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Abstract: The nonlinear mechanical behavior of rock significantly influences the design and construc-
tion of underground structures. Due to the complexity and diversity of the damage mechanisms
of rock, the damage variable directly defined by partial-damage mechanisms is insufficient in re-
flecting the progressive-failure process of rock comprehensively. So, in this paper, a novel damage
variable is introduced into the plastic-strain rate based on the theoretical framework of irreversible
thermodynamics to overcome this defect. The general expression is derived according to the least
energy dissipation rate principle. The proposed damage variable can represent the irreversible energy
dissipation process and has a strictly theoretical basis in mechanics. Moreover, the granite and
marble stress-strain curves are simulated and compared with the Lemaitre damage model, Mazars
damage model, and statistical damage model. The results show that the form of the proposed damage
variable is practical and straightforward and can better reflect the entire stress-strain relationship
of rock. Furthermore, the initial value of the inelastic response strain can be given directly through
the proposed damage variable. The model presented here can overcome the issue that the current
models need to select the damage threshold indirectly or assume it in advance and ensures that the
damage evolution characteristics follow the first principle entirely.

Keywords: damage; irreversible thermodynamics; energy dissipation rate; constitutive relation;
elastic–plastic

1. Introduction

The nonlinear mechanical behavior of rock has been an essential issue of geomechanics
for a long time. Many scholars have explored various constitutive models based on multiple
mechanical and mathematical theories to reveal the nonlinear mechanical characteristics of
stone [1–8]. However, the mechanical properties of the rock are affected by the formation
environment, chemical element composition, stress history, and so on. No perfect model
exists to capture the complex relationship between rock deformation and external load.

In recent decades, the continuous-damage mechanics have shone brilliantly in study-
ing a constitutive model for rocks. Based on the continuous-damage theory, some damage
models were built to describe the constitutive relation of rocks by mathematical expressions
containing no physical meaning parameters [9–13]. Those models are called empirical
models. On the other hand, Krajcinovic and Silva [14] were the first to combine the
continuous-strength damage theory with statistics to study the mechanical behavior of
rocks. Subsequently, some improved statistical damage models were constantly proposed
with the statistical microscopic damage mechanics [15–21]. The key to characterizing the
damage evolution in statistical damage theory is establishing a probability density function
of the micro-elements’ strength. However, various damage variables are obtained if other
strength criteria are adopted for the stress-strain curve, and even negative values will
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appear despite the same rock sample being used. In addition, the elastic modulus of the
damaged and undamaged parts for statistical damage models is generally assumed to be
consistent. Albeit the stresses are inconsistent, the strains remain the same. These do not
conform to the physical equation in elastic mechanics. Then, based on the irreversible
thermodynamics, there is another possibility of analyzing the damage mechanism of rock
from the perspective of energy dissipation.

Unlike the statistical damage models, which rely on statistical physics to describe the
failure probability property of micro-elements’ strength, there is a lack of first principles
directly related to the failure probability of micro-elements’ strength. The constitutive
equations obtained from irreversible thermodynamics satisfy the fundamental laws of
thermodynamics. They describe the internal and external reactions of materials and charac-
terize the irreversible energy dissipation process inside materials and the thermodynamic
state of the materials system. They have a profound thermodynamic context and strict
theoretical basis [22–24]. Some scholars have investigated the response law between rock
deformation and external load by irreversible thermodynamics [25–29]. The above studies
also indicate that the mechanical failure mechanisms of rock are multifaceted: existing
micro-cracks slip, micro-pores fragmentation, elastic failure of mineral particles, dislocation
movement of crystals, the development speed and direction of cracks, and the cluster effect
between cracks or pores. These mechanisms are both the source of rock damage and the
cause of energy dissipation. Thus, the concept of damage has been introduced to reveal
this relationship better. Determining the quantitative relationship correctly between energy
dissipation and the damage variable plays a vital role in constructing thermodynamic
constitutive models.

