
Fetal Tissue Annotation Challenge: Structured 

description of the challenge design

Remark: This challenge have been slightly modified. All changes are highlighted in red.

CHALLENGE ORGANIZATION

Title

Use the title to convey the essential information on the challenge mission.

Fetal Tissue Annotation Challenge

Challenge acronym

Preferable, provide a short acronym of the challenge (if any).

FeTA

Challenge abstract

Provide a summary of the challenge purpose. This should include a general introduction in the topic from both a 

biomedical as well as from a technical point of view and clearly state the envisioned technical and/or biomedical 

impact of the challenge.

Congenital disorders are one of the leading causes of infant mortality worldwide [1]. Recently, in-utero MRI of the 

fetal brain has started to emerge as a valuable tool for investigating the neurological development of fetuses with 

congenital disorders. Fetal MRI can aid in the future development of clinical risk stratification tools for early 

interventions, treatments, and clinical counseling. Moreover, fetal MRI is a powerful tool to portray the complex 

neurodevelopmental events during human gestation, which remain to be completely characterized. Acquisition 

and analysis of in-utero MRI of the fetal brain requires collaboration from specialized clinical centers because 

image cohorts of this vulnerable patient populations are small and heterogeneous (e.g. variability in image 

acquisition parameters between sites). Site and MRI scanner harmonization, paired with automated and robust 

methods for MRI analyses, are needed in order to increase sample size for adequate power of these studies. 

 

Automated segmentation and quantification of the highly complex and rapidly changing brain morphology prior 

to birth in MRI data would improve the diagnostic process, as manual segmentation is both time consuming and 

subject to human error and inter-rater variability. It is clinically relevant to analyze information such as the shape 

or volume of the developing brain structures, as many congenital disorders cause subtle changes to these tissue 

compartments [2]–[5]. Existing growth data is mainly based on normally developing brains [6]–[8], and growth data 

for many pathologies and congenital disorders is lacking. Thus, a robust method for automatic segmentation of 

the developing human brain across different scanners and image acquisition protocols would be a first step in 

performing such an analysis. 

 

From a technical standpoint, there are many challenges that an automatic segmentation method of the fetal brain 

would need to overcome. During prenatal development, the physiology of the human brain changes while its 

structure undergoes developmental reorganization. In addition, the quality of the images is often poor due to fetal 
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and maternal movement and imaging artefacts [9], while partial volume effects frequently lead to blurring of 

boundary between tissues Finally, compared to the healthy controls, structures of an abnormal fetal brain often 

have a different morphology. This can make it challenging for an automatic method to recognize what the 

structures are. The field of fetal MRI has so far been understudied due to challenges in imaging and due to the lack 

of public, curated, and annotated ground truth data. 

In FeTA 2021 (https://feta-2021.grand-challenge.org/), we used the first publicly available dataset of fetal brain 

MRI images to encourage teams to develop automatic tissue brain segmentation methods [10].  Based on the 

success of FeTA 2021, we aim to push the challenge to the next level in FeTA 2022 by launching a challenge for 

development of image segmentation algorithms that will work across different sites, i.e., on unseen datasets with 

different image acquisition protocols (i.e., datasets from different study centers and MRI scanners). To guarantee 

that the developed fetal segmentation methods are truly applicable in a real-world clinical or research 

environment under domain shifts, their generalizability is in urgent need and attracts increasing attention in 

medical imaging [11]–[13]. 

In summary, the Multi-center FeTA 2022 challenge is an important step towards the development of effective, 

generalizable and reproducible methods for analyzing high resolution reconstructed MR images of the developing 

fetal brain from gestational week 21-36. It will include data from four different sites (University Children’s Hospital 

Zurich, Medical University of Vienna, University of California, San Francisco, and Lausanne University Hospital). 

Such new algorithms will have the potential to better understand the underlying causes of congenital disorders 

and ultimately to guide the development of antenatal/postnatal guidelines and clinical risk stratification tools for 

early interventions, treatments, and care management decisions across hospitals and research institutions 

worldwide. 

Challenge keywords

List the primary keywords that characterize the challenge.

Segmentation, Fetal Brain MRI, Domain Generalization, Multi-class, Congenital Disorders, Continuous Learning

Year

The challenge will take place in ...

2022

FURTHER INFORMATION FOR MICCAI ORGANIZERS

Workshop

If the challenge is part of a workshop, please indicate the workshop.

Perinatal, Preterm, and Paediatric Image Analysis (PIPPI) Workshop 2022 

Duration

How long does the challenge take?

Full day.

Fetal Tissue Annotation Challenge
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Expected number of participants

Please explain the basis of your estimate (e.g. numbers from previous challenges) and/or provide a list of potential 

participants and indicate if they have already confirmed their willingness to contribute.

We expect 15-30 submissions.  Together with invited speakers, organizers this will make about 30-50 participants. 

Last year we had 22 submissions, with around 30-40 participants throughout the event.

Publication and future plans

Please indicate if you plan to coordinate a publication of the challenge results.

We plan to coordinate a publication of the challenge results after the challenge, targeting publication at Medical 

Image Analysis or NeuroImage. All teams who submitted before the deadline and presented their results at 

MICCAI 2022 will be included in the paper. Each team is allowed three co-authors in this paper. 

