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Abstract: In this article, a new one parameter survival model is proposed using the Kavya–Manoharan
(KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical
properties are obtained: quantiles, moments, incomplete moments and moment generating function.
Different types of entropies such as Rényi entropy, Tsallis entropy, Havrda and Charvat entropy and
Arimoto entropy are computed. Different measures of extropy such as extropy, cumulative residual
extropy and the negative cumulative residual extropy are computed. When the lifetime of the item
under use is assumed to follow the Kavya–Manoharan inverse length biased exponential (KMILBE)
distribution, the progressive-stress accelerated life tests are considered. Some estimating approaches,
such as the maximum likelihood, maximum product of spacing, least squares, and weighted least
square estimations, are taken into account while using progressive type-II censoring. Furthermore,
interval estimation is accomplished by determining the parameters’ approximate confidence intervals.
The performance of the estimation approaches is investigated using Monte Carlo simulation. The
relevance and flexibility of the model are demonstrated using two real datasets. The distribution is
very flexible, and it outperforms many known distributions such as the inverse length biased, the
inverse Lindley model, the Lindley, the inverse exponential, the sine inverse exponential and the sine
inverse Rayleigh model.

Keywords: progressive-stress model; progressive censoring; maximum likelihood estimation; maxi-
mum product spacing; Kavya–Manoharan class of distributions; inverse length biased exponential
distribution

1. Introduction

Accelerated life tests (ALTs) are applied to gain rapid information on the lifetime distri-
bution of materials or products. In ALTs, the units’ test is performed at higher-than-normal
levels of stress (voltage, vibration, pressure, temperature, etc.) to induce early failures. Data
obtained at the accelerated conditions are analyzed in terms of an appropriate statistical model
and then extrapolated to the specified normal stress to estimate the lifetime distribution in
normal use conditions. There are different methods to apply the stress. Commonly used
methods are constant-stress, step-stress and progressive-stress; see, for example, Nelson [1],
AL-Hussaini and Abdel-Hamid [2,3], Abdel-Hamid and AL-Hussaini [4] and Abdel-Hamid
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and Hashem [5]. The stress applied to a test product increases in time during a progressive-
stress ALT; see Yin and Sheng [6], Abdel-Hamid and AL-Hussaini [7], Abdel-Hamid and
Abushal [8], AL-Hussaini et al. [9] and Nadarajah et al. [10].

Censoring has an important role in reliability and lifetime studies when the exper-
imenter can not observe the lifetimes of all test units. Type-I and type-II censoring are
two commonly used censoring schemes (CSs); see for example, Mann et al. [11], Meeker
and Escobar [12] and Lawless [13]. Progressive type-II censoring, see Figure 1, is con-
sidered a generalization of type-II censoring. It allows the experimenter to remove units
from a life test at different steps through the experiment. It saves time and cost that may
be a consequence of such sampling scheme. For more details on progressive censoring,
see Balakrishnan and Sandhu [14], Aggarwala and Balakrishnan [15], Balakrishnan and
Aggarwala [16] and Hashem and Alyami [17].

Figure 1. The process of generating order statistics under progressive type-II censoring.

In recent years, many various statisticians have been drawn to create families of
distributions such as Marshall-Olkin-G [18], Kumaraswamy-G (Kum-G) in [19], odd Lomax-
G [20], sine- G in [21], odd Dagum-G [22], Type II half logistic-G in [23], transmuted
geometric-G [24], odd Perks- G in [25], odd Lindley- G in [26], truncated Cauchy power
Weibull-G [27], generalized transmuted-G [28], truncated Cauchy power-G in [29], Burr
X-G (BX-G) class [30], transmuted odd Fréchet-G in [31], Type II exponentiated half logistic–
G in [32], Topp Leone-G in [33], exponentiated M-G by [34], odd Nadarajah–Haghighi-G
in [35], exponentiated truncated inverse Weibull-G in [36] and T-X generator proposed
in [37], among others.

Additional parameters give greater flexibility, but they also increase the complexity of
estimation. To counter this, Ref. [38] proposed the Dinesh–Umesh–Sanjay (DUS) transfor-
mation to obtain new parsimonious classes of distributions. This is as follows. If G(x) is
the baseline cumulative distribution function (CDF), the DUS transformation generates a
new CDF F(x) expressed as:

F(x) =
eG(x) − 1

e− 1
, x ∈ R.

The merit of using this transformation is that the resulting distribution is parameter-
parsimonious because no extra parameters are added. In this way, Ref. [39] proposed a
new class of distributions that includes many flexible hazard rates. They explored using
the DUS transformation using the exponentiated cdf, introducing the generalized DUS
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(GDUS) transformation. Ref. [40] proposed a generalized lifetime model based on the DUS
transformation, with the CDF of the GDUS transformation given by

F(x; α, ζ) =
exp(Gα(x; ζ))− 1

e− 1
, x ∈ R, α > 0,

where α > 0. The associated density function (PDF) is given by:

f (x; α, ζ) =
αg(x; ζ)Gα−1(x; ζ) exp(Gα(x; ζ))

e− 1
, x ∈ R, α > 0,

where G(x; ζ) is the baseline distribution in the GDUS family distribution. This approach
will always create a parsimonious distribution because it is a transformation rather than a
generalization, so that no additional parameters beyond those in the baseline distribution
are introduced.

Recently, Ref. [41] introduced a new transformation, the KM transformation family of
distributions. The CDF and PDF are, respectively,

FKM (x) =
e

e− 1

(
1− e−G(x)

)
, x ∈ R, (1)

and
fKM(x) =

e
e− 1

g(x)e−G(x), x ∈ R. (2)

The hazard rate function (HRF) is provided via

ξKM (x) =
g(x)e1−G(x)

e1−G(x) − 1
, x ∈ R. (3)

Using a given baseline distribution, this family generates new lifetime models or distributions.
Ref. [41] used the exponential and Weibull distributions as baseline distributions

because they are widely used in reliability theory and survival analysis.
Ref. [42] presented the length biased exponential (LBE) (or moment exponential (ME)

model) by allocating weight to the exponential (E) model. They established that the LBE
distribution is more adaptable than the E model. The CDF and PDF files are available:

G(z; θ) = 1−
(

1 +
z
θ

)
e−

z
θ , z > 0, (4)

and
g(z; θ) =

z
θ2 e−

z
θ , z > 0, (5)

respectively, where θ > 0 is a scale parameter.
The inverse LBE (ILBE) distribution was presented in [43], and it is produced by

utilizing the random variable X = 1/Z, where X is as follows (5). The CDF and PDF files
in the ILBE distribution are specified as

G(x; θ) =

(
1 +

θ

x

)
e−

θ
x , x > 0, θ > 0, (6)

and

g(x; θ) =
θ2

x3 e−
θ
x , x > 0, θ > 0. (7)

The fundamental goal of the article under consideration is to introduce the KMILBE
model, as a new one-parameter lifetime model based on the KM transformation family,
ILBE distribution, and also to investigate its statistical characteristics. The following
points provide sufficient incentive to study the KMILBE distribution. We specify it as
follows: (i) It is remarkable to observe the flexibility of the proposed model with the
diverse graphical shapes of pdf and hrf. Thus, the the pdf of the KMILBE distribution
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can be unimodal and right-skewed, with very heavy tails, but the hrf of the KMILBE
distribution can be increasing, J-shaped form; (ii) The KMILBE distribution have a closed
form of the quantile function; (iii) The KMILBE is a good alternative to several lifetime
distributions for modeling skewed data in applications; (iv) Different types of entropy and
extropy are computed; (v) Based on progressive type-II censoring, we have discussed some
estimation methods on a progressive-stress model when the lifetime of a product follows
the KMILBE distribution. The methods that have been discussed are maximum likelihood
(ML), least squares (LS), weighted least squares (WLS) and maximum product of spacing
(MPS) estimation.

This paper is organized as follows: In Section 2, a new lifetime model using inverse
length biased distribution as the baseline distribution in the KM transformation family
is presented. In Section 3, we demonstrate the statistical features of the KMILBE model.
Different measures of entropy are discussed in Section 4. In addition, some measures of
extropy are proposed in Section 5. Model description and progressive type-II censoring
by using ML, LS, WLS, and MPS are studied in Section 6. The simulation study and the
numerical results are discussed in Section 7. Application to two real datasets is discussed
in Section 8. Finally, concluding remarks are proposed in Section 9.

