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Abstract: This paper analyzes the security of the image encryption algorithm based on a two-
dimensional (2D) infinite collapse map. The encryption algorithm adopts a permutation–diffusion
structure and can perform two or more rounds to achieve a higher level of security. By cryptanalysis, it
is found that the original diffusion process can be split into a permutation–diffusion structure, which
comes after the original permutation, so these two permutations can be merged into one. Then, some
theorems about round-down operation are summarized, and the encryption and decryption equations
in the diffusion process are deduced and simplified accordingly. Since the chaotic sequences used
in encryption algorithm are independent of the plaintext and ciphertext, there are equivalent keys.
The original encryption algorithm with single-round, two-round, and multi-round of permutation–
diffusion processes is cracked, and the data complexity of the cryptanalysis attacks is analyzed.
Numerical simulation is carried out by MATLAB, and the experimental results and theoretical analysis
show the effectiveness of the cryptanalysis attacks. Finally, some suggestions for improvement are
given to overcome the shortcomings of the original encryption algorithm.

Keywords: chaotic image encryption; cryptanalysis; 2D infinite collapse map; equivalent key

1. Introduction

Advances in information and network technology have facilitated the rapid devel-
opment of the Internet in providing the technical foundation, and the Internet is deeply
integrated into all aspects of human life. Accompanying this is a variety of data forms and
massive amounts of data generated every day. Since these data are closely linked with user
information, their protection is particularly important. Digital image data are an important
carrier of information, and has occupied a large part in the process of network transmission.
Encrypting images is an important means to ensure image security.

Image data have the characteristics of strong correlation between pixels, high data
redundancy, and large amount of data. The traditional text encryption algorithms such
as DES and AES are not suitable for image encryption. In recent years, image encryption
based on chaotic systems [1–7], cellular automata [8–12], DNA encoding [13–15], bit plane
decomposition [16–21], and elliptic curve [22–26] is the mainstream of cryptography. Due
to the significant properties of unpredictability, ergodicity and initial state sensitivity, the
chaotic system becomes a good choice for encryption [27]. However, the chaotic sequence
is transformed to a bit sequence to encrypt the plaintext in most chaotic image encryptions.
The security of the encryption is thus determined by the properties of the bit sequence.
Moreover, the essential reason for the chaotic cryptosystem easily existing equivalent
keys is that the encryption process is independent of plaintext and/or ciphertext. In
addition, elliptic curve cryptography is capable of providing high security than to other
cryptosystems with the same key size because it is more complicated and requires a deeper
mathematical understanding; it is more susceptible to errors which diminishes its security.

Since Matthews proposed a generalized logistic map and used it to generate pseudo-
random numbers for data encryption [28], a large number of scholars have poured into
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using chaotic systems to design and implement novel image encryption schemes. In
1998, Fridrich [29] first proposed a chaotic image encryption scheme with multi-round of
permutation–diffusion processes, which gradually became the main operation in chaotic
image encryption algorithms. In 2015, Simin Yu reviewed the current situation and existing
problems of the theory and application of chaotic cryptography, the literature [30] focused
on the progress of high-dimensional chaotic cryptography and its application in multimedia
secure communication and hardware implementation technology. In 2018, Özkaynak
reported various chaotic image encryption algorithms proposed in the past 20 years. The
chaotic systems, diffusion operations, and analysis methods commonly used in chaotic
image encryption algorithms are classified and summarized in detail [31]. Overall, the
chaotic encryption algorithm with a multi-round of permutation–diffusion processes offers
cryptographic properties better than those with a single-round of permutation–diffusion
processes, and it can resist against the chosen-plaintext attacks.

Cryptography and cryptanalysis are the unity of opposites, and they promote each
other and develop together. Through cryptanalysis, the defects of cryptographic algorithm
can be pointed out and the suggestions for improvement are given. Cryptanalysis is based
on the Kerchhoff’s principle; a cryptographic system should be secure even if everything
about the system, except the key, is public knowledge. The attacker can get the plaintext
or even the encryption key through the obtained plaintext/ciphertext pair. In cryptology,
the basic models are named after the generally defined attacks such as ciphertext-only
attack, known-plaintext attack, chosen-plaintext attack, and chosen-ciphertext attack. Many
analysis methods can be classified into the above four methods. In recent years, linear
attack and differential attack [32] have been proposed one after another, which have a
great impact on cryptanalysis. Many new analysis methods are variants of these two
methods [33].

At present, there are some analytical articles on a multi-round image encryption
algorithm. In 2010, Solak et al. proposed a chosen-ciphertext attack on the Fridrich’s
scheme for the first time [34]. Some bases for further optimizing attack on the Fridrich’s
scheme and its variants are provided in [35]. In 2015, Chen et al. analyzed an encryption
algorithm with a multi-round of permutation–diffusion structure [36], and proposed a
differential cryptanalysis method for two-round and multi-round [37]. However, due to the
special permutation operation adopted by the original encryption algorithm, the analysis for
multi-round is not universal; in 2016, they proposed a method of chosen-ciphertext attack,
and verified the adaptability of this attack method by analyzing several common diffusion
equations [38]. In 2021, a multi-round chaotic image encryption algorithm was analyzed
in [39]. The original encryption algorithm adopts multiple permutations and one diffusion,
and repeats them multiple rounds. Multiple consecutive permutations are equivalent to
one permutation. Since the diffusion operation only uses XOR without ciphertext feedback,
the diffusion part can be separated from the permutation part. Therefore, it can be cracked
by simplifying it into one round of permutation–diffusion. In the same year, Chen et
al. mathematically summarized and expressed a class of chaotic image cryptosystems
based on a multi-round of permutation–diffusion structure [37,38], and proposed a chosen-
ciphertext attack method for this kind of encryption algorithm [40,41]. It is noted that the
cryptanalysis algorithms in the existing literature are mainly aimed at the single-round
encryption and some multi-round encryptions, which also can be directly equivalent to
single-round encryption after simplification.

In this paper, a security analysis of the image encryption algorithm based on a 2D
infinite collapse map proposed in [42] is carried out. According to the analysis, the en-
cryption algorithm has one permutation operation in the diffusion process. Therefore, its
structure is actually a permutation–permutation–diffusion structure, and two permutation
operations can be equivalent to one permutation operation. In addition, this paper deduces
the rules of round-down operation, and then gives the correct diffusion decryption equa-
tion. Since the chaotic sequences used in the encryption algorithm are independent of the
plaintext and ciphertext, there are equivalent keys. This paper analyzes and discusses the
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single-round, two-round and multi-round situations, provides the attack complexity, and
gives the corresponding improvement suggestions to overcome the shortcomings of the
original encryption algorithm. The main advantage of this paper is that a detailed security
analysis of a more complex multi-round encryption algorithm is carried out, and the main
difference between this multi-round encryption and the previous multi-round encryption
methods is that the multi-round encryption cannot be directly equivalent to a single-round
of encryption. Therefore, the cryptanalysis methods in the existing literature cannot be
directly used to crack this multi-round encryption algorithm.

The remainder of this article is organized as follows: Some definitions and related
theorems are provided in Section 2. Section 3 presents the detail of the original encryption
algorithm, and gives the correct decryption equation. An analysis of the encryption
algorithm is demonstrated in detail in Section 4. Section 5 mainly introduces the numerical
simulation experiments carried out by MATLAB. The experimental results verify the
correctness of the cryptanalysis, and at the same time, the complexity of the deciphering
algorithms is given, and corresponding improvement measures are proposed to overcome
the shortcomings of the original encryption algorithm. The last section concludes the article.