Space and hardware requirements

Organizers of on-site challenges must provide a fair computing environment for all participants. For instance, 

algorithms should run on the same computing platform provided to all.

This challenge will be online, and only talks will be given on-site with the option of a hybrid setup (i.e. Zoom). We 

would need a seminar room with projector and screen, and a microphone on the day of the challenge.

Fetal Tissue Annotation Challenge
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TASK: Generalizable Fetal Brain Segmentation

SUMMARY

Abstract

Provide a summary of the challenge purpose. This should include a general introduction in the topic from both a 

biomedical as well as from a technical point of view and clearly state the envisioned technical and/or biomedical 

impact of the challenge.

Congenital disorders are one of the leading causes of infant mortality worldwide [1]. Recently, in-utero MRI of the 

fetal brain has started to emerge as a valuable tool for investigating the neurological development of fetuses with 

congenital disorders. Fetal MRI can aid in the future development of clinical risk stratification tools for early 

interventions, treatments, and clinical counseling. Moreover, fetal MRI is a powerful tool to portray the complex 

neurodevelopmental events during human gestation, which remain to be completely characterized. Acquisition 

and analysis of in-utero MRI of the fetal brain requires collaboration from specialized clinical centers because 

image cohorts of this vulnerable patient populations are small and heterogeneous (e.g. variability in image 

acquisition parameters between sites). Site and MRI scanner harmonization, paired with automated and robust 

methods for MRI analyses, are needed in order to increase sample size for adequate power of these studies. 

 

Automated segmentation and quantification of the highly complex and rapidly changing brain morphology prior 

to birth in MRI data would improve the diagnostic process, as manual segmentation is both time consuming and 

subject to human error and inter-rater variability. It is clinically relevant to analyze information such as the shape 

or volume of the developing brain structures, as many congenital disorders cause subtle changes to these tissue 

compartments [2]–[5]. Existing growth data is mainly based on normally developing brains [6]–[8], and growth data 

for many pathologies and congenital disorders is lacking. Thus, a robust method for automatic segmentation of 

the developing human brain across different scanners and image acquisition protocols would be a first step in 

performing such an analysis. 

 

From a technical standpoint, there are many challenges that an automatic segmentation method of the fetal brain 

would need to overcome. During prenatal development, the physiology of the human brain changes while its 

structure undergoes developmental reorganization. In addition, the quality of the images is often poor due to fetal 

and maternal movement and imaging artefacts [9], while partial volume effects frequently lead to blurring of 

boundary between tissues Finally, compared to the healthy controls, structures of an abnormal fetal brain often 

have a different morphology. This can make it challenging for an automatic method to recognize what the 

structures are. The field of fetal MRI has so far been understudied due to challenges in imaging and due to the lack 

of public, curated, and annotated ground truth data. 

 

In FeTA 2021 (https://feta-2021.grand-challenge.org/), we used the first publicly available dataset of fetal brain 

MRI images to encourage teams to develop automatic tissue brain segmentation methods [10].  Based on the 

success of FeTA 2021, we aim to push the challenge to the next level in FeTA 2022 by launching a challenge for 

development of image segmentation algorithms that will work across different sites, i.e., on unseen datasets with 

different image acquisition protocols (i.e., datasets from different study centers and MRI scanners). To guarantee 

that the developed fetal segmentation methods are truly applicable in a real-world clinical or research 

environment under domain shifts, their generalizability is in urgent need and attracts increasing attention in 

medical imaging [11]–[13]. 
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In summary, the Multi-center FeTA 2022 challenge is an important step towards the development of effective, 

generalizable and reproducible methods for analyzing high resolution reconstructed MR images of the developing 

fetal brain from gestational week 21-36. It will include data from four different sites (University Children’s Hospital 

Zurich, Medical University of Vienna, University of California, San Francisco, and Lausanne University Hospital). 

Such new algorithms will have the potential to better understand the underlying causes of congenital disorders 

and ultimately to guide the development of antenatal/postnatal guidelines and clinical risk stratification tools for 

early interventions, treatments, and care management decisions across hospitals and research institutions 

worldwide. 

Keywords

List the primary keywords that characterize the task.

Segmentation, Fetal Brain MRI, Domain Generalization, Multi-class, Congenital Disorders, Continuous Learning

ORGANIZATION

Organizers

a) Provide information on the organizing team (names and affiliations).

Kelly Payette, University Children’s Hospital Zurich, University of Zurich 

Celine Steger, University Children’s Hospital Zurich, University of Zurich 

Priscille de Dumast, University of Lausanne 

Andras Jakab, University Children’s Hospital Zurich, University of Zurich 

Meritxell Bach Cuadra, University of Lausanne 

Lana Vasung, Harvard Medical School 

Roxane Licandro, Medical University of Vienna, Massachusetts General Hospital and Harvard Medical School 

Matthew Barkovich, University of California, San Francisco 

Hongwei Li, Technical University of Munich and University of Zurich

b) Provide information on the primary contact person.

Kelly Payette (kelly.payette@kispi.uzh.ch)

Life cycle type

Define the intended submission cycle of the challenge. Include information on whether/how the challenge will be 

continued after the challenge has taken place.Not every challenge closes after the submission deadline (one-time 

event). Sometimes it is possible to submit results after the deadline (open call) or the challenge is repeated with some 

modifications (repeated event).

