/-( minminmaj NNNNum  O(Nmin×Num)
15 Base=xi; % xi is regarded as the base sample O(Nmin×Num)
16 while Num>0 O(Nmin×Num)
17 for d=1: D O(Nmin×Num)
18 Using formula (8) to create synthetic minority class sample New; O(Nmin×Num)
19 end for
20 SyntheticSamples=SyntheticSamples New, Num=Num-1; O(Nmin×Num)
21 end while
22 end for
23 return SyntheticSamples; O(1)

FIGURE 1. Visualizing the main process of SMOTE-LMVDE on synthetic data.

In the following, Section IV.A introduces the proposed
noise detection technique based on adaptive local mean
vectors. Section IV.B introduces the proposed improved
differential evolution. Section IV.C introduces the proposed
interpolation based on adaptive local mean vectors. The
time complexity and characteristics of SMOTE-LMVDE
are analyzed in Section IV.D.
A. NOISE DETECTION TECHNIQUE BASED ON
ADAPTIVE LOCAL MEAN VECTORS

The proposed noise detection technique (NDALMV) is
based on the defined adaptive local mean vector. The
defined adaptive local mean vector is inspired by the
Natural Neighbor Eigenvalue λ [36] (Algorithm 1), the

local mean vector and the k nearest neighbors. The adaptive
local mean vector is defined as follows:
Definition 3. (Adaptive Local Mean Vector): The

adaptive local mean vectors of sample xi are the local mean
vectors from different classes in λ nearest neighbors
NNλ(xi). For each class  j, the adaptive local mean vector
of sample xi is formulated as follows:
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|.| refers to the number. |{xt|xtNNλ(xi) &&  t== j}|
is the sample’s number of {xt|xtNNλ(xi) &&  t== j}.
 t is the class label of sample xt. u(xi, j) is the adaptive
local mean vector of xi in class  j. Next, the proposed
NDALMV uses Definition 4 to detect suspicious noise.
Definition 4. (Noise): The set of noise is denoted as

Noise. If sample xi belongs to Noise, sample xi has a
different class label from the nearest adaptive local mean
vector u(xi,  j), where  j{ min , maj}.

))(((
} ,{

jiiii ,,distminarg
maxminj




xuxNoisex

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FIGURE 2. Determining noise by the proposed NDALMV and assuming λ=5 on
synthetic data.

The function dist() returns the Euclidean distance
between two samples and the function argmin returns the
class label  j corresponding to the minimum value. Fig. 2
uses synthetic data to visualize the proposed NDALMV
based on Definition 4. In Fig. 2, circles and triangles
represent samples of minority and majority classes,
respectively. NNλ(A)={B, C, D, E, F}. By employing
Definition 3, Sample G and sample H are adaptive local

mean vectors of sample A for minority and majority classes,
respectively. Specifically, sample G is the adaptive local
mean vector based on minority class samples B and D.
Sample H is the adaptive local mean vector based on
majority class samples C, E and F. By employing
Definition 4, sample A is not noise because it is closer to
sample G that has the same class label as sample A.

Most existing work [5, 8, 27] uses k nearest neighbors to
determine noise with the majority voting. Take ENN [28]
as an example. If ENN with k=5 is adopted in Fig. 2,
sample A will be misjudged as a noisy sample because the
majority class receives more votes than the minority class.
Compared to existing work [5, 8, 27] with the majority
voting, the proposed NDALMV is parameter-free by
employing λ. Besides, it reduces the bias towards the
majority class because there is only one local mean vector
for a given sample in the majority class or the minority
class.

The pseudo-code of the proposed NDALMV is described
in Algorithm 3. At Lines 2-3, adaptive local mean vectors
for each sample are calculated. After that, noise is
determined by formula (5) at Lines 4-9. Please note that in
Algorithm 3, several points need to be highlighted.

(a) As the analysis of column “Time complexity” in
Algorithm 3, the time complexity of Algorithm 3 is O(N).

(b) Compared to existing noise detection techniques, the
proposed NDALMV in SMOTE-LMVDE is parameter-free
due to the Natural Neighbor Eigenvalue λ.

(c) Most existing noise detection techniques are based on
k nearest neighbors with the majority voting. Hence, they
are biased towards the majority class because of
|Xmaj|>|Xmin|. The proposed NDALMV in SMOTE-LMVDE
can reduce bias towards the majority class by employing the
adaptive local mean vector, since |u(xi, min)|==|u(xi, maj)|
for the sample xi to be tested.

