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Abstract: The effect of planar interfaces on nucleation (namely, on the work of critical cluster for-
mation and their shape) is studied both for crystallization and melting. Advancing an approach
formulated about 150 years ago by J. W. Gibbs for liquid phase formation at planar liquid–liquid
interfaces, we show that nucleation of liquids in the crystal at crystal–vapor planar interfaces proceeds
as a rule with a much higher rate compared to nucleation in the bulk of the crystal. Provided the
surface tensions crystal–liquid (σcl), liquid–vapor (σlv), and crystal–vapor (σcv) obey the condition
σcv = σcl + σlv, the work of critical cluster formation tends to zero; in the range σcv < σcl + σlv, it
is less than one half of the work of critical cluster formation for bulk nucleation. The existence of a
liquid–vapor planar interface modifies the work of critical cluster formation in crystal nucleation in
liquids to a much less significant degree. The work of critical crystal cluster formation is larger than
one half of the bulk value of the work of critical cluster formation, reaching this limit at σcv = σcl + σlv.
The shape of the critical clusters can be described in both cases by spherical caps with a radius, R,
and a width parameter, h. This parameter, h, is the distance from the cutting plane (coinciding with
the crystal–vapor and liquid–vapor planar interface, respectively) to the top of the spherical cap.
It varies for nucleation of a liquid in a crystal in the range (h/R) ≤ 1 and for crystal nucleation in
a liquid in the range 2 ≥ (h/R) ≥ 1. At σcv = σcl + σlv, the ratio (h/R) of the critical cluster for
nucleation in melting tends to zero ((h/R)→ 0). At the same condition, the critical crystallite has the
shape of a sphere located tangentially to the liquid–vapor interface inside the liquid ((h/R) ∼= 2). We
present experimental data which confirm the results of the theoretical analysis, and potential further
developments of the theoretical approach developed here are anticipated.

Keywords: nucleation; thermodynamics of nucleation; general theory of phase transitions; crystal-
lization; melting

PACS: 64.60.Bd General theory of phase transitions; 64.60.Q Nucleation; 81.10.Aj Theory and models
of crystal growth; 64.70.D Solid–liquid transitions; 82.60.Nh Thermodynamics of nucleation in
physical chemistry and chemical physics

1. Introduction

In order to formulate the basic theoretical concepts governing nucleation and growth
of a new phase in a metastable ambient phase, homogeneous nucleation in the bulk of
the metastable initial phases is commonly analyzed as a first step [1–7]. This analysis is
supplemented by the account of the effect of heterogeneous nucleation sites dissolved
in the bulk of the ambient phase on nucleation. Heterogenous nucleation sites may be
located at the surfaces of the homogeneous initial phases as well, and considerably affect
the nucleation and growth processes. Examples in this respect are the dependence of crystal
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nucleation on prior liquid overheating and the commonly observed preferential surface
crystallization of glasses [8–10].

With respect to the latter observation, it has been shown that the inhibiting nucleation
effect of elastic stresses is much more expressed in the bulk as compared to the interface
of a glass or highly viscous liquid. In this way, the higher rate of crystal nucleation near
interfaces can be explained, exclusively accounting for the interplay of stress evolution
and relaxation in crystallization [11,12]. Specific properties of surface crystallization have
been observed in other applications [13–16] and connected with particular features of the
structure of the liquid near to the surface. In the present analysis, we neglect heterogenous
nucleation sites, specific features of the structure of the ambient phase and the effect
of elastic stresses. Instead we analyze the problem of whether the mere existence of a
liquid–vapor planar interface affects the rate of crystal nucleation processes in liquids.