Examples:

One-time event with fixed conference submission deadline• 

Open call (challenge opens for new submissions after conference deadline)• 

Repeated event with annual fixed conference submission deadline• 

Repeated event with fixed submission deadline.

Challenge venue and platform

a) Report the event (e.g. conference) that is associated with the challenge (if any).

Fetal Tissue Annotation Challenge
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MICCAI.

b) Report the platform (e.g. grand-challenge.org) used to run the challenge.

grand-challenge.org

c) Provide the URL for the challenge website (if any).

Last year's was feta-2021.grand-challenge.org; this year's will be feta.grand-challenge.org (currently in progress))

Participation policies

a) Define the allowed user interaction of the algorithms assessed (e.g. only (semi-) automatic methods allowed).

Fully automatic.

b) Define the policy on the usage of training data. The data used to train algorithms may, for example, be restricted to 

the data provided by the challenge or to publicly available data including (open) pre-trained nets.

The participants can use publicly available data as they wish but should document whatever is used in the 

description of their algorithm. Participants may modify the provided training data as they wish. This modification 

includes the generation of additional data by image synthesis or various data augmentation strategies (for 

example, using FABIAN [14]) as long as everything is documented, and synthetic data should be able to be made 

available upon request

c) Define the participation policy for members of the organizers' institutes. For example, members of the organizers' 

institutes may participate in the challenge but are not eligible for awards.

May participate but not eligible for awards and not listed in leaderboard.

d) Define the award policy. In particular, provide details with respect to challenge prizes.

The top three ranking methods will be publicly named and awarded certificates and a small gift, such as chocolates 

(last year’s prize was custom-made FeTA chocolate bars).

e) Define the policy for result announcement.

Examples:

Top 3 performing methods will be announced publicly.• 

Participating teams can choose whether the performance results will be made public.• 

The results will be announced publicly at the MICCAI 2022 challenge session, and will be posted on the challenge 

website. The teams with the top 10 algorithms will be informed earlier so they can prepare a presentation for the 

challenge session. The top 3-5 teams will be asked to prepare a 7-10 minute presentation, and the remaining 5-7 

teams will be asked to prepare a short ‘speed round’ presentation of 2 minutes. 

f) Define the publication policy. In particular, provide details on ...

... who of the participating teams/the participating teams’ members qualifies as author• 

... whether the participating teams may publish their own results separately, and (if so)• 

... whether an embargo time is defined (so that challenge organizers can publish a challenge paper first).• 

Three authors per team who contributed to the design of the algorithm will be named co-author in the final 

challenge paper. Every participant can publish their algorithms and results independently after the challenge, but 

we request they cite the summary paper, and the data publication paper. The results and our corresponding 
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evaluation of all participating teams will be made publicly available on the challenge website after the conference 

session.

Submission method

a) Describe the method used for result submission. Preferably, provide a link to the submission instructions.

Examples:

Docker container on the Synapse platform. Link to submission instructions: <URL>• 

Algorithm output was sent to organizers via e-mail. Submission instructions were sent by e-mail.• 

Participants will create a Docker container with their algorithm, and provide this to the challenge organizers. Once 

the website is up, it will contain instructions on how to containerize the algorithms, and the organizers will provide 

support to the participants when requested. The organizers will run the Docker container on the test data set using 

publicly available evaluation code. The organizers will inform the participants if the Docker container fails to run, 

and allow the participants to provide a fix.

b) Provide information on the possibility for participating teams to evaluate their algorithms before submitting final 

results. For example, many challenges allow submission of multiple results, and only the last run is officially counted to 

compute challenge results.

No multiple submission will be allowed. The evaluation will be performed on the submitted Docker containers at 

the organizer’s institute. Resubmissions are only allowed in cases of technical errors with the Docker. 

After the MICCAI challenge session, new submissions and updates may be made.

Challenge schedule

Provide a timetable for the challenge. Preferably, this should include

the release date(s) of the training cases (if any)• 

the registration date/period• 

the release date(s) of the test cases and validation cases (if any)• 

the submission date(s)• 

associated workshop days (if any)• 

the release date(s) of the results• 

Training Data Release: April-May, 2021 

Registration: Will be announced once the challenge is accepted 

Docker Submission Deadline: 2 months before the challenge session 

Top 10 teams informed: 2 weeks before the challenge, so they can prepare a presentation 

Complete results will be announced at the challenge session

Ethics approval

Indicate whether ethics approval is necessary for the data. If yes, provide details on the ethics approval, preferably 

institutional review board, location, date and number of the ethics approval (if applicable). Add the URL or a reference 

to the document of the ethics approval (if available).

Kispi Data: Mothers of the healthy fetuses participating in the BrainDNIU study were prospectively informed about 

the inclusion in the FeTA dataset by members of the research team and gave written consent for their 

participation. Mothers of all other fetuses included in the current work were scanned as part of their routine 

clinical care and gave informed written consent for the re-use of their data for research purposes. The ethical 
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committee of the Canton of Zurich, Switzerland approved the prospective and retrospective studies that collected 

and analyzed the MRI data (Decision numbers: 2017-00885, 2016-01019, 2017-00167), and a waiver for an ethical 

approval was acquired for the release of an anonymous dataset for non-medical research purposes. 

CHUV Data: Mothers of all other fetuses included in the current work were scanned as part of their routine clinical. 

