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Abstract: Predicting the values of a financial time series is mainly a function of its price history, 
which depends on several factors, internal and external. With this history, it is possible to build an 
∊-machine for predicting the financial time series. This work proposes considering the influence of 
a financial series through the transfer of entropy when the values of the other financial series are 
known. A method is proposed that considers the transfer of entropy for breaking the ties that occur 
when calculating the prediction with the ∊-machine. This analysis is carried out using data from six 
financial series: two American, the S&P 500 and the Nasdaq; two Asian, the Hang Seng and the 
Nikkei 225; and two European, the CAC 40 and the DAX. This work shows that it is possible to 
influence the prediction of the closing value of a series if the value of the influencing series is known. 
This work showed that the series that transfer the most information through entropy transfer are 
the American S&P 500 and Nasdaq, followed by the European DAX and CAC 40, and finally the 
Asian Nikkei 225 and Hang Seng. 

Keywords: financial series; Shannon entropy; transfer entropy 

MSC: 62H10; 62M02; 62M10; 62P05 
 

1. Introduction 
Forecasting financial series, mainly the closing price of stocks, is a research area in 

different knowledge fields, from the financial field [1] to approximate solution methods 
such as neural networks [2] to forecasting using methods and algorithms based on 
Shannon entropy [3–11]. These models consider the historical data of the series to be 
calculated without considering explicitly the influence of other series or other stock 
markets for performing the forecast. To this end, it is assumed that the historical price 
already includes the influence of other series or financial markets. 

The influence among financial markets is important because of the interaction of the 
behavior of the markets and the corresponding financial series. Therefore, it is important 
to have a knowledge of the financial series that influences another and whether the first 
one has a significant influence so as to modify the closing price of some stock. The analysis 
of the influence among financial markets is carried out through the interchange of 
information among financial series, where this is calculated using transfer entropy [12–
15]. Transfer entropy may determine the relations among financial series, for example, the 
series that transmits the most information or which markets are the most dominant. With 
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these analyses, financial crises have been detected and explained, from the originating 
market up to the effects on other financial markets. 

Transfer entropy and its modifications are based on Shannon’s entropy calculation 
[16] by adding new terms of joint probability for considering the two financial time series 
[12]. The calculations of transfer entropy between the series are carried out by pairs, i.e., 
from a series x to a series y or vice versa [1,2], and the direction of the transfer entropy is 
important. Consequently, determining the series that best transfers entropy to another is 
a combinatorial problem because it implies calculating a number transfers given by the 
number of permutations Pr(n, 2), which is a factorial number of a complexity that is 
bounded by O(nn) [17], which makes the problem non-computable. For this reason, the 
analyses presented in [12,14] consider a reduced number of series; however, only in the 
work mentioned in [13] were 38 financial series considered. Therefore, a large amount of 
computational work is needed to approximate a work network and calculate the dynamics 
of the relation of the financial series [12–15]. 

Transfer entropy allows us to know what happened in previous periods and whether 
it was determined that there exists an interaction among the series and financial markets. 
Therefore, the following question arises: how can this interaction be used for improving 
or influencing explicitly the future behavior of a financial series? For answering this 
question, it is necessary to consider three issues. First, devise a method or modify one that 
considers transfer entropy. Second, determine the financial series that has the best 
influence on another series. Third, consider the transfer entropy taking into account the 
asynchrony of the opening and closing times of the financial markets due to the difference 
of time zones in the respective countries. 

This research focuses on solving the first issue: devising a method that considers the 
transfer entropy and the historical values of the series for predicting future values. The 
prediction is for the short term, a 100-day period [1]. The initial model is an ∈-machine 
[11], which we used in a previous work. For showing the influence of one series on 
another, it is considered that the influencing series is known. The prediction is performed 
using the series of the closing values of six different markets: two from the American stock 
market, the S&P 500 and the Nasdaq; two from the European market, the CAC 40 and the 
DAX; and two from the Asian market, the Hang Seng and the Nikkei 225 [18]. In this first 
phase, all the permutations necessary for the six series are calculated. 

The ∈-machine [19] is represented in different ways according to the knowledge field 
where it is applied. In the computer science field, it is known as a stochastic finite state 
machine. For this objective, the first thing to do is to construct a probabilistic finite state 
machine (PFSM) with output [11], which is transformed into the ∈-machine when the 
conditional probabilities from one state to another are known, as shown in Figure 1. 

 
Figure 1. Example of the ∈-machine. 
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For predicting closing prices with the ∈-machine, a procedure was designed for using 
the transfer entropy in case of ties for moving from one state to another. The transfer 
entropy is not added or subtracted from that calculated using the historical data for 
avoiding the introduction of an error because its origin is different. 