A similar problem concerning the dependence of the rate of nucleation processes on
the existence of a planar interface has been observed in the analysis of melting processes.
As noted long ago by A. Ubbelohde [17–19], “a crystal cannot be readily superheated implies
that this rate process proceeds rapidly and without difficulty at the surface of a solid”. Indeed,
in contrast to supercooling and superheating of a liquid, the superheating of a solid is
very difficult to achieve. Nonetheless, a solid with an open surface can be superheated in
particular experiments at appropriate conditions [20–31], for example, during rapid heating
of a solid throughout its volume and simultaneous cooling of its surface to suppress surface
melting [20,30]. Superheating can be obtained in tiny crystalline clusters inserted into a
proper medium with a higher melting temperature by their subsequent laser heating [22,
25,26,29]. Depending on the coating material, either volume or surface nucleation might be
favored [21]. Finally, considerable superheating can be achieved via ultra-fast shockwave
compression of solids [27,28]. However, the problem remains as to why melting near
interfaces is obviously significantly favored compared to nucleation of a liquid aggregate
in the bulk of a solid. The answer to this question is the second main topic of the analysis
presented in this paper.

Despite significant technological progress and the variety of studies devoted to it, the
mechanisms of surface nucleation are not fully understood. Considering the aforemen-
tioned arguments, the main objective of the current study is thus to develop a theoretical
thermodynamic model of nucleation at crystal–vapor and liquid–vapor planar interfaces
and provide insight into the extent to which surface nucleation is favored over the bulk
nucleation in terms of classical nucleation theory (CNT). As CNT is known to correctly
describe the basic features of nucleation independent of the particular application, it can
be expected to supply us with an adequate insight into the effect of planar interfaces on
nucleation and its differences for nucleation in crystallization and melting. Of course,
depending on the particular case studied other effects may have to be incorporated into
the description in order to arrive at a quantitatively correct treatment. However, such
possible particular features and their effects on nucleation are beyond the scope of the
present analysis.

In order to arrive at an answer to the questions formulated above, we advance here
an approach first developed by J. W. Gibbs in the section “On the Possible Formation at the
Surface where two different Homogeneous Fluids meet of a Fluid of different Phase from either”
of his fundamental treatment [32]. His model is illustrated in Figure 1. According to his
approach, at the planar interface between two different liquids, A and B, a region containing
a new liquid phase, C, is formed. This region, as noted by Gibbs, is unstable and will grow
further once it has been developed; it has thus the meaning of a critical cluster as discussed
in nucleation theory. The work of forming this region was considered by Gibbs as a measure
of stability of the liquid–liquid coexistence of liquids A and B. In particular, Gibbs arrived
at the conclusion that the work of formation of such aggregates may tend to zero if the
condition σAC + σBC = σAB holds. One of the aims of our analysis is to check whether such
condition may hold at nucleation at liquid–vapor or solid–vapor planar interfaces.
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Models of a similar type have been analyzed in subsequent investigations in different
directions, such as condensation and boiling or segregation in solutions at planar solid
interfaces [1,33,34], wetting of solids by liquids, i.e., the ability of a liquid to maintain
contact with a solid surface [35–37], bubble nucleation in liquids [38], and in the above-
mentioned analysis of the effect of elastic stresses on crystal nucleation [9–12]. To the best
of our knowledge, as presented here it is utilized for the comparative analysis of the effects
of planar interfaces on nucleation in melting and crystallization for the first time.
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Figure 1. Model of the description of nucleation of a new liquid phase at a planar liquid–liquid
interface, as analyzed by J. W. Gibbs [32]. In his approach, the critical cluster is described as being
formed of two spherical caps with radii R1 and R2; σAB, σBC, and σAC denote the respective values of
the surface tension.

The paper is structured as followed. In Section 2.1, we describe the model employed
for the description of nucleation in the bulk and then apply it to the analysis of nucleation
near planar interfaces in melting of crystals (Section 2.2) and crystallization of liquids
(Section 2.3). In both cases, we determine the work of critical cluster formation and the
shape of the critical clusters and compare them with the respective quantities obtained for
bulk nucleation. A summary of the results and their discussion (Section 3) completes the
paper.