Data was retrospectively collected from acquisitions done between January 2013 to April 2021 from the MRI fetal 

brain database of our institution. All images were anonymized. This dataset is part of a larger research protocol 

approved by the ethics committee of the Canton de Vaud (decision number CER-VD 2021-00124) for re-use of 

their data for research purposes and approval for the release of an anonymous dataset for non-medical 

reproducible research and open science purposes . 

Vienna: The data of fetal MRI cases, showing no neurological defects and pathologies, will be provided by the 

Medical University of Vienna. The data has been acquired in the course of a retrospective single-center study and 

has been anonymized and approved by the ethics review board and data clearing department at the Medical 

University of Vienna, responsible for validating data privacy and sharing regulation compliance. 

UCSF: Fetal MRI was clinically acquired and approved for anonymized retrospective studies for internal use studies 

(IRB 16-20619). A data sharing agreement and new IRB is currently in progress to expand the ethical approval for 

sharing anonymized data outside of the institution. 

(See "Further Comments" for site abbreviation legend)

Data usage agreement

Clarify how the data can be used and distributed by the teams that participate in the challenge and by others during 

and after the challenge. This should include the explicit listing of the license applied.

Examples:

CC BY (Attribution)• 

CC BY-SA (Attribution-ShareAlike)• 

CC BY-ND (Attribution-NoDerivs)• 

CC BY-NC (Attribution-NonCommercial)• 

CC BY-NC-SA (Attribution-NonCommercial-ShareAlike)• 

CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)• 

Custom data license (current FeTA license can be found here under Terms of Use: 

https://www.synapse.org/#!Synapse:syn25649159/wiki/610007); non-commercial use only for the challenge 

purpose. 

Code availability

a) Provide information on the accessibility of the organizers' evaluation software (e.g. code to produce rankings). 

Preferably, provide a link to the code and add information on the supported platforms.

Evaluation code will be available on the challenge website.

b) In an analogous manner, provide information on the accessibility of the participating teams' code.

We will encourage participating teams to make their code/submission public

Conflicts of interest

Provide information related to conflicts of interest. In particular provide information related to sponsoring/funding of 

the challenge. Also, state explicitly who had/will have access to the test case labels and when.

Fetal Tissue Annotation Challenge
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No sponsoring/funding is planned. 

Only the organizers will have access to the test labels. 

MISSION OF THE CHALLENGE

Field(s) of application

State the main field(s) of application that the participating algorithms target.

Examples:

Diagnosis• 

Education• 

Intervention assistance• 

Intervention follow-up• 

Intervention planning• 

Prognosis• 

Research• 

Screening• 

Training• 

Cross-phase• 

Diagnosis, Decision support, Research.

Task category(ies)

State the task category(ies).

Examples:

Classification• 

Detection• 

Localization• 

Modeling• 

Prediction• 

Reconstruction• 

Registration• 

Retrieval• 

Segmentation• 

Tracking• 

Segmentation.

Cohorts

We distinguish between the target cohort and the challenge cohort. For example, a challenge could be designed 

around the task of medical instrument tracking in robotic kidney surgery. While the challenge could be based on ex 

vivo data obtained from a laparoscopic training environment with porcine organs (challenge cohort), the final 

biomedical application (i.e. robotic kidney surgery) would be targeted on real patients with certain characteristics 

defined by inclusion criteria such as restrictions regarding sex or age (target cohort).

a) Describe the target cohort, i.e. the subjects/objects from whom/which the data would be acquired in the final 

biomedical application.

Fetal Tissue Annotation Challenge
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The target cohort would be pregnant mothers who, after a screening ultrasound, have been clinically referred to a 

fetal MRI. 

b) Describe the challenge cohort, i.e. the subject(s)/object(s) from whom/which the challenge data was acquired.

In the challenge, a clinically acquired dataset will be used representing the target cohort. Fetal MRI brain scans that 

were acquired clinically, and reconstructed using a super-resolution method. 

There are two subgroups in the dataset: 

1.	 Fetuses with normal neurodevelopment 

2.	 Fetuses with pathological neurodevelopment 

We will include datasets from four different hospitals. 

Imaging modality(ies)

Specify the imaging technique(s) applied in the challenge.

Magnetic Resonance Imaging: Several T2-weighted single shot Fast Spin Echo (ssFSE)/ Half fourier single-shot 

Turbo spin echo (HASTE) images were acquired for each subject in all three planes (with at least one image in each 

of the axial, sagittal, coronal planes) with resolution 0.5mm x 0.5mm x 3mm (Kispi, UCSF, Vienna) or 1.125mm x 

1.125mm x 3mm (CHUV), and were combined together to reconstruct into a single high resolution volume of 

0.5mm x 0.5mm x 0.5mm (or 1.125mm x 1.125mm x 1.125mm) using [15]–[18]. (note: ssFSE/HASTE are vendor-

specific acronyms for the equivalent image acquisition types). 

Context information

Provide additional information given along with the images. The information may correspond ...

a) ... directly to the image data (e.g. tumor volume).

Voxel-level segmentations of the fetal brain: 

0 – Background 

1 – External Cerebrospinal Fluid 

2 – Grey Matter 

3 – White Matter 

4 – Ventricles 

5 – Cerebellum 

6 – Deep Grey Matter 

7 – Brainstem

b) ... to the patient in general (e.g. sex, medical history).