Algorithm 3: Noise detection based on adaptive local mean vectors (NDALMV)
Input: Xmin (The set of minority class samples), Xmaj (The set of majority class samples), λ (Natural
neighbor eigenvalue) Time complexity
Output: Noise (The set of noise), Normal (The set of normal samples)
1 Ximb=Xmin Xmaj, Noise= , Normal = ; O(1)
2 for xiXimb; O(N)
3 Using formula (4) to calculate u(xi, maj) and u(xi, min); O(N)
4 if  i≠argmin(dist(xiu(xi, j))),  j{ maj,  min} % formula (5) and Defintion 4 O(N)
5 Noise =Noise {xi}； O(N)
6 else O(N)
7 Normal =Normal {xi}；
8 end O(N)
9 end
10 return Noise, Normal; O(1)

B. IMPROVED DIFFERENTIAL EVOLUTION
As analyzed in previous sections, most change-direction

and filtering-based oversampling techniques fail to improve
and modify detected suspicious noise. The differential
evolution [30] is a numerical optimization algorithm and
can optimize the attributes of given samples. However,
existing differential evolution algorithms [10, 30, 31] rely

on parameters. Besides, most of them optimize all vectors at
each iteration, which increases unnecessary time
consumption and leads to slow convergence. Hence, an
improved differential evolution is proposed to improve and
modify detected suspicious in SMOTE-LMVDE. The chief
ideas of the proposed improved differential evolution are
that a) suspicious noise is optimized by the random
difference between it and one of its λ nearest neighbors with
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the same class; b) if a suspicious noise is correctly
classified by its nearest neighbor from normal samples in
the optimization process, it will not be optimized at the next
iteration; c) when all suspicious noise is correctly classified
by its nearest neighbor from normal samples, the iteration
stops. The improved differential evolution contains the
initialization step, the mutation step and the selection step.

In the initialization step, each suspicious noisy sample
xi  Noise (the set of noise found by Algorithm 3) is
regarded as an optimized vector vi.

},... ,{  , ,1 ,1 gNggg noise
vvvV  (6)

Vg is the set of optimized vectors. vi, g is the ith optimized
vector at gth iteration, where i{1, 2, ..., Nnoise} and g{1,
2, ..., Gmax}. When g=1, vi, g=xi (i=1, 2, ..., Nnoise). Nnoise is the
number of detected suspicious noisy samples and Gmax is the
maximum number of iterations.

In the mutation step, vi, g is optimized by formula (7).

])[-][()1 0(][][ ,,, dd,randdd rgigigi xvvv  (7)

vi, g[d] and xr[d] is the dth attribute of vi, g and xr, where
d {1, 2, ..., D}. xr is one of NNλ(vi, g). NNλ(vi, g) is the λ
nearest neighbors searched on {xj|xj  Normal &&
 j== i}, where  j or  i is the class label of xj or vi, g.
Normal is the set of normal samples found by Algorithm 3.
The function rand(0, 1) returns a random number between 0
and 1.

The selection step is implied at Lines 12-14 of Algorithm
4. If the vector vi, g is classified correctly by its nearest
neighbor from normal, then vi, g will not be optimized at the
next iteration and OptmizedTag(vi,g)=True. Otherwise,
OptmizedTag(vi, g)=False.

The pseudo-code of the proposed improved differential
evolution is described in Algorithm 4. Lines 1-2 is the
initialization step, where each suspicious noisy sample
xi  Noise is regarded as an optimized vector vi and its
OptimizedTag is equal to False. Lines 3-11 is the mutation
step, where each optimized vector vi is improved and
modified by the random difference between it and one of its
λ nearest neighbors with the same class. Lines 12-14 are the
selection Step. If an optimized vector is classified correctly
by its nearest neighbor from Normal, then its OptimizedTag
is equal to True and will not be optimized at the next
iteration. When all optimized vectors are classified correctly
by their nearest neighbor from Normal, then the iteration
(Lines 4-17) stop. After that, Algorithm 4 outputs the set of
optimized noisy samples. Please note that in Algorithm 4,
several points need to be highlighted.

(a) Let the number of suspicious noisy samples and
normal samples be denoted as Nnoise and Nnormal, respectively.
As analyzed by Algorithm 3, the time complexity of the
improved differential evolution is
O(Gmax×Nnoise×NnormallogNnormal). Because Nnormal≈N and
Nnoise<<N in most cases, the time complexity of the
improved differential evolution is O(Gmax×NlogN).

(b) Compared to existing variations of the differential
evolution [10, 30, 31], the improved differential evolution
is parameter-free.

(c) Compared to existing variations of the differential
evolution [10, 30, 31], the improved differential evolution
can converge faster. The improved differential evolution
only optimizes suspicious noise misclassified by its nearest
neighbor from Normal (instead of all suspicious noise) at
each iteration, which save time.