2. Some Definitions and Related Theorems

In order to better analyze the original encryption algorithm, it is first necessary to
simplify the original algorithm. According to the formula used in the original algorithm,
some preliminaries are given to aid the subsequent theoretical analysis. The definitions
and properties of round-down operation b·c, the operation {·} for finding the fractional
part of a real number, and the modulus operator are introduced, and three theorems about
these operations are deduced in this section.

Definition 1 ([43]). The largest integer of a real number a is recorded as bac, which is the largest
integer less than or equal to a, that is, bac is the integer satisfying bac ≤ a < bac+ 1.

Definition 2 ([43]). The fractional part of the real number a is recorded as {a}, which is the
difference between a and bac, that is, {a} = a− bac.

Property 1. a = bac+ {a}, 0 ≤ {a} < 1.

Property 2. bn + ac = n + bac, {n + a} = {a}, n ∈ Z.

Theorem 1. For any real numbers a and b, there are

ba + bc =
{
bac+ bbc 0 ≤ {a}+ {b} < 1,
bac+ bbc+ 1 1 ≤ {a}+ {b} < 2.

Proof.

ba + bc = b(bac+ {a}) + (bbc+ {b})c (Property 1)
= bbac+ bbc+ ({a}+ {b})c
= bac+ bbc+ b{a}+ {b}c. (bac+ bbc ∈ Z, Property 2).

From Property 1, we know 0 ≤ {a} < 1, 0 ≤ {b} < 1, so 0 ≤ {a}+ {b} < 2.
When 0 ≤ {a}+ {b} < 1, b{a}+ {b}c = 0, then ba + bc = bac+ bbc.
When 1 ≤ {a}+ {b} < 2, b{a}+ {b}c = 1, then ba + bc = bac+ bbc+ 1.

Theorem 2. For any real numbers a and b, there are

ba− bc =
{
bac − bbc 0 ≤ {a} − {b} < 1,
bac − bbc − 1 −1 < {a} − {b} < 0.
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Proof.

ba− bc = b(bac+ {a})− (bbc+ {b})c (Property 1)
= bbac − bbc+ ({a} − {b})c
= bac − bbc+ b{a} − {b}c. (bac − bbc ∈ Z, Property 2)

From Property 1, we know 0 ≤ {a} < 1, 0 ≤ {b} < 1, so −1 < {a} − {b} < 1.
When 0 ≤ {a} − {b} < 1, b{a} − {b}c = 0, then ba− bc = bac − bbc.
When −1 < {a}+ {b} < 0, b{a} − {b}c = −1, then ba− bc = bac − bbc − 1.

Definition 3 ([44]). The modular operation returns the remainder after a real number is divided
by a positive integer, and often abbreviated as mod :

Property 3.
(a mod 256) mod 256 = a mod 256, a ∈ R.

Property 4.

(a + b) mod 256 = ((a mod 256) + (b mod 256)) mod 256, a, b ∈ R.

Theorem 3.
ba mod 256c = bac mod 256, a ∈ R.

Proof. Assuming b = a mod 256, the corresponding inverse operation is a = 256× k + b,
where a, b ∈ R, k ∈ Z and 0 ≤ b < 256, so ba mod 256c = bbc and

bac mod 256 = b256× k + bc mod 256

= (256× k + bbc) mod 256 (256× k ∈ Z, Property 2)

= bbc. (0 ≤ bbc < 256, Definition 3)

ba mod 256c = bbc = bac mod 256 is proved.

3. Description of the Original Encryption Algorithm

In this section, the chaotic map used in [42] is first introduced, and then the original
encryption algorithm is described in detail.

3.1. Two-Dimensional Infinite Collapse Map (2D-ICM)

The chaotic system 2D-ICM used in the original encryption algorithm is a two-
dimensional infinite collapse map obtained by integrating two one-dimensional infinite
collapse maps with different parameters [42], and its iterative equation isxn+1 = sin

(
a

yn

)
· sin

(
b

xn

)
,

yn+1 = sin
(

a
xn

)
· sin

(
b

yn

)
,

(1)

where the control parameters a and b are real numbers, a 6= 0, b 6= 0, and the initial states
are recorded as x0, y0.

3.2. 2D-ICM Based Image Encryption Algorithm (ICMIE)

According to [42], it proposed a new image encryption algorithm based on 2D-ICM
and named it ICMIE. The original algorithm ICMIE is described as follows:
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(1) Key parameters

There are seven key parameters in the original algorithm. The key K is expressed as
a0, b0, x, y, T, C1, C2, and the first five parameters a0, b0, x, y, T are 40-bit binary representa-
tion. Assuming that the 40-bit binary is (s1s2 · · · s40)2, the IEEE754 format

d =
∑40

i=1si240−i

240 (2)

is adopted to convert a0, b0, x, y, T into decimal numbers in [0, 1), then C1 and C2 are positive
integers represented by 20-bit binary, and they are converted into decimal numbers directly.
Substitute the converted decimal a0, b0, x, y, T, C1, C2 into the following equation:

a = (a0 + T × C1) mod 5 + 16,
b = (b0 + T × C2) mod 5 + 16,
x0 = (x + T × C1) mod 2− 1,
y0 = (y + T × C2) mod 2− 1.

(3)

The initial conditions a, b, x0, y0 of 2D-ICM can be obtained.

(2) Encryption process

The original algorithm divides the encryption process into permutation and diffusion,
and then performs two or more rounds of permutation and diffusion as a whole. In fact,
the diffusion process of the original algorithm also includes a permutation operation. In
order to distinguish, the first permutation operation is named permutation 1 and the
second permutation operation is named permutation 2. The grayscale image P of M× N is
encrypted, and the ciphertext image C of the same size is finally generated. The overall
encryption process is shown in Figure 1.

Index 

 matrix 

Chaotic matrices 

Initial 

condition
2D-ICM

0 0, , ,a b x y

,X Y

X Y

S

I

X

P F D

 0 0 1 2, , , , , ,K a b x y T C C=

K

Plaintext image

P

Ciphertext image

C
Permutation 1 DiffusionPermutation 2

A

240bits key

Index 

 matrix  

Y



2 rounds

Figure 1. The algorithmic structure for ICMIE.

The specific encryption steps are described as follows:
(1) Permutation
First, two chaotic matrices X and Y of M× N are generated by 2D-ICM. The matrix S

is combined into a single matrix S = X ∗Y by multiplying the corresponding elements of
X and Y. The index matrix I is composed of the position of each element in the original
matrix S after sorting S in ascending order. Then, the pixel positions of the plaintext image
P are rearranged by using the index matrix I to obtain the permutation 1 image F.

(2) Diffusion
First, the index matrix χ is composed of the corresponding positions of all elements of

the chaotic matrix X in its ascending order. Then, the pixel positions of the permutation
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1 image F are arranged again by the index matrix χ to obtain a new permutation 2 image A.
Finally, the pixel values of the diffusion image D are obtained by the following method:

di =

{⌊(
ai + aM×N + |yi| ×

(
231 − 1

))
mod 256

⌋
if i = 1,⌊(

ai + di−1 + |yi| ×
(
231 − 1

))
mod 256

⌋
if i ∈ [2, M× N],

(4)

where i = 1, 2, . . . , M× N, then di, ai and yi are the pixel values of the i-th element of the
diffusion image D, the permutation 2 image A and the chaotic matrix Y according to the
raster scan order, respectively.

