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Abstract: Identifying and extracting male and female parent of hybrid rice and then accurately
judging the spikelet flowering of male parents is the basis of hybrid rice pollination. Currently, male
parent flowering information extraction for hybrid rice is basically obtained by manual recognition.
In this study, remote sensing images of parental rice fields were obtained with a multispectral camera
carried by a UAV (Umanned Aerial Vehicle). Six kinds of visible light vegetation indices and four
kinds of multispectral vegetation indices, together with two classification methods, pixel-based
supervised classification and sample-based object-oriented classification, were applied to identify the
male and female parents of hybrid rice, after which the accuracies of the methods were compared.
The results showed that the visible vegetation index had a better effect in pixel-based supervised
classification. The kappa coefficient of ExGR (Excess Green minus Excess Red index) classification
was 0.9256 and the total accuracy was 0.9552. The extraction accuracy was higher than that of the
other vegetation indices and object-oriented classification. In pixel-based supervised classification,
the maximum likelihood method achieved the highest identification accuracy and shortest calculation
time. Taking the remote sensing images obtained with a UAV as a data source, maximum likelihood
supervised classification based on ExGR index can more effectively and quickly identify the field
information of male and female parents of hybrid rice so as to provide a reference for determining
optimal pollination timing for hybrid rice in large-scale seed production farms.

Keywords: UAV; hybrid rice; pollination; multispectral imagery; vegetation index; supervised
classification; object-oriented classification; kappa coefficient; maximum likelihood; extraction accuracy

1. Introduction

Hybrid breeding is one of the most important methods for increasing rice yield. The
yield of hybrid rice is of great significance in solving the problem of food shortage in the
world [1,2]. Hybrid rice has outcrossing characteristics. During the flowering period, the
pollen provided by the male parent falls to the female parent with male sterility to complete
the pollination. The mature fruit of the female parent is an excellent variety of hybrid rice.
Since the male parent has a longer growth time, it is usually sown earlier than the female
parent of rice. The sowing time of the female parent is determined according to leaf age
difference, time difference and the weather conditions after the male parent sows so that the
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male parent and the female parent of a rice plant reach the heading period at the same time
to achieve better pollination. The flowering period of a plant’s male and female parents is
only 1.5~2 h per day, and the active time of pollen is only 4~5 min. The amount of effective
pollen provided by male parents will directly affect the seed production yield of hybrid
rice. Rapid and accurate identification of male and female parents is key to determining the
optimal pollination timing so as to ensure that the pollen of male and female parents meet
at the flowering period [3,4]. In addition, when the pollination is finished, the male parent
must be cut off in advance in order to provide sufficient nutrients for the female parent,
maintain ventilation, reduce pests and diseases, and facilitate mechanical harvesting [5,6].
Therefore, identifying the male and female parents is also an important prerequisite for
monitoring the agricultural characteristics of hybrid rice. However, currently, the male
parent flowering information extraction of hybrid rice is basically obtained by manual
experience, and the timeliness of information is insufficient, making it difficult to grasp the
male parent flowering status in time, especially in the vast planting areas of hybrid rice
seed production farms [7].

The automatic acquisition and classification of agricultural information based on
remote sensing images is receiving increasing attention. Although satellite remote sensing
has been a mature technology for acquiring ground object information, it is susceptible to
weather conditions and has low temporal and spatial resolution, which usually make it
difficult to meet the high precision and time-effective requirements needed for monitoring
hybrid rice flowering status [8].