2. Theoretical Analysis of Nucleation Near Planar Interfaces
2.1. The Model: Nucleation in the Bulk

In the present analysis, we concentrate our attention on the melting of crystals, re-
spectively, the crystallization of liquids. The processes are assumed to proceed at fixed
values of pressure, p, and temperature, T. At such boundary conditions, the work of critical
cluster formation, Wc, is equal to the change in the Gibbs free energy, ∆G(cluster)

c , caused by
the formation of liquid drops or crystallites of critical sizes. Following the suggestions of
the founders of classical nucleation theory (see, e.g., [1–4,7]) employing in their analysis
the thermodynamic treatment developed by Gibbs [32], the work of critical crystal cluster
formation for spherical critical clusters and the expression for their radius is commonly
written as

Wc =
16π

3
σ3

cl(
∆g(bulk)

d f (T, p)
)2 , Rc =

2σcl

∆g(bulk)
d f (T, p)

, (1)
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where Rc is the radius of the critical cluster. Here, ∆g(bulk)
d f (T, p) (denoted as the thermody-

namic driving force (df) of nucleation and growth) is the difference between the bulk Gibbs
free energies per unit volume of the crystal and the melt, both taken at the same pressure p
and temperature T, and σcl is the surface tension for phase coexistence of crystal and liquid.

As a rule, at certain reasonable approximations these relations may be obtained from
the expression

∆G(cluster) = −∆g(bulk)
d f (T, p)V + σcl A . (2)

Here V is the volume and A the surface area of a cluster of the newly evolving phase. For
simplicity of notation, we replace ∆g(bulk)

d f (T, p) in our further computations with ∆g. As
shown in [39–41], with the assumptions commonly employed in CNT this relation holds for
multi-component systems. In addition, it can be shown that the formation of crystallites can
be also appropriately modeled describing their size via the radius, R, i.e., V = (4π/3)R3

and A = 4πR2.
Employing a relation similar to Equation (2), we now analyze nucleation at planar

interfaces, first formulating the expressions for the work of cluster formation for arbi-
trary values of the chosen parameters describing their shape and size, and afterwards
determining their values for the respective equilibrium states corresponding to the critical
cluster. The shape of the critical clusters are described in line with the approach followed
by Gibbs. In both cases considered by us we are using spherical caps with a radius R. The
second parameter is provided by the width parameter h, the distance from the cutting
plane to the top of the spherical cap. The cutting plane coincides with the crystal–vapor
and liquid–vapor planar interfaces, correspondingly.

2.2. Nucleation in Melting

We first compare the above given result, Equation (1), for the shape of the critical
clusters and the work of critical cluster formation formed in the bulk of the crystal for the
case in which nucleation proceeds at the crystal–vapor planar interface. The notations
employed for the description of the evolving aggregates of the new phase are illustrated in
Figure 2.
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Figure 2. Model for the description of nucleation at planar interfaces in melting.

The work of formation of an aggregate of a liquid with a shape provided by the
parameters R, r, and h can be expressed in terms of CNT similarly to Equation (2), as
follows:

∆G(cluster) = −∆gVl + σcl Acl + (σlv − σcv)Alv (3)

with [42]

Vl =
πh2

3
(3R− h) , Acl = 2πRh , Alv = πr2 . (4)
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Here, the surface tensions for liquid–vapor (σlv), crystal–vapor (σcv), and crystal–liquid (σcl)
coexistence are employed. The three shape parameters R, r, and h obey the relation

R =
r2 + h2

2h
. (5)

Utilizing the above, we can rewrite Equation (3) as

∆G(cluster) = −∆g
πh2

3
(3R− h) + 2πRhσcl + π(2hR− h2)(σlv − σcv) . (6)

The critical cluster size is provided by

∂∆G(cluster)

