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Abstract

This paper addresses the problem of sparsity pattern detection for unkrown
sparsen-dimensional signals observed throughnoisy, random linear measure-
ments. Sparsity pattern recovery arises in a number of settings including statistical
model selection, pattern detection, and image acquisition. The main results in this
paper are necessary and sufficient conditions for asymptotically-reliable sparsity
pattern recovery in terms of the dimensionsn andk as well as the signal-to-
noise ratio §NR) and the minimum-to-average ratidAR) of the nonzero entries

of the signal. We show that > 2klog(n — k)/(SNR - MAR) is necessary for

any algorithm to succeed, regardless of complexity; this matches a previous suffi-
cient condition for maximum likelihood estimation within a constant factor under
certain scalings of, SNR andMAR with n. We also show a sufficient condition

for a computationally-trivial thresholding algorithm that is larger than the previ-
ous expression by only a factor #f1 + SNR) and larger than the requirement for
lasso by only a factor of/MAR. This provides insight on the precise value and
limitations of convex programming-based algorithms.

1 Introduction

Sparse signal models have been used successfully in a variety of applications including wavelet-
based image processing and pattern recognition. Recent research has shown that certain naturally-
occurring neurological processes may exploit sparsity as well [1-3]. For example, there is now
evidence that the V1 visual cortex naturally generates a sparse representation of the visual data
relative to a certain Gabor-like basis. Due to the nonlinear nature of sparse signal models, developing
and analyzing algorithms for sparse signal processing has been a major research challenge.

This paper considers the problem of estimating sparse signals in the presence of noise. We are
specifically concerned with understanding the theoretical estimation limits and how far practical
algorithms are from those limits. In the context of visual cortex modeling, this analysis may help
us understand what visual features are resolvable from visual data. To keep the analysis general, we
consider the following abstract estimation problem: An unknown sparse sigeahodeled as an
n-dimensional real vector witk nonzero components. The locations of the nonzero components

is called thesparsity pattern We consider the problem of detecting the sparsity patternfoém
anm-dimensional measurement vecipe= Ax + d, whereA € R™*" is a known measurement
matrix andd € R™ is an additive noise vector with a known distribution. We are interested in
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| I finite snr | SNR — 00 |

Any algorithm must fail | m < —2—=klog(n — k) + k — 1 m<k
Theorem 1 (elementary)
Necessary and unknown (expressions above | m < 2klog(n — k) + k+1
sufficient for lasso and right are necessary) Wainwright [14]
Sufficient for m > SO o log(n — k) m > S-klog(n — k)
thresholding estimator (11 Theorem 2 from Theorem 2

Table 1: Summary of Results on Measurement Scaling for Relaparsity Recovery
(see body for definitions and technical limitations)

determining necessary and sufficient conditions on the ability to reliably detect the sparsity pattern
based on problem dimensions n andk, and signal and noise statistics.

Previous work. While optimal sparsity pattern detection is NP-hard [4], greedy heuristics (match-

ing pursuit [5] and its variants) and convex relaxations (basis pursuit [6], lasso [7], and others) have
been widely-used since at least the mid 1990s. While these algorithms worked well in practice,
until recently, little could be shown analytically about their performance. Some remarkable recent
results are sets of conditions that can guarantee exact sparsity recovery based on certain simple
“incoherence” conditions on the measurement matr{8—10].

These conditions and others have been exploited in developing the area of “compressed sensing,”
which considers large random matricéswith i.i.d. components [11-13]. The main theoretical
result are conditions that guarantee sparse detection with convex programming methods. The best
of these results is due to Wainwright [14], who shows that the scaling

m = 2klog(n — k) + k+ 1. 1)

is necessary and sufficient for lasso to detect the sparsity pattern whes Gaussian entries,
provided the SNR scales to infinity.

Preview. This paper presents new necessary and sufficient conditions, summarized in Table 1
along with Wainwright's lasso scaling (1). The parametéAR andSNR represent the minimum-
to-average and signal-to-noise ratio, respectively. The exact definitions and measurement model are
given below.