Due to their small sizes, ease of operation, high spatial resolution and high efficiency,
UAVs have a wide application prospect in the real-time acquisition of information on
farmland conditions [9,10]. Scholars at home and abroad have done a lot of research on
extracting vegetation information from remote sensing images. Most scholars establish the
relationship between vegetation index and remote sensing imaging to separate the target
and background. It is widely used in images with color differences between categories, such
as crop monitoring [11] and field crop classification [12,13]. Zhang et al. [14] used visible
light remote sensing images collected by a UAV to calculate the vegetation index in research
on the aboveground biomass estimation of Zoige grassland and established an exponential
regression model of biomass and various vegetation indices to estimate biomass, with
the highest simulation accuracy of R2 = 0.856. Wan et al. [15], based on remote sensing
images obtained by a multispectral camera carried by a UAV, explored and predicted
the relationship between the numbers of oilseed rape flowers using the random forest
algorithm and eight common visible vegetation indices and two multispectral vegetation
indices. The RMSE (Root-Mean-Square Error) of their model was 14.13, which has great
potential for the monitoring of the numbers of oilseed rape flowers. Enyn et al. [16] used
three different deep neural network structures to quickly predict the counting and flowering
time of sorghum panicles using RGB images obtained by a UAV. The timely acquisition of
flowering time improves sorghum panicle yields. Hardanto et al. [17] compared the land
use classification (LUC) from Landsat 8 and UAV using the minimum distance supervised
classification method. The results showed that the supervised classification of UAV images
was more detailed and more accurate than satellite images. Jing et al. [18] generated
a visible vegetation index based on micro UAV image data and compared pixel-based
supervised classification with object-oriented classification. The kappa coefficient of the
object-oriented classification method reached 0.9, which proved the feasibility of this kind
of method for aquatic vegetation information extraction and greatly improved the accuracy
of aquatic vegetation information extraction.

The flexibility and timeliness of UAV is helpful in classifying the male and female par-
ents of hybird rice automatically and accurately in large-scale hybrid rice seed production
farms and can effectively improve the utilization rate of pollen and increase the yield of
hybrid rice. In this study, the male and female parents of hybrid rice plants in visible and
multispectral images obtained by UAV are taken as the research objects. Two algorithms,
pixel-based supervised classification and sample based object-oriented classification, were
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used to extract the male and female parents of hybrid rice from the ten vegetation index
calculation result graphs in order to obtain a simple, convenient and effective parent extrac-
tion method of hybrid rice. This provides a reference for quickly obtaining the distribution
of male and female parents of hybrid rice, ensuring that the pollen of male and female
parents meet at flowering, monitoring the field situation in real time, and improving the
seed production rate of hybrid rice.

2. Materials and Methods
2.1. Overview of the Experimental Site

The experimental site is located in Hainan Province (18.25◦ N, 109.51◦ E). It belongs to
a tropical maritime monsoon climate, with no frost and snow all year round, sufficient light
and heat resources, and a multi-year average temperature of 24–25 ◦C. Between 8:00 and
18:00, the annual average sunshine hours are 2777.15 h, and the annual average rainfall is
1000–1900 mm, which is suitable for hybrid rice seed production. The male parent variety
of hybrid rice is 534, and the female parent variety is Mengliangyou. An overview of the
site is shown in Figure 1.

Figure 1. Overview of the experimental site.

2.2. Data Acquisition

This experiment used a DJI P4 Multispectral quad-rotor UAV with a diagonal wheel-
base of 350 mm, an unloaded endurance flight time of about 27 min, a signal maximum
effective distance of 7 km, a maximum take-off mass of 1487 g, and six 1/2.9-inch CMOS
sensors, including a color sensor for visible light imaging and five monochromatic sensors
for multispectral imaging in blue, green, red, red edge and near-infrared. The image resolu-
tion was 1600 pixels × 1300 pixels. The information parameters for each band are shown in
Table 1. The captured images were stored in the internal SD card of the camera. In total,
2875 images of the target area were acquired by aerial photography with a flight altitude
of 50 m, a flight speed of 2.6 m/s, a course overlap of 85% and a side overlap of 85%. The
image spatial resolution was 2.6 cm/pixel. A total area of 6300 m2 was covered.
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Table 1. Band parameters of the multispectral sensor.