Algorithm 4: Improved differential evolution (ImprovedDiffierentialEvolution)
Input: Noise (The set of noisy samples), Normal (The set of normal samples), λ (Natural neighbor
eigenvalue) Time complexity
Output: OptimizedSample (The set of optimized noisy samples)

% Intialization Step O(Nnoise)
1 ;by  formed is },... ,{ ,,2,1 NoisevvvV gNggg noise

 O(Nnoise)
2 ;)( , ,, FalseagOptimizedT giggi  vVv O(Nnoise)

% Mutation Step
3 g=1;
4 FalseagOptimizedT gi  )( while ,v O(Gmax)
5 for vi, gVg O(Gmax×Nnoise)
6 if OptimizedTag(vi, g)==False O(Gmax×Nnoise)
7 xr is a random sample of NNλ(vi, g) in {xj|xjNormal && j== i}; O(Gmax×Nnoise×NnormallogNnormal)
8 for d=1 to D O(Gmax×Nnoise)
9 ]);[-][()1 ,0(][][ ,,, ddranddd rgigigi xvvv  O(Gmax×Nnoise)

10 end
11 end

% Selection Step
12 if vi, g is classified correctly by its nearest neighbor from Normal O(Gmax×Nnoise×NnormallogNnormal)
13 ;)( , TrueagOptimizedT gi v O(Gmax×Nnoise)
14 end
15 end
16 g=g+1;
17 end
18 ;gVampleOptimizedS  O(1)
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C. INTERPOLATION BASED ON ADAPTIVE LOCAL MEAN
VECTORS

Most variations of SMOTE use the k nearest neighbor-
based interpolation to create synthetic minority class
samples. Nevertheless, the k nearest neighbor-based
interpolation heavily relies on the parameter k and is
susceptible to abnormal samples (e.g. outliers, noise or
unsafe borderline samples). In the proposed SMOTE-
LMVDE, the interpolation based on adaptive local mean
vectors is proposed to create synthetic samples without
parameters. The proposed interpolation is implied in
formula (8).

Dd
dd,randdd miniii

 2,..., 1, 
 ]),)[,(-][()1 0(][][


 xuxxNew (8)

In formula (8), New is a new synthetic minority class
sample based on the base sample xi. u(xi,  min) is the
adaptive local mean vector calculated by NNλ(xi) in the
minority class. New[d], xi[d] or u(xi,  min)[d] are the dth
attribute of New, xi and u(xi,  min). The pseudo-code of
the proposed interpolation is described in Lines 11-21 of
Algorithm 2. At Line 11, the adaptive local mean vector of
each minority class sample is calculated again because
imbalanced data is updated by modifying noise. At Line 13,
the variable Num is the average number of synthetic
samples for each minority class sample. Each minority class
sample is regarded as the base sample at Line 14. The
proposed interpolation uses formula (8) to create synthetic
minority class samples at Lines 15-21. Fig. 3 uses synthetic
data to visualize the proposed interpolation.

FIGURE 3. Illustrating the proposed interpolation on synthetic data and
assuming λ=5.

In Fig. 3, the base sample is sample A, where circles or
triangles are samples of minority or majority classes,
respectively. NNλ(A)={B, C, D, E, F} are searched in the
minority class. The adaptive local mean vector of sample A
from the minority class (i.e., u(A,  min)) is sample G.
Sample G is the local mean vector of samples B-E. Sample
G can alleviate the negative effect of unsafe borderline
samples B and D by the mean vector. The proposed

interpolation implied formula (8) will employ samples G
and A to create safer synthetic samples and alleviate the
effect of unsafe samples B and D.

If k nearest neighbor-based interpolation [5] is used to
create synthetic samples, unsafe samples B or D are likely
to be employed in the process of interpolation, which
increases the error of synthetic samples. Compared to the k
nearest neighbor-based interpolation, the proposed
interpolation is parameter-free and reduces the error of
synthetic samples.
D. TIME COMPLEXITY AND CHARACTERISTIC
ANALYSIS

As analyzed by Algorithm 2, the time complexity of
computing the Natural Neighbor Eigenvalue λ (Line 2), the
proposed noise detection (Line 3), the improved differential
evolution (Lines 4-11) and the proposed interpolation
(Lines 12-23) are O(NlogN), O(N), O(Gmax×NlogN) and
O(Nmin×Num)+O(NminlogNmin). Because of Num and
Nmin<<N, the time complexity of SMOTE-LMVDE is
O(Gmax×NlogN). The main characteristics of SMOTE-
LMVDE need to be emphasized.

(a) SMOTE-LMVDE is without parameters because the
process of the noise detection, the improved differential
evolution and the proposed interpolation is parameter-free.

(b) SMOTE-LMVDE can modify found suspicious noisy
samples by the proposed improved differential evolution, as
shown in Figs. 1, 4 and 5.

(c) SMOTE-LMVDE can create safer synthetic minority
class samples by the interpolation based on adaptive local
mean vectors, which reduces the effect of unsafe samples (as
shown in Figs. 1, 4 and 5).