The necessary condition applies to all algorithms, regardless of complexity. Previous necessary con-
ditions had been based on information-theoretic analyses such as [15-17]. More recent publications
with necessary conditions include [18—21]. As described in Section 3, our new necessary condition
is stronger than previous bounds in certain important regimes.

The sufficient condition is derived for a computationally-trivial thresholding estimator. By com-
paring with the lasso scaling, we argue that main benefits of more sophisticated methods, such as
lasso, is not generally in the scaling with respecktandn but rather in the dependence on the
minimum-to-average ratio.

2 Problem Statement

Consider estimating k-sparse vectar € R™ through a vector of observations,
y= Az +d, (2

where A € R™*™ is a random matrix with i.i.dA(0,1/m) entries andl € R™ is i.i.d. unit-
variance Gaussian noise. Denote the sparsity pattern(pbsitions of nonzero entries) by the set
Tirue, Which is ak-element subset of the set of indic€k 2, ..., n}. Estimates of the sparsity

pattern will be denoted by with subscripts indicating the type of estimator. We seek conditions
under which there exists an estimator such that ;... with high probability.



In addition to the signal dimensions;, n and k, we will show that there are two variables that
dictate the ability to detect the sparsity pattern reliably: the signal-to-noise ratio (SNR), and what
we will call theminimum-to-average ratiMAR).

The SNR is defined by

_ E[|Az]?) _ E{|4a)?] -
E[[|d]]?] m

Since we are consideringas an unknown deterministic vector, the SNR can be further simplified

as follows: The entries ofl are i.i.d.\N'(0,1/m), so columnsy; € R™ anda; € R™ of A satisfy

Elaja;] = é;;. Therefore, the signal energy is given by

E[|Az|’] = Y Y Eldjaziz;] = Y wwidy = |zl

4,J € ltrue 4,J€ltrue
Substituting into the definition (3), the SNR is given by

SNR

1
SNR = — ||z||. (4)
m

The minimum-to-average ratio afis defined as
minjeltrue |.Tj |2 (5)
]2/

Since||z||?/k is the average of|z;|* | j € ILiue}, MAR € (0,1] with the upper limit occurring
when all the nonzero entries ofhave the same magnitude.

MAR =

One final value that will be important is tilinimum component SNRefined as
1
SNRpin = =—— min Ella;z;[|> = — mi 2. 6
min = FrE 0, llajz;|* = — ;oin. |51 (6)
The quantitySNR,,i, has a natural interpretation: The numeratain E||a;z;||?, is the signal
power due to the smallest nonzero component,afhile the denominatoE||d||?, is the total noise
power. The raticSNR,,;;, thus represents the contribution to the SNR from the smallest nonzero
component of the unknown vector Observe that (3) and (5) show

1
SNRpin = ESNR - MAR. 7
Normalizations. Other works use a variety of normalizations, e.g.: the entrie lodve variance
1/nin [13, 19]; the entries oft have unit variance and the variancedd a variables? in [14,17,
20,21]; and our scaling ol and a noise variance of are used in [22]. This necessitates great care
in comparing results.

To facilitate the comparison we have expressed all our results in tersiSRAfMAR andSNR,,i,,
as defined above. All of these quantities dimmensionlessn that if eitherA andd or = andd are
scaled together, these ratios will not change. Thus, the results can be applisdstaling ofA, d
andzx, provided that the quantitieeNR, MAR andSNR,,;,, are computed appropriately.

3 Necessary Condition for Sparsity Recovery

We first consider sparsity recovery without being concerned with computational complexity of the
estimation algorithm. Since the vectoe R" is k-sparse, the vectotx belongs to one of, = (Z)
subspaces spanned byof then columns ofA. Estimation of the sparsity pattern is the selection

of one of these subspaces, and since the nbisgGaussian, the probability of error is minimized

by choosing the subspace closest to the observed vgciidris results in the maximum likelihood
(ML) estimate.