(3) Repeat steps (1) and (2) to achieve multi-round encryption.

(3) Decryption process

Usually, the decryption process is the inverse of the image encryption process. Using
the correct key to generate the chaotic matrices X and Y, the decryption process of ICMIE
will alternately perform the inverse diffusion and inverse permutation in two rounds
or multiple rounds, and then obtain the recovered image. The decryption equation in
the diffusion process is incorrect. When i ∈ [2, M× N], according to the encryption
Equation (4),

di =
⌊(

ai + di−1 + |yi| ×
(

231 − 1
))

mod 256
⌋

,

di =
⌊(

ai + di−1 + |yi| ×
(

231 − 1
))⌋

mod 256, (Theorem 3)

di + 256× ki =
⌊(

ai + di−1 + |yi| ×
(

231 − 1
))⌋

, (Definition 3)

di + 256× ki = ai + di−1 +
⌊(
|yi| ×

(
231 − 1

))⌋
, (Property 2)

ai = di + 256× ki − di−1 −
⌊(
|yi| ×

(
231 − 1

))⌋
,

ai mod 256 =
(

di + 256× ki − di−1 −
⌊(
|yi| ×

(
231 − 1

))⌋
) mod 256 ,

ai =
((

di − di−1 −
⌊(
|yi| ×

(
231 − 1

))⌋)
mod 256

)
mod 256, (Property 4)

ai =
(

di − di−1 −
⌊(
|yi| ×

(
231 − 1

))⌋)
mod 256, (Property 3)

ai =
⌊

di − di−1 −
(
|yi| ×

(
231 − 1

))
+ 1
⌋

mod 256, (Theorem 2)

where ki ∈ Z(i = 2, 3, · · · , M × N). Similarly, ai can be obtained when i = 1, and the
correct decryption equation is finally derived as

ai =

{⌊(
di − di−1 −

(
|yi| ×

(
231 − 1

))
+ 1
)

mod 256
⌋

if i ∈ [2, M× N],⌊(
di − aM×N −

(
|yi| ×

(
231 − 1

))
+ 1
)

mod 256
⌋

if i = 1.
(5)

Then, the pixel positions of the ciphertext image will be processed by inverse permu-
tation. The original image is completely recovered.

4. Cryptanalysis

The generation process of the chaotic sequences and the encryption process of the orig-
inal algorithm are independent of the plaintext and the ciphertext, so there are equivalent
keys. Firstly, the core structure of the original encryption algorithm (i.e., the permutation–
permutation–diffusion structure) is generalized, then the diffusion equation is isolated,
and the two permutation processes are merged into one permutation. Next, the original
encryption algorithm is analyzed in terms of single-round, two-round, and multi-round.

The original encryption algorithm can be summarized as a multi-round of permutation–
diffusion processes as shown in Figure 2.
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Plaintext image

P

Ciphertext image

C
Permutation Diffusion

Permutation 

equivalent key

Diffusion 

equivalent key

( )t
P

( )t
A

( )t
D

KP KD

roundsn

Figure 2. The block diagram of n-round chaotic image encryption.

In Figure 2, KP and KD represent the permutation equivalent key and the diffusion
equivalent key, respectively. P represents plaintext image and C represents ciphertext
image. n represents the total number of rounds of encryption, and

P(t) =

{
P t = 1,
D(t−1) t ∈ [2, n],

where P(t), A(t), and D(t) represent the plaintext image, the permutation image, and
diffusion image encrypted in the t-th round, respectively. Taking the feedback apart, it can
be shown in Figure 3.

Permutation 

Ciphertext image
Diffusion Permutation 

Diffusion 

Permutation Diffusion 

( )1
A

( )t
A ( )n

A

( )1
P P=

( )2
A

( )1
D

( ) ( )2 1
P D=

( ) ( )1t t
P D

−
= ( )t

D
( ) ( )1n n

P D
−

= ( )n
D

( )n
C D=

Plaintext image

P
Permutation 

Figure 3. The block diagram of n-round chaotic image encryption without feedback.

In Figure 3, P(t) = D(t−1), that is, the diffusion image encrypted in the previous round
is the plaintext image encrypted in the subsequent round. For plaintext image P and
ciphertext image C, there are P(1) = P and C = D(n).

For the convenience of the following discussion, some definitions are given here.
P(t)

i , A(t)
i , D(t)

i respectively represent the i-th plaintext image, permutation image, and
diffusion image in the t-th round. The size of the images discussed in this paper are all
M× N.

4.1. Simplification of ICMIE

Since the two permutations are independent of plaintext, they can be equivalent to
one permutation operation. The equivalent key KP of the two permutation operations
from plaintext image P to permutation image A can be obtained directly in one step. The
diffusion equivalent key KD can be obtained from the permutation image A to the diffusion
image D.
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The original diffusion encryption Equation (4) is deduced and the following equation
is obtained. When i ∈ [2, M× N], according to Theorem 1, there is

di =
⌊(

ai + di−1 + |yi| ×
(

231 − 1
))

mod 256
⌋

=
⌊

ai + di−1 + |yi| ×
(

231 − 1
)⌋

mod 256 (Theorem 3)

=
(

ai + di−1 +
⌊
|yi| ×

(
231 − 1

)⌋)
mod 256 (Property 2)

=
(

ai + di−1 +
⌊
|yi| ×

(
231 − 1

)⌋
mod 256

)
mod 256 (Property 4)

= (ai + di−1 + ŷi) mod 256,

(6)

where ŷi =
(⌊
|yi| ×

(
231 − 1

)⌋)
mod 256.

Likewise, when i = 1,

d1 = (a1 + aM×N + ŷ1) mod 256, (7)

where ŷ1 =
(⌊
|y1| ×

(
231 − 1

)⌋)
mod 256.

In order to facilitate the analysis, u is defined to represent the modular addition that
is, the two elements are added and then modulo 256. Correspondingly, −̇ represents the
modular subtraction, that is, the two elements are subtracted and then modulo 256. From
Equations (6) and (7),

di =

{
ai u aM×N u ŷi if i = 1,
ai u di−1 u ŷi if i ∈ [2, M× N],

(8)

where ŷi =
(⌊
|yi| ×

(
231 − 1

)⌋)
mod 256.

4.2. Security Analysis of Encryption in Single-Round

First, let P0 be an all-zero image, then the pixel value will not be changed after
permutation. Therefore, the element values of the permutation image A0 are all 0. The
image D0 is obtained according to the encryption algorithm. According to Equation (8),
one has

di =

{
ŷi if i = 1,
di−1 u ŷi if i ∈ [2, M× N],

(9)

and

ŷi =

{
di if i = 1,
di − di−1 + 256ki if i ∈ [2, M× N],

(10)

where ki ∈ Z(i = 2, 3, · · · , M× N).
Because ŷi and di perform modulo 256 operation,
ŷi ∈ {0, 1, 2, · · · , 255}, di − di−1 ∈ {−255,−254, · · · , 254, 255}(i = 2, 3, · · · , M× N),

so

ŷi =


di if i = 1,
di − di−1 + 256 if i ∈ [2, M× N]and(di − di−1) < 0,
di − di−1 if i ∈ [2, M× N]and(di − di−1) ≥ 0.