Band Number Band Name Central Wavelength (nm) Band Width (nm)

1 Blue 450 16
2 Green 560 16
3 Red 650 16
4 Near Infra-red 730 16
5 Red Edge 840 26

2.3. Data Processing
2.3.1. Selection of Vegetation Index

In the field of remote sensing, there are hundreds of vegetation indices in use at
present [19–21]. Based on the vegetation indices that have been researched more fully and
with higher precision, six visible vegetation indices and four multispectral vegetation in-
dices were selected in this study: ExR (Excess Red index) [22], ExG (Excess Green index) [23],
ExB (Excess Blue index) [24], ExGR (Excess Green minus excess Red index) [25], G (Green
coordinate) [26], CIVE (Color Index of Vegetation Extraction) [27], NDVI (Normalized
Difference Vegetation Index) [28], LCI (Leaf Chlorophyll Index) [29], NDRE (Normalized
Difference Red Edge Vegetation Index) [30] and GNDVI (Green Normalized Difference
Vegetation Index) [31]. The calculation formulas and theoretical ranges of six visible light
vegetation indices and four multispectral vegetation indices are shown in Table 2.

Table 2. Vegetation indices based on visible spectrum.

Vegetation index Equation Theory Interval

ExR 1.4R-G [−255, 357]
ExG 2G-R-B [−255, 510]
ExB 1.4B-G [−255, 357]

ExGR 3G-2.4R-B [−612, 765]
G G [0, 255]

CIVE 0.441r-0.881g+0.385b+18.78745 [17, 20]
NDVI (NIR-R)/(NIR+R) [−1, 1]

LCI (NIR-RedEdge)/(NIR+R) [0, 1]
NDRE (NIR-RedEdge)/(NIR+RedEdge) [−1, 1]

GNDVI (NIR-G)/(NIR+G) [−1, 1]
Note: R: Red channel; G: Green channel; B: Blue channel; NIR: Near-infrared channel; RedEdge: Red edge
channel; r: Standardization of red channel; g: Standardization of green channel; b: Standardization of blue channel.
r = R/(R + G + B); g = G/(R + G + B); b = B/(R + G + B); r + g + b = 1; the value range of r, g, b is [0, 1].

2.3.2. Data Image Processing

The orthophoto images of the experimental site were obtained by stitching, geo-
metric correction and radiometric correction of the images with Pix4DMapper software.
ENVI 5.3 software was used to crop the images to the target area, as shown in Figure 1.
According to the formula in Table 1, the Band Math tool was applied to calculate each
visible light vegetation index, and the ROI (Region of Interest) tool was combined with
visual interpretation to randomly select ten samples each for the female parent, male parent,
weed and bare land from the target area of the visible light images. Each category contained
thousands of pixel values. The separability of the samples was calculated using the Calcu-
late ROI Separability tool in ROI. When the separability is below 1.0, this means that the
sample is not highly separable and needs to be re-selected; when the separability is 1.8–2.0,
it means that the sample is well-distinguished. As shown in Figure 2, all kinds of ground
objects have excellent separation and can be used as supervised classification objects.
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Figure 2. Separability of four types of ground feature samples.

2.4. The Classification and Extraction Method for Male and Female Parents

Two different classification methods were used to extract male and female parents.
Pixel-based supervised classification was used to classify the results of six visible vegeta-
tion indices and four multispectral vegetation indices using five supervised classification
methods based on image elements, namely, the parallelepiped method [32], the minimum
distance method [33], the Mahalanobis distance method [34], the maximum likelihood
method [35] and the neural network method [36]. For the other method, sample-based
object-oriented information was used to supervise and classify visible light images so as to
extract hybrid rice male and female parent information. The classification accuracies of the
two types of methods were compared as well. Five supervised pixel-based classification
methods classified pixels with similar spectral characteristics into corresponding categories
according to certain rules. The difference between the object-oriented classification method
and the pixel-based classification method is that it is no longer for a single pixel, but the
object formed after image segmentation [37,38].