Recently, applications of damage mechanics to irreversible thermodynamic models
have been roughly classified into two categories. First, damage variables are not obtained
from the scope of irreversible thermodynamics, but from other means. Wang et al. [30] used
the Mazars damage criterion to define the damage variable. Darabi et al. [31] and Subrama-
nian and Mulay [32] gave the damage variable based on the effective bearing area. Using
statistical methods, Li et al. [33] directly defined the damage variable. Qu et al. [34] derived
the Lemaitre damage variable by the fractional derivative. Although the mechanical evo-
lution equations used are closely related to thermodynamics, the rationale of introducing
damage variables directly into them seems to require more explanation and exploration.
Second, damage variables have been studied and analyzed from different perspectives
based on the concept of a non-equilibrium state in thermodynamics. Zhang [35] presented
a damage-constitutive equation based on irreversible thermodynamics, but the equation
did not explicitly express the damage variable. Based on the damage and flow criterion,
Chai [36] deduced the damage variable in the framework of the elastic–plastic theory.
He et al. [37] introduced the damage function potential and built empirical expressions of
the damage variable related to temperature and material property. The latest research is
that Gao et al. [38] deduced the damage evolution equation through the energy dissipation
rate. Regrettably, the “dissipated energy” in that equation is the so-called effective elastic
strain energy but is not the energy associated with unrecoverable strain in the process of
rock deformation, and the constitutive evolution equation cannot describe the stress-strain
relation after the stress peak.

In summary, although these studies were carried out within the framework of ther-
modynamics, some directly use the damage variable as an external introduction variable
without deriving it from the energy perspective, or some depict the damage variable only
from one or part of one damage mechanism. To overcome these shortcomings, this study
combines the principle of least energy dissipation rate with elastic–plastic mechanics and
further obtained the specific expression of the damage variable through rigorous mechani-
cal derivation. The damage variable can comprehensively reflect the damage mechanism
of rock and provide a reliable theoretical basis for subsequent study of the mechanical
nonlinear behavior of the rock.
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This paper introduces a new damage variable to the plastic strain rate. The specific
expression of the proposed damage variable is derived based on the least energy dissipation
rate principle. Furthermore, the equivalence relationship between the energy-dissipation
rate and the damage energy-release rate is proved by introducing the damage variable into
the free Helmholtz energy through the second principle of thermodynamics. In addition, the
stress-strain relationship before the peak value of granite and the stress-strain relationship
during the whole process of marble are simulated and verified, and the analytical and
numerical solutions are further given. Finally, the proposed damage variable is further
analyzed and discussed by comparing it with other theoretical models.

2. Damage Evolution
2.1. Theoretical Framework

The definition and derivation of the damage variable are the basis for analyzing the
mechanical behaviors of solid materials by using continuous-damage mechanics, and as far
as damage variables describing rock material damage are concerned, they can be divided
into time-dependent and time-independent isotropic and anisotropic, etc. [5,6]. Selecting
damage variables is essential in researching the damage evolution law of solid materials
with irreversible thermodynamics.

The second principle of thermodynamics can be described as [39]:

σ :
.
ε−v = ρ

.
u− T

.
η (1)

where σ and
.
ε are the second stress tensor and second strain rate tensor, respectively. The

font is bold for tensors. v is the spontaneous energy dissipation per unit mass. u is the
internal energy per unit mass. η is the entropy per unit mass. ρ is the mass density. T is the
absolute temperature. As one of the expressions of the second principle of thermodynamics,
v is required to be a negative value, 0 in reversible processes, and positive in irreversible
processes. Herein, the free Helmholtz energy ψ can be defined as:

ψ = u− Tη (2)

The increment of ψ can be written as:
.
ψ =

.
u− T

.
η − η

.
T (3)

By introducing Equation (3) into Equation (1), the expression for the second principle
of thermodynamics in terms of the free Helmholtz energy can be written as:

σ :
.
ε−v = ρ

.
ψ− η

.
T (4)

If the temperature keeps constant, the above equation can be simplified as:

σ :
.
ε−v = ρ

.
ψ (5)

Helmholtz proposed the principle of least energy dissipation for incompressible vis-
cous fluids based on irreversible thermodynamics. However, strict application conditions
limit the application scope of this principle [40]. By introducing the concept of an instan-
taneous stable state, in the case of the linear and nonlinear non-equilibrium state, at any
moment of any energy dissipation process, the system will take the minimum value of all
possible energy dissipation rates under corresponding conditions. This modified energy
dissipation principle is the principle of least energy dissipation rate [38,40,41]. The general
form of the energy dissipation rate Φ is given as [41]:

Φ =
∫
V

Tρ
diη

dt
dV (6)
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where V is the volume of material. t stands for time.