Gestational age (GA) in weeks 

Pathological or Neurotypical brain 

Target entity(ies)

a) Describe the data origin, i.e. the region(s)/part(s) of subject(s)/object(s) from whom/which the image data would be 

acquired in the final biomedical application (e.g. brain shown in computed tomography (CT) data, abdomen shown in 

laparoscopic video data, operating room shown in video data, thorax shown in fluoroscopy video). If necessary, 

differentiate between target and challenge cohort.

Fetal MRI Brain Scan. 
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b) Describe the algorithm target, i.e. the structure(s)/subject(s)/object(s)/component(s) that the participating algorithms 

have been designed to focus on (e.g. tumor in the brain, tip of a medical instrument, nurse in an operating theater, 

catheter in a fluoroscopy scan). If necessary, differentiate between target and challenge cohort.

Individual structures within the fetal brain (external cerebrospinal fluid, grey matter, white matter, ventricles, brain 

stem, cerebellum, deep grey matter)

Assessment aim(s)

Identify the property(ies) of the algorithms to be optimized to perform well in the challenge. If multiple properties are 

assessed, prioritize them (if appropriate). The properties should then be reflected in the metrics applied (see below, 

parameter metric(s)), and the priorities should be reflected in the ranking when combining multiple metrics that assess 

different properties.

Example 1: Find highly accurate liver segmentation algorithm for CT images.• 

Example 2: Find lung tumor detection algorithm with high sensitivity and specificity for mammography images.• 

Corresponding metrics are listed below (parameter metric(s)).

Precision, Accuracy.

Additional points: Generalisability

DATA SETS

Data source(s)

a) Specify the device(s) used to acquire the challenge data. This includes details on the device(s) used to acquire the 

imaging data (e.g. manufacturer) as well as information on additional devices used for performance assessment (e.g. 

tracking system used in a surgical setting).

Kispi Data: 1.5T and 3T clinical GE whole-body scanner (Signa Discovery MR450 and MR750) were used to acquire 

the data, either using an 8-channel cardiac coil or body coil without the use of maternal or fetal sedation. 

CHUV: 1.5 T (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany), without the use of maternal or fetal 

sedation. Acquisitions were performed with an 18-channel body coil and a 32-channel spine coil. 

Vienna: 1.5 T (Philips Ingenia/Intera, Best, the Netherlands) and 3 T magnets (Philips Achieva, Best, the 

Netherlands), without the use of maternal or fetal sedation. All acquisitions were performed using a cardiac coil. 

UCSF: 3T GE Discovery MR750 or MR750W (wide bore) without the use of maternal or fetal sedation. Acquisitions 

were performed using a 32 channel GE cardiac coil. 

b) Describe relevant details on the imaging process/data acquisition for each acquisition device (e.g. image acquisition 

protocol(s)).

Kispi: T2-weighted SSFSE sequences were acquired with an in-plane resolution of 0.5mmx0.5mm and a slice 

thickness of 3 to 5mm. The sequence parameters were the following: TR: 2000-3500 ms, TE: 120 ms (minimum), 

flip angle: 90°, sampling percentage 55%. Field of view (200-240 mm) and image matrix (1.5T: 256x224; 3T: 

320x224) were adjusted depending on the gestational age (GA) and size of the fetus. Imaging plane was oriented 

relative to the fetal brain and axial, coronal and sagittal images were acquired. 

CHUV: T2-weighted (T2W) Half-Fourier Acquisition Single-shot Turbo spin Echo (HASTE) sequences in the three 

orthogonal orientations; usually at least two acquisitions were performed in each orientation., TR/TE, 

1200ms/90ms; flip angle, 6/23 90 ; echo train length, 224; echo spacing, 4.08ms; field-of-view, 360 × 360mm2 ; 

voxel size, 1.13 × 1.13 × 3.00mm3 ; inter-slice gap, 10%, aquisition time between 26 to 36 seconds. 
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Vienna: For each case, at least 3 T2-weighted single-shot, fast spin echo (ssFSE) sequences (TE=80-140ms) in 3 

orthogonal (axial, coronal, sagital) planes with reference to the fetal brain stem axis and/or the axis of the corpus 

callosum have been acquired using a 1.5 Tesla Philips Intera MR scanner. Overall, slice thickness was between 

3mm and 5mm (gap 0.3-1mm), pixel spacing 0.65-1.17mm, acquisition time between 13.46 and 41.19 seconds. 

UCSF: At least 3 T2-weighted ssFSE sequences were acquired with one scan per orientation (sagittal, axial, coronal) 

with the following parameters: 240 mm FOV with 512x512 matrix gives in plane resolution of ~0.5x0.5 mm with 3 

mm slice thickness. TR is 2000-3500 ms, TE > 100 ms, 90 deg flip angle.

c) Specify the center(s)/institute(s) in which the data was acquired and/or the data providing platform/source (e.g. 

previous challenge). If this information is not provided (e.g. for anonymization reasons), specify why.

Kispi: The data was acquired at the University Children’s Hospital Zurich in Zurich, Switzerland. 

CHUV: The data was acquired at the Lausanne University Hospital in Lausanne, Switzerland. 

Vienna: The data was acquired at the General Hospital Vienna/Medical University of Vienna in Vienna, Austria 

UCSF: The data was acquired at the University of California San Francisco

d) Describe relevant characteristics (e.g. level of expertise) of the subjects (e.g. surgeon)/objects (e.g. robot) involved in 

the data acquisition process (if any).