2. Construction of the Kavya–Manoharan Inverse Length Biased Exponential Distribution

In this section, we construct a new flexible distribution called the Kavya–Manoharan
transformation inverse length biased exponential (KMILBE) distribution by inserting
Equation (6) into Equation (1), to obtain

FKMILBE(x; θ) =
e

e− 1

{
1− e−(1+ θ

x ) e−
θ
x
}

, x > 0, θ > 0, (8)

and the corresponding PDF is

fKMILBE(x; θ) =
e θ2

e− 1
x−3e−

θ
x e−(1+ θ

x ) e−
θ
x , x > 0, θ > 0. (9)

The survival function (SF), HRF, reversed HRF and cumulative HRF for the KMILBE
distribution are

RKMILBE(x; θ) = 1− e
e− 1

{
1− e−(1+ θ

x ) e−
θ
x
}

,

hKMILBE(x; θ) =
e θ2x−3e−

θ
x e−(1+ θ

x ) e−
θ
x

e− 1− e
{

1− e−(1+ θ
x ) e−

θ
x
} ,

τKMILBE(x; θ) =
θ2x−3e−

θ
x e−(1+ θ

x ) e−
θ
x

1− e−(1+ θ
x ) e−

θ
x

,

and

HKMILBE(x; θ) = −ln
(

1− e
e− 1

{
1− e−(1+ θ

x ) e−
θ
x
})

.

Figures 2 and 3 show graphical representations of the PDF and the HRF of the KMILBE
distribution with various values for the parameter θ. Forms of the PDF include right
skewness and unimodal as shown in Figure 2. In addition, the forms of the HRF include
increasing and J- shaped form, as shown in Figure 3. The KMILBE distribution is a very
flexible model that provides different distributions when its parameters are changed.
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Figure 2. Different shapes of pdf for KMILBE distribution.
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Figure 3. Different shapes of hrf for KMILBE distribution.

3. Statistical Features of the New Suggested Model

This section provides the structural properties of the KMILBE, defined in Equation (9),
including explicit expressions for quantile function (QF), linear representation of the density,
rth ordinary and sth incomplete moments, and moment generating function.
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3.1. Quantile Function

The QF, say Q(u) = F−1(u), u ∈ (0, 1), is obtained by inverting Equation (8) as
follows:

e
e− 1

{
1− e−

(
1+ θ

Q(u)

)
e
− θ

Q(u)
}

= u,

which yields (
1 +

θ

Q(u)

)
e−

θ
Q(u) = − ln

[
1− u

(
1− 1

e

)]
.

By multiplying the both sides by e−1, then we have the Lambert equation(
1 +

θ

Q(u)

)
e−
(

1+ θ
Q(u)

)
= −e−1 ln

[
1− u

(
1− 1

e

)]
.

Hence, we have the negative Lambert W function of the real argument

Qu =
θ

−1−W−1

(
−e−1 ln

[
1− u

(
1− 1

e

)]) , (10)

where u ∈ (0, 1) and W−1(.) is the negative Lambert W function. By replacing u = 0.5 in
Equation (10), the median (Q2) of the KMILBE is readily available.

3.2. Useful Expansion

Here, we showed the useful expansion of the pdf, cdf and survival for the KMILBE
distribution which can be used to drive several important properties of the KMILBE.
According to the next exponential expansion

e−θx =
∞

∑
i=0

(−1)i(θx)i

i!
. (11)

By inserting the previous Equation (11) in Equation (9), we obtain

fKMILBE(x; θ) =
eθ2

e− 1
x−3

∞

∑
i=0

(−1)i

i!

(
1 +

θ

x

)i
e−

(i+1)θ
x ,

by applying the binomial expansion (1 + z)b =
∞
∑

j=0

(
b
j

)
zj, in the last equation, we

can rewrite it as follows:

fKMILBE(x; θ) =
∞

∑
i,j=0

vi,jx−j−3e−
(i+1)θ

x , (12)

where vi,j =
e

e−1
θ j+2(−1)i

i!

(
i
j

)
.

In addition, we can obtain the expansion of f δ
KMILBE(x; θ) by using the last two expan-

sions as follows:

f δ
KMILBE(x; θ) =

∞

∑
i,j=0

ηi,jx−j−3δe−
(i+δ)θ

x , (13)

where, ηi,j = ( eθ2

e−1 )
δ θ j(−δ)i

i!

(
i
j

)
.

A gain using the previous expansions, then we can write the expansion of R2
KMILBE(x; θ)

as follows:

R2
KMILBE(x; θ) =

∞

∑
i,j,k,m=0

ψi,j,k,mx−me−
kθ
x , (14)
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where ψi,j,k,m = ( e
e−1 )

i θm jk(−1)i+j+k

k!

(
2
i

) (
i
j

) (
k
m

)
.

3.3. rth Moment

The rth ordinary or raw moments is an important measure to find measures of dis-
persion of the distribution. The following relationship is used to obtain the central or
actual moments; the first moment about mean is always equal to zero, and the second
moment about mean is equal to variance as µ2 = µ′2 −

(
µ′1
)2, µ3 = µ′3 − 3µ′1µ′2 + 2

(
µ′1
)3

and µ4 = µ′4 − 4µ′3µ′1 + 6µ′2
(
µ′1
)2 − 3

(
µ′1
)4. The moment based measure of skewness and

kurtosis are obtained by using β1 =
µ2

3

µ3
2

and β2 =
µ4

µ2
2

, respectively. Suppose that X ∼

KMILBE (θ) for x ∈ (0, ∞) and θ > 0; then, its rth ordinary moment is given by

µ′r =
∞

∑
i,j=0

vi,j

∞∫
0

xr−j−3e−
(i+1)θ

x dx.

Let y = (i+1)θ
x ; then,

µ′r =
∞

∑
i,j=0

vi,j

∞∫
0

[(i + 1)θ]r−j−2yj−r+1e−ydy,

µ′r =
∞

∑
i,j=0

vi,j[(i + 1)θ]r−j−2Γ[j− r + 2] , j + 2 < r. (15)

For r = 1, the mean of KMILBE is yielded as µ′1 = ∑∞
i,j=0 vi,j[(i + 1)θ]−j−1Γ[j + 1] .

3.4. Inverse rth Moment

Suppose that X ∼ KMILBE (θ) for x ∈ (0, ∞) and θ > 0; then, its inverse rth moment
is given by

µ′−r =
∞

∑
i,j=0

vi,j

∞∫
0

x−r−j−3e−
(i+1)θ

x dx.

Let y = (i+1)θ
x ; then,

µ′−r =
∞

∑
i,j=0

vi,j

∞∫
0

[(i + 1)θ]−r−j−2yj+r+1e−ydy,

µ′−r =
∞

∑
i,j=0

vi,j[(i + 1)θ]−r−j−2Γ[r + j + 2] (16)

For r = 1, the harmonic mean of KMILBE is yielded as µ′−1 = ∑∞
i,j=0 vi,j[(i+ 1)θ]−j−3Γ[j + 3] .

3.5. sth Incomplete Moment

The sth incomplete moment is an important measure and has wide applications in
order to compute mean deviation from mean and median, mean waiting time, conditional
moments and income inequality measures.
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Suppose that X ∼ KMILBE (θ) for x ∈ (0, ∞) and θ > 0; then, its sth incomplete
moments by using (12) and lower incomplete gamma function γ(a, t) =

∫ t
0 xa−1e−xdx are

given by

ϕs(w) =
∞

∑
i,j=0

vi,j[(i + 1)θ]r−j−2Γ
[

j− r + 2,
(i + 1)θ

w

]
, j + 2 < r. (17)

3.6. Moment Generating Function

By definition, the moment generating function, M(t) = E
[
etX] = ∫

etx f (x)dx, can
be yielded as Assume that X ∼ KMILBE (θ) for x ∈ (0, ∞) and θ > 0; then, its moments
generating function can be obtained by using (12) and replacing etx = ∑∞

r=0
tr

r! xr is given by

E
[
etX
]
=

∞

∑
r=0

∞

∑
i,j=0

vi,j
tr

r!
[(i + 1)θ]r−j−2Γ[j− r + 2] , (18)

where j + 2 < r.

4. Entropy Measures

Entropy is a measure of a system’s variation, instability or unpredictability.

4.1. The Rényi Entropy

The Rényi entropy [44] is important in ecology and statistics as an index of diversity.
For δ > 0 and δ 6= 1, it is defined by the following expression:

Iδ(X) = (1− δ)−1 log
+∞∫
0

f (x)δdx . (19)

By using Equation (13), we obtain

Iδ(X) = (1− δ)−1 log

[
∞

∑
i,j=0

ηi,j[(i + δ)θ]1−j−3δΓ[j + 3δ− 1]

]
, .

