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Abstract: Convolutional neural networks have greatly improved the performance of image super-

resolution. However, perceptual networks have problems such as blurred line structures and a lack 

of high-frequency information when reconstructing image textures. To mitigate these issues, a gen-

erative adversarial network based on multiscale asynchronous learning is proposed in this paper, 

whereby a pyramid structure is employed in the network model to integrate high-frequency infor-

mation at different scales. Our scheme employs a U-net as a discriminator to focus on the con-

sistency of adjacent pixels in the input image and uses the LPIPS loss for perceptual extreme super-

resolution with stronger supervision. Experiments on benchmark datasets and independent da-

tasets Set5, Set14, BSD100, and SunHays80 show that our approach is effective in restoring detailed 

texture information from low-resolution images. 

Keywords: deep learning; generative adversarial network; deep generative model;  

super-resolution; feature transform; multiscale feature extraction 

 

1. Introduction 

The main task of image super-resolution (SR) reconstruction is to improve the spatial 

resolution of low-resolution (LR) images such that the reconstructed high-resolution (HR) 

image can contain much richer and more detailed textures [1]. The current image SR meth-

ods can be divided into two categories: SR reconstruction of a single image and of multiple 

images [2]. Single-image SR methods collect information from LR data using a specific 

detector to generate the corresponding HR image. Multi-image SR employs complemen-

tary information between the collected LR frames to reconstruct the HR image [3–5]. 

There has been a growing trend in the multiscale representation of images in the last 

two decades; multiscale representation is now widely used to analyze and model com-

puter vision tasks and has great significance in image applications. Unlike traditional 

methods, multiscale representation mainly appears in the convolutional neural network 

as a feature pyramid [6]. Many cross-sectional studies suggest that a feature pyramid 

could obtain a series of feature maps with different receptive field sizes and scales. A fea-

ture pyramid could utilize image context information from local to global perspectives 

through continuous convolution and down-sampling operations. Fusion of image context 

information is critical to exploit image context information for image super-resolution be-

cause it can effectively increase the accuracy of feature description and enhance the ability 

of feature representation [7,8]. 

A generative adversarial network (GAN) [9] provides a robust framework that can 

generate raw images with high perceptual quality comparable to authentic images. It is 

now well established that GAN can support image reconstruction through adversarial 

training, generating more precise and natural HR image textures [10]. However, GAN-
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based super-resolution reconstruction methods are limited by the current mainstream sin-

gle-stage scheme that reconstructs images by extracting LR image features followed by 

up-sampling [11,12]. In comparison, the small size of the LR image may result in high-

frequency noise in the reconstructed data. Thus, it is difficult to optimize the network 

receptive field for texture, and the multiscale context information cannot be fully utilized. 

Our scheme proposes an image fusion-based super-resolution reconstruction 

method that combines multiscale representation and generative adversarial networks. To 

summarize, our main contributions include the following: 

1. We design a pyramid structure generator and expand the original network for mul-

tiscale fusion features’ reconstruction. 

2. We use a decoder–encoder architecture discriminator and improve the robustness of 

network training for extreme perceptual super-resolution. 

3. We employ an asynchronous network, which can weigh the disparity between the 

initial training image and the output image at each stage. 

2. Related Work 

Perceptual Super-Resolution. Lai et al. [13] proposed a deep Laplacian pyramid network, 

coined as LapSRN, for fast and accurate super-resolution. LapSRN is inspired by the im-

age pyramid and employs a pyramid network structure. This structure could gradually 

learn residual mapping for high-frequency components in a coarse-to-fine manner [14]. 

This technique could significantly reduce the model complexity and the difficulties of 

learning. Tamar et al. [15] proposed a SinGAN using a single image as input through a 

fully convolutional GAN pyramid to generate high-quality multi-sample images. SinGAN 

is suitable for generating single complex natural images. The generated images are diverse 

and realistic. Tobias [16] et al. proposed a CoSingan trained with a single image at differ-

ent scales in a multi-stage manner simultaneously. CoSingan provides a way to control 

the distribution of the internal patch of the training image such that an overall better im-

age structure can be obtained. Haris [17] used a feedforward mechanism to construct a 

deep back-projection network (DBPN) when processing LR and HR inputs. DBPN em-

phasizes the SR features using multiple up- and down-sampling stages and could yield 

promising results on the ×8-fold image super-division. 