Trained radiographers acquired the data using clinically defined protocols. 

Training and test case characteristics

a) State what is meant by one case in this challenge. A case encompasses all data that is processed to produce one 

result that is compared to the corresponding reference result (i.e. the desired algorithm output).

Examples:

Training and test cases both represent a CT image of a human brain. Training cases have a weak annotation 

(tumor present or not and tumor volume (if any)) while the test cases are annotated with the tumor contour (if 

any).

• 

A case refers to all information that is available for one particular patient in a specific study. This information 

always includes the image information as specified in data source(s) (see above) and may include context 

information (see above). Both training and test cases are annotated with survival (binary) 5 years after (first) image 

was taken.

• 

Each case consists of a 3D super-resolution reconstruction of a fetal brain (256x256x256 voxels). Training cases 

have an annotated label map corresponding to 7 different brain tissue types. Each case will have a corresponding 

gestational age in weeks, as well as a label if it is a neurotypical fetal brain or a pathological fetal brain. 

The label maps are not provided for the test cases.

b) State the total number of training, validation and test cases.

Kispi: 

Training/Validation cases: 80 3D volumes 

Test cases: 40 3D volumes 

 

Vienna: 

Training/Validation cases: 40 3D volumes 

Test cases: 40 3D volumes 
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CHUV: 

Test cases: 40 3D volumes 

 

UCSF: 

Test cases 40 3D volumes

c) Explain why a total number of cases and the specific proportion of training, validation and test cases was chosen.

At the moment, the Kispi training and testing datasets have been prepared, and was the dataset used in FeTA 2021. 

We aim to expand the dataset for this new challenge, and the additional 160 cases is what we can commit to 

providing by the time the challenge goes live. 

Existing studies have shown that case numbers such as what we are providing are sufficient to train U-Nets to 

segment the fetal brain from maternal tissue, as well as the fetal brain into different tissue classes [10], [19], [20]. In 

addition, fetal MRI case numbers per hospital can be fairly small, making it a challenge for many hospitals to 

create such a uniform in-house single-center dataset. There are only a few centers worldwide where fetal MRI case 

numbers are in the range of a few hundred per year. For comparison, in our hospital, 11.9 fetal MRI scans have 

been done per month over the past two years, while other university hospitals in Switzerland reported performing 

on average 2-3 fetal MRI scans, including neuro sequences per month. This renders the collection of data 

challenging and makes our data unique. 

Our dataset is the first publicly released fetal brain dataset consisting of manually annotated volumes with multiple 

classes, making this a unique dataset. 

Finally, the distribution of GAs and number of pathologic subjects is equal between the test and training data. 

In addition, we are increasing the number of sites from one to four, where we provide two sites in the training 

dataset so that the participants are able to train and test their algorithms on two sites, while keeping two sites held 

back to be part of the testing dataset to determine how well each algorithm performs on an unknown dataset. 

We are not providing an explicit validation set, it is up to each team to decide on their own based on the data 

given. 

d) Mention further important characteristics of the training, validation and test cases (e.g. class distribution in 

classification tasks chosen according to real-world distribution vs. equal class distribution) and justify the choice.

In the training and test set, fetal brains with a variety of pathologies of varying severities will be included (such as 

spina bifida and ventriculomegaly), as well as fetal brains with normal neurodevelopment. There will be more 

pathological fetal brains included than normal, as in a clinical setting it is more common to see pathological 

brains. In addition, then main goal is the segmentation of fetal brains with congenital disorders for further analysis. 

In both of the training and test sets, a range of gestational ages (20-36 weeks) is included. The split/distribution of 

pathologies and gestational ages will be equal between the training and test sets. The fetal brain undergoes a large 

variety of changes throughout gestation such as brain volume increase, gyrification, neuronal migration, and 

synaptogenesis. As a result the tissue contrast, especially between the grey matter and white matter is changing 

throughout all gestation, adding more complexity to the segmentation. The tissues becomes either more 

distinguishable (such as between the deep grey matter and white matter) or less (such as between the white matter 

and grey matter) throughout gestation. Therefore we aim to include as equal case numbers as possible for each 

gestational week. 
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Annotation characteristics

a) Describe the method for determining the reference annotation, i.e. the desired algorithm output. Provide the 

information separately for the training, validation and test cases if necessary. Possible methods include manual image 

annotation, in silico ground truth generation and annotation by automatic methods.

If human annotation was involved, state the number of annotators.

Each label was created separately, with the annotator segmenting every second to every third slice for each label 

in the axial plane, except for the cerebellum and the brainstem/spinal cord, which were segmented in the sagittal 

plane. The final label map was created by post-processing these sparse annotations to create a single fully 

segmented fetal brain for each subject. For interpolating the sparsely annotated label maps, we used the Python 

implementation of the ITK nD Morphological Contour Interpolation algorithm, enforcing interpolation along the 

plane the given structure was annotated. After post-processing, each fetal brain was reviewed by an expert and 

small corrections were made either on the original annotations or the reconstructed full fetal brain annotation. 

See next section for more details. 

b) Provide the instructions given to the annotators (if any) prior to the annotation. This may include description of a 

training phase with the software. Provide the information separately for the training, validation and test cases if 

necessary. Preferably, provide a link to the annotation protocol.