In the pixel-based supervised classification, according to the calculation results for the
visible vegetation index in Figure 3, the calculation results for the multispectral vegetation
index obtained in Figure 4 and the selected male and female parent training samples, five
supervised classification methods—the parallelepiped method, the minimum distance
method, the Mahalanobis distance method, the maximum likelihood method and the neu-
ral network classification method—were selected for classification using the supervised
classification classifier in ENVI software. Among them, the parameter settings of the
parallelepiped method and the minimum distance method classified the 10 vegetation
indices by setting the appropriate thresholds in Table 3 based on the means and standard
deviations. The maximum distance error of the Mahalanobis distance method and the
likelihood threshold of the maximum likelihood method were both set to None for super-
vised classification in this study. The classification parameter setting of the neural network
classification method selected the logistic activation function. The weight adjustment speed
was set to 0.2, the number of iterations was set to 1000 and other values were set as default
as the parameter settings.
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Figure 3. Calculation results for six visible light vegetation indices.
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Table 3. Statistics for six visible light vegetation indices based on region of interest.

Vegetation Index
Female Parent Male Parent

Mean Standard
Deviation Mean Standard

Deviation

ExR 22.6060 8.2644 37.2445 8.4157
ExG 57.0360 5.9429 81.9466 7.8365
ExB −24.6368 7.5854 −41.4909 8.9551

ExGR −154.9807 46.5724 −229.0859 41.8490
G 94.1847 20.5128 132.1748 19.3481

CIVE −9.0989 3.1446 −24.1322 3.1630
NDVI 51.2282 26.1922 91.4345 36.5648

LCI 152.2266 47.1218 91.8878 45.5290
NDRE 81.8439 36.3162 40.4195 30.5533

GNDVI 189.8396 46.2561 134.6661 40.4023

In the object-oriented supervised classification based on samples, we used the object-
oriented supervised classification function in ENVI5.3 software to classify the male parent
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and female parent of the vegetation index calculation results obtained in Figures 3 and 4.
After repeated tests, the edge detection method was selected for image segmentation, and
the threshold was set to 15 to segment the ground objects in the image to form a single object.
The Full Lambda Schedule algorithm was selected for merging, and the threshold was set to
80 to merge and fuse adjacent objects with similar spectral, texture and geometric features
into more complete objects. After the objects were divided, 50 samples from the female
parent, 50 samples from the male parent, 20 samples from the weeds and 20 samples from
the bare ground were selected as the training set according to the visual interpretation. The
images were automatically classified using the SVM (Support Vector Machine) method [39].
The threshold parameter was set to 5, the degree of the kernel polynomial was set to 2, the
kernel gamma value was set to 0.03, the bias in the kernel function was set to 1 and the
penalty parameter was set to 100.

2.4.1. Parallelepiped Method

The parallelepiped method is a method of forming an n-dimensional parallelepiped
data space according to the brightness value of the training sample. If the spectral values
of other pixels fall in the area corresponding to any parallelepiped training sample, they
are classified into their corresponding categories. The proportion of parallel hexahedrons is
determined by the standard deviation threshold [32].

2.4.2. Minimum Distance Method

The minimum distance method uses the training sample data to calculate the mean
vector and standard deviation vector of each class and then uses the mean vector as the
center position of the class in the feature space to calculate the distance from each pixel to
the center of the input hybrid rice image. A pixel is classified according to the distance
between the pixel and the center of which kind is the smallest [33].

2.4.3. Mahalanobis Distance Method

The principle of the Mahalanobis distance method is to calculate the Mahalanobis
distance from the input image to each sample and finally count the smallest Mahalanobis
distance, which is this category [34].

2.4.4. Maximum Likelihood Method

The principle of the maximum likelihood method is to assume that each category
of statistics in each band of a hybrid rice image is normally distributed and calculate the
likelihood that a given pixel belongs to a training sample. The pixel is finally merged into
the category with the maximum likelihood [35].

2.4.5. Neural Network Classification Method

This method involves the abstraction of a human brain neural network from the
perspective of information processing. It forms different networks according to different
connection modes and establishes related simple models. A neural network is essentially
an operational model composed of a large number of nodes connected to each other. Each
node can be regarded as a neuron. Each node contains an excitation function and its output
is judged according to its input. The nodes of adjacent layers are connected in pairs, and
their relationship is called weight, which is equivalent to the memory process of the human
brain [36]. In this work, the neural network uses the approximation of some algorithm
or function to distinguish male parents from female parents of hybrid rice plants as one
of the modes of pixel-based supervised classification to classify the results of six visible
vegetation indices and four multispectral vegetation indices.