∂R
= πh{−∆gh + 2(σcl + σlv − σcv)} = 0 (7)

or
hc =

2
∆g

(σcl + σlv − σcv) (8)

and

∂∆G(cluster)

∂h
= 2πR{−h∆g + (σcl + σlv − σcv)}+ πh{h∆g− 2(σlv − σcv)} = 0 , (9)

which along with Equation (8) result in

Rc = hc
σcl

σcl + σlv − σcv
, (10)

respectively,

Rc =
2σcl
∆g

. (11)

The radius, Rc, is consequently determined by the same relation as the critical cluster radius
in bulk crystallization, provided by Equation (1). Employing Equations (6), (8), (10), and
(11), the work of critical cluster formation, ∆G(cluster)

c , can be written as

∆G(cluster)
c = πR2σcl

{
−1

3

(
hc

Rc

)3
+

(
hc

Rc

)2
}

, (12)

where the ratio (hc/Rc) is provided by

hc

Rc
=

σcl + σlv − σcv

σcl
. (13)

According to the model illustrated in Figure 2, both R and h have to be positive
quantities. By this reason, the present model is applicable for systems obeying the condition

σcv ≤ σcl + σlv . (14)

Accounting for the Stefan–Skapski–Turnbull rule [3,4,43], the inequality

σlv < σcv (15)

can be expected to be fulfilled. Indeed, according to this rule, the surface tension is pro-
portional to the specific heat or enthalpy, ∆H, of the phase transformation considered, i.e.,
σ ∝ ∆H. Accounting for ∆Hlv < ∆Hcv, we arrive at the mentioned inequality. This con-
clusion is reconfirmed by the molecular dynamics computation results shown in Figure 3.
With this condition and Equation (14), Equation (13) results in 0 ≤ (hc/Rc) ≤ 1.
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In the considered interval, 0 ≤ (hc/Rc) ≤ 1, the work of critical cluster formation,
Equation (12), is a monotonously increasing function of the ratio (hc/Rc). Assuming
strong validity of the Stefan–Skapski–Turnbull rule, with ∆Hcv = ∆Hcl + ∆Hlv we arrive
at σcv ∼= σcl + σlv. The validity of the relation σcv ∼= σcl + σlv for a variety of systems was
stressed by Skripov and Faizullin as well in their analysis of similarities and differences
in solid–liquid and liquid–vapor phase transitions [44]. At this condition, we obtain
(hc/Rc) → 0 and the work of critical cluster formation tends to zero, i.e., in nucleation
near interfaces in melting a similar behavior can be found as that discussed by Gibbs in his
analysis of the formation of a new liquid phase in between two liquids. In the alternative
limiting case realized at (σlv − σcv)� σcl we arrive at hc = Rc, and the work of formation
of the critical cluster is equal to ∆G(cluster)

c = (2π/3)R2σcl . This is less than the respective
value in the bulk, ∆G(cluster)

c = (4π/3)R2σcl , by a factor one half.
Generally, we reach the conclusion that nucleation of critical clusters of the liquid

proceeds at a much higher rate near a planar interface of the crystal compared to nucleation
in the bulk. As a consequence homogeneous nucleation in melting is significantly enhanced
by the existence of planar interfaces.
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Figure 3. Results of molecular dynamics simulations: temperature dependence of the surface tensions
σlv(T) [45], σcl(T) [46], and σcv(T) [47,48]; Tt and Tc are the triple and critical point temperatures,
respectively. The circles at T = Tt correspond to values of surface tensions at the triple point. The
units are in dimensionless Lennard–Jones form.