The annotation protocol can be found within the dataset in the documentation folder 

(FetalAnnotationGuideline.pdf): 

https://www.synapse.org/Portal/filehandle?ownerId=syn23747212&ownerType=ENTITY&fileName=FetalAnnotati

onGuidelines.pdf&preview=false&wikiId=608434 

c) Provide details on the subject(s)/algorithm(s) that annotated the cases (e.g. information on level of expertise such as 

number of years of professional experience, medically-trained or not). Provide the information separately for the 

training, validation and test cases if necessary.

Individuals with experience in segmenting medical images completed this task. The annotators were either 

radiographers with experience in MRI segmentation, or resident physicians with 5 to 10 years of experience in 

MRI.

d) Describe the method(s) used to merge multiple annotations for one case (if any). Provide the information separately 

for the training, validation and test cases if necessary.

N/A

Data pre-processing method(s)

Describe the method(s) used for pre-processing the raw training data before it is provided to the participating teams. 

Provide the information separately for the training, validation and test cases if necessary.

For each subject, we manually reviewed the acquired fetal brain images for quality in order to compile a stack of 

images. Each stack consisted of at least one brain scan in each orientation, with more scans included when 

available. The number of scans in each stack ranged between 3 and 13. Every image in the stack was then 

reoriented to a standard plane and a mask was created of the fetal brain using a semi-automated atlas-based 

custom MeVisLab (MeVis Medical Solutions AG, Bremen, Germany) module [15], [16]. An SR reconstruction 

algorithm was then applied to each subject’s stack of images and brain masks, creating a 3D SR volume of brain 

morphology [15], [17], [18], [21] with an isotropic resolution of 0.5mm*0.5mm*0.5mm (Kispi) or 
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1.125mm*1.125mmm*1.125mm (CHUV). Each image was histogram-matched using Slicer [22], and zero-padded 

to be 256x256x256 voxels. 

In Vienna, an alternative pipeline was followed. In each scanning session between 3 and 7 acquisitions of a fetus 

were obtained in 3 orthogonal directions. The preprocessing pipeline [23] consists of a data denoising step [24], 

followed by an in-plane super resolution [25]  and automatic brain masking step [18] and concludes with a single 

0.5 mm isotropic slice-wise motion correction and volumetric super-resolution reconstruction [18]. Subsequently, 

the resulting volumes are rigidly aligned to a common reference space [26]. 

Sources of error

a) Describe the most relevant possible error sources related to the image annotation. If possible, estimate the 

magnitude (range) of these errors, using inter-and intra-annotator variability, for example. Provide the information 

separately for the training, validation and test cases, if necessary.

Sources of error in the image annotation depend mostly on the quality of the super-resolution reconstruction of 

the fetal brain. However, even the best quality reconstructions may contain annotator error. Errors can originate 

from: 

-	 poor judgement of anatomical borders between certain developing brain structures, such as the cortical plate 

and subcortical white matter 

-	 suboptimal image quality after reconstruction 

-	 Annotations were made mainly in the axial plane, leading to some ‘noisy’ labels when looking at the coronal 

and sagittal planes 

 

An investigation on the inter-rater variability was performed with 3 annotators annotating 9 volumes, with high 

and medium quality reconstructions having a Dice score of 0.84±0.09 between the three raters, and low-quality 

reconstructions having a Dice score of 0.53±0.24 between raters, averaged across all labels. 

b) In an analogous manner, describe and quantify other relevant sources of error.

None

ASSESSMENT METHODS

Metric(s)

a) Define the metric(s) to assess a property of an algorithm. These metrics should reflect the desired algorithm 

properties described in assessment aim(s) (see above). State which metric(s) were used to compute the ranking(s) (if 

any).

Example 1: Dice Similarity Coefficient (DSC)• 

Example 2: Area under curve (AUC)• 

Three complementary types of performance metrics will be used to compute the rankings: 

the overlap is quantified with the dice similarity coefficient (DSC) [27] 

the contours are evaluated with a boundary-distance-based metric: the 95th percentile of the Hausdorff distance 

(HD95) (https://github.com/deepmind/surface-distance) 

the similarity between the two volumes is quantified with the volume similarly measure [27] 

the topological correctness will also be assessed to determine its viability as an evaluation metric in the future, but 

not included in the main ranking scheme of this challenge. It will be  assessed with the error of a topological 

invariant: the Euler characteristic (EC), defined k-dimensional Betti numbers (B_k). The EC is defined as: 

EC = B_0-B_1+B_2 
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Where B_0, B_1, B_2 respectively represent the number of connected components, the number of holes and the 

number of cavities in the 3D binary object. The ideal EC will be determined from the manual annotation for each 

label, and the distance between the predicted EC and manual annotation EC will be the final metric. 

In addition, intracranial volume will be calculated, but not used in the rankings. Intracranial volume will be 

determined by adding all labels together.

b) Justify why the metric(s) was/were chosen, preferably with reference to the biomedical application.

As the task is a segmentation task, the DSC was chosen, as it is the most popular segmentation metric. However, 

we would like not just an overlap metric, but we are also interested in the shape and volume, therefore we will 

include the HD95 (shape), and VS (volume), and the final ranking will take all three metrics into account. We 

would eventually like to include a topological metric as well, and will therefore use the challenge to investigate if 

the topological metric described above is a potential future segmentation evaluation metric.