4.2. The Tsallis Entropy

The Tsallis entropy measure (see [45]) is defined by:

Tδ(X) =
1

δ− 1

[
1− ∫∞

0 f δ(x)dx
]
, δ 6= 1, δ > 0. (20)

By using Equation (13), we obtain

Tδ(X) =
1

δ− 1

[
1−

∞

∑
i,j=0

ηi,j[(i + δ)θ]1−j−3δΓ[j + 3δ− 1]

]
.

4.3. The Havrda and Charvat Entropy

The Havrda and Charvat entropy measure (see [46]) is defined by:

HCδ(X) =
1

21−δ − 1

[(
∫∞

0 f δ(x)dx
) 1

δ − 1
]

, δ 6= 1, δ > 0. (21)

By using Equation (13), we obtain

HCδ(X) =
1

21−δ − 1

( ∞

∑
i,j=0

ηi,j[(i + δ)θ]1−j−3δΓ[j + 3δ− 1]

) 1
δ

− 1

, δ 6= 1, δ > 0.
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4.4. The Arimoto Entropy

The Arimoto entropy measure (see [47]) is defined by:

Aδ(X) =
δ

1− δ− 1

[(
∫∞

0 f δ(x)dx
) 1

δ

]
, δ 6= 1, δ > 0. (22)

By using Equation (13), we obtain

Aδ(X) =
δ

1− δ

( ∞

∑
i,j=0

ηi,j[(i + δ)θ]1−j−3δΓ[j + 3δ− 1]

) 1
δ

− 1

, δ 6= 1, δ > 0.

5. Different Measures of Extropy
5.1. Extropy

Recently, an alternative measure of uncertainty, named by extropy was proposed
by [48]. For an absolutely continuous non-negative random variable X with PDF f and CDF
F, the extropy is defined as

J(X) = −1
2

∫ +∞

0
[ f (x)]2dx. (23)

By using Equation (13), and putting δ = 2, we obtain

J(X) = −1
2

[
∞

∑
i,j=0

ηi,j[(i + 2)θ]−j−5Γ[j + 5]

]
.

5.2. The Cumulative Residual Extropy

The cumulative residual extropy (CREX) was proposed by [49] analogous with (23) as
a measure of uncertainty of random variables. The CREX is defined as

J ∗(X) = −1
2

∫ +∞

0
R2(x)dx. (24)

It is always non-positive. By using Equation (14), we obtain

J ∗(X) = −1
2

[
∞

∑
i,j,k,m=0

ψi,j,k,m[kθ]1−mΓ[m− 1]

]
, m > 1.

5.3. The Negative Cumulative Residual Extropy

Refs. [49,50] studied and investigated the negative CREX (NCREX) can be presented as

J (X) =
1
2

∫ +∞

0
R2(x)dx. (25)

By using Equation (14), we obtain

J ∗(X) =
1
2

[
∞

∑
i,j,k,m=0

ψi,j,k,m[kθ]1−mΓ[m− 1]

]
, m > 1.

6. Model Description and Progressive Type-II Censoring
6.1. Cumulative Exposure Model

The cumulative exposure model (CEM) enables us to relate the distribution under
progressive stress to the distribution under constant stress.
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If the stress υ is a function of time y, υ = υ(y), and influences the scale parameter θ of
the considered failure distribution, then θ becomes a function of y, θ(y) = θ(s(y)). Hence,
the CEM takes the form; see Nelson [1],

Λ(y) =
∫ y

0

dz
θ(υ(z))

. (26)

The CDF under progressive stress becomes

G(y) = F(Λ(y)), (27)

where F(.) is the assumed CDF with scale parameter equal to 1.

6.2. Basic Assumptions

1. First assumption: The relationship between the stress s and the scale parameter β
satisfies the inverse power law i.e.,

θ(y) = θ(υ(y)) =
1

η (υ(y))µ ,

where υ is the applied stress and (η, µ) are two positive parameters to be estimated.
2. Second assumption: The stress υ(y) is a linearly increasing function in time y, i.e.,

υ(y) = ω y, ω > 0.

3. Third assumption: During the test process, theM units to be tested are divided into
`(> 1) groups; each group includes mk units and is run under progressive stress. Thus,

υk = ωky, k = 1, . . . , `, ω1 < ω2 < · · · < ω`.

4. Fourth assumption: The failure times, denoted by yk1, yk2, . . . , ykmk
, k = 1, . . . , `, are

statistically independent.
5. Fifth assumption: The failure mechanisms of the failures are the same under any

stress level.

From the first and second assumptions, the CEM (26) takes the form

Λk(y) =
η ω

µ
k yµ+1

µ + 1
, k = 1, . . . , `. (28)

From (8), CDF (27) under progressive stress takes the form

Gk(y) ≡ Gk(y; µ, η) =
e

e− 1


1− e

−

1+
µ + 1

η ω
µ
k yµ+1

 e
−

µ + 1
η ω

µ
k yµ+1


. (29)

The corresponding PDF is given by

gk(y) ≡ gk(y; µ, η) =
e

e− 1
(µ + 1)3

η2 ω
2µ
k y2µ+3

e
−

µ + 1
η ω

µ
k yµ+1

e
−

1+
µ + 1

η ω
µ
k yµ+1

 e
−

µ + 1
η ω

µ
k yµ+1

. (30)
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6.3. Progressive Type-II Censoring

The progressive type-II censoring under progressive stress model can be applied as
follows: Under Assumption 3, for k = 1, . . . , `, suppose that rk(< mk) and Rk1, Rk2, . . . , Rkrk
are fixed before the experiment. Rk1 surviving units are randomly removed from the test,
when the first failure time in group k occurs and Rk2 surviving units are randomly removed
from the test when the second failure time in group k occurs. The test continues in the same
manner until the rk-th failure at which all the remaining surviving units Rkrk

= mk − rk −
∑rk−1

i=1 Rki are removed from the test, thereby terminating the life-test.
The data from ` progressively type-II censored samples are as follows: (yk1:rk :mk

;Rk1),
. . . , (ykrk :rk :mk

;Rkrk
) where yk1:rk :mk

< . . .< ykrk :rk :mk
denote the rk ordered observed failure

times, and Rk1, . . . , Rkrk
denote the number of units removed from the experiment at failure

times yk1:rk :mk
, . . . , ykrk :rk :mk

.
Based on ` progressively type-II censored samples, under progressive stress ALT, the

likelihood function is given by

L(µ, η; y) ∝
`

∏
k=1

rk

∏
j=1

gk(ykj)
[
1− Gk(ykj)

]Rkj
, (31)

where y = (y1, y2, . . . , y`), yk =(yk1, . . . , ykrk
), and ykj ≡ ykj:rk :mk

, k = 1, . . . , `, j = 1, . . . , rk,
Using Equations (29) and (30), the log-likelihood function takes the form

log[L(µ, η; y)] ∝ 3D log[µ + 1]− 2D log[η]− 2µ
`

∑
k=1

rk log[ωk]− (2µ + 3)
`

∑
k=1

rk

∑
j=1

log[ykj]

−
`

∑
k=1

rk

∑
j=1

(
ϕkj + [1 + ϕkj]e

−ϕkj
)
+

`

∑
k=1

rk

∑
j=1

Rkj log
[

e1−(1+ϕkj) e
−ϕkj − 1

]
,

(32)

where D = ∑`
k=1 rk and

ϕkj ≡ ϕkj(µ, η) =
µ + 1

η ω
µ
k yµ+1

kj

. (33)

Then, the likelihood equations take the forms

0 =
∂ log[L(µ, η; y)]

∂µ
=

3D
µ + 1

− 2
`

∑
k=1

rk log[ωk]− 2
`

∑
k=1

rk

∑
j=1

log[ykj]−
`

∑
k=1

rk

∑
j=1

Akj

[
1− ϕkj e−ϕkj

]
+

`

∑
k=1

rk

∑
j=1

Rkj
Akj ϕkj e−ϕkj

1− e−1+(1+ϕkj) e
−ϕkj

,

(34)

0 =
∂ log[L(µ, η; y)]

∂η
=
−2D

η
−

`

∑
k=1

rk

∑
j=1

Bkj

[
1− ϕkj e−ϕkj

]
+

`

∑
k=1

rk

∑
j=1

Rkj
Bkj ϕkj e−ϕkj

1− e−1+(1+ϕkj) e
−ϕkj

, (35)

where

Akj ≡ Akj(µ, η) =
∂ϕkj

∂µ
=

1− (µ + 1) log[ωk ykj]

η ω
µ
k yµ+1

kj

, (36)

Bkj ≡ Bkj(µ, η) =
∂ϕkj

∂η
=
−µ− 1

η2 ω
µ
k yµ+1

kj

. (37)

The MLEs µ̂ and η̂ of µ and η could be obtained by solving the likelihood equations,
∂ log[L(µ, η; y)]

∂µ
= 0 and

∂ log[L(µ, η; y)]
∂η

= 0, with respect to µ and η and solving these
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equations simultaneously to obtain the MLEs. These equations can be numerically solved
using iterative techniques using statistical software, since it is not possible for analytical
solutions to obtain the roots.