2.4.6. SVM Method

SVM is a machine learning method based on statistical learning theory. SVM can
automatically find those support vectors that have great ability to distinguish classifications
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so as to construct a classifier that can maximize the interval between classes and which
therefore has better generalization and higher classification accuracy [39]. In this study,
the SVM method was used for the automatic classification of images in the sample-based
object-oriented classification.

2.5. Evaluation Index

After supervised classification of various samples in the target test area, the recognition
accuracy of various samples was evaluated. At present, the most commonly used evaluation
method is to use the true state of the image combined with field survey data for visual
interpretation. Due to the large-scale planting areas and complex planting conditions, this
type of evaluation method is limited by manpower and material resources [40,41]. In this
study, the confusion matrix was used to test the accuracy of the classification results, and
the total accuracy and kappa coefficient were used to evaluate six supervised classification
methods. The closer the total accuracy is to 100%, the higher the accuracy. The kappa
coefficient represents the consistency between classification results and real categories, and
the value range is [−1, 1]. Generally, the kappa coefficient is between 0.81–1.0, indicating
that the classification result is almost completely consistent with the real category. The
kappa coefficient can be calculated according to the following formula [42–44]:

P0 =
a11 + a22 + a33 + . . . + ann

N
(1)

Pe =
a1b1 + a2b2 + a3b3 + . . . + anbn

N
(2)

K =
P0 − Pe

1 − Pe
(3)

where P0 is the overall classification accuracy, Pe is the chance consistency, n is the order of
the confusion matrix equation and N is the total number of samples, which is the sum of all
values in the column (row).

3. Results and Analysis
3.1. Calculation and Analysis of Vegetation Indexes

With the cropped orthographic map in Figure 1, each visible vegetation index was
calculated according to the formula in Table 2 using the Band Math tool in ENVI soft-
ware. The calculation results are shown in Figure 3. Then, using the 2D multispectral
reconstruction function of the DJI mapping software, the RGB images and five single-band
images acquired by the multispectral camera were calculated to obtain four multispectral
vegetation index images. The calculation results are shown in Figure 4.

From the calculated results for each vegetation index, it can be seen that there is a
large difference in gray value between vegetation and non-vegetation, and the contrast
is obvious. In order to better compare the 10 vegetation indices, this study divided the
feature types into female parent, male parent, weed and bare land. On the calculated
vegetation index map, 10 regions of interest for each feature were selected for statistics,
and the eigenvalues of male parents and female parents were calculated. It can be seen
from Table 3 that there was little difference in the standard deviations between the male
parents and the female parents, but the average values were quite different. For the visible
light vegetation index, the average difference between the male parent and the female
parent was about 15 in the three vegetation indices, ExR, ExB and CIVE, and the ExG and
G vegetation indices were slightly higher than the first three, while the difference in the
mean values for the ExGR vegetation index is particularly obvious, reaching 74.1052. For
the four multispectral vegetation indices, the difference in average value was between 40
and 60, and the difference in average values for the LCI vegetation index among the four
multispectral vegetation indices was the largest, reaching 60.3388. In general, using the
t-test function of SPSS software, there was a significant difference (p < 0.05) between the
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information on hybrid rice parents, with excellent results for the identification of male and
female parents of hybrid rice plants with visible light and multispectral imaging.

3.2. Results and Analysis of Supervised Classification of Male and Female Parents Based on Pixels

The pixel-based supervised classification was performed according to the above
method, and the supervised classification results are shown in Figures 5 and 6.

Figure 5. Results of visible light vegetation indices. FP: Female parent; MP: Male parent; W: Weed;
BL: Bare land; P: Parallelepiped; MD1: Minimum Distance; MD2: Mahalanobis Distance;
ML: Maximum Likelihood; NNC: Neural Network Classification.
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Figure 6. Supervised classification results of multispectral vegetation indices. FP: Female par-
ent; MP: Male parent; W: Weed; BL: Bare land; P: Parallelepiped; MD1: Minimum Distance;
MD2: Mahalanobis Distance; ML: Maximum Likelihood; NNC: Neural Network Classification.