Motivated by spatial pyramid pooling [18], Zhao et al. [19] proposed a pyramid pool-

ing module to better utilize the global and local contextual information. The low-dimen-

sional feature maps are unsampled to the size of the original feature maps via bilinear 

interpolation; this module can effectively integrate global and local contextual infor-

mation. The EDSR-PP model [20] incorporated the pyramid pooling module and further 

improved the performance over the baseline. 

Extreme Super-Resolution. In recent years, convolutional neural networks have achieved 

remarkable success for super-resolution. Dong et al. [21] was the first to use a convolu-

tional neural network for super-resolution reconstruction. This method learns the nonlin-

ear mapping between LR and HR images end-to-end and represents a popular choice for 

super-resolution reconstruction. 

Inspired by deep convolutional neural networks for large-scale image recognition 

[22], Kim et al. [23] proposed an image super-resolution VDSR reconstruction method 

with an expanded receptive field by increasing the network’s depth. VDSR can extract 

more advanced features to alleviate the problem of gradient disappearance. In addition, 

it can use a greater learning rate for residual learning. 

Ledig et al. [24] proposed a practical single-image super-resolution reconstruction 

method using a generative adversarial network (SRGAN) for more realistic reconstruc-

tion. Studies have shown that the use of a discriminator network as an image prior for SR 

reconstruction can yield better deblurring effects. Wang et al. [25] proposed a spatial fea-

ture transform in a generative adversarial network (SFTGAN) and successfully recovered 
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the realistic texture in the reconstructed images. In addition, SFTGAN uses a spatial fea-

ture conversion layer to combine classification condition information [26] effectively. 

Wang et al. [27] also proposed an enhanced SRGAN (ESRGAN) to improve the visual 

quality and avoid artifacts by introducing residual dense blocks (RRDBs) to train deeper 

models. Young Hyun et al. [28] doubled the number of RRDBs and used U-net [6] as a 

discriminator to promote the generator network to produce better super-resolution im-

ages. 

3. Methodology 

We propose a GAN-based network that uses a feature pyramid structure for ×16 SR; 

the whole network comprises a generator and a discriminator. The generator obtains the 

LR images and transforms them into HR images [29]. The high-resolution feature maps at 

each stage are entered into the discriminator network for evaluation; the corresponding 

scores are delivered from the top to the bottom of the tower in the feature pyramid. The 

discriminator calculates a final score based on the weights of the corresponding stages to 

determine whether an image is real. After all the stages, the model weight with the highest 

score is selected to score the image indicators through the specified test set and choose the 

one that performs better as a result. This cycle continues until the reconstruction satisfies 

the requirement. 

It is important to determine which multiscale pyramid to use. In the original 

ESRGAN generator network, the size of the images is 250 × 250. When the images are 

down-sampled more aggressively, the generated images lose their overall consistency be-

cause of the insufficient number of layers [18]. We use the progressive multiscale pyramid 

structure shown in Figure 1 to take the feature information of the LR image as the input, 

and the forward propagate to three levels. The features are fused after convolution fusion 

and RRDB residual structure fusion. In the residual module, deep features integrated with 

well-performing high-frequency information can be found and, at the same time, three 

different scales are included in the visual map; the number of parameters is reduced by 

~50% [30]. The original single training image � and its conditional mask � are initially 

resized to predefined image scales separately as the training samples {�� + ��|� ∈ [0, �]} 

for the � + 1 GANs. The training starts from scale 0 and traverses all image scales. The 

generator {��, ��, … , ��} in each stage in turn generates a radiological image of a specific 

scale �, and the output ���� of ���� is unsampled to � times image scales, which is fur-

ther combined with ��  to construct the input of ��(� ∈ [1, �]). Because of the previous 

output ���� of the generator ����, �� will not be instantaneously classified as “false” by 

the discriminator and will continue to fight against ��  to gradually learn and generate 

realistic super-scoring images. Because there is no previous scale, �� will directly map 

the conditional mask �� to the super-resolution image during the learning process. At 

this timepoint, the image scale is small and �� will train the result relatively simply and 

smoothly. The multiscale condition {��|� ∈ [1, �]} resizes the input of the GAN to � 

times image scales, assuring the output of the GAN matches the given conditions of the 

input image. The obtained generator can achieve better evaluation in the discriminator 

[31]. 
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Figure 1. The central network structure diagram of our model. The LR image X is the low-definition 

image input. X goes to ×16SR across the four stages, generator GW [0,1,2,3], at each time point. 