Based on the common asymptotic normality theory of MLEs, we can consider that
µ̂− µ√
Var(µ̂)

and
η̂ − η√
Var(η̂)

can be approximated by a standard normal distribution, i.e.,

µ̂− µ√
Var(µ̂)

∼ N(0, 1) and
η̂ − η√
Var(η̂)

∼ N(0, 1),

where Var(µ̂) and Var(η̂) are the variance of µ̂ and η̂, which can be obtained from the
inverse of the local Fisher information matrix (FIM),

V = I−1 =

(
Var(µ̂) Cov(µ̂, η̂)

Cov(µ̂, η̂) Var(η̂)

)
, (38)

where

I = −


∂2£̂
∂µ2

∂2£̂
∂µ∂η

∂2£̂
∂η∂µ

∂2£̂
∂η2

, (39)

where the caret ˆ denotes that the derivative is evaluated at (µ̂, η̂). The second partial
derivatives of the natural logarithm of the likelihood function with respect to µ and η can
be obtained without difficulty.

Suppose that ζ1 = µ and ζ2 = η. Then, for i = 1, 2, a 100(1− ε)% normal approxima-
tion confidence interval (NACI) for ζi can be defined as(

max
{

0, ζ̂i − zε/2

√
Var(ζ̂i)

}
, ζ̂i + zε/2

√
Var(ζ̂i)

)
,

where ζ̂i is the MLE of ζi and zε/2 is the upper ε/2 percentile of N(0, 1) distribution.
Sometimes, the lower bound of NACI may have a negative value for the positive

parameter. Thus, Meeker and Escobar [12] suggested using a log transformation confidence
interval (LTCI) for this parameter. The normal approximation of log-transformed MLE,
ln ζ̂i − ln ζi√

Var(ln ζ̂i)
, i = 1, 2, can be approximated to a standard normal distribution i.e.,

ln ζ̂i − ln ζi√
Var(ln ζ̂i)

∼ N(0, 1).

where Var(ln ζ̂i) =
Var(ζ̂i)

ζ̂i
2 .

Therefore, a 100(1− ε)% LTCI for ζi can be defined asζ̂i exp

−zε/2

√
Var(ζ̂i)

ζ̂i

, ζ̂i exp

zε/2

√
Var(ζ̂i)

ζ̂i

.

6.4. Least Squares and Weighted Least Squares Estimations

The LS and WLS methods were introduced by Swain et al. [51] to estimate the
Beta distribution parameters. Based on progressive type-II censoring, Abdel-Hamid and
Hashem [52], and Hashem and Alyami [17], used these two methods to estimate the
parameters included in the doubly Poisson-exponential and exponential-doubly Poisson
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distributions. They can be performed as follows: Let (Yk1, . . . , Ykrk
), k = 1, . . . , `, be the

ordered progressively type-II censored sample of size rk from the KMILBE distribution,
under progressive stress ALT. The LS estimates (LSEs) of the unknown parameters can be
obtained by minimizing the following quantity with respect to the unknown parameters:

Ψ(µ, η) = ∑`
k=1 ∑rk

j=1

(
Gk(ykj)− E

[
Ĝk(ykj)

])2
, where E[Ĝk(ykj) is the expectation of the

empirical CDF, see Aggarwala and Balakrishnan [15], which is given by

E
[

Ĝk(ykj)
]
= 1−

rk

∏
s=rk−j+1

[
s + ∑rk

i=rk−s+1 Rki

1 + s + ∑rk
i=rk−s+1 Rki

]
, j = 1, . . . , rk, k = 1, . . . , `,

Therefore, the LSEs µ̆ and η̆ of µ and η can be obtained by minimizing the following
quantity with respect to µ and η

Ψ(µ, η) =
`

∑
k=1

rk

∑
j=1

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])2
.

These estimates can also be obtained by solving the nonlinear equations simultaneously
to obtain the LSEs. These equations can be numerically solved using iterative techniques
using statistical software since it is not possible for analytical solutions to obtain the roots:

0 =
∂Ψ(µ, η)

∂µ
=

`

∑
k=1

rk

∑
j=1

Υkj

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])
, (40)

0 =
∂Ψ(µ, η)

∂η
=

`

∑
k=1

rk

∑
j=1

Ωkj

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])
, (41)

where

Υkj ≡ Υkj(µ, η) = Akj ϕkj e−
[

ϕkj+(1+ϕkj) e
−ϕkj

]
, (42)

Ωkj ≡ Ωkj(µ, η) = Bkj ϕkj e−
[

ϕkj+(1+ϕkj) e
−ϕkj

]
, (43)

and ϕkj, Akj and Bkj are given by (33), (36) and (37), respectively.
The WLS estimates (WLSEs) of the unknown parameters can be obtained by minimiz-

ing the following quantity with respect to the unknown parameters:

∆(µ, η) =
`

∑
k=1

rk

∑
j=1

1
V[Ĝk(ykj)]

(
Gk(ykj)− E

[
Ĝk(ykj)

])2
,

where V[Ĝk(ykj) is the variance of the empirical CDF, see Aggarwala and Balakrishnan [15],
which is given by

V[Ĝk(ykj)] =

(
rk

∏
s=rk−j+1

Qks

)(
rk

∏
s=rk−j+1

Pks −
rk

∏
s=rk−j+1

Qks

)
, j = 1, . . . , rk, k = 1, . . . , `,

where

Pks = Qks +
1

(1 + s + ∑rk
i=rk−s+1 Rki)(2 + s + ∑rk

i=rk−s+1 Rki)
, s = 1, . . . , rk, k = 1, . . . , `,

Qks =
s + ∑rk

i=rk−s+1 Rki

1 + s + ∑rk
i=rk−s+1 Rki

, s = 1, . . . , rk, k = 1, . . . , `,
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The WLSEs µ̃ and η̃ of µ and η can be obtained by minimizing the following quantity
with respect to µ and η

∆(µ, η) =
`

∑
k=1

rk

∑
j=1

1
V[Ĝk(ykj)]

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])2
.

These estimates can also be obtained by solving the nonlinear equations simultane-
ously to obtain the WLSEs. These equations can be numerically solved using iterative
techniques using statistical software since it is not possible for analytical solutions to obtain
the roots:

0 =
∂∆(µ, η)

∂µ
=

`

∑
k=1

rk

∑
j=1

Υkj

V[Ĝk(ykj)]

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])
, (44)

0 =
∂∆(µ, η)

∂η
=

`

∑
k=1

rk

∑
j=1

Ωkj

V[Ĝk(ykj)]

(
e

e− 1

{
1− e−(1+ϕkj) e

−ϕkj
}
− E

[
Ĝk(ykj)

])
, (45)

where Υkj and Ωkj are given by (42) and (43), respectively.