(11)
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In other words, substitute the pixel value of D0 to obtain ŷi by Equation (11), then make
kdi = ŷi(i = 1, 2, · · · , M× N) to get the equivalent key KD = kd1kd2 · · · kdM×N . Next,
according to Theorem 3, the diffusion decryption from Equation (5), one can further obtain

ai =

{⌊
di−̇di−1−̇

(
|yi| ×

(
231 − 1

))
u 1
⌋

if i ∈ [2, M× N],⌊
di−̇aM×N−̇

(
|yi| ×

(
231 − 1

))
u 1
⌋

if i = 1.

=

{⌊
(di−̇di−1 u 1)−̇

(
|yi| ×

(
231 − 1

))⌋
if i ∈ [2, M× N],⌊

(di−̇aM×N u 1)−̇
(
|yi| ×

(
231 − 1

))⌋
if i = 1.

(12)

Because di−̇di−1 u 1, di−̇aM×N u 1 ∈ Z, it means {di−̇di−1 u 1} = 0
and {di−̇aM×N u 1} = 0, then {di−̇di−1 u 1}−̇

{
|yi| ×

(
231 − 1

)}
< 0 and

{di−̇aM×N u 1}−̇
{
|yi| ×

(
231 − 1

)}
< 0. According to Theorem 2 and Property 2,

ai =

{
bdi−̇di−1 u 1c−̇

⌊
|yi| ×

(
231 − 1

)⌋
−̇1 if i ∈ [2, M× N],

bdi−̇aM×N u 1c−̇
⌊
|yi| ×

(
231 − 1

)⌋
−̇1 if i = 1,

=

{
di−̇di−1 u 1−̇

⌊
|yi| ×

(
231 − 1

)⌋
−̇1 if i ∈ [2, M× N],

di−̇aM×N u 1−̇
⌊
|yi| ×

(
231 − 1

)⌋
−̇1 if i = 1,

=

{
di−̇di−1−̇ŷi if i ∈ [2, M× N],
di−̇aM×N−̇ŷi if i = 1,

(13)

where ŷi =
(⌊
|yi| ×

(
231 − 1

)⌋)
mod 256.

The permutation image A corresponding to the ciphertext image C can be cracked
by substituting the equivalent key KD (i.e., ŷi = kdi(i = 1, 2, · · · , M× N)) obtained from
all-zero plaintext and di(i = 1, 2, · · · , M× N) according to Equation (13). Because the
specific ciphertext C is known, then the diffusion image D = C, so di(i = 1, 2, · · · , M× N)
is known.

Since the two permutations are independent of the plaintext, they can be equivalent to
one permutation, and the permutation operation only changes the coordinate position of
the pixel without changing the pixel value, so that only the coordinate position of the pixel
in the permutation image A is changed. Therefore, the equivalent permutation key KP can
be solved by comparing the pixel pairs of the plaintext images and the permutation images.
Next, the optimal chosen-plaintext attack is used [45], and the steps are as follows:

Step 1: Construct a data matrix U with the same size as the image P, uj is the value of
the j-th element of the matrix U obtained in raster scan order. The nonnegative integers
0, 1, · · · , M× N − 1 are successively written into the data matrix U according to the raster
scan order by uj = j− 1(j = 1, 2, 3, . . . , M× N).

Step 2: Calculate the number of selected plaintexts l =
⌈
log256(M× N)

⌉
, where d·e is

the round-up operation. In addition, create l plaintext images P1, P2, · · · , Pl .
Step 3: Use U to write the value into P1, P2, · · · , Pl . The writing rule of the j-th element

pi,j obtained from the i-th plaintext image in raster scan order is

pi,j =
⌊(

uj/256i−1
)

%256
⌋

, (14)

where i = 1, 2, 3, . . . , l and j = 1, 2, 3, . . . , M× N.
After constructing the plaintext through the above steps, l plaintext images

P1, P2, · · · , Pl are successively input into the encryptor to obtain the corresponding ci-
phertext images C1, C2, · · · , Cl , respectively. Then, according to the obtained equivalent
diffusion key KD, inverse diffusion is carried out to obtain A1, A2, · · · , Al , respectively,
and these images are combined into a data matrix V. The consolidation rule is

V =
l

∑
i=1

(
Ai × 256i−1

)
, (15)



Entropy 2022, 24, 1023 10 of 25

where i = 1, 2, 3, . . . , l. By comparing the position difference between the data matrix U
and the data matrix V with the same pixel value, the equivalent permutation key KP used
in permutation can be obtained.

4.3. Cryptanalysis of Two-Round Encryption

Two-round encryption is analyzed here by the combination of the differential attack
and the chosen-plaintext attack.

Firstly, the encryption algorithm is deduced by differential analysis. According to
Equation (8),

d1 = aM×N u a1 u ŷ1,
d2 = aM×N u a1 u a2 u ŷ1 u ŷ2,

...
dj = aM×N u a1 u a2 u . . . u aj u ŷ1 u ŷ2 u . . . u ŷj,

...
dM×N = aM×N u a1 u a2 u . . . u aM×N u ŷ1 u ŷ2 u . . . u ŷM×N .

(16)

Now use a(t)i,j , d(t)i,j (t = 1, 2, 3, . . . , n, i = 0, 1, 2, · · · and j = 1, 2, 3, . . . , M× N) to repre-
sent the j-th element of the i-th permutation image and diffusion image in the raster scan
order in the t-th round of encryption, respectively. Then, the j-th element in raster scan
order in two different diffusion images D(t)

k and D(t)
l encrypted in the t-th round can be

expressed as

d(t)k,j = a(t)k,M×N u a(t)k,1 u a(t)k,2 u . . . u a(t)k,j u ŷ1 u ŷ2 u . . . u ŷj (17)

and
d(t)l,j = a(t)l,M×N u a(t)l,1 u a(t)l,2 u . . . u a(t)l,j u ŷ1 u ŷ2 u . . . u ŷj (18)

Let ∆D(t)
k−l = D(t)

k −̇D(t)
l , the difference ∆d(t)k−l,j = d(t)k,j −̇d(t)l,j of the j-th element of the

t-th round of diffusion images D(t)
k and D(t)

l in the raster scan order can be obtained,
which is

∆d(t)k−l,j =
(

a(t)k,M×N u a(t)k,1 u a(t)k,2 u . . . u a(t)k,j

)
−̇
(

a(t)l,M×N u a(t)l,1 u a(t)l,2 u . . . u a(t)l,j

)
. (19)

Let 

∆a(t)k−l,M×N = a(t)k,M×N−̇a(t)l,M×N ,

∆a(t)k−l,1 = a(t)k,1−̇a(t)l,1 ,
...

