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Abstract: Simultaneous localization and mapping (SLAM) is an active localization method for
Autonomous Underwater Vehicle (AUV), and it can mainly be used in unknown and complex areas
such as coastal water, harbors, and wharfs. This paper presents a practical occupancy grid-based
method based on forward-looking sonar for AUV. The algorithm uses an extended Kalman filter
(EKF) to estimate the AUV motion states. First, the SLAM method fuses the data coming from the
navigation sensors to predict the motion states. Subsequently, a novel particle swarm optimization
genetic algorithm (PSO-GA) scan matching method is employed for matching the sonar scan data and
grid map, and the matching pose would be used to correct the prediction states. Lastly, the estimated
motion states and sonar scan data would be used to update the grid map. The experimental results
based on the field data have validated that the proposed SLAM algorithm is adaptable to underwater
conditions, and accurate enough to use for ocean engineering practical applications.

Keywords: AUV; SLAM; grid map; scan matching

1. Introduction

Autonomous Underwater Vehicle (AUV) is an essential piece of equipment for ocean
exploration, and accurate navigation is crucial for AUV to perform various missions.
Achieving precise localization in an unknown and complex environment is challenging
for the development of AUV. Simultaneous localization and mapping (SLAM) is an active
method for this scenario where it can realize localization while constructing the environ-
ment map. Therefore, the research on the SLAM technology of AUV is of great significance
for ocean engineering applications.

SLAM needs sensors that can explore the external environment. The sensors used in
underwater SLAM mainly include the camera, laser scanner, side-scan sonar, multi-beam
sounder, and forward-looking sonar [1,2]. An amount of research has been focused on the
above SLAM technology. The underwater camera can obtain a high-definition image, and
the accuracy of AUV motion can be estimated through image matching. However, the
optical signal is sensitive to the water quality, which leads to the detection range being not
long, especially when the water is turbid [3,4]. The laser scanner can obtain high-resolution
point cloud data. The point cloud data can accurately describe the contour information of
the environment. A large amount of data leads to a high computational complexity when
applied to a large-scale map. Therefore, the SLAM using a laser scanner is suitable for small
scenes [5,6]. The side-scan sonar transmits sound waves to the seafloor and receives the
echo. According to the wave intensity, the side-scan sonar can obtain seafloor geomorphic
features. Because of the principle of side-scan sonar, it needs to move forward continuously
to obtain the geomorphic image. Therefore, SLAM can only be realized by planning the
path that can repeatedly observe the target [7,8]. The working model of the multi-beam
sounder is similar to that of the side-scan sonar. It can obtain the terrain information when
the AUV is moving forward. Similarly, SLAM can only be achieved by planning the path
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of the repeated course [9,10]. Forward-looking sonar transmits sound waves and estimates
the front environment information according to the echo intensity. The forward-looking
sonar can get a relatively low resolution but continuous target information during the
cursing state of the AUV, so it is suitable for the SLAM navigation system in a complex
environment [11–13].

Map construction is one of the core functions of SLAM. To realize mapping based
on the environment sensor, a proper description of the environment is needed. The main
presentation includes a feature map, a topology map, and a grid map [14,15]. Among
them, The description of the feature map is the most intuitive, and it can better describe the
appearance information of the observed features [16,17]. However, both point features and
line features are more dependent on the sensor’s accuracy, and the measurement noise of
the sensor itself will also seriously interfere with the feature extraction effect. The designed
SLAM navigation system obtains environmental information through the forward-looking
sonar. Due to the low signal-to-noise ratio of the sonar image, the error of the feedback
distance and angle information is relatively large, and the SLAM based on the feature map
performs poorly in a complex underwater environment. A topology map is another way
to abstract the representation of the environment. The method uses nodes to represent
environmental information collected by sensors and record the relationships between
different nodes, including the relative position, orientation, overlap, and inclusion [18,19].
How to convert environmental information into nodes is the main problem in the topology
map, especially in the complex underwater scenario.