V. EXPERIMENTS

A Server with Intel(R) Core(TM) i5-1035G4 CPU, 16G
memory and 64-bit Windows 10 operating system is used
for experiments. Matlab 2021 is used for coding.
A. EXPERIMENTAL DATA SETS

To validate the effectiveness of SMOTE-LMVDE,
extensive real data sets are adopted from UCI Machine
Learning Repository (http:// archive. ics. uci. edu/ ml/ index.
php). Table 1 describes experimental adopted real data sets.
#Minority, #Majority, #Attribute and IR represent the
number of samples in the minority class, the number of
samples in the majority class, the number of attributes and
the imbalanced ratio, respectively. The imbalanced ratio is
equal to #Majority divided by #Minority. On each data set,
the class with the least number of samples is considered the
minority class, while others are regarded as the majority
class. For some data sets (Sonar, Australian Credit Approval,
Wilt and Heart), the minority class samples are removed
randomly in order to obtain a higher imbalance ratio.
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TABLE I
EXPERIMENTAL REAL DATA SETS

Data sets #Minority #Majority #Attribute IR Application Areas

Spambase 1428 2253 57 1.6 Computer
Sonar 22 111 60 5.0 Physical

Australian Credit Approval 77 383 14 5.0 Finance
Vertebral Column 100 210 7 2.1 Biology

Wilt 85 4265 5 50.0 Life
Sani Z-Alizadeh 87 216 55 2.5 Life

USPS 708 8590 256 12.1 Image
Heart 30 150 13 5.0 Medical Science

Vehicle 199 647 18 3.3 Physical
Cardiotocography 176 1950 22 11.1 Medical Science

Abalone 287 2870 8 10.0 Life
Isolet5 59 1500 617 25.4 Life

Biodegradation 356 699 41 2.0 Biology
Pima Indians Diabetes 206 408 8 2.0 Medical Science

German 249 551 24 2.2 Finance

Cervical Cancer 42 645 35 15.4 Medical Science

The stratified k-fold cross-validation with k=5 is adopted
to divide each real data set into the training set and the test
set. All experiments are repeated 5 times due to the
stratified k-fold cross-validation with k=5.
B. EVALUATION METRICS OF IMBALANCED
CLASSIFICATION

Imbalanced classification, the minority and majority
classes are regarded as positive and negative cases,
respectively. F-measure and G-mean are common
evaluation metrics for imbalanced classification in existing
work [5, 8]. F-measure is a combination of Precision and
Recall. Precision and recall can evaluate the classification
accuracy of positive cases. Hence, if a given classifier
achieves a higher F-measure, then the classifier can predict
positive cases more accurately. Formula (7)-(9) introduces
F-measure.

PrecisionRecall
PrecisionRecallF-measure




 2

)1(

 (9)

FPTP
TPPrecision


 (10)

FNTP
TPRecall


 (11)

β=1 in formula (9). TP (True Postive), FP (False Positive)
and FN (False Negative) are from the confusion matrix for
binary classification. G-mean is fomulated by weighing
Specificty and Recall. Formulas (12) and (13) indicates G-
mean.

SpecifitycallReG-mean  (12)

TNFP
TNSpecifity


 (13)

Specificity can evaluate the classification accuracy of
negative cases, while Recall can evaluate the classification
accuracy of positive cases. A higher G-mean indicates that
a given classifier can predict positive and negative cases

more accurately. Hence, G-mean can evaluate the overall
classification performance in the imbalanced binary
classification.
C. COMPARATIVE OVERSAMPLING TECHNIQUES

TABLE II
COMPARATIVE OVERSAMPLING TECHNIQUES

ID Comparison methods Parameters
1 SMOTE k=5, N=2
2 Safe-Level-SMOTE k=5, N=2

3 MWMOTE k1=5, k2{5, 10, 20}, k3 = |Smin|/2, Cp
= 3, Cf(th)=5, CMAX = 2

4 k-means SMOTE k{2, 4, 20, 50, 100}, knn=5, irt=1,
de=the number of features, N=2

5 Adaptive-SMOTE k=5, C=5, N=2
6 RSMOTE k=5, N=2

7 SMOTE-IPF The number of iteration=3, the number of
partitions=5, k=5 in SMOTE, N=2

The proposed SMOTE-LMVDE aims to overcome
imbalances between classes and overgeneralization. Hence,
related oversampling techniques with the above objective
are used for comparison and described in Table 2. SMOTE
is a classical oversampling method. Safe-Level-SMOTE,
MWMOTE, k-means SMOTE, Adaptive-SMOTE and
RSMOTE are change-direction improvements of SMOTE.
SMOTE-IPF is a competitive filtering-based improvement
of SMOTE. Their algorithmic ideas have been introduced
in Section 1 and Section 2. Parameters of comparative
oversampling technique are set as their suggestions.

Additionally, the nearest neighbor classifier and the
decision tree classifier (classification and regression tree,
CART) [38] are used as the trained classifiers because they
are popular in a large number of practical applications [39,
40] and are often used to evaluate the performance of
existing oversampling methods.
D. VALIDATING COMPARATIVE METHODS ON
SYNTHETIC DATA

Figs. 4 and 5 visualize the results that comparative
oversampling methods are performed on synthetic data.
Figs. 4 (a) and 5 (a) show the distribution of synthetic
imbalanced data with noise, minority class samples,
majority class samples. Note that noise is usually located in

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3187699

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JunnanLi: Preparation of Papers for IEEE Access

VOLUME XX, 2022 9

overlappings and has a different class label from samples
around it in Figs. 4 and 5.