6.5. Maximum Product of Spacing Estimation

Cheng and Amin [53] introduced an alternative method to the ML method for estimat-
ing the unknown parameters in univariate continuous distributions. Based on progressive
type-II censoring, Ng et al. [54] used this method to estimate the parameters included in the
Weibull distribution. The Maximum product of spacing estimates (MPSEs) of the unknown
parameters can be obtained by maximizing the following product of spacing with respect
to the unknown parameters:

S(µ, η; y) =
`

∏
k=1

(
rk+1

∏
j=1

[
Gk(ykj)− Gk(ykj−1)

] rk

∏
j=1

[
1− Gk(ykj)

]Rkj

)
, (46)

where Gk(yk0) = 0 and Gk(ykrk+1) = 1.
Using (29), the MPSEs µ̃ and η̃ of µ and η can be obtained by maximizing the following

product of spacing with respect to the µ and η

S(µ, η; y) =
`

∏
k=1

(
rk+1

∏
j=1

e
e− 1

[
e−(1+ϕkj−1) e

−ϕkj−1 − e−(1+ϕkj) e
−ϕkj
]

×
rk

∏
j=1

 e1−(1+ϕkj) e
−ϕkj − 1

e− 1

Rkj
,

(47)

These estimates can also be obtained by solving the nonlinear equations simultaneously to
obtain the MPSEs. These equations can be numerically solved using iterative techniques
using statistical software since it is not possible for analytical solutions to obtain the roots:

0 =
∂ log[S(µ, η)]

∂µ
=

`

∑
k=1

(
rk+1

∑
j=1

Υkj−1 − Υkj

e−(1+ϕkj−1) e
−ϕkj−1 − e−(1+ϕkj) e

−ϕkj
−

rk

∑
j=1

RkjΥkj

e−(1+ϕkj) e
−ϕkj − e−1

)
, (48)

0 =
∂ log[S(µ, η)]

∂η
=

`

∑
k=1

(
rk+1

∑
j=1

Ωkj−1 −Ωkj

e−(1+ϕkj−1) e
−ϕkj−1 − e−(1+ϕkj) e

−ϕkj
−

rk

∑
j=1

RkjΩkj

e−(1+ϕkj) e
−ϕkj − e−1

)
, (49)

where Υkj and Ωkj are given by (42) and (43), respectively.
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7. Simulation Study

As it is theoretically difficult to assess the efficiency of estimation methods, a Monte
Carlo simulation is used to overcome this difficulty. In the current section, through Monte
Carlo simulation, we conduct a numerical study to assess the efficiency and performance
of the estimation methods according to the following steps:

1. Assign the values of mk, rk(1 < rk < mk) and (Rkj, . . . , Rkrk
), k = 1, . . . , `.

2. For k = 1, . . . , `, generate a progressively type-II censored sample of size rk from the
KMILBE distribution with CDF (29), according to the algorithm given in Balakrishnan
and Sandhu [14].

3. The MLEs, MPSEs, LSEs, WLSEs, NACIs and LTCIs of the parameters µ and η are
computed as shown in Section 2.

4. Evaluate the 95% NACIs and LTCIs of the parameters µ and η.
5. Repeat the above steps h̄(= 5000) times.
6. If β̂ is an estimate of β, then the average of estimates, mean squared error (MSE) and

relative absolute bias (RAB) of β̂ over h̄ samples are given, respectively, by

β̂ =
1
h̄

h̄

∑
i=1

β̂i, MSE(β̂) =
1
h̄

h̄

∑
i=1

(β̂i − β)2, RAB(β̂) =
1
h̄

h̄

∑
i=1

|β̂i − β|
β

.

7. Calculate the average of estimates of the parameters µ and η and their MSEs and
RABs as shown in Step 5. Calculate also the mean of the MSEs (MMSE) and mean of
the RABs (MRAB) according to the following two relations:

MMSE =
MSE(µ̂) + MSE(η̂)

2
, MRAB =

RAB(µ̂) + RAB(η̂)
2

.

8. Calculate the average interval lengths (AILs) and coverage probability (COVP) of the
parameters µ and η.

The following three CSs are considered in the generation of samples:

• CS1: For k = 1, . . . , `

Rkj = mk − rk, j = 1,

Rkj = 0, otherwise.

• CS2: For k = 1, . . . , `

Rkj = mk − rk, j = rk/2 (rk is even), orj = rk + 1/2 (rk is odd),

Rkj = 0, otherwise.

• CS3: For k = 1, . . . , `

Rkj = mk − rk, j = rk,

Rkj = 0, otherwise.

The computational results are presented in Tables 1–3 taking into account the population
parameter values: µ = 0.2 and η = 1.5. For the sake of comparison among the MLEs,
MPSEs, LSEs, WLSEs, NACIs and LTCIs of the parameters µ and η, the total number of
observationsM is divided into two groups, ` = 2, and another time into three groups,
` = 3.

• In the case of two groups (` = 2), we consider
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m1 = m2 =M/2,

r1 = r2 = 50%, 75% and 100% of the sample size,

ω1 = 1 and ω2 = 8.

• In the case of three groups (` = 3), we consider

m1 = m2 = m3 =M/3,

r1 = r2 = r2 = 50%, 75% and 100% of the sample size,

ω1 = 1 ω2 = 8, and ω3 = 15.

Table 1. MLEs and MPSEs of η and µ with their MSEs, RABs, AMSE and ARAB based on 5000
simulations. Population parameter values are η = 1.5 and µ = 0.2.

m1 r1 MLE MPSE

...
... η̂ MSE(η̂) RAB(η̂) AMSE η̌ MSE(η̌) RAB(η̌) AMSE

M ` m` r` CS µ̂ MSE(µ̂) RAB(µ̂) ARAB µ̌ MSE(µ̌) RAB(µ̌) ARAB

60 2 30 15 I 1.53024 0.05812 0.12577 0.03379 1.48487 0.04614 0.11121 0.02773
30 15 0.22606 0.00947 0.37923 0.25250 0.16227 0.00932 0.40166 0.25644

II 1.53595 0.04652 0.11181 0.02743 1.48572 0.0377 0.10132 0.02280
0.22546 0.00834 0.35354 0.23268 0.17043 0.0079 0.36371 0.23251

III 1.52858 0.04054 0.10481 0.02420 1.50566 0.03521 0.09698 0.02144
0.22350 0.00785 0.34484 0.22482 0.18206 0.00768 0.35259 0.22478

22 I 1.52152 0.04256 0.10759 0.02494 1.47824 0.03525 0.09856 0.02143
22 0.22143 0.00731 0.33167 0.21963 0.16431 0.00761 0.35809 0.22832

II 1.52260 0.03679 0.10087 0.02184 1.48067 0.03044 0.09125 0.01886
0.22222 0.00688 0.32683 0.21385 0.16661 0.00729 0.34808 0.21966

III 1.52217 0.03461 0.09761 0.02055 1.50056 0.02943 0.08901 0.01808
0.22000 0.00649 0.31635 0.20698 0.17947 0.00672 0.33085 0.20993

30 −− 1.5168 0.03236 0.09332 0.01928 1.47735 0.02745 0.08799 0.01709
30 0.21873 0.0062 0.30563 0.19948 0.16573 0.00672 0.33395 0.21097

3 20 10 I 1.50363 0.03188 0.09438 0.01999 1.51203 0.02856 0.08792 0.01866
20 10 0.22289 0.00810 0.35086 0.22262 0.15476 0.00875 0.38819 0.23806

20 10 2 1.50703 0.02563 0.08418 0.01633 1.50139 0.02327 0.07961 0.01546
0.22049 0.00704 0.32220 0.20319 0.16055 0.00765 0.35851 0.21906

III 1.50395 0.02286 0.08027 0.01485 1.51370 0.02116 0.07502 0.01396
0.22105 0.00685 0.32158 0.20093 0.17491 0.00675 0.33257 0.20380

15 I 1.49880 0.02440 0.08310 0.01544 1.50236 0.02143 0.07688 0.01451
15 0.21841 0.00648 0.31646 0.19978 0.15325 0.00758 0.35827 0.21757

15 2 1.49920 0.02138 0.07757 0.01355 1.50050 0.01861 0.07160 0.01273
0.21803 0.00572 0.29586 0.18671 0.16032 0.00685 0.33739 0.20449

III 1.49764 0.02039 0.07561 0.01307 1.51345 0.01954 0.07235 0.01301
0.21837 0.00575 0.29681 0.18621 0.17124 0.00649 0.32721 0.19978

20 −− 1.49669 0.01886 0.07293 0.01200 1.50042 0.01721 0.06919 0.01179
20 0.21724 0.00514 0.28210 0.17752 0.15833 0.00638 0.32664 0.19791
20

120 2 60 30 I 1.51388 0.02722 0.08678 0.01597 1.47963 0.02448 0.08100 0.01534
60 30 0.21869 0.00471 0.26997 0.17837 0.16768 0.00619 0.31628 0.19864

II 1.51637 0.02148 0.07706 0.01271 1.48762 0.01830 0.07010 0.01177
0.21666 0.00393 0.24826 0.16266 0.17449 0.00524 0.28384 0.17697
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Table 1. Cont.