For considering the influence of a series on another, it is necessary that the two 
financial series have the same length. Consequently, the same number of historical values 
is considered for all the series, which is 2000, although for some series, it is not the optimal 
value for obtaining the best estimation [8,11]. The historical values considered are from 1 
July 2013 to 9 June 2021 and the prediction from 10 June 2021 to 29 October 2021 [18]. The 
predicted values with this method are measured with the real values of the series. For 
determining the series that has the best influence, an evaluation is performed with the 
following statistical metrics: mean absolute error (MAE), root-mean-squared Error 
(RMSE), mean absolute percentage error [MAPE], Theil’s inequality coefficient (Theil-U) 
and correct directional change (CDC) [1]. 

For the period of time analyzed, it was found that all the series can be influenced by 
two series, and the series that has the most transfer of information is the American S&P 
500, with the second best being the Nasdaq, followed by the third best, where there was a 
tie between the European CAC 40 and the DAX, with the fifth best being the Asian Nikkei 
225 and the last one the Hang Seng series. It important to make clear that this situation 
may be different if the analysis is carried out with other series or for another period of 
time. Determining the series that best influences another one can be posed as a 
combinatorial optimization problem, where a larger number of financial series can be 
considered. 

Section 2 of this article describes the ∈-machine and the improvements applied to it 
for considering pairs of financial series, transfer entropy and the description of the process 
for estimating the integer number of the series. Section 3 shows the prediction of the 
closing values of the S&P 500 series and the determination of the most influencing series. 
The same section presents the results of the American, European and Asian financial 
series. The end of the section includes a discussion of the results, the conclusions of this 
work and future work. This article includes four appendices with complementary 
information. Appendix A includes the plots of the financial series considered. Appendix 
B presents the returns of each series. Appendix C shows the series of integers, and 
Appendix D contains the predictions for all the series. 

2. Materials and Methods 
The ∈-machine used is seen from the point of view of computer science, i.e., as a 

stochastic finite state machine that reads a sequence of characters, calculates the 
probability of their occurrence and predicts the chain of subsequent characters [19]. For 
predicting the subsequent states, the fundamentals established by Shannon are 
considered [19] as well as the criteria for selecting the following state. That is, selecting 
the state with the lowest entropy closest to the entropy of the previous state of the 
sequence. With these assumptions, a procedure was implemented based on the ∈-
machine for predicting the closing price of stocks and was compared versus a financial 
prediction method [11]. The method based on the ∈-machine obtained better precision in 
all the cases. 

In this section, a modification of our first model is proposed for considering two time 
series and calculating the transfer entropy from one series to the other. Measuring the 
precision of the results is performed directly with the real values, and the statistical 
measures previously defined are used. By using this approach, a comparison versus 
another method is not necessary. 

Section 2 is divided into four parts. The first describes the construction of the ∈-
machine from a probabilistic finite state machine (PFSM) with output [11], up to its 
diagram of transitions from one state to another, from where the values of the input and 
output functions are obtained. The second part describes the procedure for calculating the 
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closing price of a stock using the ∈-machine, and specifically, some of the steps of this 
process have to be modified for introducing the changes. The third part describes the 
transfer entropy and the formulas that are used. The fourth and last part describes the new 
procedure for forecasting the time series, where the assumptions for obtaining the model are 
established. 

An algorithm was implemented using the process described in this section. The 
algorithm was programmed in ANSI C and was executed on a computer with the 
following characteristics: 2 processors Intel Core 2 Duo E8200 at 2.66 Ghz, 4GB of RAM, a 
500 GB hard disk, and a 64-bit Linux Fedora operating system. 

2.1. ∈-Machine 
The ∈-machine [19] can be obtained from a probabilistic finite state machine (PFSM) 

with output [11]. A finite probabilistic automaton with output is defined by the 7-tuple 
(Σ, Q, M, P(0), F, f, g), where: Σ is the input alphabet; Q is the set of states, finite and not 
empty; M is the matrix of probability of transition between states; P(0) is the vector of the 
initial state, and it contains the probability of the initial state, with each state of Q 
associated with a probability of being the initial state; F ⊆ Q is the set of final states or 
acceptance (not empty); f is the input function that reads the elements of the alphabet; and 
g is the output function, which is a counter of the transition between the states. With this 
function, the probability matrix is constructed from the frequency of the element read by the 
function f. 