Mathematically, the ML estimator can be described as follows. Given a sibSef1, 2, ..., n},
let P;y denote the orthogonal projection of the vecgasnto the subspace spanned by the vectors
{a; | j € J}. The ML estimate of the sparsity pattern is

IvL, = argmaXHPJy||2,
J: |J|=k



where|.J| denotes the cardinality of. That is, the ML estimate is the set bindices such that the
subspace spanned by the corresponding columprsamitain the maximum signal energypf

Since the number of subspadegrows exponentially im andk, an exhaustive search is, in general,
computationally infeasible. However, the performance of ML estimation provides a lower bound on
the number of measurements needed by any algorithm that cannot exploit a priori information on
other than it being-sparse.

ML estimation for sparsity recovery was first examined in [17]. There, it was shown that there exists
a constant > 0 such that the condition

log(n — k) n B klog(n — k) n
m > Cmax{m, klog (E)} = Cmax{m, klog (E) (8)

is sufficientfor ML to asymptotically reliably recover the sparsity pattern. Note that the equality be-
tween the two expressions in (8) is a consequence of (7). Our first theorem provides a corresponding
necessary condition.

Theorem 1 Letk = k(n), m = m(n), SNR = SNR(n) and MAR = MAR(n) be deterministic
sequences in such thatim,,_, k(n) = co and
2—96 2—96
1 -k+k-1= ———
SNRin og(n )+ MAR - SNR
for somed > 0. Then even the ML estimator asymptotically cannot detect the sparsity pattern, i.e.,

klogln —k)+k—1 9)

m(n) <

lim Pr (fML - Im) — 0.

n—oo

Proof sketchiThe basic idea in the proof is to consider an “incorrect” subspace formed by removing
one of thek correct vectors with the least energy, and adding one of thé incorrect vectors with

largest energy. The change in energy can be estimated using tail distributions of chi-squared random
variables. A complete proof appears in [23].

The theorem provides a simple lower bound on the minimum number of measurements required to
recover the sparsity pattern in termskgfn and the minimum component SNBNR,,;,,. Note that
the equivalence between the two expressions in (9) is due to (7).

Remarks.

1. The theorem strengthens an earlier necessary condition in [18] which showed that there exists
aC > 0 such that o
m = SNRklog(n k)
is necessary for asymptotic reliable recovery. Theorem 1 strengthens the result to reflect the
dependence on MAR and make the constant explicit.
2. The theorem applies for arky(n) such thatlim,,_.., k(n) = oo, including both cases with
k = o(n) andk = ©(n). In particular, under linear sparsity & an for some constant), the

theorem shows that
20

"' = MAR - SNR
measurements are necessary for sparsity recovery. Similarly/+ifis bounded above by a
constant, then sparsity recovery will certainly fail unless

k= O (SNR-MAR-n/logn).

nlogn

In particular, wherSNR - MAR is bounded, the sparsity ratig'n must approach zero.
3. Inthe case whergNR - MAR and the sparsity ratib/n are both constant, the sufficient condi-
tion (8) reduces to
m = (C/(SNR - MAR))k log(n — k),
which matches the necessary condition in (9) within a constant factor.
4. Inthe case ofIAR - SNR < 1, the bound (9) improves upon the necessary condition of [14] for
the asymptotic success of lasso by the fa¢i4R - SNR) 1.
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Figure 1: Simulated success probability of ML detectionfee 20 and many values df, m, SNR,
andMAR. Each subfigure gives simulation results foe {1,2,...,5} andm € {1,2,...,40}
for one(SNR, MAR) pair. Each subfigure heading givieNR, MAR). Each point represents at least
500 independent trials. Overlaid on the color-intensity plots is a black curve representing (9).
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5. The bound (9) can be compared against information-theoretic bounds such as those in [15-17,
20, 21]. For example, a simple capacity argument in [15] shows that

> 2 10g2 (k) (10)
log, (1 4+ SNR)
is necessary. When the sparsity ratin and SNR are both fixedp can satisfy (10) while
growing only linearly withk. In contrast, Theorem 1 shows that with sparsity ratio &N& -

MAR fixed,m = Q(klog(n—k)) is necessary for reliable sparsity recovery. That s, the number
of measurements must grauperlinearlyin & in the linear sparsity regime with bounded SNR.
In the sublinear regime whefe= o(n), the capacity-based bound (10) may be stronger than
(9) depending on the scaling 8NR, MAR and other terms.