m1 r1 MLE MPSE

...
... η̂ MSE(η̂) RAB(η̂) AMSE η̌ MSE(η̌) RAB(η̌) AMSE

M ` m` r` CS µ̂ MSE(µ̂) RAB(µ̂) ARAB µ̌ MSE(µ̌) RAB(µ̌) ARAB

III 1.51164 0.01922 0.07291 0.01148 1.49763 0.01640 0.06653 0.01077
0.21586 0.00374 0.23947 0.15619 0.18138 0.00514 0.28047 0.17350

45 I 1.51019 0.02027 0.07529 0.01200 1.48076 0.01728 0.06912 0.01125
45 0.21642 0.00372 0.24067 0.15798 0.17127 0.00523 0.28429 0.17671

II 1.51018 0.01693 0.06818 0.01010 1.48194 0.01505 0.06404 0.01001
0.21462 0.00327 0.22335 0.14577 0.17236 0.00497 0.27479 0.16941

III 1.50822 0.01656 0.06806 0.00987 1.49334 0.01430 0.06195 0.00952
0.21470 0.00319 0.22292 0.14549 0.17905 0.00474 0.26336 0.16266

60 −− 1.50503 0.01562 0.06583 0.00925 1.48008 0.01354 0.06086 0.00913
60 0.21199 0.00287 0.21081 0.13832 0.17163 0.00472 0.26401 0.16244

3 40 20 I 1.50019 0.01744 0.06979 0.01076 1.49627 0.01484 0.06316 0.01029
40 20 0.21572 0.00408 0.25050 0.16015 0.16160 0.00575 0.30320 0.18318

40 20 II 1.49748 0.01228 0.05844 0.00778 1.49558 0.01157 0.05601 0.00841
0.21360 0.00328 0.22342 0.14093 0.16736 0.00525 0.28359 0.16980

III 1.4987 0.01120 0.05564 0.00720 1.50436 0.00994 0.05191 0.00728
0.2133 0.00319 0.22129 0.13846 0.17736 0.00461 0.26034 0.15613

30 I 1.49569 0.01219 0.05919 0.00766 1.49418 0.01038 0.05378 0.00773
30 0.21293 0.00313 0.22087 0.14003 0.16353 0.00509 0.27838 0.16608

30 II 1.49822 0.01053 0.05469 0.00672 1.4964 0.00948 0.05092 0.00708
0.21248 0.00290 0.21068 0.13269 0.16804 0.00467 0.2659 0.15841

III 1.49773 0.01023 0.05395 0.00649 1.50444 0.00910 0.05000 0.00671
0.21282 0.00275 0.20591 0.12993 0.17605 0.00432 0.24853 0.14926

40 −− 1.49504 0.01006 0.05334 0.00631 1.49543 0.00879 0.04926 0.00665
40 0.21165 0.00255 0.19737 0.12535 0.16808 0.00452 0.25882 0.15404
40

Table 2. LSEs and WLEs of η and µ with their MSEs, RABs, AMSE and ARAB based on 5000
simulations. Population parameter values are η = 1.5 and µ = 0.2.

m1 r1 LSE WLSE

...
... η̂ MSE(η̂) RAB(η̂) AMSE η̌ MSE(η̌) RAB(η̌) AMSE

M ` m` r` CS µ̂ MSE(µ̂) RAB(µ̂) ARAB µ̌ MSE(µ̌) RAB(µ̌) ARAB

60 2 30 15 I 1.53847 0.06934 0.13439 0.04335 1.53427 0.06331 0.12874 0.03884
30 15 0.21641 0.01736 0.50731 0.32085 0.21840 0.01438 0.45715 0.29294

II 1.51732 0.05361 0.12044 0.03249 1.52090 0.04666 0.11150 0.02780
0.20097 0.01137 0.41966 0.27005 0.20462 0.00895 0.36927 0.24038

III 1.51425 0.0442 0.10963 0.02708 1.50998 0.04372 0.10925 0.02647
0.20677 0.00995 0.3902 0.24992 0.20583 0.00921 0.37535 0.24230

22 I 1.51872 0.04514 0.11151 0.02837 1.5190 0.04271 0.10857 0.02636
22 0.20633 0.01159 0.42440 0.26795 0.2079 0.01000 0.39299 0.25078

II 1.51972 0.04161 0.10676 0.02550 1.52121 0.04005 0.10449 0.02426
0.20480 0.00940 0.38083 0.24380 0.20696 0.00848 0.35906 0.23178

III 1.50950 0.03620 0.09975 0.02273 1.50629 0.03527 0.09861 0.02178
0.20400 0.00926 0.37892 0.23933 0.20386 0.00829 0.35898 0.22880

30 −− 1.50890 0.03486 0.09826 0.02191 1.51050 0.03348 0.09626 0.02068
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Table 2. Cont.

m1 r1 LSE WLSE

...
... η̂ MSE(η̂) RAB(η̂) AMSE η̌ MSE(η̌) RAB(η̌) AMSE

M ` m` r` CS µ̂ MSE(µ̂) RAB(µ̂) ARAB µ̌ MSE(µ̌) RAB(µ̌) ARAB

30 0.20234 0.00896 0.37656 0.23741 0.20341 0.00788 0.35227 0.22426

3 20 10 I 1.52104 0.04246 0.10806 0.02890 1.50653 0.03738 0.10193 0.02512
20 10 0.20537 0.01533 0.47209 0.29008 0.20908 0.01286 0.42851 0.26522

20 10 II 1.51030 0.03455 0.09766 0.02251 1.49004 0.02921 0.09036 0.01872
0.19596 0.01046 0.39092 0.24429 0.19404 0.00822 0.34719 0.21878

III 1.48314 0.02389 0.08204 0.01606 1.47306 0.02442 0.08327 0.01615
0.19524 0.00822 0.36154 0.22179 0.19357 0.00788 0.35240 0.21783

15 I 1.50977 0.02822 0.08836 0.01917 1.50605 0.02678 0.08647 0.01791
15 0.19966 0.01012 0.39540 0.24188 0.20258 0.00904 0.37310 0.22979

15 II 1.50582 0.02343 0.08074 0.01564 1.49757 0.02276 0.07976 0.01501
0.19376 0.00784 0.35263 0.21669 0.19517 0.00726 0.33572 0.20774

III 1.49938 0.02156 0.07803 0.01460 1.49095 0.02106 0.07719 0.01403
0.19593 0.00764 0.34721 0.21262 0.19556 0.00701 0.33306 0.20513

20 −− 1.50700 0.02206 0.07825 0.01481 1.50702 0.02142 0.07711 0.01415
20 0.19666 0.00756 0.34261 0.21043 0.19928 0.00687 0.32573 0.20142
20

120 2 60 30 I 1.51221 0.03432 0.09742 0.02172 1.51203 0.03227 0.09424 0.01989
60 30 0.20471 0.00912 0.37327 0.23535 0.20724 0.00751 0.33737 0.21581

II 1.50383 0.02803 0.08824 0.01702 1.50708 0.02329 0.08049 0.01389
0.19879 0.00602 0.30803 0.19813 0.20184 0.00449 0.26468 0.17259

III 1.50401 0.02067 0.07548 0.01277 1.50113 0.02053 0.07543 0.01249
0.20108 0.00487 0.27445 0.17497 0.20094 0.00446 0.26372 0.16958

45 I 1.50642 0.02376 0.08115 0.01496 1.50792 0.02239 0.07868 0.01380
45 0.20144 0.00617 0.30848 0.19481 0.20340 0.00522 0.28293 0.18080

II 1.50260 0.01915 0.07324 0.01181 1.50436 0.01848 0.07197 0.01118
0.19922 0.00447 0.26620 0.16972 0.20141 0.00389 0.24736 0.15967

III 1.50569 0.01812 0.07102 0.01141 1.50349 0.01764 0.07005 0.01091
0.20304 0.00469 0.27226 0.17164 0.20301 0.00417 0.25616 0.16310

60 −− 1.50372 0.01729 0.06921 0.01083 1.50533 0.01641 0.06756 0.01007
60 0.19946 0.00437 0.26068 0.16495 0.20098 0.00373 0.24079 0.15418

3 40 20 I 1.50804 0.02143 0.07695 0.01448 1.50185 0.01968 0.07387 0.01306
40 20 0.19946 0.00754 0.34122 0.20908 0.20384 0.00644 0.31336 0.19362

40 20 II 1.50454 0.01655 0.06833 0.01085 1.49144 0.01384 0.06264 0.00881
0.19540 0.00515 0.28233 0.17533 0.19518 0.00378 0.24437 0.15350