The analysis performed here is applicable to systems obeying the inequality given by
Equation (14). In addition, it is assumed, in line with the Stefan–Skapski–Turnbull rule, that
the relation given by Equation (15) always holds. We now briefly test the general validity of
these relations based on the results of computer simulations. To the best of our knowledge,
the complete set of surface tensions, σlv(T), σcl(T), and σcv(T), required for the analysis
of the problems under consideration have been obtained so far for only one substance
described by a Lennard–Jones model [45–48]. The results are presented in Figure 3. In the
figure, surface tensions are provided in Lennard–Jones units. At the triple point (T = Tt),
σlv = 1.108 was obtained based on the analysis of the pressure tensor components [45],
σcl = 0.420 was computed via a cleaving wall method [46], and σcv = 2.308 was determined
via thermodynamic integration [47] and corrected by a recently developed computational
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crystal cleavage approach [48]. The values of σcv and σcl were averaged over (100), (110),
and (111) crystallographic planes.

As is evident from Figure 3, the inequality given by Equation (15) is fulfilled in line
with our expectations, while the inequality given by Equation (14) is not. In order to
describe the behavior of systems not obeying the latter relation, it may be necessary to
extend our model. As one such straightforward extension, a shape could be assumed,
as suggested by J. W. Gibbs in his analysis of phase formation near liquid–liquid planar
interfaces (see Figure 1). An example is shown in Figure 4. Instead of Equation (6), in this
case we obtain the following relation for the work of cluster formation:

∆G(cluster) = −∆g

{
πh2

1
3

(3R1 − h1) +
πh2

2
3

(3R2 − h2)

}
(16)

+2πR1h1σcl + 2πR2h2σlv − π(2h1R1 − h2
1)σcv .

In line with Equation (5), the relation

2R1h1 − h2
1 = 2R2h2 − h2

2 (17)

holds. Consequently, only three of the four parameters, R1, h1, R2, and h2, are independent.
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Figure 4. Extension of the model for the description of nucleation of a new liquid phase at a planar
liquid–solid interface. In this extension of the model illustrated in Figure 2, the critical cluster is
described as being formed of two spherical caps with the radii R1 and R2 and the height parameters
h1 and h2.

In computing the parameters of the critical clusters for this model we assume that
R2 = R2(R1, h1, h2), i.e., that R2 is uniquely determined by the other three parameters. The
first of the equilibrium conditions can then be written in the form

∂∆G(cluster)

∂R1
=

∂∆G(cluster)

∂R1

∣∣∣∣∣
h1,h2,R2

+
∂∆G(cluster)

∂R2

∣∣∣∣∣
h1,h2,R1

∂R2

∂R1

∣∣∣∣
h1,h2

= 0 . (18)

This condition leads to similar results as Equation (8), to

h1c + h2c =
2

∆g
[σcl + σlv − σcv] . (19)
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The second equilibrium condition,

∂∆G(cluster)

∂h1
=

∂∆G(cluster)

∂h1

∣∣∣∣∣
R1,h2,R2

+
∂∆G(cluster)

∂R2

∣∣∣∣∣
h1,h2,R1

∂R2

∂h1

∣∣∣∣
R1,h2

= 0 , (20)

yields

R1c =
2σcl
∆g

. (21)

The third equilibrium condition,

∂∆G(cluster)

∂h2
=

∂∆G(cluster)

∂h2

∣∣∣∣∣
R1,h1,R2

+
∂∆G(cluster)

∂R2

∣∣∣∣∣
h1,h2,R1

∂R2

∂h2

∣∣∣∣
R1,h1

= 0 , (22)

results in
R2c =

2σlv
∆g

. (23)

Equations (17), (19), (21), and (23) allow us a complete determination of the parameters
of the critical clusters. Similarly to the previously discussed case, they are physically
reasonable only if the condition given by Equation (14) is fulfilled. Substitution of these
parameters into Equation (16) again supplies us with the value of the work of critical cluster
formation. Qualitatively, the results are the same as discussed in the analysis of the first
model. In particular, provided that the relation σcl + σlv− σcv ∼= 0 holds, the work of critical
cluster formation again tends to zero.

We thus arrive at the conclusion that also this more general approach does not describe
the shapes of critical clusters when the condition given by Equation (14) is not fulfilled.
Which shapes could eventually lead to physically reasonable results in such cases is a
question we consider an open problem. One alternative approach to its resolution is
discussed in Section 3.