∆a(t)k−l,j−1 = a(t)k,j−1−̇a(t)l,j−1,

∆a(t)k−l,j = a(t)k,j −̇a(t)l,j ,

and there is
∆d(t)k−l,j = ∆a(t)k−l,M×N u ∆a(t)k−l,1 u ∆a(t)k−l,2 u . . . u ∆a(t)k−l,j. (20)

It can be seen from the previous analysis that P(t) = D(t−1), so there is ∆P(t)
k−l =

∆D(t−1)
k−l and ∆A(t)

k−l = fKP

(
∆P(t)

k−l

)
= fKP

(
∆D(t−1)

k−l

)
, where fKP(·) is the permutation

operation on the matrix. Now, let a(t)i,j = fkph

(
p(t)i,h

)
, where j = 1, 2, . . . , M × N, h =

1, 2, . . . , M× N, and then, j = kph and h = kp−1
j are permutation pairs. a(t)i,j = fkph

(
p(t)i,h

)
indicates that the j = kph-th element a(t)i,j of the i-th permutation image A(t)

i encrypted in
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the t-th round according to the raster scan order is replaced by the h = kp−1
j -th element

p(t)i,h of the i-th plaintext image P(t)
i encrypted in the t-th round according to the raster scan

order. Thus, the difference of the j-th element between the permutation image A(t)
k and

A(t)
l encrypted in the t-th round is

∆a(t)k−l,j = a(t)k,j −̇a(t)l,j

= fkph

(
p(t)k,h

)
−̇ fkph

(
p(t)l,h

)
= fkph

(
p(t)k,h−̇p(t)l,h

)
= fkph

(
∆p(t)k−l,h

)
= fkph

(
∆d(t−1)

k−l,h

)
,

(21)

where ∆p(t)k−l,h = p(t)k,h−̇p(t)l,h .
The flow chart for cracking the two-round encryption is shown in Figure 4. The

following is a detailed introduction to the two-round encryption cracking algorithm. It
should be pointed out that this method is only for the case of two-round encryption with
the same permutation matrix.

Step 1: Construct an all-zero plaintext image as P0 of M×N for cracking the ciphertext
image C of M × N, then construct a plaintext image set {P1, P2, . . . , PM×N}, let the k-th
element in Pk(k ∈ {1, 2, . . . , M× N}) according to the raster scan order be 1 and the rest be
0, and this means

P1 =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

,P2 =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

,· · · ,PM×N =


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1

.

Step 2: According to Equation (20), the difference relationship between the diffusion
images D(2)

k and D(2)
0 from their M × N-th to the first element encrypted in the second

round is

∆d(2)k,M×N = ∆a(2)k,M×N u ∆a(2)k,1 u ∆a(2)k,2 u . . . u ∆a(2)k,M×N−2 u ∆a(2)k,M×N−1 u ∆a(2)k,M×N ,

∆d(2)k,M×N−1 = ∆a(2)k,M×N u ∆a(2)k,1 u ∆a(2)k,2 u . . . u ∆a(2)k,M×N−2 u ∆a(2)k,M×N−1,

∆d(2)k,M×N−2 = ∆a(2)k,M×N u ∆a(2)k,1 u ∆a(2)k,2 u . . . u ∆a(2)k,M×N−2,
...

∆d(2)k,2 = ∆a(2)k,M×N u ∆a(2)k,1 u ∆a(2)k,2 ,

∆d(2)k,1 = ∆a(2)k,M×N u ∆a(2)k,1 .

(22)

Modular subtraction of each element from its next adjacent element as

∆d(2)k,M×N−̇∆d(2)k,M×N−1 = ∆a(2)k,M×N ,

∆d(2)k,M×N−1−̇∆d(2)k,M×N−2 = ∆a(2)k,M×N−1,

∆d(2)k,M×N−2−̇∆d(2)k,M×N−3 = ∆a(2)k,M×N−2,
...

∆d(2)k,2 −̇∆d(2)k,1 = ∆a(2)k,2 ,

∆d(2)k,1 u ∆d(2)k,M×N−1−̇∆d(2)k,M×N = ∆a(2)k,1 .

(23)
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Input P0 and the plaintext image set P1, P2, . . . , PM×N into the encryption algorithm
in turn, and obtain the corresponding ciphertext image C0 and C1, C2, . . . , CM×N after
two-round encryption, where D(2)

0 = C0, D(2)
1 = C1, . . . , D(2)

M×N = CM×N . Perform mod-

ular subtraction operation on each pixel value in D(2)
1 , D(2)

2 , . . . , D(2)
M×N from each pixel

value in D(2)
0 to obtain ∆D(2)

1 , ∆D(2)
2 , ∆D(2)

3 , . . . , ∆D(2)
M×N . According to Equation (23),

∆A(2)
1 , ∆A(2)

2 , ∆A(2)
3 , . . . , ∆A(2)

M×N are obtained, then the sum of all elements of the above

matrices can be calculated as
M×N

∑
j=1

∆a(2)1,j ,
M×N

∑
j=1

∆a(2)2,j , . . . ,
M×N

∑
j=1

∆a(2)M×N,j.

Step 3: Because the permutation operation does not change the sum of the element val-

ues in the matrix, so
M×N

∑
j=1

∆d(1)1,j =
M×N

∑
j=1

∆a(2)1,j ,
M×N

∑
j=1

∆d(1)2,j =
M×N

∑
j=1

∆a(2)2,j , . . . ,
M×N

∑
j=1

∆d(1)M×N,j =

M×N
∑

j=1
∆a(2)M×N,j.

According to Equation (20), one can obtain

∆d(1)k,1 = ∆a(1)k,M×N u ∆a(1)k,1 ,

∆d(1)k,2 = ∆a(1)k,M×N u ∆a(1)k,1 u ∆a(1)k,2 ,
...

∆d(1)k,j = ∆a(1)k,M×N u ∆a(1)k,1 u ∆a(1)k,2 u . . . u ∆a(1)k,j ,
...

∆d(1)k,M×N = ∆a(1)k,M×N u ∆a(1)k,1 u ∆a(1)k,2 u . . . u ∆a(1)k,M×N−2 u ∆a(1)k,M×N−1 u ∆a(1)k,M×N .

(24)

From Equation (21), it can be seen that ∆a(1)k,j = fkph

(
∆p(1)k,h

)
= fkph

(∆pk,h) because
∆pk,h = pk,h−̇p0,h = pk,h. From the properties of the plaintext image P0 and the constructed
plaintext image set {P1, P2, . . . , PM×N}, one has

∆pk,h =

{
1 if h = k,
0 if h 6= k,

(25)

where k = 1, 2, . . . , M× N.
Because h and kph are a permutation pair, when h = k, k and kpk are a permutation

pair. That is, if pk,k is permuted by a(1)k,kpk
, a(1)k,kpk

= pk,k = 1, then there is

∆a(1)k,j =

{
1 j = kpk,
0 j 6= kpk,

where kpk = 1, 2, . . . , M× N, which is substituted into Equation (24), one can obtain

kpk =



1 if
M×N

∑
j=1

∆a(2)k,j = M× N,

M× N if
M×N

∑
j=1

∆a(2)k,j = M× N + 1,

M× N + 1−
M×N

∑
j=1

∆a(2)k,j if
M×N

∑
j=1

∆a(2)k,j 6= M× Nand
M×N

∑
j=1

∆a(2)k,j 6= M× N + 1.