FIGURE 4. Comparative oversampling methods are performed on synthetic data one.

FIGURE 5. Comparative oversampling methods are performed on synthetic data two.

In Figs. 4 and 5, MWMOTE, k-means SMOTE and
Adaptive-SMOTE creates many unsafe synthetic samples
close to the class boundary, which complicates the decision
boundary (especially in Fig. 4). Besides, k-means SMOTE
and Adaptive-SMOTE fail to handle noise in the original
and synthetic data. Although MWMOTE can detect and
remove a few noises from the minority class, it hardly
handles noise from majority class and synthetic data.

In Figs. 4-5 (b) and (f), Safe-Level-SMOTE and
RSMOTE create more synthetic samples in central areas.
Nevertheless, they also can not deal with noise from the
original data. Besides, the k nearest neighbor-based
interpolation in Safe-Level-SMOTE and RSMOTE lead to
noise generation in Fig. 4 (b) and (f). Additionally,
SMOTE-IPF removes a large number of suspicious noise

instead of modifying them, leading to the loss of
information and the destruction of the class boundary in
Figs. 4 (g) and 5 (g).

In Figs. 4 (h) and 5 (h), compared to others, the proposed
SMOTE-LMVDE can effectively detect suspicious noise
and optimize them, which improves the distribution and the
class boundary of imbalanced data. Besides, the
interpolation based on adaptive local mean vectors can
create safer synthetic minority class samples, which reduces
the error of synthetic samples and the possibility of
overgeneralization.

In general, Figs. 4 and 5 prove that SMOTE-LMVDE,
compared to others, can overcome imbalances between
classes and overgeneralization more effectively by creating
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safer synthetic samples and improving detected suspicious
noise.
E. VALIDATING COMPARATIVE METHODS ON
SYNTHETIC REAL DATA SETS

The proposed SMOTE-LMVDE is compared with the
comparative oversampling technique in training the nearest
neighbor classifier and CART classifier. Table 3-6 shows
the average F-measure and G-mean of test classifiers

improved by comparative methods. The highest value in
each row of Tables 3-6 is bold.

SMOTE-LMVDE achieves the highest F-measure in 10
of 16 data sets (Table 3), the highest G-mean in 10 of 16
data sets (Table 4), the highest F-measure in 10 of 16 data
sets (Table 5) and the highest G-mean in 8 of 16 data sets
(Table 6). This result shows that SMOTE-LMVDE is better
than 7 comparative methods on most imbalanced data sets
in improving the nearest neighbor classifier and CART
classifier.

TABLE III
AVERAGE F-MEASURE OF THE NEAREST NEIGHBOR CLASSIFIER IMPROVED BY COMPARATIVE METHODS (%)

Data sets SMOTE Safe-Level-SMOTE MWMOTE k-means SMOTE Adaptive-SMOTE RSMOTE SMOTE-IPF SMOTE-LMVDE

Spambase 77.17 77.94 79.12 77.97 79.03 78.19 78.87 79.51
Sonar 63.32 65.61 62.77 63.00 62.97 65.27 60.97 65.97

Australian Credit Approval 36.96 24.39 31.33 26.51 26.51 24.39 21.43 37.25
Vertebral Column 71.83 71.01 72.71 70.49 66.28 71.53 75.28 76.94

Wilt 78.94 76.21 78.55 77.95 81.33 80.32 80.93 81.55
Sani Z-Alizadeh 35.14 36.06 43.54 36.67 38.36 35.88 39.41 39.64

USPS 95.12 96.75 96.75 96.75 96.77 96.43 96.75 97.09
Heart 33.33 31.11 46.15 39.13 31.11 37.50 45.12 40.00

Vehicle 82.76 84.34 82.76 83.33 83.33 83.33 83.72 83.11
Cardiotocography 83.58 84.85 82.35 84.85 83.58 83.58 84.48 86.57

Abalone 45.40 44.14 44.04 46.32 44.28 47.14 52.37 45.31
Isolet5 77.50 79.34 76.89 76.05 73.30 78.36 77.31 82.82

Biodegradation 71.10 72.47 72.28 71.79 70.98 71.47 71.34 73.03
Pima Indians Diabetes 59.77 59.47 60.09 59.90 60.97 60.11 60.32 62.32

German 45.65 42.86 46.74 44.37 42.07 44.10 47.38 45.42
Cervical Cancer 26.67 25.00 28.57 25.00 25.00 23.53 34.78 30.14