By dividing the territory into small grids, the grid map can construct a rough map [20].
As each grid represents whether there is a target in this region, this method can work
appropriately with a relatively low accuracy sensor. Especially for point features, raster
images occupy fewer system resources. Since the grid composition method divides the
environmental map into small grids of each region, the requirements for the accuracy of
environmental sensors are relatively low, so it is suitable for sensing using sensors such as
forward-looking sonar. Compared to the feature map, this method could perform well with
insufficient storage space and is convenient for future AUV path planning [21]. Therefore,
it is suitable for underwater map construction.

The main grid map-based SLAM methods include Gmapping, Hector SLAM, Cartog-
rapher, etc. [22,23]. Despite many successful applications of the above SLAM methods,
they are still not suitable for AUV navigation. Gmapping is based on a particle filter, which
needs more computing resources in large scenarios [24–26]. Hector SLAM only employs
sensing data and does not rely on other sensors. Therefore, it is unsuitable for the AUV
SLAM system [27,28]. Like the Hector SLAM, the Cartographer uses sensing data to correct
the AUV motion. Accuracy sensing is required, but the other sensors of the AUV navigation
system cannot be fully utilized [29–31].

In this paper, a computationally inexpensive and practical AUV SLAM navigation
method is studied. The occupied grid map is employed to describe the environment based
on the data from the forward-looking sonar. The algorithm employs a Kalman filter for
state estimation. The sonar scan data is used to build a grid scan map and extracts a
local submap from the environment map according to the area of the grid map. The grid
scan map and the local submap are matched by the particle swarm optimization genetic
algorithm (PSO-GA). The matched pose is selected as the observation of the filter to correct
the navigation information. The experimental results based on AUV actual field data
verified the effectiveness of the proposed SLAM method. The remainder of this paper is
organized as follows: Section 2 introduces the fundamental of the studied SLAM system,
including the AUV platform and the occupancy grid map. The details of the proposed
algorithm are presented in Section 3. The experimental results based on AUV field data are
analyzed in Section 4. Finally, Section 5 summarizes the principal conclusion of this work.



J. Mar. Sci. Eng. 2022, 10, 1056 3 of 15

2. Fundamental of the Studied SLAM System
2.1. Platform Introduction

The structure of the experiment platform is shown in Figure 1. The sensors and devices
of the navigation system include a global position system (GPS), Doppler velocity log
(DVL), inertial measurement unit (IMU), and depth meter (DM). Figure 2 is the deployment
scenario of the experiment platform. Due to the advantages of forward-looking sonar in a
complex environment, the SLAM system uses a head-mounted forward-looking sonar for
environment sensing.

Figure 1. The structure of the experiment platform.

Figure 2. The deployment scenario of the experiment platform.

The GPS equipment includes the antenna and receiver. The antenna is on the top of
AUV and can receive the satellite signals when the AUV floats on the surface. Then, the
GPS receiver would calculate the position information according to the satellite signals. As
the GPS position has no accumulation errors, the GPS information usually can be trusted
when the AUV is on the surface.

The DVL is mounted at the bottom of the AUV. It can transmit short sound information,
and the DVL can obtain the vehicle velocity information according to the Doppler shift.
The velocity of DVL is relatively accurate, but it is easy to be interfered with by the
surrounding environment.

The IMU is mounted in the middle of the vehicle. It contains three gyroscopes and ac-
celerometer. According to the raw angular speed and accelerometer, the IMU can integrate
precise attitude angle and yaw information of AUV. However, the accuracy of IMU will
diverge with time.
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The DM is a water pressure sensor. According to properties such as density and
pressure value of seawater, it can obtain an accurate absolute depth. Consequently, the
SLAM can be converted into a two-dimensional (2D) situation, and the following content is
the 2D position estimation and map construction.

2.2. Occupancy Grid Map

As the underwater SLAM can be regarded as the position and mapping in the 2D
horizontal plane, the map used by the SLAM system studied in this paper is a 2D occupancy
grid map, which is divided into a finite number of units according to the scale. The
occupancy grid map is expressed in Equation (1).