3.1. Generator Structure 

Different from ESRGAN [25], our generator network employed a multiscale pyramid 

structure. Note that ESRGAN removed the batch normalization (BN) layer from SRGAN 

[24] because BN layers tend to introduce unpleasant artifacts and limit the generalization 

ability. ESRGAN also replaced the original remaining blocks with RRDBs to improve the 

performance (Figure 2) because a deeper and more complex network could boost the per-

formance [24]. As shown in Figure 2, we doubled the number of RRDBs and used the 

residual module to connect the different layer levels. 

 

Figure 2. Our generator network structure (a). At first, we trained the smallest generator and LR. 

As the number of stages increases, the capacity and image resolution of the generator will increase 

(b). 

The training process uses multiple iterations, and each increases the resolution. In 

the first stage, G0 fits the input conditions and improves the image resolution at a low 

scale; the following stages restore the image details, such as low-frequency information 

that cannot be accurately reconstructed in the previous stage. Therefore, we propose to 

add the original features’ RRDB residual connection [32] to the output of the newly added 

convolutional layer and repeat this process N times until ×16 resolution is achieved. Under 

the default settings, we propose to train the last three levels of the generator asynchro-

nously. 

In the generator network, the LR images are fed into the entire network. In the first 

stage, the LR image is up-sampled to the ×2 size by the generator in the initial stage and 
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the feature information is reserved. At each stage, feature information is extracted. This 

information is eventually combined and passed to the discriminator 

The generator involves in a series of asynchronous training and each stage uses the 

original features from the previous stage as input (the first few layers are unnecessary). 

After each stage of training, the images of each level are propagated to the next level. Such 

layer-by-layer transfer enables learning detailed information based on shallow features. 

After going through all the stages, the images are up-sampled ×16 and retain the authen-

ticity of high-frequency feature information. As shown in Figure 3, the image and the 

noise parameters obtained at each stage will be passed to the discrimination network. 

As in the original ESRGAN generator network, when the image down-samples more 

aggressively, the generated image will lose its overall consistency because of insufficient 

levels. In this way, our method can obtain deeper features in the residual module and fuse 

feature maps at three different scales to reduce the number of parameters by ~50%. The 

results in Section 4 show that our scheme yielded better results in terms of evaluation 

indicators and subjective visual inspection. 

3.2. Discriminator and Loss Function 

Qualitative methods can be helpful for identifying and characterizing features. Our 

scheme employed the discriminator’s encoder and decoder. We added a decoder to the 

ordinary encoder, and this architecture could provide pixel-by-pixel feedback to the gen-

erator while maintaining the global contextual information. The features compressed by the 

discriminator could decide whether or not the input image is real, as shown in Figure 4. 

 

Figure 3. RRDB network structure. β is the scale parameter. 

The U-net [33] in Figure 4 maintains global and local data representation and pro-

vides more information feedback through pixel-by-pixel transmission. The encoder pro-

gressively down-samples the input and captures the global image context like image clas-

sification networks. Meanwhile, the decoder performs progressive up-sampling and 

matches the resolution of the output to the input, enabling precise localization. Skip con-

nections that route data between the two modules at the same resolution could further 

increase the network’s ability to segment fine details accurately [21]. The discriminator 

consists of six down-sampling and six up-sampling stages, and the skip connections con-

nect different levels. 

The discriminator loss ℒ� is calculated at the encoder head  ℒ����
 and the decoder 

head ℒ����
. The discriminator loss formula is hinge loss: 

ℒ����
=  � �� max�0, [����(���)]�,��

�,�

� + � �� max�0, [����(���)]�,� + 1�

�,�

� , (1)
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ℒ����
=  � �� max�0, [����(���)]�,��

�,�

� + � �� max�0, [����(���)]�,� + 1�

�,�

� , (2)

where [�(�)]�,� is the decision of the discriminator at pixel (�, �). The counter loss of the 

generator is the average of the losses from the encoder and the decoder. 