Matrix M has the conditional probabilities of the series, which were constructed by 
reading the elements that constitute the series with the input function f and were counted 
with the output function g. For introducing the dynamics of the system, it is considered 
that the transition matrix has captured the relevant information for predicting the future, 
the history of vector x at time t. This can be represented by x:t = …, xt-3, xt-2, xt-1 and the 
future by the values xt+1, xt+2, xt+3, … by vector x:t’. These are related by the equivalence 
relation given by Equation (1) [19]. 𝑥:௧~𝑥:௧ᇱ ⇔ 𝑃𝑟(𝑥௜|𝑥:௧) = 𝑃𝑟(𝑥௜|𝑥:௧ᇱ) (1)

The equivalence relation ~ establishes that the causal states of Q, the space of each 
state and the transitions from state to state are the dynamics τ of the processes of the ϵ-
machine. An outline of the ϵ-machine of the example is shown in Figure 1 [11]. 

Since the ∈-machine has discrete conditional probabilities, the entropy is directly 
calculated from transition matrix for obtaining the next state and, consequently, the number 
of the time series. The ∈-machine has important properties that can be found in reference [19]. 

2.2. Procedure for Determining Future Values with the ∈-Machine 
The procedure used for predicting the series of values is described next [11]. To 

determine the series of values of the vector x:t′, it is required to select the next state sj from 
the si state, given that a si state can go to different sj states, as shown in Figure 1. Recent 
analyses of financial series have shown that they go through cycles, where entropy values 
can grow or decrease [15]. Changes in entropy are considered for the selection of the next 
state, sj, according to the following rules: 
1. If the entropies of the destination states j are less than or equal to that of the source 

state i, the minor entropy closest to or equal to the entropy of the source i is 
considered, as established by Shannon [16]. 

2. If the entropies of the destination states j are greater than that of the source state i, 
the nearest major entropy is considered. 

3. In case several different states have the same entropy, and in cases 1 or 2, the sj that 
is most likely to occur is selected. At this point is where the transfer entropy is 
introduced for selecting the next state, sj. 
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4. The count of each of the transitions is updated and its new conditional probability is 
calculated. 

2.3. Transfer Entropy 
For the transfer entropy [12], let X = {xtn …, xt-k+1} be a stationary Markov process of 

order k, then this dominates the probability for observation X at time t+1; additionally, x 
is conditional of the k previous observations, such that p(xt+1|xtn …, xt-k+1) = p(xt+1|xt, …, xt-

k). If the previous values are known, the average number of bits necessary to encode the 
observation of the series is given by the following formula, where log represents log2: ℎ௫(𝑘) = −෍𝑝൫𝑥௧ାଵ, 𝑥௧(௞)൯𝑙𝑜𝑔𝑝൫𝑥௧ାଵ|𝑥௧(௞൯௫  (2)

where 𝑥௧(௞) = (𝑥௧, … , 𝑥௧ି௞ାଵ). 
The model can be scaled up for the bivariate case [12]: ℎ௑௒(𝑘, 𝑙) = −෍𝑝൫𝑥௧ାଵ, 𝑥௧(௞), 𝑦௧(௟)൯𝑙𝑜𝑔൫𝑥௧ାଵ|𝑥௧(௞), 𝑦௧(௟)൯௫  (3)

where xt and yt represent the discrete states at time t of X and Y, respectively. Additionally, 𝑥௧(௞) and 𝑦௧(௟) denote the bidimensional vectors of the two processes X and Y, respectively. 
The transfer entropy is quantified by the flow of information from Y to X. The transfer 

entropy can be calculated by subtracting the information obtained from the last 
observation of X only to the last observation of the joint probability of X and Y, which is 
defined by [12]: 𝑇𝐸௒→௑(𝑘, 𝑙) = ℎ௑(𝑘) − ℎ௑௒(𝑘, 𝑙) (4)

For facilitating the calculation of the transfer entropy, the following assignment is 
made: k = l = 1 [13]. Another representation of the transfer entropy is the so-called normal 
formula for the transfer entropy from Y to X, which is given by the following expression: 𝑁𝑇𝐸௒→௑ = ෍ 𝑝(𝑝௡ାଵ, 𝑖௡, 𝑗௡)𝑙𝑜𝑔 𝑝(𝑖௡ାଵ, 𝑖௡, 𝑗௡)𝑝(𝑖௡)𝑝(𝑖௡ାଵ, 𝑖௡)𝑝(𝑖௡, 𝑗௡)௜೙శభ,௜೙,௝೙  (5)

where in is the n-th element of the series of variable X and jn is the n-th element of the series 
of variable Y. 

As can be observed, the two expressions can be used for calculating the transfer 
entropy from one series to another. However, since the data are obtained by reading the 
series, in this work the transfer entropy is calculated using Equation (4). 