6. Results more similar to Theorem 1—based on direct analyses of error events rather than
information-theoretic arguments—appeared in [18, 19]. The previous results showed that with
fixed SNR as defined here, sparsity recovery with= ©(k) must fail. The more refined
analysis in this paper gives the additionat(n — k) factor and the precise dependence on
MAR - SNR.

7. Theorem 1 is not contradicted by the relevant sufficient condition of [20, 21]. That sufficient
condition holds for scaling that gives linear sparsity amsR - SNR = Q(y/nlogn). For
MAR - SNR = /nlog n, Theorem 1 shows that fewer than= 2./k log ¥ measurements will
cause ML decoding to fail, while [21, Thm. 3.1] shows that a typicality-based decoder will
succeed withn = ©(k) measurements.

8. The necessary condition (9) shows a dependence on the minimum-to-averagé Raitistead
of just the average power throughR. Thus, the bound shows the negative effects of relatively
small components. Note that [17, Thm. 2] appears to have dependence on the minimum power
as well, but is actually only proven for the cagar = 1.

Numerical validation. Computational confirmation of Theorem 1 is technically impossible, and
even qualitative support is hard to obtain because of the high complexity of ML detection. Never-
theless, we may obtain some evidence through Monte Carlo simulation.

Fig. 1 shows the probability of success of ML detectionsior= 20 ask, m, SNR, andMAR are

varied. Signals witt(MAR < 1 are created by having one small nonzero componentand equal,

larger nonzero components. Taking any one column of one subpanel from bottom to top shows that
asm is increased, there is a transition from ML failing to ML succeeding. One can see that (9)
follows the failure-success transition qualitatively. In particular, the empirical dependersi¢ron
andMAR approximately follows (9). Empirically, for the (small) valueof= 20, it seems that with

MAR - SNR held fixed, sparsity recovery becomes easie3NR increases (antlAR decreases).



4 Sufficient Condition for Thresholding

Consider the following simple estimator. As before,dgtbe thejth column of the random matrix
A. Define thethresholding estimatas

Ithresh = {] : |a/_ljy|2 > M} s (11)
wherey > 0 represents a threshold level. This algorithm simply correlates the observed signal
y with all the frame vectors;; and selects the indiceswhere the correlation energy exceeds a
certain levelu. It is significantly simpler than both lasso and matching pursuit and is not meant to
be proposed as a competitive alternative. Rather, we consider thresholding simply to illustrate what
precise benefits lasso and more sophisticated methods bring.

Sparsity pattern recovery by thresholding was studied in [24], which proves a sufficient condition
when there is no noise. The following theorem improves and generalizes the result to the noisy case.

Theorem 2 Letk = k(n), m = m(n), SNR = SNR(n) and MAR = MAR(n) be deterministic
sequences in such thaim,, .., K = co and
8(1+0)(1 + SNR)
MAR - SNR

for somed > 0. Then, there exists a sequence of threshold levels.(n), such that thresholding
asymptotically detects the sparsity pattern, i.e.,

lim Pr (jthresh - Itrue) =1.

n—oo

klog(n — k) (12)

Proof sketchiUsing tail distributions of chi-squared random variables, it is shown that the minimum
value for the correlatiorpa;-y|2 whenj € I, iS greater than the maximum correlation when
j & Iiue. A complete proof appears in [23].

Remarks.

1. Comparing (9) and (12), we see that thresholding requires a factor of atdiost SNR)
more measurements than ML estimation. Thus, for a fixed SNR, the optimal scaling not only
does not require ML estimation, it does not even require lasso or matching pursuit—it can be
achieved with a remarkably simply method.

2. Nevertheless, the gap between thresholding and Ml(lof SNR) measurements can be large.
This is most apparentin the regime where vk — co. For ML estimation, the lower bound
on the number of measurements required by ML decreages toasSNR — oco.! In contrast,
with thresholding, increasing the SNR has diminishing returnSN& — oo, the bound on
the number of measurements in (12) approaches

8
m > mklog(n — k). (13)

Thus, even withlSNR — oo, the minimum number of measurements is not improved from
m = Q(klog(n — k)).
This diminishing returns for improved SNR exhibited by thresholding is also a problem
for more sophisticated methods such as lasso. For example, as discussed earlier, the analysis
of [14] shows that wheSBNR - MAR — oo, lasso requires

m > 2klog(n — k) +k+1 (14)

for reliable recovery. Therefore, like thresholding, lasso does not achieve a scaling better than
m = O(klog(n — k)), even at infinite SNR.