2.2. Damage Variable

Suppose a rock mesoscopic element is in a closed system in the deformation and failure
process. In that case, there is no energy dissipation such as heat exchange and acoustic
emission with the outside world. At this point, the work U done by external loading on
the closed system is all converted into elastic energy Ue and dissipation energy Ud. The
quantitative relationship is depicted as shown in Figure 1.
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It is assumed that rock deformation is divided into elastic response deformation and
inelastic response deformation under external loading, while inelastic response deformation
is mainly composed of plastic deformation. In other words, plastic deformation is rock’s
only energy dissipation mechanism in irreversible thermodynamics. As shown in Figure 1,
the dissipation energy Ud is the work done by external loading on the plastic strain. Then,
the energy dissipation rate ϕ of rock can be written as:

ϕ = σ:
.
ε

p (7)

where,
.
ε

p represents the plastic strain rate. The least energy consumption rate principle
requires the least energy dissipation rate under the constraint condition of g(σ) = 0. The
Lagrange multiplier λ is introduced, and there is the following expression:

∂
[
σ :

.
ε

p − λg(σ)
]
/∂σ = 0 (8)

where g(σ) is the constraint function, rearrange the above equation appropriately, and the
following expression can be obtained:

.
ε

p
= λ∂g(σ)/∂σ (9)

Equation (9) can be further written as an increment of the plastic strain εp as:

dεp = dλ∂g(σ)/∂σ (10)

As we all know, the plastic potential theory has been widely used in plastic mechanics,
and Equation (10) happens to be the result. Like Drucker’s postulate, the principle of least
energy dissipation rate can also be used as one of the theoretical bases of plastic potential
theory. At this point, g(σ) can be called the plastic potential function. The properties of
materials affecting the energy dissipation process will be determined in a specific form,
namely the corresponding constraint conditions. When the above constraints are the yield
conditions, the result of the plastic potential theory is a flow law associated with the loading
conditions. Otherwise, it is called uncorrelated flow.
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According to the incremental theory of plastic mechanics [42,43], the plastic strain rate
is expressed by

.
ε

p
i =

2α

3

[
σi −

1
2
(σj + σk)

]
(11)

where i, j, and k rotate in the order of 1, 2, and 3; α is a non-negative scalar constant of
proportionality. In general, two state variables, strain and damage can describe materi-
als’ mechanical damage behaviors. The formation and development of micro-pores and
micro-cracks in the internal structure of the materials cause irreversible damage to the
materials. It can be considered that this irreversible damage is the leading cause of inelastic
response strain.

Based on the background of isotropy, the plastic strain is assumed here to be positively
correlated with the damage variable D. As can be seen from Equation (11), when the
three principal stresses remain unchanged, the plastic strain rate maintains a linear growth
with α. However, in most cases, the plastic strain rate increases nonlinearly, coinciding
with the nature of the damage variable, so the damage change rate is used to replace the
constant α. In addition, take the principal axis of stress as the coordinate axis, combined
with the effective stress principle in damage mechanics, by blending Equation (7) with
Equation (11), the energy dissipation rate ϕ can be obtained as:

ϕ = σ :
.
ε

p
=

2
.

D(t)
3[1− D(t)]

(σ2
1 + σ2

2 + σ2
3 − σ1σ2 − σ2σ3 − σ1σ3) (12)

where D(t) represents the damage variable at any time, and
.

D(t) is the derivative concerning
time t.

Take the Mises criterion as the constraint:

σ2
1 + σ2

2 + σ2
3 − σ1σ2 − σ2σ3 − σ1σ3 = σ2

s (13)

where σs is the yield limit.
The plastic strain rate containing damage can be obtained by substituting

Equations (12) and (13) into Equation (8) as:

2
.