2.4. Procedure for Calculating the Influence of Entropy for Determining the New State in the  
∈-Machine 

The modifications in the calculation process are the following: 
a) Consider two ∈-machines, one for calculating series x and the other for series y. For 

series y, the same assumption used for series x is made, i.e., 𝑦:௧~𝑦:௧ᇱ ⇔ 𝑃𝑟(𝑦௜|𝑦:௧) = 𝑃𝑟(𝑦௜|𝑦:௧ᇱ) (6)

where for the history, y:t = …, yt-3, yt-2, yt-1, and the future by the values yt+1, yt+2, yt+3, … 
through vector y:t’. 

b) It is assumed that the elements of the series are for the same day from day 1 to 2000. 
c) When reading the elements of the time series x:t and y:t, the joint probability matrix is 

constructed, xy. 
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d) For measuring the influence of series y on series x, it is assumed that the vector of 
future values y:t’ is known. Each value of the vector is used for the corresponding 
iteration, from the first to the 100th. 

e) Read and transform the financial series into a series of integer numbers. The elements 
of the series of integers are read until the last state si of series x:t is reached as well as 
the last state of series y:t. 

f) Using the state si of series x, the next state sj is determined considering the possible 
candidate states, which have a similar entropy among them. The candidate states are 
selected according to the original process. 

g) The transfer entropy is calculated for each candidate state according to the 
corresponding element of the iteration of vector y:t. 

h) From the candidate states that have the same entropy in series x, the one with the 
highest transfer entropy is selected. In case of a tie in entropy and in transfer entropy, 
the method proposed in the referred process is used. 
Since the transfer entropy could be considered as noise in the signal, this is not added 

to the calculated entropy for going from a state, si, to a state, sj. In the procedure described, 
both factors are considered separately. 

3. Results 
The closing prices of stocks and the returns that are calculated from the first ones are 

real numbers. Consequently, building a PFSM using the returns would be a non-
computable problem due to the number of states that the state machine would need. For 
generating the characters that read and process the PFSM, a procedure described in the 
first part of this section is followed. For explaining the procedure, the series for the closing 
price of the S&P 500 is used. 

The algorithm implemented was designed for executing a pair of closing price series 
at one time. The execution time of the algorithm is smaller than one second for each pair 
of series. The program was executed one time for each permutation of the series. 

The comparison of results focuses on determining the influence of different stock market 
series on the closing price of a particular series. For each series, the influence of the other five 
series is determined. Additionally, the forecast of a series is calculated without considering the 
influence of any series. The results obtained are compared to the real values of the series. 
Therefore, it is not necessary to compare them using another method because statistical 
metrics give the precision of the results with respect to the real values and the objective is to 
know the influence of transfer entropy on the forecast of the financial series. 

3.1. Prediction for the S&P 500 Series 
The following sections show the elements for constructing the ∈-machine. 

3.1.1. Construction of the Elements of the PFSM 
For constructing the ∈-machine, it is necessary to construct the probabilistic finite 

state machine (PFSM) with output [11], defined by the 7-tuple (Σ, Q, M, P(0), F, f, g). 
Therefore, the process starts with the definition of the input alphabet, Σ. 

The alphabet is obtained from the return of the closing values variation. The series of 
the closing value for the S&P 500 is shown in Figure 2. These data are public [18]. 
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Figure 2. Closing value for S&P 500 from 1 July 2013 to 9 June 2021 (2000 data). 

In some research, the return of financial series is calculated using the difference of 
the price logarithms. In this work the return is calculated with the following formula [1,2]: 𝑅௧ = (𝑃௧ − 𝑃௧ିଵ)𝑃௧ିଵ  (7)

where Pt is the stock price at time t, and Pt−1 is the price at time t−1. 
Using the prices of the series in Figure 2, the returns of the financial series S&P 500 

are obtained, as shown in Figure 3. 

 
Figure 3. Return of the financial series S&P 500 from 1 July 2013 to 9 June 2021. 

Considering the returns of Figure 3 for the PFSM would make the problem non-
computable because they are real numbers. Therefore, for constructing the alphabet of the 
PFSM from the returns of the financial series, the central limit theorem has to be 
considered [20]. If the returns of each of the series are grouped, they approximate a normal 
distribution. The area under the curve of the normal distribution is divided into two-
percentile intervals, and each interval is represented by an integer. The set selected 
consists of 50 intervals [11], which defines the alphabet, Σ = {1, 2, 3, . . ., 50}. 

Unlike the procedure of reference [11], where odd numbers were assigned to 
negative returns and even numbers to positive ones, here a change is made: negative 
returns are assigned a number from 1 to 25, while positive ones are assigned a number 
from 26 to 50, as shown in Figure 4. 
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Figure 4. Plot of the normal distribution divided into two-percentile intervals. 

This change is made because, in the previous assignment, if a number changed from 
4 to 5, it indicated that a positive return changes to a negative one, instead of indicating 
that the change was negligible. For this reason, the way of numbering the percentiles was 
changed. 