Based on the supervised classification results for the vegetation indices obtained in
Figures 5 and 6, ten samples of each of the four categories of female parent, male parent,
weed and bare land were selected as validation samples based on the visual interpretation
on the visible light images. The confusion matrix was calculated for the four types of
features to obtain the accuracy statistics for each vegetation index. The kappa coefficient
and total classification accuracy results for male and female parents are shown in Table 4. It
can be seen from Table 4 that from the classification accuracy of the visible light vegetation
index, the kappa coefficient and the total classification accuracy were generally lower than
the other three methods in the parallelepiped method and the minimum distance method.
The total classification accuracy of the parallelepiped method was the lowest, and even the
kappa coefficient reached 0.2084 in the G vegetation index. Both the maximum likelihood
method and the neural network method had better classification accuracy. The kappa
coefficient and the total accuracy of classification basically reached more than 0.9, and the
total accuracy of the ExGR index in neural network classification was the highest among
all vegetation indices, reaching 0.9599. From the classification accuracy of the multispectral
vegetation index, the classification accuracy of the four multi spectral vegetation indices
was generally low, basically between 0.5–0.8. According to the combination of visible
light vegetation index and multispectral vegetation index, the classification accuracy of
the four multispectral vegetation indices was generally lower than that of the six visible
light vegetation indices in the five classification methods, and, among the five classification
methods, the ten vegetation indices achieved better classification accuracy in the maximum
likelihood method and the neural network method. Neural network classification was used
to generate the confusion matrix. The confusion matrix calculation results for four types of
ground objects on the ExGR index with the highest classification accuracy are shown in
Table 5. It can be seen from Table 5 that there was still a misclassification phenomenon in
the vegetation index with the highest classification accuracy. Among the weeds, 3147 pixels
were wrongly classified as the female parent, accounting for 0.1316 of the total weeds.
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Table 4. Statistics for six visible light vegetation indices based on region of interest.

Vegetation
Index

Precision
Statistics P MD1 MD2 ML NNC

ExR
Kappa 0.4028 0.6417 0.8567 0.9145 0.9062

Total accuracy 0.6427 0.7534 0.9065 0.9431 0.9380

ExG
Kappa 0.5977 0.7919 0.8390 0.9117 0.9276

Total accuracy 0.7782 0.8768 0.9066 0.9476 0.9575

ExB
Kappa 0.6349 0.7063 0.8692 0.9043 0.9123

Total accuracy 0.8016 0.8140 0.9216 0.9457 0.9466

ExGR
Kappa 0.3595 0.5722 0.8983 0.9256 0.9330

Total accuracy 0.6837 0.7256 0.9402 0.9552 0.9599

G
Kappa 0.2084 0.4584 0.8368 0.8817 0.8458

Total accuracy 0.6787 0.6709 0.9145 0.9354 0.9208

CIVE
Kappa 0.4441 0.6396 0.8183 0.9206 0.8962

Total accuracy 0.6796 0.7683 0.8871 0.9519 0.9389

NDVI
Kappa 0.5607 0.6400 0.6321 0.4956 0.6873

Total accuracy 0.7742 0.7844 0.7796 0.7490 0.8251

LCI
Kappa 0.3965 0.5742 0.5942 0.6001 0.6224

Total accuracy 0.7005 0.7357 0.7502 0.7788 0.7752

NDRE
Kappa 0.4081 05448 0.5579 0.5392 0.5917

Total accuracy 0.7020 0.7135 0.7241 0.7453 0.7731

GNDVI
Kappa 0.3514 0.6179 0.6069 0.5566 0.6411

Total accuracy 0.6723 0.7664 0.7601 0.7737 0.7844
P: Parallelepiped; MD1: Minimum Distance; MD2: Mahalanobis Distance; ML: Maximum Likelihood; NNC:
Neural Network Classification.

Table 5. Confusion matrix calculation based on ExGR index.