ℒ��� =  � ��[����(����)]�,� + �[����(����)]�,�

�,��,�

�. (3)

To encourage the generator to focus more on semantic and structural changes, we 

adopt the consistency regularization used in [17], which obtained ������ transform [34] 

to synthesize a new training sample and minimize the loss ℒ�����
. The total discriminator 

loss is as follows: 

ℒ� = ℒ����
+ ℒ����

+ ℒ����� (4)

Traditional image quality metrics (e.g., PSNR and SSIM [35]) tend to generate a 

higher score for blurred images up-sampled ×16. However, humans prefer translated im-

ages. We adapt the LPIPS index [6] as perception loss to mimic the human perception of 

similarity. 

 

Figure 4. Our discriminator network structure. A U-net structure is adopted to provide feedback for 

each pixel to the generator [17]. 

ℒ����� = � T����(����) − ��(���)�

�

,  (5)

where φ is the feature extractor and τ converts the deep embedding into a scalar LPIPS 

score. It calculates and averages the score from the k layers. The final comprehensive loss 

in the generator is as follows: 

ℒ� = ���� ∗ ℒ��� + ������ ∗ ℒ�����, (6)

where ���� and ������ are scaling parameters. 
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4. Experiments 

4.1. Experiment Setup 

Dataset. Our experiment uses the DIV8K [36] dataset, which contains 800 training images 

and 100 verification cases, with a maximum resolution of 8 K. The dataset covers various 

scenes and is designed for ×16 SR or higher specifications. Color blocks of 384 × 384 were 

randomly cropped from the training images and synthesized to 24 × 24 through bicubic 

down-sampling. We performed random rotation and left-to-right flipping to increase the 

size of the training data. We select ten images from the training dataset as the validation 

dataset. 

Training Details. An Adam optimizer is used to optimize the network parameters and 

the learning rate is set to 0.00001 for both the generator and discriminator. Prior to train-

ing, we pre-train the model 75,000 times without adding loss. The negative slope of leaky 

relu is set to 0.2 and 0.1 for the generator and discriminator, respectively. The learning 

rate ���� = 1 × 10��, ���  = 1, and ������ =  1 × 10��. The model size and the number of 

parameters for the generator are 127 MByte and 6,681,538, respectively, and these are 77 

MByte and 16,808,771, respectively, for the discriminator. 

4.2. Analysis of Experimental Results 

Table 1 compares our method with the following: (i) LILF-EDSR [37]: encoders with 

up-sampling modules, LILF-RDN: reply on self-supervised SR; (ii) GLEAN [38]: diverse 

priors encapsulated in a pre-trained GAN. Our method achieves competitive PSNR for 

the three datasets compared with prior works. Both LILF modules are trained for a specific 

scale of 18 and they may have more advantages on a specific task than our method. Nev-

ertheless, our approach performed better in the case of ×16. 

Table 1. Quantitative comparison on ×16SR (PSNR (dB)). Our models outperform other methods in 

most categories. Best values are shown in bold and second-best values are underlined. When images 

are non-aligned and contain non-human faces, our models show this as GLEAN. On the Div8K 

validation set, we achieve a higher similarity than the baseline. 

Dataset/Method/PSNR Bicubic LILF GLEAN Ours 

  LILF–EDSR LILF–RDN   

Cat 16.11 20.85 20.89 20.88 20.92 

Face 17.27 20.01 20.11 20.21 20.21 

DIV8K 19.47 22.20 22.30 21.30 22.42 

Several methods have been developed for ×16 SR, but the code is not available. In-

stead, we compared our network with VGG perceptual loss (Adv + VGG, ℒ� = 1� −

3, ���� + ����) and without VGG loss. Various models and comparison parameters were 

used to make the experiment results more objective and persuasive. Specifically, two con-

ventional image quality assessment metrics, PSNR and SSIM (higher is better) [35], were 

employed and LPIPS was used for perceptual quality evaluation (lower is better). It is well 

known that PSNR and SSIM prefer blurred images and, in perceptual SR, LPIPS is more 

highly weighted than PSNR and SSIM. As shown in Table 2, our method achieves the best 

score. Note that we crop the border by 16 px to avoid boundary artifacts when calculating 

these metrics. 
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Table 2. Quantitative results of other methods from different scales. Best values are shown in bold 

and second-best values are underlined. SRGAN and ESRGAN use one model for all scales and are 

trained with continuous scales uniformly sampled in ×2, ×4, and ×8. 