(26)

According to
M×N

∑
j=1

∆a(2)1,j ,
M×N

∑
j=1

∆a(2)2,j , . . . ,
M×N

∑
j=1

∆a(2)M×N,j obtained in the previous step,

the equivalent permutation key KP used for position permutation can be obtained from
the above equation.
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Figure 4. The flow chart for cracking the two-round encryption.
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Step 4: If the image to be cracked is C, C0 is the ciphertext image corresponding to
the all-zero plaintext. Let ∆C = C−̇C0, then ∆D(2) = ∆C. According to Equation (23),
the adjacent two elements are modular subtracted to obtain ∆A(2), and the equivalent
permutation key KP is used to obtain ∆D(1). Similarly, ∆A(1) and ∆P = ∆P(1) can be
obtained. Because P0 is all-zero plaintext, so the deciphered plaintext is P = P−̇P0 = ∆P.

4.4. Security Analysis of Multi-Round Encryption

The chosen-ciphertext attack method was proposed in [38], which can crack the
diffusion operation with ciphertext feedback and different permutation matrices in each
round. The applicability of this method was summarized and demonstrated in detail
in [40,41]. However, the above literature mainly gave this method for the case without
feedback, and then extended it to the case with feedback directly. Through the detailed
derivation of the encryption process, the steps of the attack method to crack the case with
ciphertext feedback are given in this section. It is not only helpful for understanding
the attack method, but also has a good inspiration for guiding the improvement of the
algorithm. It should be pointed out that, if there is no special description for multi-round
analysis, the symbol definitions given above are still used.

Let a(t)i,j = f j

(
p(t)

i,kp−1
j

)
, j = 1, 2, . . . , M×N; this means that a(t)i,j is the j-th element of the

i-th permutation image in raster scan order in the t-th round of encryption is permutated
from p(t)

i,kp−1
j

which is the kp−1
j -th element of the i-th plaintext image P(t)

i in raster scan order

in the t-th round of encryption; j and kp−1
j are a permutation pair. The encryption process

of the original encryption algorithm can be expressed as a general model asd(t)i,j = fM×N

(
p(t)

i,kp−1
M×N

)
u

j

∑̇
u=1

fu

(
p(t)

i,kp−1
u

)
u

j

∑̇
u=1

ŷ(t)u ,

p(t)i,j = d(t−1)
i,j ,

(27)

where i = 0, 1, 2, · · · , j ∈ {1, 2, . . . , M× N}, t = 1, 2, . . . , n, u denotes modular ad-
dition operation, and ∑̇ denotes summation operation of modular addition. As for
u ∈ {M× N, 1, 2, . . . , j}, u and kp−1

u are a permutation pair.
According to Equation (27), one has

p(t)k,j −̇p(t)l,j = ∆p(t)k−l,j = ∆d(t−1)
k−l,j

= fM×N

(
∆p(t−1)

k−l,kp−1
M×N

)
u

j
˙∑

u=1
fu

(
∆p(t−1)

k−l,kp−1
u

)
.

(28)

According to Equations (21) and (28), ∆a(t)k−l,r = a(t)k,r −̇a(t)l,r is the difference between the

r-th element of the permutation images A(t)
k and A(t)

l in t-th round of encryption. That is,

∆a(t)k−l,r = fr

(
∆p(t)

k−l,kp−1
r

)

= fr

 fM×N

(
∆p(t−1)

k−l,kp−1
M×N

)
u

kp−1
r
˙∑

u=1
fu

(
∆p(t−1)

k−l,kp−1
u

),
(29)

where k = 1, 2, · · · , l = 0, 1, 2, · · · , r = 1, 2, . . . , M × N, t = 1, 2, . . . , n. By the way, r
and kp−1

r are a permutation pair. As for u ∈
{

M× N, 1, 2, . . . , kp−1
r
}

, u and kp−1
u are a

permutation pair.
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According to Equation (20), the difference from first to M× N-th element between
diffusion image D(t)

k and D(t)
0 (that is l = 0) in the t-th round of encryption is:

∆d(t)k,1 = ∆a(t)k,M×N u ∆a(t)k,1,

∆d(t)k,2 = ∆a(t)k,M×N u ∆a(t)k,1 u ∆a(t)k,2,
...

∆d(t)k,M×N = ∆a(t)k,M×N u
M×N

∑̇
v=1

∆a(t)k,v.

(30)

From Equation (28)–(30), one can further obtain

∆d(t)k,1 = fM×N

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
M×N
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
u f1

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
1
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
∆d(t)k,2 = fM×N

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
M×N
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
u f1

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
1
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
u f2

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
2
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
...

∆d(t)k,M×N = fM×N

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
M×N
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
u

M×N
˙∑

v=1
fv

 fM×N

(
∆p(t−1)

k,kp−1
M×N

)
u

kp−1
v
˙∑

u=1
fu

(
∆p(t−1)

k,kp−1
u

)
Since the modular addition and permutation can be processed out of order and

ended up with the same result, after t = n rounds of encryption, the pixel difference
result ∆d(n)k,j (j = 1, 2, . . . , M × N) of diffusion images D(n)

k , and D(n)
0 can be expressed

as the linear combination of the difference pixel point ∆p(n−1)
k,j (j = 1, 2, . . . , M × N) of

n − 1-round plaintext P(n−1)
k and P(n−1)

0 modulo 256. ∆d(n)k,j , j = 1, 2, . . . , M × N can be

recursively expressed as the linear combination of ∆p(1)k,j = ∆pk,j, j = 1, 2, . . . , M × N
modulo 256, which is

∆d(n)k,1

∆d(n)k,2
...

∆d(n)k,M×N

 =




b11 b11 · · · b1M×N
b21 b22 · · · b2M×N

...
... · · ·

...
bM×N,1 bM×N,2 · · · bM×N,M×N

×


∆pk,1
∆pk,2

...
∆pk,M×N


Mod256, (31)
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where Mod represents the modulo of each component of the vector.
For an encryption system, any plaintext image must have only one corresponding

ciphertext image. At the same time, any ciphertext image can only be decrypted to one
plaintext image; otherwise, the encryption algorithm will not be established. In addition,
the number of pixels in the plaintext image and the ciphertext image is constant, so the
coefficient matrix is a square matrix, and its rank must be M× N. Furthermore, for the
n-round encryption algorithm, the coefficient matrix is represented by the symbol

B =


b11 b11 · · · b1M×N
b21 b22 · · · b2M×N

...
... · · ·

...
bM×N,1 bM×N,2 · · · bM×N,M×N

. (32)

∆αk =
[
∆d(n)k,1 , ∆d(n)k,2 , · · · , ∆d(n)k,M×N

]T
represents the one-dimensional vector converted

from the difference matrix between the ciphertext images D(n)
k and D(n)

0 in the n-
th round of encryption according to the raster scan order. In addition, ∆βk =

[∆pk,1, ∆pk,2, · · · , ∆pk,M×N ]
T represents the one-dimensional vector converted from the

difference matrix between the plaintext P(1)
k corresponding to the ciphertext image D(n)

k

and the plaintext P(1)
0 corresponding to the ciphertext image D(n)

0 , in the n-th round of
encryption, according to the raster scan order. Then, the above equation can be expressed as

∆αk = (B× ∆βk)Mod256. (33)

Consider a set of standard orthogonal bases e1, e2, . . . , eM×N , where e1 = [1, 0, . . . , 0]T ,
e2 = [0, 1, 0, . . . , 0]T , . . . , eM×N = [0, . . . , 0, 1]T . Then, any one-dimensional vector ∆α =

[c1, c2, . . . , cM×N ]
T can be expressed as

∆α = (c1 × e1 + c2 × e2 + . . . + cM×N × eM×N)Mod256. (34)

According to Equation (33), e1, e2, . . . , eM×N corresponds to ∆β1, ∆β2, . . . , ∆βM×N , so
e1 = (B× ∆β1)Mod256,
e2 = (B× ∆β2)Mod256,

...
eM×N = (B× ∆βM×N)Mod256,

(35)

which is substituted into Equation (34) to obtain

∆α =(c1 × (B× ∆β1)Mod256 + c2 × (B× ∆β2)Mod256+

. . . + cM×N × (B× ∆βM×N)Mod256)Mod256

=(c1 × B× ∆β1 + c2 × B× ∆β2 + . . . + cM×N × B× ∆βM×N)Mod256

=(B× (c1 × ∆β1 + c2 × ∆β2 + . . . + cM×N × ∆βM×N))Mod256.