Class Female
Parent Male Parent Weed Bare Land Total

Female
parent 93,347 2148 3147 0 98,642

Male parent 2494 29,532 145 0 32,171
Weed 333 377 20,975 65 21,150

Bare land 0 0 253 9754 10,007
Total 96,174 32,057 23,920 9819 161,970

3.3. Object-Oriented Classification Results and Analysis of the Male the Female Parents Based
on Samples

In the sample-based object-oriented approach, after merging and fusing neighbouring
objects with similar spectral, textural and geometric features into a more complete object,
the segmentation effect is shown in Figure 7. Automatic supervised classification is then
performed according to the SVM classification method. The supervised classification results
are shown in Figures 8 and 9.

Based on the vegetation index classification results obtained in Figures 8 and 9, ten
samples for each of the female and male parents were taken as the verification samples
according to the visual interpretation. The classification result and the validation set were
regarded as the true values. The confusion matrix of the real region of interest was calcu-
lated to obtain the accuracy statistics for each vegetation index. The results are shown in
Figure 10. As can be seen from Figure 10, in the sample-based object-oriented classification
method, the classification accuracy of the visible light vegetation index was still generally
higher than that of the multispectral vegetation index, but the difference between the
maximum and minimum values of the four multispectral vegetation indices was not as
large as that of the six visible light vegetation indices. In the classification accuracy of
the visible light vegetation indices, the CIVE received the lowest kappa coefficient with
only 0.6256, while the kappa coefficient of the ExGR index, with the highest classification
accuracy, reached 0.8698, and the total accuracy reached 0.9442, which is slightly lower than
the pixel-based ExGR classification accuracy. In general, the object-oriented classification
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method also showed excellent performance regarding the extraction of male and female
parents of hybrid rice.

Figure 7. Sample graph of the object-oriented image segmentation.

Figure 8. Object-oriented classification results for the visible light vegetation index. FP: Female
parent; MP: Male parent; W: Weed; BL: Bare land.

Figure 9. Object-oriented classification results for the multispectral vegetation index. FP: Female
parent; MP: Male parent; W: Weed; BL: Bare land.
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Figure 10. Accuracy comparison of the object-oriented classification methods for the ten vegetation
indexes: (a) Kappa coefficient comparison; (b) Total accuracy comparison.

4. Discussion

This study innovatively proposed to identify hybrid rice parents by UAV-based mul-
tispectral imagery analysis and realize the rapid and non-destructive identification and
extraction of hybrid rice parents. The study solved the problem of time-consuming, labor-
intensive and low-efficiency manual identification of rice parents in large-scale hybrid
rice seed production farms, improved the timeliness of monitoring, and achieved moni-
toring with comparable accuracy to and in a shorter time than manual recognition. In the
future, the results obtained through this research could be applied to unmanned smart
farm management, which promises to realize the remote monitoring of hybrid rice parent
identification, with great savings in terms of labor costs. Based on the results of this study,
we will be able to further investigate the flowering rate estimation of hybrid rice, master
the flowering habit of hybrid rice automatically and conduct a more in-depth exploration
of unmanned monitoring.

When considering crop classification based on the images obtained by UAV as the
data source, vegetation indices have been widely used to evaluate vegetation coverage
qualitatively and quantitatively, and the use of vegetation indices can greatly improve
vegetation monitoring. Wan et al. [15] used the random forest algorithm, eight common vis-
ible light vegetation indices and two multispectral vegetation indices to predict the flower
number of rapeseed. In this study, we selected six commonly used visible light vegetation
indices and four multispectral vegetation indices from the existing range of vegetation
indices. Multispectral vegetation indices were added in this work for better comparison
between the performance of multispectral vegetation indices and visible vegetation indices
in the identification of male and female parents of hybrid rice plants using differences in
spectral information.

In the selection of samples, the difference between the object-oriented classification
method and the pixel-based classification method was that it was no longer for a single
pixel but for the objects formed after image segmentation, and the objects formed after
segmentation were consistent in spatial resolution. However, the total number of pixels
in the sample was roughly the same as that of the supervised classification based on
pixels, so there were enough object-oriented samples, and the training sets used by the
two methods were the same. The training results showed that the pixel-based supervised
classification method was generally more accurate than the sample-based object-oriented
method. Therefore, in general, the supervised classification method based on pixels was
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superior to the object-oriented method based on samples in this study, and the maximum
likelihood method in the supervised classification method based on pixels was found
to be more applicable in the extraction of hybrid rice parents than the neural network
classification method. In the follow-up study, we suggest research with more training
samples to improve the classification accuracy.