When applying the process described, the sequence of integer numbers for the series 
S&P 500 is obtained, which is shown in Figure 5. 

 
Figure 5. Sequence of integers representative of the returns of the S&P 500 series from 1 July 2013 to 
9 June 2021. 

The sequence of integer numbers follows the sequence of the returns, where the axis 
of the location of zero, in this case, lies between numbers 25 and 26. 

The remaining terms of the 7-tuple of the PFSM are defined. When the integers are 
defined, the number of states Q is also defined because, in the sequence of numbers, from 
any state another available state can be reached. Therefore, the set of states is defined Q = 
{s1, s2, … s50}. This number of elements generates a 50 × 50 probability matrix, M, which 
gathers the main characteristics of the 2000 history elements used. Function f reads the 
path defined by the 50 states of Figure 5. The output function g calculates the probabilities 
Pr(s1, s1), Pr(s1, s2), …, Pr(s50, s50). All the states have the same probability of being the initial 
state because the series can start from any state P(0) = {s1(1/50), s2(1/50), …, s50(1/50)}. All 
the states can be final states because any element of the alphabet can be the final state, F = 
{s1, s2, …, s50}. With this definition, the PFSM is constructed, which is then transformed into 
the ∈-machine [11]. 

3.1.2. Data and Predictions of the S&P 500 Series 
The data available for the series S&P 500, Nasdaq, CAC 40, DAX, Han Seng and Nik-

kei 225 are 2000 data points and are from 1 July 2013 to 9 June 2021 and are public [18]. 
The prediction is for 100 days, considered short-term [1], and it is from 10 June 2021 to 29 
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October 2021. By applying the process described in Section 2.4 for the S&P 500 series, the 
results described next are obtained. 

Figure 6 shows that, if the index of any of the aforementioned series is known, the 
prediction is improved if it is compared to the prediction performed without considering 
the transfer entropy. Each of the series transfers information to the series in question to 
influence the selection of the subsequent states in the ∈-machine. For determining the se-
ries that best influences series x, the metrics of Table 1 are used [1]. 

 
Figure 6. Forecast for the S&P 500 series considering the transfer entropy from 10 June 2021 to 29 
October 2021. 

Table 1. Statistical performance measurement metrics. 

Metric Description  

Mean absolute error 𝑀𝐴𝐸 = 1𝑇෍|𝑦௧෥ − 𝑦௧|்
௧ୀଵ  (8) 

Mean absolute percentage er-
ror 𝑀𝐴𝑃𝐸 = 100𝑇 ෍ฬ𝑦௧෥ − 𝑦௧𝑦௧ ฬ்

௧ୀଵ  (9) 

Root-mean-squared error 𝑅𝑀𝑆𝐸 = ඩ1𝑇෍(𝑦௧෥ − 𝑦௧)ଶ்
௧ୀଵ  (10) 

Theil’s inequality coefficient Theil − 𝑈 = ට1𝑇∑ (𝑦௧෥ − 𝑦௧)ଶ௧்ୀଵට1𝑇∑ (𝑦௧෥ )ଶ௧்ୀଵ + ට1𝑇∑ (𝑦௧)ଶ௧்ୀଵ  (11) 

Correct directional change 𝐶𝐷𝐶 = 100𝑁 ෍𝐷௧ே
௧ୀଵ  

Where 𝐷௧ = 1, if 𝑦௧෥ 𝑦௧ > 0, else 𝐷௧ = 0 

(12) 

where: 𝒚𝒕 is the real change at time t. 𝒚𝒕෥  is the forecast of change at time t. 
t = 1 to t = T for the forecast period. 
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To make the comparisons of the results obtained, the following statistical metrics are 
used: MAE, RMSE, MAPE, Theil-U and CDC. The statistics MAE and RMSE are measures 
dependent on the scale and allow a comparison between the real and predicted values; since 
these are closer to zero, the accuracy of the forecast will be better. When it is more important 
to evaluate forecast errors independently of the scale of the variables, MAPE and Theil-U are 
used, since they are constructed to have a value within the range of [0, 1], and zero indicates a 
perfect fit. CDC indicates sign change, and when the forecast equals the real value, CDC equals 
1; otherwise, it equals 0. Their equations are shown in Table 1 [1]. 

These metrics are applied to the predictions considering the influence of other finan-
cial series. 

Table 2 shows that the MAE and RMSE indicators are close to zero, and their lowest 
values occur when the transfer of information of the CAC 40 series is considered. Con-
cerning the MAPE and Theil-U indicators, for Theil-U the best value was obtained for the 
same CAC 40 series, and for MAPE the best value was attained when no transfer entropy 
was considered (the first row). The other European series, the DAX, influences the S&P 
500 series for accurately forecasting the sign change a bit above 50 (the third row). 