Average 61.51 60.72 62.79 61.26 60.37 61.32 63.15 64.17
Mean Rank 3.53 3.81 4.63 3.97 3.69 3.97 5.41 7.00

Wilcoxon signed-rank test + + = + + + = N/A

TABLE IV
AVERAGE G-MEAN OF THE NEAREST NEIGHBOR CLASSIFIER IMPROVED BY COMPARATIVE METHODS (%)

Data sets SMOTE Safe-Level-SMOTE MWMOTE k-means SMOTE Adaptive-SMOTE RSMOTE SMOTE-IPF SMOTE-LMVDE

Spambase 81.26 81.91 82.90 81.97 81.94 82.16 82.74 82.95
Sonar 64.06 65.28 65.89 65.76 65.92 66.74 64.19 66.92

Australian Credit Approval 45.38 35.59 41.71 37.52 37.52 35.59 32.80 48.02
Vertebral Column 80.22 79.08 81.18 79.55 75.86 80.37 82.71 84.29

Wilt 85.05 82.31 86.61 82.35 86.46 85.65 85.70 85.31
Sani Z-Alizadeh 49.29 50.85 55.96 51.12 53.13 50.79 53.04 52.46

USPS 98.76 98.39 98.39 98.39 98.73 98.70 98.39 99.37
Heart 41.56 40.96 52.09 48.67 40.96 45.88 55.46 53.14

Vehicle 90.64 90.45 90.64 90.08 90.08 90.08 91.02 90.41
Cardiotocography 91.15 91.27 91.04 91.27 91.15 91.15 91.27 92.95

Abalone 59.62 57.18 57.05 58.90 57.30 60.43 58.98 62.98
Isolet5 87.86 89.77 87.09 81.94 84.38 87.91 89.41 94.80

Biodegradation 80.01 80.43 81.15 80.01 79.44 79.78 79.99 81.48
Pima Indians Diabetes 66.67 66.88 66.72 66.90 68.04 67.26 68.07 70.35

German 58.01 56.18 57.75 57.28 55.47 57.14 59.87 58.66
Cervical Cancer 45.83 44.92 45.97 45.92 43.92 44.82 54.12 48.98

Average 70.33 69.47 71.38 69.85 69.39 70.28 71.73 73.32
Mean Rank 3.88 3.22 5.00 3.72 3.44 4.03 5.59 7.13

Wilcoxon signed-rank test + + + + + + = N/A
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TABLE V
AVERAGE F-MEASURE OF THE CART CLASSIFIER IMPROVED BY COMPARATIVE METHODS (%)

Data sets SMOTE Safe-Level-SMOTE MWMOTE k-means SMOTE Adaptive-SMOTE RSMOTE SMOTE-IPF SMOTE-LMVDE

Spambase 88.98 89.23 89.17 88.92 89.62 89.79 88.63 90.21
Sonar 61.69 64.87 63.50 59.14 58.00 64.13 58.04 65.71

Australian Credit Approval 68.85 70.88 60.46 63.74 65.97 70.73 69.10 71.18
Vertebral Column 72.25 76.93 75.55 67.44 75.22 75.91 77.53 77.81

Wilt 71.82 75.99 62.88 75.56 74.18 72.95 65.13 77.41
Sani Z-Alizadeh 63.02 58.99 65.63 65.00 60.23 64.58 69.88 71.57

USPS 75.20 75.90 72.55 73.46 74.05 74.95 77.83 78.25
Heart 65.46 65.74 54.61 61.32 62.39 60.49 68.15 66.11

Vehicle 83.53 80.91 82.97 82.97 84.16 82.78 83.59 83.99
Cardiotocography 99.18 98.92 99.11 98.62 98.92 99.21 98.75 99.58

Abalone 25.48 31.48 27.07 32.96 33.31 35.41 34.80 34.16
Isolet5 48.23 47.09 55.18 43.38 54.04 48.67 53.16 57.46

Biodegradation 72.19 74.09 77.63 72.22 77.30 75.40 76.58 76.48
Pima Indians Diabetes 63.43 59.76 64.70 65.39 61.65 63.11 66.38 65.63

German 51.26 55.89 46.61 49.51 52.56 49.65 52.42 56.04
Cervical Cancer 60.13 47.06 40.75 42.86 63.16 62.50 57.14 63.11

Average 66.92 67.11 64.90 65.16 67.80 68.14 68.57 70.92
Mean Rank 3.63 4.28 3.47 2.84 4.53 4.69 5.13 7.44

Wilcoxon signed-rank test + + + + + + = N/A

The row labeled “Average” indicates the average value
of all data sets. Observing the row labeled “Average” in
Table 3-6, SMOTE-LMVDE achieves the highest average
F-measure and G-mean of all data sets. The row labeled
“Mean Rank” indicates the mean rank of the Friedman test.
If a comparative method performs better, then it has a
higher mean rank. Take the spambase dataset as an example
in Table 3, the ranks of comparative methods are 1, 2, 7, 3,
6, 4, 5 and 8. The mean rank is the average value of ranks
for all data sets. Observing the row labeled “Mean Rank” in
Table 3-6, SMOTE-LMVDE achieves the highest mean
ranks. These results prove the overall superiority of
SMOTE-LMVDE in adapting to different data distributions.