2.3. Nucleation in Crystallization

Employing the same model as utilized for the analysis of nucleation in melting to
describe crystal nucleation at a liquid–vapor planar interface (see Figure 5), we obtain
instead of Equation (6)

∆G(cluster) = −∆g
πh2

3
(3R− h) + 2πRhσcl + π(2hR− h2)(σcv − σlv) . (24)

In this case, the parameters of the critical cluster are determined similarly to Equations (8),
(10), and (11) via

hc =
2

∆g
[σcl + (σcv − σlv)] , (25)

Rc = hc
σcl

σcl + (σcv − σlv)
. (26)

As evident from Equations (25) and (26), Rc can be expressed as

Rc =
2σcl
∆g

. (27)

The work of critical cluster formation is provided in this case via

∆G(cluster)
c = πR2σcl

{
−1

3

(
hc

Rc

)3
+

(
hc

Rc

)2
}

, (28)
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again, where the ratio (hc/Rc) can now be written in the following form

hc

Rc
=

σcl + (σcv − σlv)

σcl
. (29)
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Figure 5. Model for the description of nucleation at planar interfaces in crystallization.

Accounting again for the generally valid condition σcv − σlv > 0 (Equation (15)), we
arrive at (hc/Rc) > 1. In the range 1 ≤ (hc/Rc) ≤ 2, the respective value of the work
of critical cluster formation is smaller compared to nucleation in the bulk, although the
effect is much less significant compared to melting. Vanishing of the work of critical
cluster formation under certain conditions is excluded. Assuming strong validity of the
Stefan–Skapski–Turnbull rule, with the limit σcv ∼= σcl + σlv we arrive at hc = 2Rc. In
this limiting case, the work of critical cluster formation is equal to the value in the bulk,
∆G(cluster)

c = (4π/3)R2σcl .
We come to the conclusion that crystal nucleation near interfaces proceeds prefer-

entially at specified limiting conditions via the configuration shown in Figure 6f. An
experimental example of this type of behavior was discussed by Avramov and Völksch
in [49]. Their interpretation of this effect in that paper was different; here, we show that
their results can be interpreted directly in terms of our developed model by accounting
exclusively for surface tension effects.

3. Results and Discussion

In the present paper, the effect of planar interfaces on melting and crystallization is
analyzed in terms of CNT. In line with the widely followed classical treatment of nucleation
processes, bulk properties of the critical clusters are assumed to be the same as found for
the newly evolving macroscopic phase and the capillarity approximation is employed. The
analysis is performed for multi-component systems and is in this respect of general nature.
The possible existence of heterogenous nucleation sites, specific features of the crystal
structure or of the properties of the liquid near interfaces, the effect of elastic stresses, and
other specific factors are not accounted for. In this way, we analyze the question of whether
the mere existence of a liquid–vapor or crystal–vapor planar interface may affect the rate of
nucleation processes in liquids or crystals. As is generally found in the application of CNT
to nucleation, the results are expected at least to lead to a correct qualitative understanding
of the peculiarities of nucleation near planar interfaces.
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The results are expected to be similarly applicable to nucleation at curved interfaces,
provided the curvature is not too high compared with the radii of the critical clusters.
Additional effects may occur for rough interfaces, as discussed in connection with the
analysis of surface structure on stress effects in crystal nucleation, e.g., in [9,10,50]. The
specific features of nucleation near interfaces mentioned above and possible further factors
may of course quantitatively modify the results, leaving, however, as we believe, the main
conclusions unchanged. These main results can be summarized as follows.