Table 2. Metrics for the prediction of the S&P 500 series. 

 MAE MAPE RMSE Theil-U CDC 
W/O trans 0.007046 331.679688 0.009233 0.680105 48.484848 

CAC40 0.006208 378.035461 0.007989 0.674232 46.464645 
DAX 0.006298 488.436951 0.008612 0.729542 50.505051 

Hang Seng 0.006900 529.977722 0.009972 0.728371 46.464645 
Nasdaq 0.007297 373.871674 0.010945 0.703083 48.484848 
Nikkei 0.006494 449.047852 0.008233 0.686128 49.494949 

Table 2 shows in bold face the best (smallest) values obtained. It shows that the best 
results are obtained when the closing values of the CAC 40 series are known; of the five 
metrics, three yield the best approximations. Another of the best approximations occurs 
when a forecast does not consider the transfer entropy, and the other is the sign change, 
which is obtained when the value of the DAX series is known. The best approximation is 
when the European series are known. The influence of the other American series, the 
Nasdaq, is not as significant as that of the European series; however, the results did im-
prove when compared to the one without transfer entropy. Considering the preceding 
results, Figure 7 shows the best approximation. 
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Figure 7. Forecast for the S&P 500 series when the values of the CAC 40 series are known, from 10 
June 2021 to 29 October 2021. 

Like the S&P 500 series, the calculations were performed for the financial series. Ap-
pendix A includes the plots of the financial series considered. Appendix B presents the 
returns of each series. Appendix C shows the series of integers, and Appendix D contains 
the predictions for all the series. 

Next, the best predictions for the financial series are shown. 

3.2. Prediction for the Nasdaq Series 
The data for this series are in the corresponding Appendices. Table 3 shows the fore-

casts using the other series. 

Table 3. Metrics for the prediction of the Nasdaq series. 

 MAE MAPE RMSE Theil-U CDC 
W/O series 0.008851 458.042206 0.013113 0.736870 53.535355 

S&P 500 0.008377 817.115417 0.012844 0.726994 48.484848 
CAC 40 0.009395 585.322693 0.013516 0.721487 51.515152 

DAX 0.008759 871.118896 0.012935 0.714895 52.525253 
Hang Seng 0.011798 562.663330 0.016994 0.746129 50.505051 

Nikkei 0.010775 776.217163 0.016060 0.791978 40.404041 

Considering the real values of the series, the series that influences most significantly 
is the S&P 500 with two metrics and without considering any series with two metrics and, 
finally, the DAX series with one metric. Figure 8 shows these results graphically. In this 
series, knowing the closing price of the other American series, the S&P 500 series, and the 
European DAX series does have a significant influence. 
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Figure 8. Forecast for the Nasdaq series when the values of the S&P 500 and DAX series are known. 

3.3. Prediction for the DAX Series 
The data for this series can be found in the corresponding appendices. Table 4 shows 

the forecasts using the other series. 

Table 4. Metrics for the prediction of the DAX series. 

 MAE MAPE RMSE Theil-U CDC 
W/O series 0.009036 618.376221 0.011943 0.650501 52.525253 

S&P 500 0.007796 844.586304 0.010715 0.676640 50.505051 
CAC 40 0.008825 892.767029 0.013338 0.717789 57.575756 

Hang Seng 0.013858 662.613037 0.018884 0.695072 56.565655 
Nasdaq 0.009343 751.972229 0.014088 0.726485 51.515152 
Nikkei 0.009064 1206.864868 0.013062 0.668989 48.484848 
Table 4 shows that two are the best approximations to the real value. The first does 

not consider the influence of any series, and the second considers the influence of the S&P 
500 series. It is important to mention that, when the influence of the other European series 
is considered, the best prediction of sign change is obtained. Figure 9 shows these results 
graphically. 
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Figure 9. Forecast for the DAX series with the values of S&P 500 and CAC 40, and without the 
influence of another series from 10 June 2021 to 29 October 2021. 

As shown in Figure 9, the CAC 40 series influences the sign change of the DAX series, 
both European series. However, the one that may have the most information flow is the 
American S&P 500. 

3.4. Prediction for the CAC 40 Series 
The data for the tests are in the corresponding appendices, and Table 5 shows the 

values that were obtained for the statistical metrics. 

Table 5. Metrics for the prediction of the CAC 40 series. 