D(t)
3[1− D(t)]

(2σi + σj + σk) + λ(2σi + σj + σk) = 0 (14)

Solve Equation (14) by integrating, the expression of D(t) can be obtained as:

D(t) = 1− e−
3
2 λt+c (15)

It can be seen from Equation (14) that the damage variable obtained here applies to
both uniaxial and triaxial tests of materials. In the loading experiment of constant strain
rate, assuming that the strain is linearly correlated with the constant k, then

ε = kt (16)

To further analyze the stress-strain relationship of rock, Equation (16) is substituted
into Equation (15), and the expression of D can be written as

D = 1− exp(−3
2

βε + c) (17)

with
β =

λ

k
(18)
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where β and c can be regarded as the dimensionless parameters introduced in the mathe-
matical derivation obtained through experiments. The damage variable D here applies to
both rock compression and tensile tests.

2.3. Damage Threshold and Parameter Determination

The continuous damage-constitutive equation for rocks [39] can be expressed as

σ = (1− D)[λ0trε+ 2G0ε] (19)

where λ0 and G0 are the Lame coefficients.
The initial stage of compression of rocks is usually called the elastic compaction stage.

In other words, at this position, the micro-holes or micro-cracks of the internal rock structure
are compressed, and no damage occurs at this stage [44]. In the stress-strain curve of rock,
when the stress gradually approaches the peak value, the elastic energy of rock increases,
and the irreversible dissipated energy increases. The plastic strain begins to appear, and the
damage is thought to have started [45]. Take the total strain value when the plastic strain
occurs as the threshold of elastic–plastic damage, and the constitutive damage equation
can be written as flows

σ =

{
λ0trε+ 2G0ε f or ε ≤ ε0
(1− D)[λ0trε+ 2G0ε] f or ε > ε0

(20)

where ε0 is the total strain value when the plastic strain occurs. In the uniaxial compression
experiment, the stress is {

σ = σ1
σ2 = σ3 = 0

(21)

Combined with Equations (17), (20) and (21), the constitutive model of rock under
uniaxial compression is described as

σ = Eε exp(−3
2

βε + c) (22)

Then, material parameters can be determined by the specific rock stress-strain curve.
For example, in the axial direction:{

σ = σmax f or ε = εm
dσ/dε = 0 f or ε = εm

(23)

where, εm and σmax are the strain and stress at the peak of the stress-strain curve, respectively.
Substituting Equation (22) into Equation (23), there is the following equation

Eεm exp(−3
2

βεm + c)(1− 3
2

βεm) = 0 (24)

To solve the parameter β, let

(1− 3
2

βεm) = 0 (25)

Here, the value of β can be obtained as

β =
2

3εm
(26)

By Equations (22), (23) and (26), the value of parameter c can be calculated as follows

c = 1 + ln σmax − ln Eεm (27)
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The above analysis shows that rock damage occurs only in response to plastic strain,
not at the elastic compaction stage. If the damage variable is 0, according to Equation (17),
the following formula can be obtained as

D = 1− exp(−3
2

βε + c) = 0 (28)

Solving Equation (28), the initial value of inelastic response strain ε0 (the strain damage
threshold) under uniaxial compression can be obtained as

ε0 =
2c
3β

f or ε0 < εm (29)

In addition to the above parameter determination method, the nonlinear fitting process
can also be adopted.

2.4. Damage Energy Release Rate

The damage energy release rate [26,27,34] can be expressed as

φ = −ρ
∂ψ

∂D
(30)

where φ is the damage energy release rate. ψ still represents the free Helmholtz energy,
but as a function of the damage variable D and the strain tensor ε, which can usually be
written as

ψ = ψ(ε, D) (31)

From Equation (31), ψ only has one term. In some studies, the function ψ consists of
two terms [23,26]. It is considered that this study is limited to the elastic–plastic theoretical
framework. The function of the free Helmholtz energy can be assumed as

ψ = ψ0(ε)− ψ1(ε, D) (32)

Equation (32) is an implicit expression. The precise form of the process is unknown.
The decision of the particular function expression of ψ is problematic, primarily depending
on the need for research. Herein, the damage energy release rate φ can be obtained from
Equations (30) and (32), namely,

ϕ = ρψ′1(ε, D) = ρ
∂ψ1(ε, D)

∂D
(33)

Combined with the above analysis, by comparison with Equation (5), since plastic
strain energy is the only energy dissipation mechanism, v is also a function of the strain
tensor ε and damage variable D, and Equation (32) can be further written as

ϕ = ρ
∂ψ1(ε, D)

∂D
=

.
v(ε, D) (34)

where
.

v represents taking the derivative for damage variable D.
Assuming that the irreversible dissipation energy is the work done on the plastic

strain, there is the following equation

v(ε, D) = σ:εp (35)

The derivative of Equation (35) concerning the damage variable is:

.
v(ε, D) = σ:

.
ε

p (36)
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Rearrange Equations (7), (12), and (34)–(36) appropriately, and there is the
following expression

φ = ϕ (37)

It can be seen from Equation (37) that the energy dissipation rates obtained are consis-
tent whether the damage variable is directly introduced into the free Helmholtz energy or
the mechanism of energy input and dissipation.