Nucleation of liquids in the crystal at crystal–vapor planar interfaces proceeds as a rule
with a much higher rate as compared to nucleation in the bulk of the crystal. Provided that
the surface tensions of the liquid–crystal (σcl), liquid–vapor (σlv), and crystal–vapor (σcv)
interfaces obey the condition σcv = σcl + σlv, the work of critical cluster formation tends to
zero. In the range of values of the surface tension provided by the inequality σcv < σcl + σlv,
this quantity is less than one half of the work of critical cluster formation for bulk nucleation.
This result provides a direct interpretation of the effects of pre-melting discussed by A.
Ubbelohde and cited in the introduction. In contrast, the existence of a liquid–vapor planar
interface modifies the work of critical cluster formation in crystal nucleation of liquids
to a much less significant degree. The work of critical crystal cluster formation is larger
than one half of the bulk value of the work of critical cluster formation, reaching the limit
at σcv = σcl + σlv. This result supports the theoretical concept that crystallization near
interfaces is stimulated mainly by a reduction of the inhibiting effect of elastic stresses on
crystal nucleation as compared to the bulk.

The shape of the critical clusters can be described in both considered cases by spherical
caps with a radius Rc. The distance, hc, from the cutting plane (coinciding with the crystal–
vapor and liquid–vapor planar interfaces, respectively) to the top of the spherical cap
representing the critical cluster varies for nucleation of a liquid in a crystal in the range
(hc/Rc) ≤ 1 and for crystal nucleation in a liquid in the range 2 ≥ (hc/Rc) ≥ 1. At
σcv = σcl + σlv, the ratio (hc/Rc) of the critical cluster for nucleation in melting tends to
zero. The critical crystallite has at this condition the shape of a sphere located tangentially
to the liquid–vapor interface inside the liquid. These results are illustrated in Figure 6.

  ! " 
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Figure 6. Possible shapes of the critical clusters in nucleation near planar interfaces in melting (top)
and crystallization (bottom). (a–f) The different shapes result from different values of the ratio, hc/Rc,
as expressed by Equation (13) for melting and Equation (29) for crystal nucleation at planar interfaces.
At the condition σcl + σlv − σcv ∼= 0, shape (a) with limit (hc/Rc)→ 0 is realized in melting and shape
(f) with limit (hc/Rc)→ 2 is realized in crystallization.
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The results summarized above for nucleation in melting are obtained for the cases
when the condition given by Equation (14) is fulfilled. In the theoretical analysis of wetting,
a similar parameter, the spreading parameter, Ψ, is introduced, which can be expressed at
certain conditions as [36]

Ψ = σcv − (σcl + σlv) . (30)

At Ψ < 0, the liquid sticks to the surface and forms a cap. At Ψ > 0, the liquid spreads,
trying to cover the solid completely. The condition Ψ < 0 corresponds to fulfillment of
Equation (14), and the shapes of the critical clusters are similar to the shapes of the sessile
drops formed in the kinetics of wetting processes. In the opposite case, perfect wetting
has to be expected as the final result of the melting process, although the problem remains
open of how it proceeds starting from a crystal–vapor planar interface.

The question arises here as to which shapes of critical clusters could be eventually
suggested as leading to physically reasonable results if the condition given by Equation (14)
does not hold. Alternatively, it is possible to assume that the properties of the critical
clusters may significantly deviate from the properties in the bulk. In such cases, the surface
tensions of the liquid critical cluster in contact with the crystalline solid

(
σ

cluster)
cl

)
and in

contact with the vapor
(

σ
(cluster)
lv

)
could be different from the values for planar interfaces.

Such considerations are widely discussed in nucleation theory, starting with the work
of Gibbs [32,40,51]. Gibbs also noted such a possibility as eventually being important in
the description of nucleation of fluids in fluid–fluid interfaces. The values of the surface
tensions for planar interfaces are shown here for the Lennard–Jones model system in
Figure 4. Even when the inequality given by Equation (14) does not hold for planar
interfaces, it may eventually be fulfilled for the surface tensions for the critical cluster. This
topic we consider as an open problem which warrants further detailed research.
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