In terms of algorithms, this study also proved the feasibility of the supervised clas-
sification method in the identification of male and female parents of hybrid rice. We also
used sample based object-oriented and five pixel-based supervised classification methods
to extract male and female parents of hybrid rice. By comparing various algorithms, we
can better select the optimal algorithm for identifying crops than by examining single
algorithms. Among the ten vegetation indices studied, the ExGR index had the highest
accuracy in the neural network supervised classification method. The kappa coefficient
reached 0.9330 and the total accuracy was 0.9599, which was higher than the object-oriented
classification method based on samples. Compared with the five supervised classification
methods based on pixels, the classification accuracies of the maximum likelihood method
and the neural network method were significantly higher than those of the parallel hexahe-
dron method, the minimum distance method and the Mahalanobis distance method. In
comparison, the classification accuracy of the maximum likelihood method was slightly
lower than that of neural network classification, but in terms of processing time, the classi-
fication time of the neural network method was much longer than that of the maximum
likelihood method. In practical applications, researchers can choose neural network clas-
sification with high accuracy requirements and the maximum likelihood method with
fast prediction speed through demand selection algorithms. In this study, because field
monitoring needs to reflect male and female parent information quickly and in real time,
the maximum likelihood method is more suitable for the identification of male and female
parents of hybrid rice plants.

In terms of accuracy comparison, Wang et al. [44] comprehensively evaluated the
application range and limitations of the kappa coefficient and proved the feasibility of the
kappa coefficient in a classification accuracy evaluation. In this study, the total accuracy was
added to the kappa coefficient to jointly evaluate the accuracy of classification of the male
and female parents of hybrid rice, which made up for the limitation of the kappa coefficient
in the classification accuracy and improved the reliability of the accuracy evaluation.

Jing et al. [18] used pixel-based supervised classification and object-oriented classifi-
cation to extract aquatic vegetation, in which the kappa coefficient of the object-oriented
classification method reached 0.9, which greatly improved the extraction accuracy of
aquatic vegetation. Although both pixel-based supervised classification and object-oriented
classification methods can represent the differences between different objects based on the
spectral information and spatial information of the objects in the supervised classification
method, it should be pointed out that in this study the male and female parents of rice
plants showed similar spectral information to weeds. The selection of male parent, female
parent and weed samples was more difficult than the selection of aquatic plants, which
may eventually have led to misclassification across the three categories. In particular, the
proportion of weeds wrongly classified as female parents was quite large, resulting in a
decrease in the overall classification accuracy of sample-based object-oriented classification.

5. Conclusions

In this study, we propose a method for the identification and extraction of hybrid rice
parents based on UAV remote sensing images for the needs of hybrid rice seed production.
In the calculation of the separation degree of the male parent and the female parent, a good
separation degree close to 1.9 was obtained. Six kinds of visible light vegetation indices
and four multispectral vegetation indices, which were excellent regarding the parental
information on hybrid rice in previous studies, were selected. In terms of algorithms,
pixel-based supervised classification was found to be more suitable for hybrid rice parent
identification than the sample-based object-oriented classification pair, and the ExGR
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index had the highest accuracy in neural network supervised classification, with a kappa
coefficient of 0.9330 and a total accuracy of 0.9599. At present, misclassification still exists
in the classification process, and weeds are misclassified as female parents. In general, this
study used the spectral information of male and female parents on the vegetation index
to provide a useful reference for the utilization of UAV remote sensing images to identify
male and female parents of hybrid rice plants. The aim of our overall study is to explore the
cultivar-free relations of flowering under spectral responses. In our future work, we will
further extend the research to multiple rice cultivars to develop and validate the model’s
generalization capabilities with respect to unknown rice cultivars.
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