3. Validation of Damage Constitutive Model
3.1. Application in Granite

The rationality of the damage variable proposed here needs to be verified by ex-
perimental data. Gao et al. [38] performed uniaxial compression and uniaxial tensile
experiments on granite from the Three Gorges Project in China. They applied the experi-
mental data obtained to the relevant rock-constitutive model. The date was also used in
this study. For brittle rocks, the Mazars damage model (MDM) can describe its stress-strain
relationship well and is outstanding among many constitutive damage models, and its
damage variable can be expressed as

D =

 0 f or ε∗ ≤ ε∗p

1− ε∗p(1−λ1)

ε∗ − λ1
exp[λ2(ε∗−ε∗p)]

f or ε∗ < ε∗p
(38)

with
ε∗ =

√
(〈ε1〉+)2 + (〈ε2〉+)2 + (〈ε3〉+)2 (39)

where ε∗p is the maximum value of ε. Λ1 and λ2 are parameters that must be obtained by
fitting according to the actual stress-strain curve.

Therefore, the proposed model is compared with the Mazars damage model and the
damage model in Gao et al. [38] to verify the rationality of the new model. Mechanical
parameters of granite are listed in Table 1.

Table 1. Mechanical parameters of granite specimen from Gao et al. [38].

Elastic Module
(E)

Poisson’s
Ratio (ν) Cohesion(c) Internal Friction Angle

(ϕ)

Uniaxial
Compressive

Strength
(σmax)

Uniaxial Tensile
Strength

(σmax)

68 GPa 0.24 31 MPa 48.47◦ 41.5 MPa 2.691 MPa

Equations (26) and (27) determine the values of the dimensionless parameters β and c.
In addition, the fitting results of parameters λ1 and λ2 for the Mazars damage model in
Gao et al. [38] are adopted. The calculation results of all parameters are shown in Table 2.

Table 2. Parameters of the proposed model and the comparison model.

Experiments εm β c εo λ1 λ2

Uniaxial compression 7.33 × 10−4 909.5 0.8168 5.98 × 10−4 1 23,290
Uniaxial tensile 4.5 × 10−5 14814.8 0.8714 3.92 × 10−5 1 124,110

The comparison of simulated values obtained from three models with experimental
data is shown in Figure 2. The mean relative errors of the calculated values of the three
models are shown in Table 3 (where EDDM is the energy dissipation damage model in
Gao et al. [38], and NEDDM is the new energy dissipation damage model with the damage
variable proposed here).
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Table 3. Mean relative errors of the calculated values of the three models for granite (%).

Models
Test

Total Mean Relative Error
Uniaxial Compression Uniaxial Tensile

MDM 8.1 13.7 21.8
EDDM 12.5 10.6 23.1

NEDDM 5.1 5.6 10.7

As shown in Figure 2, three models can describe granite’s stress-strain relationship.
As a hard, brittle rock, the elastic modulus of granite is more significant than other rocks.
However, the curve trend, the stress-strain relationship of granite, was close to a straight
line in the elastic stage. After entering the plastic phase (ε > ε0), the damage will increase
rapidly, resulting in a brittle failure after the rock strength rises to the peak value. After
that, the rock’s strength decreases rapidly from the peak value, and finally, the rock will
lose stability.