3. There is also a gap between thresholding and lasso. Comparing (13) and (14), we see that,
at high SNR, thresholding requires a factor of up{f&¢1AR more measurements than lasso.
This factor is largest wheKAR is small, which occurs when there are relatively small nonzero
components. Thus, in the high SNR regime, the main benefit of lasso is its ability to detect
small coefficients, even when they are much below the average power. However, if the range of
component magnitudes is not large MaR is close to one, lasso and thresholding have equal
performance within a constant factor.

10f course, at least + 1 measurements are necessary.



4. The high SNR limit (13) matches the sufficient conditiondd]for the noise free case, except
that the constant in (13) is tighter.

Numerical validation. Thresholding is extremely simple and can thus be simulated easily for
large problem sizes. The results of a large number of Monte Carlo simulations are presented in [23],
which also reports additional simulations of maximum likelihood estimation. With 100, the
sufficient condition predicted by (12) matches well to the parameter combinations where the proba-
bility of success drops below about 0.995.

5 Conclusions

We have considered the problem of detecting the sparsity pattern of a sparse vector from noisy
random linear measurements. Necessary and sufficient scaling laws for the number of measurements
to recover the sparsity pattern for different detection algorithms were derived. The analysis reveals
the effect of two key factors: the total signal-to-noise ratio (SNR), as well as the minimum-to-
average ratio (MAR), which is a measure of the spread of component magnitudes. The product of
these factors i¢ times the SNR contribution from the smallest nonzero component; this product
often appears.

Our main conclusions are:

e Tight scaling laws for constant SNR and MARthe regime wher8NR = ©(1) andMAR =
©(1), our results show that the scaling of the number of measurements

m = O(klog(n — k))

is both necessary and sufficient for asymptotically reliable sparsity pattern detection. More-
over, the scaling can be achieved with a thresholding algorithm, which is computationally sim-
pler than even lasso or basis pursuit. Under the additional assumption of linear sgafsity (
fixed), this scaling is a larger number of measurements than predicted by previous information-
theoretic bounds.

e Dependence on SNR/hile the number of measurements required for exhaustive ML estima-
tion and simple thresholding have the same dependeneeand & with the SNR fixed, the
dependence on SNR differs significantly. Specifically, thresholding requires a factor of up to
4(1 4+ SNR) more measurements than ML. MoreoversaiR — oo, the number of measure-
ments required by ML may be as low as = k£ + 1. In contrast, even lettingNR — oo,
thresholding and lasso still requine = O(k log(n — k)) measurements.

e Lasso and dependence on MARresholding can also be compared to lasso, at least in the high
SNR regime. There is a potential gap between thresholding and lasso, but the gap is smaller
than the gap to ML. Specifically, in the high SNR regime, thresholding requires atifidsR
more measurements than lasso. Thus, the benefit of lasso over simple thresholding is its ability
to detect the sparsity pattern even in the presence of relatively small nonzero coefficients (i.e.
low MAR). However, when the components of the unknown vector have similar magnitudes
(MAR close to one), the gap between lasso and simple thresholding is reduced.

While our results provide both necessary and sufficient scaling laws, there is clearly a gap in terms
of the scaling with the SNR. We have seen that full ML estimation could potentially have a scaling
in SNR as small a& = O(1/SNR) + k — 1. An open question is whether there is any practical
algorithm that can achieve a similar scaling.

A second open issue is to determine conditions for partial sparsity recovery. The above results
define conditions for recovering all the positions in the sparsity pattern. However, in many practical
applications, obtaining some large fraction of these positions would be sufficient. Neither the limits
of partial sparsity recovery nor the performance of practical algorithms are completely understood,
though some results have been reported in [19-21, 25].
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