M = {mi} (1)

where mi represents the grid map with index i. The probability of occupation is expressed
as P(mi). Since the occupation only includes whether grid cell is occupied or not, the
probability of occupation is as follows.

p(mi = 0) + p(mi = 1) = 1 (2)

The posterior probability represents the occupancy probability in the SLAM algorithm,
as shown in Equation (3).

p(mi|Zi:t, Xi:t) (3)

where Z represents the observation and X represents the vehicle state. The map is con-
structed as the occupancy probability of each grid cell, which is represented by binary
Bayes. This method is expressed as the odds ratio of the occurrence and non-occurrence
probability. As Equation (4) shows:

p(mi = 1)
p(mi = 0)

=
p(mi = 1)

1− p(mi = 1)
(4)

During the process of SLAM, the posterior probability of the occupancy grid is constantly
updated by the measurement, and the value of probability is always between [0, 1]. Therefore,
the logarithm is introduced in the process of probability update, and the expression of the
logarithm probability is as follows:

lt,i = log
p(mi | Zi:t, Xi:t)

1− p(mi | Zi:t, Xi:t)
(5)

The logarithmic probability of each grid cell is shown in Equation (6).

lt,i = lt−1,i + inverse_sensor_model(mi, Xt, Zt)− l0 (6)

where lt,i represents the logarithmic probability of grid cell i at time t, and l0 is the initial
value of the logarithmic probability. The inverse_sensor_model also uses logarithmic form
and is expressed as follows:

inverse_sensor_model (mi, Xt, Zt) = log
p(mi | Xt, Zt)

1− p(mi | Xt, Zt)
(7)

The Bresenham algorithm is used to judge whether the grid cell is occupied. Figure 3
shows an example of the inverse measurement model. The gray grid cell indicates that
this cell is not detected, the black grid suggests that this cell is detected, and the white grid
indicates no target area.
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Figure 3. Example of the inverse measurement model.

The logarithmic probability of each cell can be updated according to Equations (6) and
(7), and then converted into the occupancy probability. The conversion function is shown
in Equation (8).

p(mi | Zi:t, Xi:t) = 1− 1
1 + exp(lt,i)

(8)

The occupancy grid map represents the probability of the existence of targets in the
cell. In the SLAM process, the probability needs to be binarized, and the cells with high
possibility are considered the occupied cell, while the remaining cells are not occupied.

3. Occupancy Grid-Based AUV SLAM Method

This paper proposed an occupancy grid-based SLAM algorithm for AUV. Figure 4
shows the flow chart of the proposed method. This method employs an extended Kalman
filter (EKF) to estimate the AUV state. According to the occupancy grid map method
described in the previous section, the system first initializes the pose and map. As the
data frequency of multi-beam forward-looking sonar is lower than that of other navigation
sensors, the state and covariance of the system are predicted by the time update process of
EKF. When the sonar data are updated, the feature points in the sonar data are extracted
to map the detected feature into a scanning grid map, and the sub-map is extracted in the
detected target area from the whole grid map. The scanning grid map and sub-map realize
the pose estimation of AUV by the matching method, and the estimated AUV pose is used as
the measurement to update the system state and covariance. Finally, the system transforms
the sonar data into the navigation coordinate system according to the estimated pose.
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Yes

No

Figure 4. Occupancy grid-based AUV SLAM method.

3.1. Time Update Process

The dead reckoning algorithm is used to predict the state of the AUV system status.
The orientation of IMU and velocity of DVL in the horizontal plane are employed for state
estimation. In this study, the system state can be represented by the horizontal position
and orientation. Equation (9) is the kinematics equation used for the time update.