Scales/Method/PSNR Bicubic SRGAN ESRGAN LILF 
Ours 

(×Nstage) 

×2 31.01 34.36 35.01 34.67 34.98 

×4 26.66 27.02 28.99 29.00 29.25 

×8 23.54 24.65 25.15 25.23 26.00 

×16 21.63 21.64 21.76 22.20 22.42 

Based on the model structure, our model is highly scalable in terms of resolution. 

Therefore, to quantitatively evaluate the effectiveness of the learned continuous represen-

tation, besides evaluating the extremely super up-sampling tasks of scales in training dis-

tribution, we propose to evaluate normal scales to fit the normal situation. For example, 

when evaluating scales ×2, ×4, and ×8, we use the low-resolution inputs provided in 

DIV8K and benchmark datasets (with border-shaving that follows [39]). After preparing 

datasets at different scales, we enter them into the SRGAN and ESRGAN methods in 

batches and count the results according to datasets at different scales. Because these two 

methods use ×2 up-sampling, it is necessary to perform simple processing on the dataset 

to obtain the results for comparison. 

For distribution scales, we observe that our method achieves performance compara-

ble to that of prior works. This is because our models rely on up-sampling, and they are 

trained with different stages for different scales. The generation scale corresponding to 

the generator at a specific stage can effectively map the image according to the corre-

sponding distribution. At low-scale magnification, the indicator data of PSNR find it dif-

ficult to bridge the gap. Although ESRGAN can generate a realistic image and has a lead-

ing edge at the ×2 scale, it is slightly inferior to LILF and our method at larger and extreme 

scales. The LILF non-distributed approach performs well on continuous scales and scales 

outside the prediction, and our method outperforms LILF with ×N stages specific training. 

The qualitative results on the DIV8K test dataset are shown in Figure 5. In general, 

the hair and line’s image quality are slightly improved for LPIPS loss and U-net discrimi-

nator. As shown in Table 3, the introduced LPIPS loss could provide better functional 

space and improve the perceived quality. Meanwhile, the U-net discriminator could pro-

vide effective feedback to the generator, covering global and local contexts. 

Table 3. Quantitative results of other methods on the validation set. Better LPIPS value and quali-

tatively better than the VGG-based perceptual loss shown in Figure 6. Best values are shown in bold 

and second-best values are underlined. 

Method Bicubic Adv + VGG Pretrained Ours 

PSNR 19.47 20.35 20.66 22.42 

SSIM 0.1122 0.0915 0.1324 0.1466 

LPIPS 0.8046 0.6532 0.7851 0.5329 

In Figure 5′s pre-trained volume, it can be observed that it is slightly less effective in 

generating images with more detail. For example, in the parts of the teeth and wrinkles 

on the image of the old man, the parts of eyes and pupils of the person on the image of 

the eagle and the woman, and the eyebrows and nose of the person in the fifth group of 

data, the image recovery of these facial features is not good enough. The proposed model 

is more advantageous on the validation set, and especially excellent on hair in images of 

dogs and wrinkles in images of elderly people. The above is a comparison experiment of 

the validation set, which can clearly show the advantages and disadvantages of each al-

gorithm. 
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More results on public image super-resolution datasets (Set5, Set14, BSDS100, Ur-

ban100, and SunHays80) are shown in Table 4 and Figure 6. When ℒ����� only is used 

without the GAN framework, i.e., ℒ���  loss is not considered, the LPIPS [6] score is the 

best. However, the visual effect is not as good as expected because those repeated pattern 

artifacts produce inconsistent details. Therefore, although our proposed scheme yielded 

high LIPPS scores, for some datasets, the visual results can be better. These results suggest 

that a better LPIPS score does not necessarily indicate better visual quality. 