 MAE MAPE RMSE Theil-U CDC 
W/O series 0.008694 6552.129395 0.011883 0.699467 54.545456 

S&P 500 0.009227 9994.777344 0.012657 0.734951 43.434345 
DAX 0.008055 6439.956055 0.010542 0.689794 47.474747 

Hang Seng 0.009337 5906.416992 0.012740 0.690702 48.484848 
Nasdaq 0.008656 6040.721191 0.012272 0.680308 46.464645 
Nikkei 0.009105 2575.624023 0.012615 0.681498 59.595959 

The results show that the DAX and Nikkei 225 are the ones that have the largest in-
fluence on the CAC 40 series. It is important to mention that the DAX is in the European 
market and the Nikkei 225 is in the Asian one. The other series, the Nasdaq, also has in-
fluence, but, unlike the ones previously mentioned, it is not significant. Figure 10 shows 
the series with the best results. 
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Figure 10. Forecast for the CAC 40 series with the values of DAX and Nikkei 225 from 10 June 2021 
to 29 October 2021. 

3.5. Prediction for the Hang Seng Series 
The corresponding appendices present the data used for the closing values of the 

Hang Seng index, and Table 6 shows the statistical metrics for measuring the influence of 
the other series considered in this work. 

Table 6. Metrics for the prediction of the Hang Seng series. 

 MAE MAPE RMSE Theil-U CDC 
W/O series 0.014074 561.181519 0.018278 0.766479 40.404041 

S&P 500 0.010924 1146.378662 0.014252 0.737163 54.545456 
CAC 40 0.012453 1585.553955 0.016222 0.680928 54.545456 

DAX 0.016491 963.591003 0.020860 0.716018 43.434345 
Nasdaq 0.011971 525.337402 0.016503 0.664015 51.515152 
Nikkei 0.014792 663.99981 0.019339 0.686714 49.494949 

Table 6 shows that the series that transmit more information are the American series, 
the S&P 500 and the Nasdaq, with the first one with three indicators and the second with 
two. A European series that influences the sign change (indicated by CDC) is the Euro-
pean series CAC 40. In this series, for all cases, the influence of knowing the value of any 
series improves the forecast obtained without considering transfer entropy. Figure 11 
shows the series with the best results. 
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Figure 11. Forecast for the Hang Seng series with the values of S&S 500, Nasdaq and CAC 40 from 
10 June 2021 to 29 October 2021. 

The other Asian series, the Nikkei 225, does not show a significant influence on the 
selection of the next state in the Hang Seng series. The American series, the S&P 500 and 
the Nasdaq, are the ones that have the most transfer of information for selecting the next 
state in the forecast. 

3.6. Prediction for the Nikkei 225 Series 
The corresponding appendices contain the data used for the Nikkei 225 closing val-

ues, and Table 7 shows the statistical metrics for measuring the influence of the other se-
ries considered in this work. 

Table 7. Metrics for the prediction of the Nikkei 225 series. 

 MAE MAPE RMSE Theil-U CDC 
W/O series 0.011474 377.160492 0.015506 0.656048 55.555557 

S&P 500 0.009853 1154.495117 0.013700 0.640071 50.505051 
CAC 40 0.010712 996.726318 0.015071 0.680227 52.525253 

DAX 0.013742 603.969604 0.019325 0.708990 47.474747 
Hang Seng 0.015252 1165.947144 0.021328 0.744763 53.535355 

Nasdaq 0.011941 546.979126 0.017283 0.643839 56.565655 

Table 7 shows that the series that transmits more information is the American series 
S&P 500, and with the influence of the other American series, the Nasdaq, the highest sign 
change is obtained (indicated by CDC). For this series, one of the indicators obtains the 
best value when no influence of any other series is considered. Figure 12 shows the series 
with the best results. 
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Figure 12. Forecast for the Nikkei 225 series with the values of S&P 500 and Nasdaq and without 
transfer entropy, from 10 June 2021 to 29 October 2021. 

For this series, the transfer of information from the Americas series, the S&P 500 and 
the Nasdaq, is higher than that from the European series; the Asian series have no signif-
icant influence. 

4. Discussion 
The results show that it is possible to modify the procedure for predicting future val-

ues of the closing value of stocks using the ∈-machine by considering the transfer of in-
formation calculated as the transfer entropy of another financial series to the closing value. 

The knowledge of a financial series beforehand influences the stock prices. All the 
series considered have influences of different magnitudes. In some cases, the influence is 
more significant for the selection of the subsequent state of the ∈-machine. 

The results show that the American financial market is the one that transmits more 
information, which coincides with other researchers [15] who have found that the Amer-
ican market is the one that transmits the most information, and the Asian market is the 
one that transmits the least information. Table 8 shows the number of times that the trans-
fer entropy of certain series obtained the best approximation for another series when using 
the ∈-machine. 

Table 8. Number of times of largest transmission of information from one series to another. 