In the uniaxial compression case, as shown in Table 2, the strain damage thresholds
were ε0 = 5.98 × 10−4 < εm = 7.33 × 10−4, and this is consistent with the view of classical
continuous damage mechanics that rock damage has occurred before the peak value [44].
The same situation exists in the constitutive model of uniaxial tension. In the elastic
response stage, the calculated curves of the three models were nearly straight lines and
close to the experimental curve. In section OA, the stress level increased gradually, and
the rock’s internal structure produced micro-cracks, and damage appeared and developed
accordingly. The curve trends of the three constitutive models were still consistent, but
the Mazars damage model calculation curve increased by a more considerable margin.
However, in section AB, although the trends of the simulated curves fluctuated to some
extent, they all turned downward at the end. In terms of the fitting degree with the
experimental curve, the calculated curve obtained from the proposed model was closer,
which can be found in Table 3. The mean relative errors of the proposed model were less
than the other two. The performance of the three constitutive models in the uniaxial tensile
experiment was the same as that in the uniaxial compression experiment, so it will not be
repeated here.

3.2. Application in Marble

The above example preliminarily tested the ability of the new model to describe
the stage before the stress peak of granite under uniaxial compression. To further verify
the new model’s applicability, marble’s whole stress-strain relationship was simulated
and analyzed. Rummel and Fairhurst [22] performed uniaxial and conventional triaxial
compression experiments on Tennessee marble samples. Based on these experimental
data, Li et al. [16] and Li et al. [17] verified the rationality of their respective statistical
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damage-constitutive model. These experimental data continued to be used to verify the
proposed model. A comparative analysis was also conducted with these two statistical
damage-constitutive models.

The core theoretical basis of the statistical damage-constitutive model of rock is the
assumption that the rock is composed of a series of micro-elements. The strengths of all
micro-elements obey random distribution. Li et al. [16] assumed that the micro-elements’
strengths of rock follow the Weibull distribution function. In contrast, Li et al. [17] believed
that the micro-elements’ strengths of rock obey the maximum entropy distribution function,
and the specific damage variable expressions are as follows:

Dw = 1− exp
[
−
(

F
F0

)m]
(40)

Ds =

n∫
0

[
exp(λ0

n

∑
j=1

λjuj(x)

]
dx (41)

where Dw and Ds represent the damage variables defined by the Weibull and the maximum
entropy, respectively. F is the strength of the micro-element. m is the coefficient related to
the shape. F0 is the scale parameter. x is the statistical variable, which mainly refers to the
strength of the micro-element. j is the number of Lagrange multipliers. uj(x) is the function
related to the moment. λ is the Lagrange multiplier. Dw and Ds tend to go from 0 to 1. The
mechanical parameters of marble from Rummel and Fairhurst [22] are shown in Table 4.

Table 4. Mechanical parameters of marble [22].

Elastic Module
(E)

Poisson’s
Ratio (ν) Cohesion (c) Internal Friction

Angle (ϕ)
Uniaxial Compressive

Strength (σmax)

51.62 GPa 0.25 27.96 MPa 44.01◦ 123 MPa

Due to the complex stress-strain relationship in the whole deformation process of
marble, the description ability of Equation (20) is insufficient, and the damage-constitutive
equation proposed by Zhao et al. [18] is adopted as

σ1 = Eε1(1− D) + 2νσ3 + (1− 2ν)RcD (42)

Rc =
2cr cos ϕr + σ3(1 + sin ϕr)

1− sin ϕr
(43)

where Rc is the residual strength. cr and ϕr represent the residual cohesion and residual
internal friction angle. D is calculated by Equation (17). Let R be the complex correlation
coefficient, and the final calculation results of parameters in the proposed model are shown
in Table 5.

Table 5. Parameters of the proposed model for marble.

σ3 (MPa) εm β δ ε0 Rc R

3.5 4.13 × 10−3 221.6 0.81 2.4 × 10−3 69.8 0.98
7 4.3 × 10−3 240.3 1.19 2.6 × 10−3 102.3 0.96

14 6.5 × 10−3 115.0 0.52 3.0 × 10−3 125.6 0.96
21 7.0 × 10−3 11.78 0.63 3.8 × 10−3 155.4 0.98

The comparison of three calculated curves with experimental curves for marble is
demonstrated in Figure 3. The mean relative errors of the calculated values of the three
models are shown in Table 6. Figure 4 shows the comparison between the damage variables
in the proposed model and Li et al. [17] under different confining pressures (where SDM is
the statistical damage model in Li et al. [16], MESDM is the maximum entropy statistics
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damage model in Li et al. [17]. NEDDM is the new energy dissipation damage model with
the damage variable proposed here).
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Table 6. Mean relative errors of the calculated values of the three models for marble (%).