Ranking method(s)

a) Describe the method used to compute a performance rank for all submitted algorithms based on the generated 

metric results on the test cases. Typically the text will describe how results obtained per case and metric are aggregated 

to arrive at a final score/ranking.

In order to evaluate and compare the ability of each algorithm to segment the fetal brain, a final score 

incorporating the four metrics (DSC, HD95, VS, EC) will be determined. All three metrics will be calculated for each 

label within each of the corresponding predicted label maps of the fetal brain volumes in the testing set. The mean 

and standard deviation of each label will be calculated, and the participating algorithms will be ranked from low to 

high (HD95, EC), where the lowest score receives the highest scoring rank (best), and from high to low (DSC, VS), 

where the highest value will receive highest scoring rank (best). For each label, the three rankings were added 

together, and the algorithm with the highest ranking was ranked first. A ranking based on the average value of 

each metric across all labels will also be calculated. 

 

In addition, the algorithms will be evaluated in the categories ‘Non Pathological cases’ and ‘Pathological cases’, as 

well as ‘Excellent Quality‘, ‘Good Quality‘ and ‘Poor Quality’, with the identical ranking scheme for each category. 

 

Finally, the results of the challenge will be run through the ChallengeR toolkit, specifically designed to calculate 

and display imaging challenge results [28].

b) Describe the method(s) used to manage submissions with missing results on test cases.

The only possibility for missing data would be if an algorithm does not find any of one particular label in the final 

label map, or if the entire label map is empty. If there are missing results, the worst possible value will be used. For 

example, if a label does not exist in the label map, it will receive a DSC and VS of 0, and the HD95 will be double 

the max value of the other algorithms submitted (to ensure it is ranked last for that sub-ranking). 

c) Justify why the described ranking scheme(s) was/were used.

This ranking system was developed in order to take three different metric types equally into account. We also 

wanted to determine not just average ranking, but see if algorithms performed better in when the image was high 

quality vs low quality, as well as how well they perform on the pathological vs the neurotypical brains. 

Statistical analyses

a) Provide details for the statistical methods used in the scope of the challenge analysis. This may include
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description of the missing data handling,• 

details about the assessment of variability of rankings,• 

description of any method used to assess whether the data met the assumptions, required for the particular 

statistical approach, or

• 

indication of any software product that was used for all data analysis methods.• 

The description of missing data handling can be found in 27b 

The mean and standard deviation of each method will be calculated using both an average of all labels as well as 

individually, using the ranking method as described above. 

b) Justify why the described statistical method(s) was/were used.

See above sections

Further analyses

Present further analyses to be performed (if applicable), e.g. related to

combining algorithms via ensembling,• 

inter-algorithm variability,• 

common problems/biases of the submitted methods, or• 

ranking variability.• 

Inter-algorithm variability may be analyzed in the final paper, as well as an in-depth analysis as to why some 

algorithms performed better than others (potential problems/biases that may be present). 

 

In addition, we plan to analyse the performance of the algorithms based on gestational age. The structure of the 

fetal brain changes greatly throughout development, especially in the cortex where there is increased cortical 

complexity, cortical specification (blurring of white matter and grey matter border) and partial volumes (blurring 

of white matter/grey matter border because of narrow gyri). Our preliminary work indicates that in the age period 

29-33GW, the thickness of the grey matter remains relatively similar (~1.6-2mm) compared to the previous period 

(21-28 GW), and ongoing regional and areal specification of the grey matter (driven by neuronal growth, dendritic 

arborization and ingrowth of axons) leads to loosening of the white matter/grey matter border. In addition, partial 

volume effects caused by tall and narrow gyri result in poor grey matter/white matter border visibility in certain 

regions. Because of this, the random error in segmentation of the grey matter between 29-33 GW might be 

increased. We plan to split our cohort into two age groups (21-28 weeks, and 29-33 weeks), and will analyse the 

submitted algorithms within these two groups to see if gestational age impacts the success of a segmentation 

algorithm. We plan on analyzing the same subgroups of the age separated cohorts using the same metrics as in the 

main ranking, as well as using the additional categories ‘Non Pathological cases’, ‘Pathological cases’, ‘Excellent 

Quality’, ‘Good Quality‘ and ‘Poor Quality’. This analysis will be separate from the main ranking. 
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Further comments

Further comments from the organizers.

Note: Abbreviations of different sites are used throughout this application. Below is the legend: 

Kispi: University Children’s Hospital Zurich 

CHUV: Lausanne University Hospital 

UCSF: University of California, San Francisco 

Vienna: Medical University of Vienna 

 

Overview of the changes between FeTA 2021 and FeTA 2022: 

-larger dataset (2021: 80 training, 40 testing; 2022: 120 training, 160 testing) 

-Last year’s FeTA included data from one site (Kispi). The new version of FeTA includes data from four sites (Kispi, 

CHUV, UCSF, and Vienna) 

-last year’s focus was purely on multi-class segmentation. The new version of FeTA expands to incorporate on 

domain generalization, such that the focus of the challenge is on developing segmentation methods that will work 

on data from unseen hospitals with alternate imaging acquisition protocols, and image processing pipelines. 

-added additional evaluation metric (Topological metric)
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