(36)

According to Equation (33), ∆β corresponding to ∆α is

∆β = (c1 × ∆β1 + c2 × ∆β2 + . . . + cM×N × ∆βM×N)Mod256. (37)

The flow chart for cracking the multi-round encryption is shown in Figure 5.



Entropy 2022, 24, 1023 17 of 25

For any ciphertext      to be solved,  calculate 

  the corresponding differential plaintext 

according to formula(38) 

Construct an all-zero ciphertext image

        Input       into the decryption

  algorithm, get the plaintext image

          is obtained by modular subtraction

                       of      from 

Construct ciphertext image       and input      

    into the decryption algorithm, get the  

               plaintext image

Begin

             ?

0P
0C

0P

C

P

Yes

No

kP

kP

1k k= +

kP

End

      The plaintext image    is obtained by    

          modular addition of          to

P

0P( )1
P

0C

1k =

kC

k M N= 

Figure 5. The flow chart for cracking the multi-round encryption.

The details of our cracking process consist of four steps, as given below.
Step 1: Record a ciphertext image of M× N to be cracked as

C =


c1 c2 · · · cN

cN+1 cN+2 · · · c2×N
...

... · · ·
...

c(M−1)×N+1 b(M−1)×N+2 · · · bM×N

.

Firstly, an all-zero ciphertext image of M × N is denoted by C0, then a ciphertext
image set {C1, C2, . . . , CM×N} is constructed, so that the k-th element in Ck according
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to the raster scan order is set to 1, and the rest is 0 where k ∈ {1, 2, . . . , M× N}, as

C1 =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

,C2 =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

,· · · ,CM×N =


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1

.

Perform modular subtraction operations of C0 from C, C1, C2, . . . , CM×N , respectively.
Because C0 is an all-zero ciphertext, the one-dimensional vector converted from ∆D(n) =

C, ∆D(n)
1 = C1, ∆D(n)

2 = C2, . . . , ∆D(n)
M×N = CM×N according to the raster scan order is

actually the aforementioned ∆α, e1, e2, . . . , eM×N .
Input C0, C1, C2, . . . , CM×N into the decryption machine to obtain a set of correspond-

ing plaintext images, which are denoted as P0, P1, . . . , PM×N .
Step 2: Perform modular subtraction operations of P0 from P1, P2, . . . , PM×N , respec-

tively, and the result ∆P1 = P1−̇P0, ∆P2 = P2−̇P0, . . . , ∆PM×N = PM×N−̇P0 is converted
into a one-dimensional vector according to the raster scan order, which is actually the
aforementioned ∆β1, ∆β2, . . . , ∆βM×N .

Step 3: Therefore, Equation (37) can also be written as

∆P = c1 × ∆P1 u c2 × ∆P2 u . . . u cM×N × ∆PM×N . (38)

Step 4: By ∆P = ∆P(1) = P−̇P0, the plaintext is finally obtained as

P = ∆P u P0 = (c1 × ∆P1 u c2 × ∆P2 u . . . u cM×N × ∆PM×N)u P0. (39)

5. Numerical Simulation Experiment

The experimental environment is Intel(R) Core(TM) i5-3230M processor, CPU fre-
quency of 2.60 GHz, 8.00 GB memory, Windows 10 operating system, and MATLABR2021a.
The grayscale images Lena, Cameraman, Tiffany, Pepper, Baboon and Sailboat with the
size of 128× 128 are selected for single-round, two-round, and multi-round numerical
simulation experiments. The key is selected as follows:

a0 = {1111010010, 0110101101, 1110001101, 1111110000},
b0 = {0001111100, 1011100111, 0010010010, 1011000000},
x = {1010101100, 1101011011, 1110001110, 1000100000},
y = {1111111101, 1110100111, 1101011111, 1111001010},
T = {1101000000, 0001011010, 0011001100, 1000011011},

C1 = {1011111100, 0010000101}, C2 = {1100001010, 1111000110}.

5.1. Experimental Results

This paper analyzes the original algorithm in the case of single-round, two-round,
and multi-round of encryption. Because the first two analysis methods belong to the
chosen-plaintext attack and the third one belongs to the chosen-ciphertext attack, the first
two analysis methods are stronger in terms of assumptions made and data requirements;
they are only applicable to themselves, but the cracking speed is faster. The multi-round
analysis method mentioned in this paper is applicable to any number of encryption rounds
and has universality.

This paper verifies the original encryption algorithm and the analysis results by writing
MATLAB programs. According to the original encryption algorithm and the cracking
algorithm, the encryption and the decryption programs and cracking programs in single-
round, two-round, and multi-round are written, respectively. The related experimental
results are shown in Figure 6–12.
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Figure 6. The experimental results of cracking the single-round encryption of Lena, (a) plaintext
image of Lena; (b) histogram of plaintext Lena; (c) ciphertext of Lena; (d) histogram of ciphertext
Lena; (e) inverse diffusion image of Lena; (f) histogram of (e); (g) the recovered image.

(a)
0 100 200 300

0

100

200

300

400

(b) (c)
0 100 200 300

0

20

40

60

80

100

(d)

(e)
0 100 200 300

0

100

200

300

400

(f) (g)

Figure 7. The experimental results of cracking the single-round encryption of Cameraman, (a) plain-
text image of Cameraman; (b) histogram of plaintext Cameraman; (c) ciphertext of Cameraman;
(d) histogram of ciphertext Cameraman; (e) inverse diffusion image of Cameraman; (f) histogram
of (e); (g) the recovered image.

Figures 6 and 7 respectively list the intermediate experimental results, cracking results
and relevant metrics of 128× 128 Lena image and Cameraman image for single-round
encryption. It can be seen that, after encryption, the histogram of ciphertext is uniform and
cannot reflect plaintext information. The histogram of intermediate ciphertext obtained
by cracking the equivalent diffusion key is the same as that of plaintext, indicating that
the diffusion step is cracked. Then, through the obtained permutation equivalent key, the
deciphered image is obtained. Compared with the original plaintext image, the deciphered
image is exactly the same, which shows that the cracking algorithm is correct.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. The cracking experiment results of two-round of encryption of Tiffany, (a) plaintext
image of Tiffany; (b) ciphertext of Tiffany; (c) all-zero chosen-plaintext P0; (d) the corresponding
ciphertext of (c); (e) calculated differential image ∆C; (f) intermediate cracking results ∆D(1); (g) the
recovered image.