Xk+1 = f (Xk, Uk) x
y
ψ


k+1

=

 x + u cos(ψI)t− v sin(ψI)t
y + u sin(ψI)t + v cos(ψI)t

ψI


k

(9)

The system state of AUV is X = [x, y, ψ]T in the “north-east” navigation coordinate
system, where x and y represent the vehicle location on the north and east axes, respectively,
and ψ is the orientation angle of the AUV, zero degrees to the north and positive clockwise.
The control input is U = [u, v, ψI ]

T , where u and v respectively represent the forward and
lateral velocity of the DVL in the airborne coordinate system. ψI is the orientation angle
from IMU. t is the time interval of the time update. Since the time update includes the
system state and control input, the Jacobian matrix should be calculated. Equations (10)
and (11) are the Jacobian matrix of the system state and control input, respectively.

FX =

 1 0 0
0 1 0
0 0 0

 (10)

FU =

 cos(ψI)t − sin(ψI)t −u sin(ψI)t− v cos(ψI)t
sin(ψI)t cos(ψI)t u cos(ψI)t− v sin(ψI)t

0 0 1

 (11)

The system state covariance can be calculated by Equation (12).
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Pk+1|k = FXPkFX
T + FUQFU

T (12)

3.2. Sonar and Map Data Processing

The data of the sonar and map need to be processed before being used to optimize the
AUV state. The processing process is as follows. As sonar data are noisy, effective features
should be extracted. The forward-looking sonar can obtain the echo intensity from different
beams. The intensity of the echo reflects the possibility of the target within the detection
range. As the closer-range data are more reliable than the further data, the first point of
each beam greater than the threshold is the feature point. The features extraction effect of
sonar data is shown in Figure 5.

(a) (b)

Figure 5. Features extraction of sonar data. (a) Raw sonar data. (b) Sonar data after feature extraction.

The sonar data are based on the airborne coordinate system, which needs to be
converted to the navigation coordinate system. The rotation and translation formula is
depicted in Equation (13).[

Twx
Twy

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
Tsx
Tsy

]
+

[
x
y

]
(13)

where Twx and Twy are the positions of feature points in the navigation coordinate system,
and Tsx and Tsy are the positions in the sonar airborne coordinate system. The sonar scan-
ning grid map is constructed according to the specific position of sonar feature points. The
scope of each scan grid map constructed is much smaller than the overall map constructed
by the SLAM system. The matching between the scanning map and the entire map would
cost much unnecessary calculation. Therefore, an appropriate sub-map from the whole
map should be extracted to improve the efficiency of the SLAM execution. The sub-map
is selected by the distribution area of feature points from the scan data. Local submap by
probability values are binarized to indicate whether grid cells are occupied or not.

3.3. Grid Map Matching Method

Due to the error in the AUV state estimation during the time update process, the scan-
ning grid map is deviated from the local submap. The purpose of map matching is to find
an appropriate rotation and translation from the scanning grid map to the local map. The
exhaustion Method can solve this problem. However, to obtain an exact optimal solution,
a large number of solutions needs to be set up in advance. Considering the calculation
time and accuracy, it is difficult to obtain an accurate pose by the exhaustive method. At
present, the branch and bound method is a general grid map matching algorithm, which
has been successfully applied to land robots. Nevertheless, the measurement accuracy of
sonar is much lower than that of sensors on land, and the branch-and-bound method can
easily fall into optimal local values and results in the SLAM failure. Therefore, a global
optimization strategy should be used for grid map matching of sonar data. The genetic
algorithm is one of the global optimization methods [32,33]. According to the competition
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mechanism between target groups, the individuals far away from the optimal solution
would be eliminated, and crossover and mutation operations are carried out among the
remaining populations. After the above iterative process, the most suitable individuals are
selected as the optimal solution. Although the genetic algorithm can quickly converge the
pose in the initial process, it is difficult to approach the optimal pose of AUV only through
its mutation mechanism. To solve this question, particle swarm optimization (PSO) [34–36]
was introduced into the mutation process of the genetic algorithm (GA). The flow chart of
the developed PSO-GA is shown in Figure 6.

No

Yes

Figure 6. The grid map matching algorithm based on PSO-GA.