Table 4. Quantitative results with other methods on public image super-resolution datasets. Bolded 

numbers indicate the best results, and underlined is the second best. Our method shows a better 

LPIPS value than the others. Although some datasets on PSNR and SSIM are unsatisfactory, they 

are mainly caused by relatively poor feature perception processing of some image edges. 

Method Bicubic Adv + VGG Pretrained Ours 

Set5 

PSNR 16.11 17.61 17.59 17.87 

SSIM 0.1031 0.1397 0.1486 0.1434 

LPIPS 0.5657 0.3625 0.4169 0.2823 

Set14 

PSNR 17.27 18.54 18.36 18.55 

SSIM 0.0701 0.0859 0.0802 0.1072 

LPIPS 0.6114 0.4504 0.5466 0.3717 

BSD100 

PSNR 17.37 17.94 18.00 18.22 

SSIM 0.0604 0.0992 0.0691 0.0841 

LPIPS 0.5726 0.5178 0.6887 0.4112 

SunHays80 

PSNR 16.42 16.66 17.50 16.68 

SSIM 0.0730 0.0954 0.0934 0.1026 

LPIPS 0.7559 0.5450 0.6635 0.4374 

Urban100 

PSNR 16.44 17.04 17.16 17.43 

SSIM 0.0636 0.0602 0.0735 0.0621 

LPIPS 0.8046 0.8013 0.7986 0.5780 

 

Figure 5. Qualitative results of other methods on the validation set (the images are 112, 420, 448, 

575, and 488 from top to bottom). The pre-trained model has limitations in restoring clarity and 
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sometimes produces color artifacts and details inconsistent with the original image. Adv + VGG 

model produces realistic results while sometimes producing color artifacts and inconsistent details 

simultaneously. Our model produces results that are more suitable for visual viewing. Please zoom 

in for a better comparison. 

 

Figure 6. Qualitative results obtained using other methods on the conventional image SR test sets 

(the images are baby, butterfly, img_005, and img_018 from top to bottom). Adv + VGG model im-

proves the sharpness of the pre-trained model, while our method further enhances the results with 

consistent details. 

We take a closer look at the features of the baby’s face, the mottled part of the butter-

fly, the textured part of the building, and the tiled part of the wall in Figure 6. The results 

of the bicubic algorithm are not clear enough, and the dark parts of the image are rather 

obvious. Compared with the original image, the edge details shown in the pre-trained 

model are slightly blurred. The proposed algorithm can generate more iterative details in 

the image with clear and complete edges than the above algorithm. Figure 7 provides a 

comparison of the image details under different algorithms. It can be visually seen that 

our method is clear on the wrinkles of the human face and the straight lines and textures 

on the rectified buildings. Although there is a slight deviation from the original image, the 

image portrays a better sense of reality when viewed visually. 
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Figure 7. Comparison with typical algorithms: details of the generated images after zooming. 

In terms of visual impact, the perception loss guides training and allows the network 

to reconstruct excellent image detail. The lack of texture details on the butterfly image 

implies that traditional convolutional neural networks are not good at reconstructing im-

ages with very rich details. The lack of texture detail on the butterfly image implies that 

traditional convolutional neural networks are not good at reconstructing images with 

much detail. The bicubic and pre-trained models lack details and are relatively simple. 

The proposed algorithm generates an image that deviates slightly from the original image, 

while the realism of the generated image is better. 

More results on public image super-resolution datasets (Set5, Set14, BSDS100, Ur-

ban100, and SunHays80) are shown in Table 2 and Figure 6. When LPIPS only is used 

without the GAN framework, i.e., ℒ��� loss is not considered, the LPIPS [6] value is the 

lowest. However, its actual visual effect is not as good as expected, as those repeated pat-

tern artifacts produce inconsistent details. Thus, although some LPIPS values in our pro-

posed scheme are relatively large for specific datasets, better visual results can be seen in 

our proposed method. The experimental results illustrate that better LPIPS values do not 

always guarantee better visual quality. 

5. Conclusions 

The feature pyramid module we proposed can fully extract and fuse multiscale im-

age features to effectively capture the global context-dependence. In addition, it can com-

plement the original image information using the generated analytical high-frequency in-

formation through the transmission of different stages. Comprehensive experiments on 
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various available datasets show that our approach reconstructed images with better visual 

quality and more details compared with several classical methods. 
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