Models
Confining Pressures/MPa

Total Mean Relative Error
3.5 7 14 21

MDM 12.6 6.4 9.7 7.8 36.5
EDDM 15.9 8.4 6 6.1 36.4

NEDDM 8.7 6.1 6.5 5.8 27.1

On the one hand, as shown in Figure 3, the three theoretical models fully reflected the
mechanical characteristics of elastic compaction, strain hardening, and strain softening for
marble, especially for the curve before the stress peak. When loading was over the stress
peak, the phenomenon of strain-softening began to appear with the gradual increase in
damage. At this point, the simulation accuracies of the three theoretical models started
to decline to vary degrees. All deviated from the experimental curve more or less but
developed along the track of strain-softening on the whole. As shown in Table 6, under
different confining pressures, the mean relative errors of the proposed model were less
than ten percent, and the total mean relative error was the smallest.

On the other hand, the proposed model gave the critical values of elastic–plastic strain
for marble under different confining pressures, shown in Table 5 and Figure 4. It is easy to
see that the critical values ε0 were less than the strain εm at the stress peak [9–11,46]. This is
also consistent with the viewpoint of classical continuous damage mechanics.

Although the damage threshold was also set in the other two models, critical values of
the elastic and plastic strains could not be given. As shown in Figure 4, the damage variables
proposed here and in Li et al. [17] changed on a scale of zero to one, but the corresponding
initial strain values differed. The damage variables in Li et al. [17] began to appear to
occur at the moment of loading, but, from Lemaitre and Desmorat [47], usually, during
the elastic phase, only the existing internal micro-cracks and micro-pores themselves were
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compressed, and no actual damage occurred. Another difference is that the change rate
of the proposed damage variable gradually decreased, and the damage value approached
one eventually. Still, the trend of the change rate for the damage variable in Li et al. [17]
showed a state of non-convergence.
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The other thing to note is that the three theoretical models differed from the experimen-
tal values. The possible reason is that the mechanical behavior of rock is highly complex,
while the three damage theoretical models are essentially phenomenological mathematical
models. After all, describing such a complex stress-strain relationship is a challenging topic.

4. Conclusions

A rational damage model is critical for characterizing the nonlinear deformation of
rock. Although statistical damage models can describe nonlinear mechanical behavior, the
proposed damage variable in these models must assume the distribution function form of
micro-elements’ strength. A novel damage variable was derived here by the least energy
dissipation rate principle based on irreversible thermodynamics to remedy this drawback.
Relative to statistical damage variables, the damage evolution method presented here
was tested using granite and marble experimental data, and comparisons were further
conducted with statistical damage evolution theory. The conclusions of the current work
are as follows.

(1) In irreversible thermodynamics, the damage variable with a simple form is derived
by the least energy dissipation rate principle. By introducing the proposed damage
variable into the free Helmholtz energy as an internal variable, the equivalence re-
lationship between the energy dissipation rate and the damage energy release rate
was proved by the second principle of thermodynamics. The rigorous thermody-
namic theory was the cornerstone of this research. The proposed damage evolution
method can represent the energy dissipation of rock during the deformation and has
good universality.
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(2) Through the simulations of the stress-strain relationship of granite and marble, the
calculated values obtained by the proposed model were close to the experimental
values, and the fitting accuracy was slightly higher than other current models. The
proposed model is applicable if the stress-strain relationship is simulated before
the stress peak or the whole process. Parameter calculation is more convenient
and concise.

(3) The relationship between the new damage variable and strain was calculated, sum-
marized, and compared with the current statistical damage variable. The results show
that the evolution trends of the two were the same, but the former could give the
critical value between elastic and plastic strain, while the latter could not. Energy
dissipation is the first principle directly related to damage. The strain damage thresh-
old obtained through rigorous deduction is more scientific and reasonable than the
artificial assumed damage threshold.

(4) This paper mainly focused on the theoretical damage evolution method and only
applied to isotropic damage. Furthermore, verification of other rocks’ mechanical
damage evolution characteristics is required. Future research should integrate the
suggested damage evolution into the numerical simulation.
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