III 1.49479 0.01226 0.05832 0.00818 1.48801 0.01245 0.05902 0.00814
0.19821 0.00411 0.25513 0.15673 0.19759 0.00383 0.24634 0.15268

30 I 1.50478 0.01463 0.06361 0.00989 1.50278 0.01389 0.06186 0.00919
30 0.19803 0.00516 0.28418 0.17390 0.20082 0.00449 0.26447 0.16316

30 II 1.50127 0.012 0.05802 0.00791 1.49621 0.01153 0.05699 0.00746
0.19636 0.00382 0.24638 0.1522 0.19791 0.00339 0.2318 0.14439

III 1.49731 0.01125 0.05630 0.00757 1.49163 0.01099 0.05566 0.00724
0.19674 0.00388 0.24655 0.15142 0.19681 0.00348 0.23349 0.14457

40 −− 1.50099 0.01069 0.05489 0.00723 1.50081 0.01036 0.05405 0.00684
40 0.19907 0.00376 0.24161 0.14825 0.20116 0.00331 0.22620 0.14013
40
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Table 3. AILs and COVP (in %) of 95% CIs of η and µ based on 5000 simulations. Population
parameter values are η = 1.5 and µ = 0.2.

m1 r1 NACI LTCI

...
... CI(η) AIL(η) COVP(η) CI(η) AIL(η) COVP(η)

M ` mh rh CS CI(µ) AIL(µ) COVP(µ) CI(µ) AIL(µ) COVP(µ)

60 2 30 15 I (1.0616,1.9988) 0.9372 95.38 (1.1268,2.0788) 0.9521 96.04
30 15 (0.0512,0.4167) 0.3655 96.50 (0.1017,0.6088) 0.5071 91.40

II (1.1249, 1.9470) 0.8221 95.52 (1.1754, 2.0074) 0.8320 95.02
(0.0631, 0.3969) 0.3337 94.92 (0.1090, 0.5386) 0.4296 90.70

III (1.1427, 1.9144) 0.7717 95.22 (1.1876, 1.9676) 0.7800 94.80
(0.0652, 0.3898) 0.3246 95.12 (0.1095, 0.5157) 0.4062 90.88

22 I (1.1251, 1.9179) 0.7928 95.02 (1.1726, 1.9745) 0.8018 94.94
22 (0.0627, 0.3879) 0.3252 95.28 (0.1076, 0.5202) 0.4126 91.58

II (1.1532, 1.8920) 0.7389 95.26 (1.1946, 1.9408) 0.7462 95.30
(0.0699, 0.3803) 0.3103 95.52 (0.1119, 0.4848) 0.3729 91.66

III (1.1632, 1.8811) 0.7179 94.82 (1.2025, 1.9270) 0.7246 95.04
(0.0697, 0.3757) 0.3060 95.70 (0.1111, 0.4778) 0.3667 91.96

30 −− (1.1722, 1.8614) 0.6892 94.42 (1.2086, 1.9037) 0.6952 94.28
30 (0.0745, 0.3670) 0.2925 94.64 (0.1135, 0.4585) 0.3450 91.52

3 20 10 I (1.1476, 1.8597) 0.7121 94.74 (1.1867, 1.9055) 0.7188 95.52
20 10 (0.0591, 0.3970) 0.3379 95.76 (0.1057, 0.5599) 0.4542 91.40

20 10 II (1.1932, 1.8209) 0.6277 94.96 (1.2237, 1.8560) 0.6322 95.34
(0.0682, 0.3785) 0.3103 95.04 (0.1105, 0.4733) 0.3628 91.18

III (1.2102, 1.7977) 0.5876 94.18 (1.2371, 1.8284) 0.5913 94.96
(0.0730, 0.3739) 0.3009 94.94 (0.1133, 0.4640) 0.3507 90.60

15 I (1.1930, 1.8046) 0.6116 94.28 (1.2222, 1.8381) 0.6159 94.80
15 (0.0708, 0.3710) 0.3002 95.38 (0.1112, 0.4604) 0.3492 91.94

15 II (1.2145, 1.7838) 0.5693 94.06 (1.2400, 1.8127) 0.5727 94.46
(0.0758, 0.3636) 0.2878 95.32 (0.1141, 0.4402) 0.3261 92.26

III (1.2197, 1.7756) 0.5558 94.10 (1.2440, 1.8030) 0.5590 94.64
(0.0776, 0.3622) 0.2846 95.30 (0.1152, 0.4347) 0.3195 91.70

20 −− (1.2241, 1.7692) 0.5451 94.90 (1.2475, 1.7957) 0.5481 95.36
20 (0.0815, 0.3552) 0.2737 95.70 (0.1170, 0.4196) 0.3026 91.94
20

120 2 60 30 I (1.1820, 1.8457) 0.6637 95.70 (1.2159, 1.8850) 0.6690 95.52
60 30 (0.0835, 0.3554) 0.2719 95.88 (0.1186, 0.4170) 0.2984 93.08

II (1.2295, 1.8033) 0.5738 95.78 (1.2550, 1.8322) 0.5773 95.58
(0.0966, 0.3373) 0.2407 95.42 (0.1253, 0.3826) 0.2573 92.22

III (1.2429, 1.7804) 0.5376 95.22 (1.2654, 1.8058) 0.5404 94.98
(0.0992, 0.3329) 0.2337 94.96 (0.1266, 0.3752) 0.2486 92.24

45 I (1.2339, 1.7864) 0.5525 95.06 (1.2577, 1.8134) 0.5556 95.12
45 (0.0996, 0.3336) 0.2340 95.24 (0.1270, 0.3756) 0.2486 92.10

II (1.2534, 1.7669) 0.5135 95.08 (1.2741, 1.7901) 0.5160 95.12
(0.1043, 0.3252) 0.2209 95.26 (0.1291, 0.3622) 0.2331 92.88

III (1.2584, 1.758) 0.4996 94.96 (1.2780, 1.7799) 0.5019 94.86
(0.1055, 0.324) 0.2185 95.40 (0.1298, 0.3599) 0.2301 92.46

60 −− (1.2638, 1.7462) 0.4824 94.58 (1.2822, 1.7667) 0.4845 94.88
60 (0.1079, 0.3162) 0.2084 95.00 (0.1304, 0.3488) 0.2185 93.08
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Table 3. Cont.

m1 r1 NACI LTCI

...
... CI(η) AIL(η) COVP(η) CI(η) AIL(η) COVP(η)

M ` mh rh CS CI(µ) AIL(µ) COVP(µ) CI(µ) AIL(µ) COVP(µ)

3 40 20 I (1.2423, 1.7581) 0.5158 94.32 (1.2633, 1.7816) 0.5184 94.52
40 20 (0.0909, 0.3413) 0.2504 95.68 (0.1218, 0.3919) 0.2701 92.94

40 20 II (1.2782, 1.7168) 0.4386 94.68 (1.2935, 1.7337) 0.4402 94.68
(0.1028, 0.3246) 0.2219 95.06 (0.1279, 0.3621) 0.2342 92.52

III (1.2923, 1.7051) 0.4129 94.62 (1.3058, 1.7200) 0.4142 94.48
(0.1060, 0.3208) 0.2148 95.06 (0.1297, 0.3556) 0.2259 92.46

30 I (1.2779, 1.7135) 0.4356 94.72 (1.2930, 1.7302) 0.4371 95.20
30 (0.1046, 0.3214) 0.2168 95.46 (0.1287, 0.3568) 0.2281 93.14

30 II (1.2969, 1.6995) 0.4027 94.84 (1.3098, 1.7137) 0.4039 95.2
(0.1101, 0.3149) 0.2048 94.66 (0.1319, 0.3462) 0.2143 92.94

III (1.3014, 1.6941) 0.3927 95.04 (1.3137, 1.7075) 0.3938 95.50
(0.1116, 0.3141) 0.2025 94.98 (0.1329, 0.3443) 0.2114 92.98

40 −− (1.3026, 1.6875) 0.3849 94.46 (1.3145, 1.7004) 0.3860 94.64
40 (0.1145, 0.3088) 0.1943 94.90 (0.1343, 0.3365) 0.2022 93.50
40

Numerical Results

From Tables 1–3, we observe the following:

1. The MLEs are better than the LSEs and WLSEs through the AMSEs and ARABs;
2. The MLEs are better than the MSPEs through the AMSEs and ARABs for the parameter µ;
3. The WLSEs are better than the LSEs through the AMSEs and ARABs;
4. The MPSEs are better than the LSEs and WLSEs through the AMSEs;
5. The NACLs are better than the LTCIs via the AILs and COVP;
6. For ` = 2, 3, and fixed values of the total number of items to be tested,M, and hence

fixed sample sizes, mk, by increasing the failure times, rk, the MSEs, AMSEs, RABs,
ARABs and AILs of the considered parameters decrease.