 Influencing Series 
Influenced 

Series S&P 500 Nasdaq CAC 40 DAX Hang Seng Nikkei 225 

S&P 500 1 0 3 1 0 0 
Nasdaq 2 2 0 1 0 0 
CAC 40 0 1 0 2 0 2 

DAX 2 0 1 2 0 0 
Hang Seng 3 2 1 0 0 0 
Nikkei 225 3 1 0 0 0 1 

Total 11 6 5 6 0 3 

The results in Table 8 show that the American series, the S&P 500, is the one that transmits 
the most information among the series. The second best are the American Nasdaq and the 
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European DAX. The European series CAC 40 occupies the third place, the Asian series Nikkei 
225 is in fourth place, and the last place is for the Asian series Hang Seng. 

In Table 8, it is observed that the European series CAC 40 transmits the most infor-
mation to the American series S&P 500. In turn, this European series is influenced by the 
Asian Nikkei 225 and the American Nasdaq, which shows that, in some sense, series from 
different markets are interconnected. This means that the necessary analysis includes not 
only the first series that best transmits information since it is possible to find in a subse-
quent stage some result that influences the first observation. 

The results obtained are a simulation of a future forecast, and considering the price 
history of the series considered, similar results to those obtained by other researchers were 
obtained [15]: the dynamics of the financial series determined in the recent past is the same 
as in the present and perhaps in the future. 

5. Conclusions 
It is concluded that the objective proposed for this research was successfully achieved 

because of the following reasons: (1) a procedure was designed that is based on the ∈-
machine, the rules established by Shannon and the rules proposed in this work for calcu-
lating transfer entropy; and (2) the calculation of entropy uses the historical values of the 
series to be calculated. 

From the assumptions considered (first, knowing the future values of the series of 
values yt’, and second, the calculation of the transfer entropy independently from the cal-
culation process of the ∈-machine), it is concluded that it is possible to influence the se-
lection of the next state sj and, consequently, the stock market index x. 

The calculation of the transfer entropy using the ∈-machine implies the calculation 
of all the permutations for determining which one or which ones of the financial series 
influence the obtaining of a better forecast. Additionally, if it is necessary to introduce in 
the calculation a larger number of financial series, it is necessary to formulate the problem 
as a combinatorial optimization problem whenever the dynamics of the financial series is 
a combinatorial optimization problem. 

For obtaining the results of this work, it was assumed that vector yt’ of the influencing 
series was known, and the next step was to determine the series prices without knowing 
this vector, but, following the closing hours of the financial markets, to calculate the influ-
ence on the stock markets that are still open. To formulate this problem, it is necessary to 
know which is the initial market and then the series that will be calculated. 
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Appendix A. Financial Series 

 
Figure A1. Closing price of the Nasdaq series from 1 July 2013 to 9 June 2021. 

 
Figure A2. Closing price of the DAX series from 1 July 2013 to 9 June 2021. 

 
Figure A3. Closing price of the CAC 40 series from 1 July 2013 to 9 June 2021. 
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Figure A4. Closing price of the Hang Seng series from 1 July 2013 to 9 June 2021. 

 
Figure A5. Closing price of the Nikkei series from 1 July 2013 to 9 June 2021. 

Appendix B. Returns of the Series 

 
Figure A6. Returns of the Nasdaq series from 1 July 2013 to 9 June 2021. 
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Figure A7. Returns of the DAX series from 1 July 2013 to 9 June 2021. 

 
Figure A8. Returns of the CAC 40 series from 1 July 2013 to 9 June 2021. 

 
Figure A9. Returns of the Hang Seng series from 1 July 2013 to 9 June 2021. 
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Figure A10. Returns of the Nikkei series from 1 July 2013 to 9 June 2021. 

Appendix C. Series of Integers of the Financial Series 

 
Figure A11. Series of integers of the Nasdaq financial series from 1 July 2013 to 9 June 2021. 

 
Figure A12. Series of integers of the DAX financial series from 1 July 2013 to 9 June 2021. 
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Figure A13. Series of integers of the CAC 40 financial series from 1 July 2013 to 9 June 2021. 

 
Figure A14. Series of integers of the Hang Seng financial series from 1 July 2013 to 9 June 2021. 

 
Figure A15. Series of integers of the Nikkei financial series from 1 July 2013 to 9 June 2021. 
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Appendix D. Forecasts for the Financial Series 

 
Figure A16. Forecasts for the closing price of the Nasdaq series from 10 June 2021 to 29 October 2021. 

 
Figure A17. Forecasts for the closing price of the DAX series from 10 June 2021 to 29 October 2021. 
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Figure A18. Forecasts for the closing price of the CAC 40 series from 10 June 2021 to 29 October 2021. 

 
Figure A19. Forecasts for the closing price of the Hang Seng series from 10 June 2021 to 29 October 2021. 
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Figure A20. Forecasts for the closing price of the Nikkei series from 10 June 2021 to 29 October 2021. 
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