The population of the GA is initialized first. The gene of each individual includes the
horizontal position and orientation Xi = [xi, yi, ψi]

T , where i represents the index of the
individual. The fitness function of the GA indicates the difference between the the scanning
grid map generated by the individual and the local submap. The smaller the difference, the
higher the fitness of the individual.

Half of the individuals with low fitness are abandoned during the iterative process, and
the other would be selected for gene crossover. Each individual contains only three genes,
and a new generation of the population is generated using a single point crossover operator.

Based on the new generation of the population, due to the randomness of the PSO,
the fitness of some individuals will be improved, and these individuals will be selected as
the variable individuals, while the rest of the individuals remain in the state before being
optimized by the PSO. The new generation population optimized by the PSO continues to
iterate until the optimal solution is found. Figure 7 shows the effect of grid map matching
using the proposed PSO-GA algorithm.
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(a) (b) (c)

Figure 7. Effect of grid map matching. (a) Grid sub-map. (b) Scanning grid map. (c) Scanning grid
map after matching.

3.4. Measurement Update Process

The map matching between the grid map and the local sub-map can find an appropri-
ate AUV state, and the state is the observation in the measurement update process of the
EKF. The expression of the observation is as follows:

Z =
[

x y ψ
]T (14)

Since the observation vector has a linear relationship with the system state, the obser-
vation model is linear, which is as follows:

H = I3×3 (15)

After the measurement update process, the EKF estimation would be used to transform
the feature points to the navigation coordinate system and update the probability value of
the grid map according to Equations (6) and (8). The updated grid map is used for the next
map matching.

4. Experimental Result and Analysis

To verify the validity of the occupancy grid-based SLAM algorithm, experiments
based on AUV field data were carried out. The field data were collected near Tuandao
Bay wharf in Qingdao. Figure 8 shows the sea trail environment, including walls, bridge
holes, rocks, and barges. The AUV moved clockwise on the water surface in the harbor,
and the GPS position was used as the ground truth to evaluate the performance of different
methods. The distribution of feature points collected by the forward-looking sonar is
shown in Figure 9. The red lines in the figure are GPS trajectories, and the blue points are
the feature points.

The experimental analysis included the performance of the proposed SLAM frame-
work in different grid map matching methods, and under EKF and UKF.
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Figure 8. Sea trial environment.

(a) (b)

Figure 9. AUV real trajectory and sonar feature points. (a) AUV real trajectories and sonar feature
points in Test 1. (b) AUV real trajectories and sonar feature points in Test 2.

4.1. Experimental Results and Analysis under Different Grid Map Matching Methods

In this section, the exhaustive method, GA, and the developed PSO-GA for grid map
matching are examined. Figure 10 shows the AUV trajectories optimized by different
matching methods. The black lines are the ground truth, red lines are the dead reckoning
trajectory, blue lines are the SLAM trajectory based on the exhaustive method, green lines
are the SLAM trajectory based on the developed GA, and purple lines are the SLAM
trajectory based on the developed PSO-GA .
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Figure 10. AUV positioning with different navigation methods. (a) AUV positioning with different
navigation methods in Test 1. (b) AUV positioning with different navigation methods in Test 2.

In Figure 10, the position deviation of DR would increase faster without the SLAM
algorithm. The abscissa represents the number of software runs, with a step size of 100 ms.
Since the exhaustive method can approximately modify the AUV state, the position error
accumulation can be limited to a certain extent. The exhaustive method cannot achieve the
optimal matching, so there still exists a large error in the trajectory. The developed PSO-GA
can ensure that the matching effect approximates the optimal solution, so as to obtain a
better AUV trajectory.

Figure 11 shows the positioning errors by different algorithms, where the red lines
are the error of dead reckoning, blue lines are the SLAM localization error based on the
exhaustive method, green lines are the position error of SLAM based on the GA, and purple
lines are the position error of SLAM based on the PSO-GA. The error results show that the
developed PSO-GA can effectively reduce the positioning error. Table 1 shows the root
mean squared error (RMSE) of the position under different algorithms.
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Figure 11. Localization error of different methods. (a) Localization error of different methods in
Test 1. (b) Localization error of different methods in Test 2.
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Table 1. RMSE of the position under different algorithms; unit: m.