The two-sided Wilcoxon signed-rank test with the default
5% significance level is used to analyze the significant
differences between SMOTE-LMVDE and comparative
methods. The row labeled “Wilcoxon signed-rank test”
indicates the results of the two-sided Wilcoxon signed-rank
test. The cell labeled “+” refers to that SMOTE-LMVDE is

significantly better than the comparative method of a given
column. The cell labeled “=” refers to that there is no
significant difference between the proposed algorithm and
the comparative method of a given column. Observing the
row labeled “Wilcoxon signed-rank test” in Table 3-6,
SMOTE-LMVDE is significantly better than most
comparative methods.

Additionally, SMOTE-LMVDE can not achieve the
highest performance on all data sets. The performance of
SMOTE-LMVDE is slightly lower than that of the
comparative methods in data sets, such as Sani Z-Alizadeh,
Heart, German and Cervical Cancer. Different
oversampling techniques have their own adaptive data
distribution. SMOTE-LMVDE is more suitable for data sets
with overlappings and noise. This is because SMOTE-
LMVDE, compared to others, can improve and modify
found suspicious noise while generating safer synthetic
samples.

TABLE VI
AVERAGE F-MEAN OF THE CART CLASSIFIER IMPROVED BY COMPARATIVE METHODS (%)

Data sets SMOTE Safe-Level-SMOTE MWMOTE k-means SMOTE Adaptive-SMOTE RSMOTE SMOTE-IPF SMOTE-LMVDE

Spambase 90.87 90.93 90.94 90.84 91.35 91.47 90.56 91.81
Sonar 72.54 74.04 65.50 68.50 70.28 74.05 72.89 73.56

Australian Credit Approval 87.69 86.81 81.97 90.41 90.13 86.52 85.81 90.91
Vertebral Column 78.36 81.96 81.05 74.58 82.77 81.76 84.73 80.98

Wilt 85.09 84.61 76.81 83.35 85.57 81.50 78.98 88.68

Sani Z-Alizadeh 70.65 66.98 72.55 72.02 67.93 71.00 76.01 77.02
USPS 87.52 85.70 87.38 85.57 86.97 87.84 88.34 87.57

Heart 67.67 68.55 59.18 64.88 65.12 64.18 70.48 65.61
Vehicle 90.41 87.47 89.88 89.92 90.30 89.70 90.66 90.45

Cardiotocography 98.97 99.17 99.01 98.85 99.33 99.19 99.32 99.41
Abalone 35.67 35.60 26.22 31.08 30.21 32.65 28.45 36.38

Isolet5 70.91 64.69 75.62 63.35 73.07 65.99 67.39 74.08
Biodegradation 79.12 80.70 83.19 78.84 82.96 81.27 82.53 83.44

Pima Indians Diabetes 71.04 67.90 72.03 72.76 69.49 70.85 73.51 71.12
German 63.12 66.93 58.98 61.30 64.06 61.71 64.14 64.06

Cervical Cancer 88.12 82.42 79.86 78.04 89.62 80.66 89.06 89.34

Average 77.36 76.53 75.01 75.27 77.45 76.27 77.68 79.03
Mean Rank 4.34 4.03 3.38 2.88 5.03 4.19 5.44 6.72

Wilcoxon signed-rank test + + + + + + = N/A
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F. VALIDATINg AVERAGE RUNNING TIME

The average running time of 5 executions of comparative
oversampling techniques is shown in Table 7. The results of
Table 7 also are analyzed by the mean rank of the Friedman
test in the column labeled “Mean Rank”. A faster method is
with a lower mean rank. On most data sets, the time
efficiency of SMOTE-LMVDE is better than MWMOTE

and SMOTE-IPF. This is because (a) the adopted
hierarchical clustering in MWMOTE is complex and time-
consuming (with the time complexity O(n2logn)); (b) the
adaptive noise filter in SMOTE-IPF is an iterative ensemble
algorithm and relatively time-consuming. In general, the
average running time of SMOTE-LMVDE is suitable for
the field of oversampling methods and acceptable.

TABLE VII
AVERAGE RUNNING TIME OF COMPARATIVE OVERSAMPLING TECHNQUES (SEC.)