7. For ` = 2, 3, and fixed values of the failure times, rk (=50%, 75% and 100% of the
sample size mk), by increasing the total number of items to be tested,M, the MSEs,
AMSEs, RABs, ARABs and AILs of the considered parameters decrease.

8. For fixing the total number of items to be tested, by increasing `, the MSEs, AMSEs,
RABs and ARABs decrease.

9. By increasing the sample and failure time sizes (rk, mk), the COVP are close to 95%.
10. For fixed values of the sample and failure time sizes (rk, mk), the third CS gives more

accurate results through the MSEs, AMSEs, RABs, ARABs and AILs than the other
two CSs.

The above results are satisfied except for some rare cases; this may be due to fluctuation in
the data.

8. Real Data Analysis

In this section, we illustrate the importance of the newly KMILBE distribution by
utilizing two real-life datasets. We shall compare the fits of the KMILBE distribution with
the following competing continuous distributions, which are reported in Table 4.

The fitted distributions are compared using the negative maximum log-likelihood
(-LL), Akaike information criterion (AIC), corrected AIC (CAIC), Bayesian information
criterion (BIC), Hannan Quinn information criterion Kolmogorov–Smirnov test (KS) and
p-value (PV).
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Table 4. The competing continuous models of the KMILBE distribution with their pdfs and cdfs

Models Abbreviation PDF CDF

Inverse length biased exponential ILBE f (x) = θ2x−3e−
θ
x F(x) =

(
1 + θ

x

)
e−

θ
x

Sine inverse exponential SIE f (x) = πθ
2x2 e−

θ
x cos

[
π
2 e−

θ
x

]
F(x) = sin

[
π
2 e−

θ
x

]
Sine inverse Rayleigh SIR f (x) = πθ

2x3 e−
θ

x2 cos
[

π
2 e−

θ
x2
]

F(x) = sin
[

π
2 e−

θ
x2
]

Inverse Lindley IL f (x) = θ2

1+θ

(
1+x
x3

)
e
−θ
x F(x) =

(
1 + θ

(1+θ)x

)
e
−θ
x

Lindley L f (x) = θ2

1+θ (1 + x)e−θx F(x) = 1−
(

1 + θx
1+θ

)
e−θx

Inverse exponential IE f (x) = θx−2e−
θ
x F(x) = e−

θ
x

The first data set we consider in this paper is taken from [55]: 1501.82, 6989.43, 2424.02,
4150.29, 8693.35, 2643.77, 13148.37, 6149.39, 23587.21, 7248.37, 4788.22, 6009.51, 5349.65,
5741.32, 7065.81, 7261.37, 2358.42, 10357.88, 2499.05, 3022.90, 4234.86, 4482.03, 6363.71,
3329.91, 8740.47, 3664.95, 4515.97, 8497.71, 4569.89, 8069.63, 7366.79, 1525.41, 3363.02,
2420.57, 3576.74, 3708.05, 5819.12, 5479.38. These data are carbon retained by leaves
measured in kilogram/hectare for thirty-eight different plots of mountainous regions of
Navarra (Spain), depending on the forest classification: areas with ninety percent or more
beech trees (Fagus Sylvatica) are labeled monospecific, while areas with many species of
trees are labeled multi specific.

The second data set: we consider data of times to infection of kidney dialysis patients
in months, as described by [56]. The “times of infection” data set is: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5,
5.5, 6.5, 6.5, 7.5, 7.5, 7.5,7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5,
25.5, 27.5. Now, we make a normalization operation by divided these data by 30, to obtain
data between 0 and1. The transformed data set becomes: 0.08333333, 0.08333333, 0.11666667,
0.11666667, 0.11666667, 0.15000000, 0.18333333,0.21666667, 0.21666667, 0.25000000, 0.25000000,
0.25000000, 0.25000000, 0.28333333, 0.31666667,0.35000000, 0.38333333, 0.41666667, 0.41666667,
0.45000000, 0.48333333, 0.48333333, 0.71666667,0.71666667, 0.75000000, 0.75000000, 0.85000000,
0.91666667.

The MLEs of the competing continuous models, standard errors (SEs), and goodness-
of-fit measures are listed in Tables 5 and 6 for the both datasets, respectively. For visual
comparisons, the fitted CDF of the competitive distributions are depicted in Figures 4 and 5,
the fitted PDF of the competitive distributions are depicted in Figures 6 and 7, the fitted sf
of the competitive distributions are depicted in Figures 8 and 9 respectively. Furthermore,
P-P (probability–probability) plots of fitted distributions are displayed in Figures 10 and 11
for the analyzed datasets, respectively. The findings in Tables 5 and 6 illustrate that the
KMILBE model provides a superior fit over other competing continuous models, since
it has the lowest values for all measures and lowest value of the Kolmogorov–Smirnov
distance (KS).

Table 5. The goodness of fit tests for data set 1.

Models -LL AIC CAIC BIC HQIC KS PV MLE and SE

KMILBE(θ) 357.423 716.845 716.956 716.425 717.428 0.1444 0.407 10,190 (1048.837)

ILBE(θ) 358.278 718.556 718.667 718.136 719.139 0.1715 0.213 8414 (965.099)

SIE(θ) 359.098 720.196 720.307 719.776 720.779 0.1848 0.1491 5602 (696.008)

SIR(θ) 362.625 727.251 727.362 726.831 727.834 0.2182 0.0536 4389 (270.107)

IE(θ) 367.001 736.002 736.336 735.582 736.585 0.3031 0.0019 4207 (682.428)

IL(θ) 367.001 736.002 736.336 735.582 736.585 0.3031 0.0019 4208 (682.428)
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Table 6. The goodness of fit tests for data set 2.

Models -LL AIC CAIC BIC HQIC KS PV MLE and SE

KMILBE(θ) −2.205 −2.411 −2.257 −2.964 −2.003 0.1375 0.665 0.562 (0.069)

SIR(θ) 10.921 23.842 23.996 23.289 24.249 0.30611 0.0105 0.237 (0.017)

IE(θ) 1.248 4.496 4.958 3.943 4.903 0.2279 0.1091 0.237 (0.045)

IL(θ) −1.167 −0.334 −0.181 −0.887 0.073 0.1554 0.5084 0.406 (0.055)

L(θ) 0.294 2.588 2.742 2.742 2.996 0.18995 0.2645 3.27 (0.520)
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Figure 4. The fitted cdf plots for the data set 1.
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Figure 5. The fitted cdf plots for data set 2.
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x

D
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

KMILBE

IL

L

IE

SIR

Figure 7. The fitted pdf plots for data set 2.



Entropy 2022, 24, 1033 24 of 28

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
n

(x
)

Empirical

KMILBE

ILBE

IL

SIE

IE

SIR

Figure 8. The fitted sf plots for data set 1.
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Figure 9. The fitted sf plots for data set 2.



Entropy 2022, 24, 1033 25 of 28

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

KMILBE

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ILBE

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

IL

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIE

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

IE

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SIR

Obs

E
x
p

Figure 10. The P-P plots of the competing continuous models for data set 1.
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Figure 11. The P-P plots of the competing continuous models for data set 2.

9. Conclusions

In this study, we explore a new one parameter model, which is called a Kavya–
Manoharan inverse length biased exponential model. Its statistical and mathematical
features (quantile, moments, inverse moments, incomplete moments and moment generat-
ing function) are derived. Different types of entropies such as Rényi entropy, Tsallis entropy,
Havrda and Charvat entropy and Arimoto entropy are computed. Different measures of
extropy such as extropy, cumulative residual extropy and the negative cumulative residual
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extropy are computed. Based on progressive type-II censoring, we have discussed some
estimation methods on the progressive-stress model when the lifetime of a product follows
the Kavya–Manoharan inverse length biased exponential distribution. The methods that
have been discussed are ML, MPS, LS and WLS estimations. The approximate CIs for the
unknown parameters have been established. The performance of these methods has been
investigated through a simulation study, based on three different progressive CSs. The
relevance and flexibility of the KMILBE model are demonstrated using two real datasets.
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