(a) (b) (c) (d)

(e) (f) (g)

Figure 9. The cracking experiment results of two-round of encryption of Pepper, (a) plaintext
image of Pepper; (b) ciphertext of Pepper; (c) all-zero chosen-plaintext P0; (d) the corresponding
ciphertext of (c); (e) calculated differential image ∆C; (f) intermediate cracking results ∆D(1); (g) the
recovered image.

Figures 8 and 9 respectively list the intermediate experimental results and cracking
results of the Tiffany image and Pepper image of 128× 128 size for two-round of encryption.
A set of specially constructed chosen-plaintext is input into the encryption algorithm to
obtain a set of plaintext–ciphertext pairs, and according to these plaintext–ciphertext pairs,
the permutation matrix is finally cracked. Then, through the differential processing and the
obtained permutation matrix, the plaintext is finally cracked, and the comparison between
the deciphered image and the plaintext image is exactly the same, which shows that the
cracking algorithm is correct.
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(a) (b) (c)

(d) (e) (f)

Figure 10. The cracking experiment results of multi-round of encryption of Baboon, (a) plaintext
image of Baboon; (b) ciphertext of Baboon; (c) all-zero chosen-ciphertext C0; (d) the corresponding
plaintext of (c); (e) intermediate cracking results ∆P; (f) the recovered image.

(a) (b) (c)

(d) (e) (f)

Figure 11. The cracking experiment results of multi-round of encryption of Sailboat, (a) plaintext
image of Sailboat; (b) ciphertext of Sailboat; (c) all-zero chosen-ciphertext C0; (d) the corresponding
plaintext of (c); (e) intermediate cracking results ∆P; (f) the recovered image.

Figures 10 and 11 list the intermediate experimental results and cracking results of
128× 128 size Baboon image and Sailboat image for multi-round encryption (without
losing generation, the multi-round part is encrypted in three rounds). It can be seen that, by
inputting a group of specially constructed chosen-ciphertext into the decryption algorithm,
a group of ciphertext–plaintext pairs are obtained, and then the plaintext is finally cracked
through differential processing. The comparison between the recovered image and the
plaintext image shows that the cracking algorithm is correct.

Theoretically, for a ciphertext image of M× N size, using multi-round of a cracking
algorithm to completely recover the ciphertext image requires the construction of M× N
ciphertext images and an all-zero ciphertext, a total of M × N + 1 ciphertext–plaintext
pairs. Because it is difficult to obtain the permission of decryption machine in reality, it
is of practical significance to reduce the number of ciphertext–plaintext pairs. Figure 12
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shows the effect of constructing different number of ciphertext–plaintext pairs on the finally
recovered plaintext image.

(a) (b) (c)

(d) (e) (f)

Figure 12. The cracking effect of partial ciphertext–plaintext pairs on multi-round cracking algorithm,
(a) plaintext image of Lena; (b) recovered image with 50% ciphertext–plaintext pairs; (c) recovered
image with 80% ciphertext–plaintext pairs; (d) recovered image with 90% ciphertext–plaintext pairs;
(e) recovered image with 95% ciphertext–plaintext pairs; (f) recovered image with 100% ciphertext–
plaintext pairs.

It can be seen that the plaintext can be recovered better without some ciphertext–
plaintext pairs. In reality, the appropriate number of ciphertext–plaintext pairs can be
obtained by constructing an appropriate number of ciphertext, which can reduce the data
complexity and improve the cracking efficiency while meeting the cracking requirements.

5.2. Attack Complexity

The attack complexity of cryptanalysis generally includes time complexity and data
complexity. However, the time complexity is affected by the performance of the computer
and the written cracking program, so it is uncertain. For cryptanalysis, the most important
thing is the data complexity, that is, the number of plaintext or ciphertext required to
crack an encryption algorithm. The following will discuss the data complexity of the
cracking algorithm for the case of single-round, two-round, and multi-round in case of
complete cracking.

In the case of single-round, for the grayscale image of M× N, when the key is un-
known, the plaintext-ciphertext pair required to decipher the equivalent diffusion key
and the equivalent permutation key is

(
1 +

⌈
log256 (M× N)

⌉)
, so the data complexity is

O(log (M× N)).
In the case of two-round, for the grayscale image of M × N, when the key is un-

known, the number of chosen-plaintexts required to decipher is (1 + M× N), so the data
complexity is O(M× N).

In the case of multi-round, for the grayscale image of M × N, when the key is un-
known, the number of chosen-ciphertexts required to decipher is (1 + M× N), so the data
complexity is O(M× N).

5.3. Improvement Plan

From the analysis of this article, it can be seen that the original encryption algorithm
has the following vulnerabilities and deficiencies.

(1) The decryption equation of diffusion operation is incorrect. The original decryption
result is slightly different from the original encrypted image.
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(2) The original encryption algorithm attempts to increase the nonlinear factors by
using index matrices and adding a round-down operation to the diffusion equation, for im-
proving the security of the algorithm. However, the analysis found that the above processes
can not provide higher security. Instead, an additional permutation is added, resulting in
increasing the encryption time. Through the corresponding processing and transformation,
the algorithm is still linear and can not resist against the chosen-ciphertext attack.

(3) Under the differential attack, the original diffusion key is completely useless.
In view of the above shortcomings, the following improvement suggestions are put

forward.
Cancel the permutation 2 operation. Add new operations in the diffusion process,

such as adding S-box, to improve the security of the algorithm. As a nonlinear device, S-box
can be applied to the original algorithm to solve its problem. The design of the S-box needs
to satisfy cryptographic properties such as nonlinearity, strict avalanche criterion, algebraic
immunity, differential uniformity, and correlation immunity [25]. The improvement is
given below by taking the S-box as an example.

The permutation operation of the original encryption algorithm is retained. Cancel
the permutation operation in the diffusion process of the original encryption algorithm,
and complete the diffusion operation according to the original diffusion equation. Take the
first 256 bits of the matrix X(if it is less than 256 bits, use the chaotic system to iterate the
insufficient bits), obtain a 256-bit index matrix according to the original algorithm, and then
form a matrix of 16× 16 according to the raster scan method to obtain an S-box. Each pixel
of the diffusion image is indexed into the S-box according to the first four bits and the last
four bits, and the value of the original pixel is replaced with the corresponding value in the
S-box. According to the above steps, the encryption algorithm is carried out for two or more
rounds, and the decryption algorithm is the inverse operation of the encryption algorithm.

6. Conclusions

In this paper, the security analysis of the image encryption algorithm based on two-
dimensional infinite collapse map is carried out, and the definitions and properties of the
round-down operation, the fractional part operation of real numbers, and the modular
operation are given. At the same time, by using these theorems, the error of the original
diffusion equation is found out, and finally the original encryption algorithm is processed
into a general permutation–diffusion structure, and the diffusion structure is processed
into a modular addition of the ciphertext feedback and the element of diffusion matrix.
On this basis, the single-round, two-round, and multi-round situations are analyzed and
discussed respectively. It not only deepens the understanding of the original encryption
process, but also helps to guide the improvement of the original encryption algorithm. The
correctness of the analysis process is verified by experiments. Finally, the attack complexity
is discussed, and suggestions for improvement are given to avoid the shortcomings of the
original encryption algorithm.
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