Data sets SMOTE Safe-Level-SMOTE MWMOTE k-means SMOTE Adaptive-SMOTE RSMOTE SMOTE-IPF SMOTE-LMVDE
Spambase 0.60 0.84 23.37 0.97 0.96 0.91 4.06 2.85

Sonar 0.09 0.12 0.40 0.08 0.06 0.13 1.76 0.39
Australian Credit Approval 0.89 0.19 1.92 0.19 0.15 0.37 2.23 0.76

Vertebral Column 0.08 0.10 0.35 0.07 0.05 0.09 0.71 0.41
Wilt 0.08 0.10 0.50 0.11 0.07 0.14 0.78 0.66

Sani Z-Alizadeh 0.09 0.15 0.55 0.12 0.07 0.19 0.92 0.90
USPS 0.57 1.11 12.06 7.67 1.49 3.11 6.72 3.99

Heart 0.07 0.12 0.55 0.09 0.05 0.14 0.86 0.40
Vehicle 0.12 0.12 0.97 0.13 0.10 0.17 0.73 0.52

Cardiotocography 0.10 0.13 0.76 0.11 0.15 0.19 0.85 0.51
Abalone 0.09 0.31 27.51 0.12 0.52 0.25 1.93 1.56

Isolet5 0.10 0.13 0.58 0.61 0.10 0.34 2.40 1.05
Biodegradation 0.12 0.19 1.67 0.14 0.20 0.17 0.94 0.58

Pima Indians Diabetes 0.06 0.13 1.29 0.07 0.11 0.11 0.79 0.52
German 0.09 0.17 1.92 0.09 0.08 0.16 0.81 0.86

Cervical Cancer 0.05 0.11 0.28 0.09 0.01 0.10 0.69 1.56

Mean Rank 2.03 3.63 7.06 3.25 2.19 4.16 7.38 6.31

VI. CONCLUSIONS

Although SMOTE and its improvements can overcome
imbalances between classes, overgeneralization is a great
challenge in them. Recently, change-direction and filtering-
based oversampling SMOTE-based improvements are
proposed against overgeneralization. Yet, they still have the
following issues: a) most methods depend on too many
parameters; b) most methods fail to detect suspicious noise
effectively and modify them; c) interpolation of almost all
methods is susceptible to abnormal samples. To overcome
imbalances between classes and overgeneralization while
improving the above shortcomings of related work, a new
synthetic minority oversampling technique based on
adaptive local mean vectors and improved differential
evolution (SMOTE-LMVDE) is proposed. First, a new
noise detection technique based on the defined adaptive
local mean vectors (NDALMV) is proposed to find
suspicious noise. Second, a new improved differential
evolution is proposed to modify and improve detected
suspicious noise. Finally, a new interpolation based on the
defined adaptive local mean vectors is proposed to create
synthetic minority class samples. The main advantages of
SMOTE-LMVDE are (a) it is parameter-free; (b) it can
modify found suspicious noisy samples rather than
removing them; (c) it can create safe synthetic minority
class samples, avoiding overgeneralization. The time
complexity of SMOTE-LMVDE is O(Gmax×NlogN).

The main contributions are (a) the proposed SMOTE-
LMVDE; (b) the proposed noise detection technique based
on adaptive local mean vectors; (c) the improved

differential evolution; and (d) the proposed interpolation
based on adaptive local mean vectors.

Intensive experiments are performed on extensive real
data sets and two synthetic samples. Experiments prove that
(a) SMOTE-LMVDE can overcome imbalances between
classes and overgeneralization more effectively by creating
safer synthetic samples and improving detected suspicious
noise; (b) SMOTE-LMVDE outperforms comparative
oversampling technique in training nearest neighbor
classifier and CART on extensive data sets with the
relatively high imbalance ratio; (c) the average running
time of SMOTE-LMVDE is suitable for the field of
oversampling methods and acceptable.
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	98.39
	98.39
	98.39
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	98.70
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	0.37
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	0.11
	0.07
	0.14
	0.78
	0.66
	Sani Z-Alizadeh
	0.09
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	1.11
	12.06
	7.67
	1.49
	3.11
	6.72
	3.99
	Heart
	0.07
	0.12
	0.55
	0.09
	0.05
	0.14
	0.86
	0.40
	Vehicle
	0.12
	0.12
	0.97
	0.13
	0.10
	0.17
	0.73
	0.52
	Cardiotocography
	0.10
	0.13
	0.76
	0.11
	0.15
	0.19
	0.85
	0.51
	Abalone
	0.09
	0.31
	27.51
	0.12
	0.52
	0.25
	1.93
	1.56
	Isolet5
	0.10
	0.13
	0.58
	0.61
	0.10
	0.34
	2.40
	1.05
	Biodegradation
	0.12
	0.19
	1.67
	0.14
	0.20
	0.17
	0.94
	0.58
	Pima Indians Diabetes
	0.06
	0.13
	1.29
	0.07
	0.11
	0.11
	0.79
	0.52
	German
	0.09
	0.17
	1.92
	0.09
	0.08
	0.16
	0.81
	0.86
	Cervical Cancer
	0.05
	0.11
	0.28
	0.09
	0.01
	0.10
	0.69
	1.56
	Mean Rank
	2.03
	3.63
	7.06
	3.25
	2.19
	4.16
	7.38
	6.31