Dead Reckoning SLAM (Exhaustive Method) SLAM (GA) SLAM (PSO-GA)

Test 1 5.9904 3.2607 3.0120 2.6900

Test 2 7.1185 3.7900 2.8062 1.6108

Figure 12 shows the probability grid map constructed by the SLAM algorithm based
on PSO-GA. The probability of each grid is expressed as the gray value. By comparing the
grid map and the feature points, it can be seen that the SLAM algorithm could effectively
construct the map of the wall and bridge holes that the AUV passed. The underwater
rocks are ignored in map construction because they do not affect AUV motion. Due to the
waterline of barges being shallow, the composition of the barges is poor.
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Figure 12. Probabilistic grid map of the SLAM navigation system. (a) Probabilistic grid map of the
SLAM navigation system in Test 1. (b) Probabilistic grid map of the SLAM navigation system in Test 2.

4.2. Experimental Results and Analysis under Different Filters

The SLAM algorithm proposed in this paper is based on EKF for state estimation. As
the EKF algorithm ignores the higher-order terms when calculating the Jacobian matrix,
which leads to model error in the filter system, the unscented Kalman filter (UKF) was
introduced to solve the problem. In this section, the UKF and the EKF SLAM algorithm
are employed. The experimental results are shown in Figure 13, where black lines are the
ground truth, red lines are the SLAM position estimated by EKF, and blue lines are that of
UKF. According to the experimental results, the performance of SLAM under the two filters
was almost the same. Although the UKF is more suitable for nonlinear systems than EKF, the
nonlinearity of the proposed SLAM is weak, and the UKF has no significant improvement
in this work. Considering the limitation of computational resources, the proposed EKF filter-
based SLAM algorithm can meet practical applications. Figure 14 shows the localization
errors of the two filters. The red lines are SLAM using EKF, and the blue lines are the errors
of UKF. Table 2 shows the RMSE of AUV localization under the two filters.
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Figure 13. Comparison of EKF and UKF SLAM algorithms. (a) Comparison of EKF and UKF SLAM
algorithms in Test 1. (b) Comparison of EKF and UKF SLAM algorithms in Test 2.
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Figure 14. The positioning error for the EKF and UKF SLAM algorithms. (a) The positioning error for
the EKF and UKF SLAM algorithms in Test 1. (b) The positioning error for the EKF and UKF SLAM
algorithms in Test 2.

Table 2. RMSE of positioning under the EKF and UKF filters; unit: m.

SLAM (EKF) SLAM (UKF)

Test 1 2.6900 2.6504

Test 2 1.6108 1.7131

5. Conclusions

This paper proposed an occupancy grid-based SLAM algorithm for AUV. Each sonar
scan is processed as a scanning grid map to match the local map extracted from the whole
map. Subsequently, the PSO-GA is used to optimize the map matching process. Then, the
position and orientation obtained by the matching method are used to correct the AUV
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status. Lastly, the modified AUV status transforms the sonar data into the global coordinate
and updates the grid map.

To verify the validity of the occupancy grid-based SLAM algorithm, we conducted
a sea trial near Tuandao Bay wharf in Qingdao. The experimental results indicate that
the proposed SLAM method can effectively improve the accuracy of AUV position and
construct an accurate grid map. We expect that the grid map generated by our SLAM
algorithm can also be a resource for path planning, obstacle avoidance and other tasks for
AUV. The above algorithms were solved on a 2.9 GHz R7-4800H processor that has 16 GB
ram and the GPU was NVIDIA GeForce GTX 1650. Matching a picture of sonar scan data
took an average of 40 ms.

In the future, we will still focus on the AUV SLAM algorithm, and loop closure
detection will be added to improve the AUV SLAM system we proposed. We will study
the application of the swarm intelligence algorithm in particle filter SLAM to enhance the
accuracy of underwater environment positioning and mapping further.
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